oodeel 0.4.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- oodeel/__init__.py +28 -0
- oodeel/aggregator/__init__.py +26 -0
- oodeel/aggregator/base.py +70 -0
- oodeel/aggregator/fisher.py +259 -0
- oodeel/aggregator/mean.py +72 -0
- oodeel/aggregator/std.py +86 -0
- oodeel/datasets/__init__.py +24 -0
- oodeel/datasets/data_handler.py +334 -0
- oodeel/datasets/deprecated/DEPRECATED_data_handler.py +236 -0
- oodeel/datasets/deprecated/DEPRECATED_ooddataset.py +330 -0
- oodeel/datasets/deprecated/DEPRECATED_tf_data_handler.py +671 -0
- oodeel/datasets/deprecated/DEPRECATED_torch_data_handler.py +769 -0
- oodeel/datasets/deprecated/__init__.py +31 -0
- oodeel/datasets/tf_data_handler.py +600 -0
- oodeel/datasets/torch_data_handler.py +672 -0
- oodeel/eval/__init__.py +22 -0
- oodeel/eval/metrics.py +218 -0
- oodeel/eval/plots/__init__.py +27 -0
- oodeel/eval/plots/features.py +345 -0
- oodeel/eval/plots/metrics.py +118 -0
- oodeel/eval/plots/plotly.py +162 -0
- oodeel/extractor/__init__.py +35 -0
- oodeel/extractor/feature_extractor.py +187 -0
- oodeel/extractor/hf_torch_feature_extractor.py +184 -0
- oodeel/extractor/keras_feature_extractor.py +409 -0
- oodeel/extractor/torch_feature_extractor.py +506 -0
- oodeel/methods/__init__.py +47 -0
- oodeel/methods/base.py +570 -0
- oodeel/methods/dknn.py +185 -0
- oodeel/methods/energy.py +119 -0
- oodeel/methods/entropy.py +113 -0
- oodeel/methods/gen.py +113 -0
- oodeel/methods/gram.py +274 -0
- oodeel/methods/mahalanobis.py +209 -0
- oodeel/methods/mls.py +113 -0
- oodeel/methods/odin.py +109 -0
- oodeel/methods/rmds.py +172 -0
- oodeel/methods/she.py +159 -0
- oodeel/methods/vim.py +273 -0
- oodeel/preprocess/__init__.py +31 -0
- oodeel/preprocess/tf_preprocess.py +95 -0
- oodeel/preprocess/torch_preprocess.py +97 -0
- oodeel/types/__init__.py +75 -0
- oodeel/utils/__init__.py +38 -0
- oodeel/utils/general_utils.py +97 -0
- oodeel/utils/operator.py +253 -0
- oodeel/utils/tf_operator.py +269 -0
- oodeel/utils/tf_training_tools.py +219 -0
- oodeel/utils/torch_operator.py +292 -0
- oodeel/utils/torch_training_tools.py +303 -0
- oodeel-0.4.0.dist-info/METADATA +409 -0
- oodeel-0.4.0.dist-info/RECORD +63 -0
- oodeel-0.4.0.dist-info/WHEEL +5 -0
- oodeel-0.4.0.dist-info/licenses/LICENSE +21 -0
- oodeel-0.4.0.dist-info/top_level.txt +2 -0
- tests/__init__.py +22 -0
- tests/tests_tensorflow/__init__.py +37 -0
- tests/tests_tensorflow/tf_methods_utils.py +140 -0
- tests/tests_tensorflow/tools_tf.py +86 -0
- tests/tests_torch/__init__.py +38 -0
- tests/tests_torch/tools_torch.py +151 -0
- tests/tests_torch/torch_methods_utils.py +148 -0
- tests/tools_operator.py +153 -0
oodeel/methods/dknn.py
ADDED
|
@@ -0,0 +1,185 @@
|
|
|
1
|
+
# -*- coding: utf-8 -*-
|
|
2
|
+
# Copyright IRT Antoine de Saint Exupéry et Université Paul Sabatier Toulouse III - All
|
|
3
|
+
# rights reserved. DEEL is a research program operated by IVADO, IRT Saint Exupéry,
|
|
4
|
+
# CRIAQ and ANITI - https://www.deel.ai/
|
|
5
|
+
#
|
|
6
|
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
7
|
+
# of this software and associated documentation files (the "Software"), to deal
|
|
8
|
+
# in the Software without restriction, including without limitation the rights
|
|
9
|
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
10
|
+
# copies of the Software, and to permit persons to whom the Software is
|
|
11
|
+
# furnished to do so, subject to the following conditions:
|
|
12
|
+
#
|
|
13
|
+
# The above copyright notice and this permission notice shall be included in all
|
|
14
|
+
# copies or substantial portions of the Software.
|
|
15
|
+
#
|
|
16
|
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
17
|
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
18
|
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
19
|
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
20
|
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
21
|
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
22
|
+
# SOFTWARE.
|
|
23
|
+
import faiss
|
|
24
|
+
import numpy as np
|
|
25
|
+
|
|
26
|
+
from ..aggregator import BaseAggregator
|
|
27
|
+
from ..types import TensorType
|
|
28
|
+
from .base import FeatureBasedDetector
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
class DKNN(FeatureBasedDetector):
|
|
32
|
+
"""
|
|
33
|
+
"Out-of-Distribution Detection with Deep Nearest Neighbors"
|
|
34
|
+
https://arxiv.org/abs/2204.06507
|
|
35
|
+
|
|
36
|
+
Args:
|
|
37
|
+
nearest: number of nearest neighbors to consider.
|
|
38
|
+
Defaults to 50.
|
|
39
|
+
use_gpu (bool): Whether to enable GPU acceleration for FAISS. Defaults to False.
|
|
40
|
+
aggregator (Optional[BaseAggregator]): Aggregator to combine scores from
|
|
41
|
+
multiple feature layers. If not provided and multiple layers are used, a
|
|
42
|
+
StdNormalizedAggregator will be employed.
|
|
43
|
+
**kwargs: Additional keyword arguments for the base class.
|
|
44
|
+
"""
|
|
45
|
+
|
|
46
|
+
def __init__(
|
|
47
|
+
self,
|
|
48
|
+
nearest: int = 50,
|
|
49
|
+
use_gpu: bool = False,
|
|
50
|
+
aggregator: BaseAggregator = None,
|
|
51
|
+
**kwargs,
|
|
52
|
+
):
|
|
53
|
+
super().__init__(aggregator=aggregator, **kwargs)
|
|
54
|
+
self.nearest = nearest
|
|
55
|
+
self.use_gpu = use_gpu
|
|
56
|
+
self.indexes: list[faiss.IndexFlatL2] = []
|
|
57
|
+
|
|
58
|
+
if self.use_gpu:
|
|
59
|
+
try:
|
|
60
|
+
self.res = faiss.StandardGpuResources()
|
|
61
|
+
except AttributeError as e:
|
|
62
|
+
raise ImportError(
|
|
63
|
+
"faiss-gpu is not installed, but use_gpu was set to True."
|
|
64
|
+
+ "Please install faiss-gpu or set use_gpu to False."
|
|
65
|
+
) from e
|
|
66
|
+
|
|
67
|
+
# === Per-layer logic ===
|
|
68
|
+
def _fit_layer(
|
|
69
|
+
self,
|
|
70
|
+
layer_id: int,
|
|
71
|
+
layer_features: np.ndarray,
|
|
72
|
+
info: dict,
|
|
73
|
+
**kwargs,
|
|
74
|
+
) -> None:
|
|
75
|
+
"""Fit one FAISS index for a single layer.
|
|
76
|
+
|
|
77
|
+
The extracted features are L2-normalized and stored into a FAISS index
|
|
78
|
+
dedicated to the current layer. Aggregator scores, if needed, are
|
|
79
|
+
computed separately via :func:`_score_layer` with `fit=True`.
|
|
80
|
+
|
|
81
|
+
Args:
|
|
82
|
+
layer_id: Index of the processed layer.
|
|
83
|
+
layer_features: Feature tensor corresponding to that layer.
|
|
84
|
+
info: Dictionary of auxiliary data (unused).
|
|
85
|
+
"""
|
|
86
|
+
norm_features = self._prepare_layer_features(layer_features)
|
|
87
|
+
index = self._create_index(norm_features.shape[1])
|
|
88
|
+
index.add(norm_features)
|
|
89
|
+
|
|
90
|
+
self.indexes.append(index)
|
|
91
|
+
|
|
92
|
+
def _score_layer(
|
|
93
|
+
self,
|
|
94
|
+
layer_id: int,
|
|
95
|
+
layer_features: TensorType,
|
|
96
|
+
info: dict,
|
|
97
|
+
fit: bool = False,
|
|
98
|
+
**kwargs,
|
|
99
|
+
) -> np.ndarray:
|
|
100
|
+
"""Compute KNN scores for a single feature layer.
|
|
101
|
+
|
|
102
|
+
Args:
|
|
103
|
+
layer_id: Index of the processed layer.
|
|
104
|
+
layer_features: Feature tensor associated with this layer.
|
|
105
|
+
info: Dictionary of auxiliary data (unused).
|
|
106
|
+
fit: If `True`, scoring is performed as part of the fitting routine (for
|
|
107
|
+
the aggregator) and uses `max(nearest, 2)` neighbours. This avoids the
|
|
108
|
+
trivial zero distance obtained when `nearest` equals one. In inference
|
|
109
|
+
mode (`fit=False`), `nearest` neighbours are used.
|
|
110
|
+
|
|
111
|
+
Returns:
|
|
112
|
+
np.ndarray: Distance to the :math:`k`-th nearest neighbour.
|
|
113
|
+
"""
|
|
114
|
+
index = self.indexes[layer_id]
|
|
115
|
+
layer_features = self.op.convert_to_numpy(layer_features)
|
|
116
|
+
norm_features = self._prepare_layer_features(layer_features)
|
|
117
|
+
k = max(self.nearest, 2) if fit else self.nearest
|
|
118
|
+
scores, _ = index.search(norm_features, k)
|
|
119
|
+
return scores[:, -1]
|
|
120
|
+
|
|
121
|
+
# === Internal utilities ===
|
|
122
|
+
def _prepare_layer_features(self, features: np.ndarray) -> np.ndarray:
|
|
123
|
+
"""
|
|
124
|
+
Convert a feature tensor to a 2D numpy array and apply L2 normalization.
|
|
125
|
+
|
|
126
|
+
Args:
|
|
127
|
+
features (np.ndarray): Feature tensor to be processed.
|
|
128
|
+
|
|
129
|
+
Returns:
|
|
130
|
+
np.ndarray: Processed feature array with shape (num_samples, feature_dim)
|
|
131
|
+
and L2 normalized.
|
|
132
|
+
"""
|
|
133
|
+
features = features.reshape(features.shape[0], -1)
|
|
134
|
+
return self._l2_normalization(features)
|
|
135
|
+
|
|
136
|
+
def _create_index(self, dim: int) -> faiss.IndexFlatL2:
|
|
137
|
+
"""
|
|
138
|
+
Create a FAISS index for features of a given dimensionality.
|
|
139
|
+
|
|
140
|
+
Args:
|
|
141
|
+
dim (int): Dimensionality of the feature vectors.
|
|
142
|
+
|
|
143
|
+
Returns:
|
|
144
|
+
faiss.IndexFlatL2: A FAISS index instance, using GPU acceleration if
|
|
145
|
+
enabled.
|
|
146
|
+
"""
|
|
147
|
+
if self.use_gpu:
|
|
148
|
+
cpu_index = faiss.IndexFlatL2(dim)
|
|
149
|
+
return faiss.index_cpu_to_gpu(self.res, 0, cpu_index)
|
|
150
|
+
else:
|
|
151
|
+
return faiss.IndexFlatL2(dim)
|
|
152
|
+
|
|
153
|
+
def _l2_normalization(self, feat: np.ndarray) -> np.ndarray:
|
|
154
|
+
"""
|
|
155
|
+
Apply L2 normalization to an array of feature vectors along the last dimension.
|
|
156
|
+
|
|
157
|
+
Args:
|
|
158
|
+
feat (np.ndarray): Input array of features.
|
|
159
|
+
|
|
160
|
+
Returns:
|
|
161
|
+
np.ndarray: L2-normalized feature array.
|
|
162
|
+
"""
|
|
163
|
+
return feat / (np.linalg.norm(feat, ord=2, axis=-1, keepdims=True) + 1e-10)
|
|
164
|
+
|
|
165
|
+
# === Properties ===
|
|
166
|
+
@property
|
|
167
|
+
def requires_to_fit_dataset(self) -> bool:
|
|
168
|
+
"""
|
|
169
|
+
Whether an OOD detector needs a `fit_dataset` argument in the fit function.
|
|
170
|
+
|
|
171
|
+
Returns:
|
|
172
|
+
bool: True if `fit_dataset` is required else False.
|
|
173
|
+
"""
|
|
174
|
+
return True
|
|
175
|
+
|
|
176
|
+
@property
|
|
177
|
+
def requires_internal_features(self) -> bool:
|
|
178
|
+
"""
|
|
179
|
+
Whether an OOD detector acts on internal model features.
|
|
180
|
+
|
|
181
|
+
Returns:
|
|
182
|
+
bool: True if the detector perform computations on an intermediate layer
|
|
183
|
+
else False.
|
|
184
|
+
"""
|
|
185
|
+
return True
|
oodeel/methods/energy.py
ADDED
|
@@ -0,0 +1,119 @@
|
|
|
1
|
+
# -*- coding: utf-8 -*-
|
|
2
|
+
# Copyright IRT Antoine de Saint Exupéry et Université Paul Sabatier Toulouse III - All
|
|
3
|
+
# rights reserved. DEEL is a research program operated by IVADO, IRT Saint Exupéry,
|
|
4
|
+
# CRIAQ and ANITI - https://www.deel.ai/
|
|
5
|
+
#
|
|
6
|
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
7
|
+
# of this software and associated documentation files (the "Software"), to deal
|
|
8
|
+
# in the Software without restriction, including without limitation the rights
|
|
9
|
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
10
|
+
# copies of the Software, and to permit persons to whom the Software is
|
|
11
|
+
# furnished to do so, subject to the following conditions:
|
|
12
|
+
#
|
|
13
|
+
# The above copyright notice and this permission notice shall be included in all
|
|
14
|
+
# copies or substantial portions of the Software.
|
|
15
|
+
#
|
|
16
|
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
17
|
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
18
|
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
19
|
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
20
|
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
21
|
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
22
|
+
# SOFTWARE.
|
|
23
|
+
import numpy as np
|
|
24
|
+
from scipy.special import logsumexp
|
|
25
|
+
|
|
26
|
+
from ..types import TensorType
|
|
27
|
+
from ..types import Tuple
|
|
28
|
+
from .base import OODBaseDetector
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
class Energy(OODBaseDetector):
|
|
32
|
+
r"""
|
|
33
|
+
Energy Score method for OOD detection.
|
|
34
|
+
"Energy-based Out-of-distribution Detection"
|
|
35
|
+
https://arxiv.org/abs/2010.03759
|
|
36
|
+
|
|
37
|
+
This method assumes that the model has been trained with cross entropy loss
|
|
38
|
+
$CE(model(x))$ where $model(x)=(l_{c})_{c=1}^{C}$ are the logits
|
|
39
|
+
predicted for input $x$.
|
|
40
|
+
The implementation assumes that the logits are retreieved using the output with
|
|
41
|
+
linear activation.
|
|
42
|
+
|
|
43
|
+
The energy score for input $x$ is given by
|
|
44
|
+
$$ -\log \sum_{c=0}^C \exp(l_c)$$
|
|
45
|
+
|
|
46
|
+
where $model(x)=(l_{c})_{c=1}^{C}$ are the logits predicted by the model on
|
|
47
|
+
$x$.
|
|
48
|
+
As always, training data is expected to have lower score than OOD data.
|
|
49
|
+
|
|
50
|
+
Args:
|
|
51
|
+
use_react (bool): if true, apply ReAct method by clipping penultimate
|
|
52
|
+
activations under a threshold value.
|
|
53
|
+
react_quantile (Optional[float]): q value in the range [0, 1] used to compute
|
|
54
|
+
the react clipping threshold defined as the q-th quantile penultimate layer
|
|
55
|
+
activations. Defaults to 0.8.
|
|
56
|
+
"""
|
|
57
|
+
|
|
58
|
+
def __init__(
|
|
59
|
+
self,
|
|
60
|
+
use_react: bool = False,
|
|
61
|
+
use_scale: bool = False,
|
|
62
|
+
use_ash: bool = False,
|
|
63
|
+
react_quantile: float = 0.8,
|
|
64
|
+
scale_percentile: float = 0.85,
|
|
65
|
+
ash_percentile: float = 0.90,
|
|
66
|
+
**kwargs,
|
|
67
|
+
):
|
|
68
|
+
super().__init__(
|
|
69
|
+
use_react=use_react,
|
|
70
|
+
use_scale=use_scale,
|
|
71
|
+
use_ash=use_ash,
|
|
72
|
+
react_quantile=react_quantile,
|
|
73
|
+
scale_percentile=scale_percentile,
|
|
74
|
+
ash_percentile=ash_percentile,
|
|
75
|
+
**kwargs,
|
|
76
|
+
)
|
|
77
|
+
|
|
78
|
+
def _score_tensor(self, inputs: TensorType) -> Tuple[np.ndarray]:
|
|
79
|
+
"""
|
|
80
|
+
Computes an OOD score for input samples "inputs" based on
|
|
81
|
+
energy, namey $-logsumexp(logits(inputs))$.
|
|
82
|
+
|
|
83
|
+
Args:
|
|
84
|
+
inputs: input samples to score
|
|
85
|
+
|
|
86
|
+
Returns:
|
|
87
|
+
Tuple[np.ndarray]: scores, logits
|
|
88
|
+
"""
|
|
89
|
+
# optional: apply input perturbation
|
|
90
|
+
if self.eps > 0:
|
|
91
|
+
inputs = self._input_perturbation(inputs, self.eps, self.temperature)
|
|
92
|
+
|
|
93
|
+
# compute logits (softmax(logits,axis=1) is the actual softmax
|
|
94
|
+
# output minimized using binary cross entropy)
|
|
95
|
+
_, logits = self.feature_extractor.predict_tensor(inputs)
|
|
96
|
+
logits = self.op.convert_to_numpy(logits)
|
|
97
|
+
scores = -logsumexp(logits, axis=1)
|
|
98
|
+
return scores
|
|
99
|
+
|
|
100
|
+
@property
|
|
101
|
+
def requires_to_fit_dataset(self) -> bool:
|
|
102
|
+
"""
|
|
103
|
+
Whether an OOD detector needs a `fit_dataset` argument in the fit function.
|
|
104
|
+
|
|
105
|
+
Returns:
|
|
106
|
+
bool: True if `fit_dataset` is required else False.
|
|
107
|
+
"""
|
|
108
|
+
return False
|
|
109
|
+
|
|
110
|
+
@property
|
|
111
|
+
def requires_internal_features(self) -> bool:
|
|
112
|
+
"""
|
|
113
|
+
Whether an OOD detector acts on internal model features.
|
|
114
|
+
|
|
115
|
+
Returns:
|
|
116
|
+
bool: True if the detector perform computations on an intermediate layer
|
|
117
|
+
else False.
|
|
118
|
+
"""
|
|
119
|
+
return False
|
|
@@ -0,0 +1,113 @@
|
|
|
1
|
+
# -*- coding: utf-8 -*-
|
|
2
|
+
# Copyright IRT Antoine de Saint Exupéry et Université Paul Sabatier Toulouse III - All
|
|
3
|
+
# rights reserved. DEEL is a research program operated by IVADO, IRT Saint Exupéry,
|
|
4
|
+
# CRIAQ and ANITI - https://www.deel.ai/
|
|
5
|
+
#
|
|
6
|
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
7
|
+
# of this software and associated documentation files (the "Software"), to deal
|
|
8
|
+
# in the Software without restriction, including without limitation the rights
|
|
9
|
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
10
|
+
# copies of the Software, and to permit persons to whom the Software is
|
|
11
|
+
# furnished to do so, subject to the following conditions:
|
|
12
|
+
#
|
|
13
|
+
# The above copyright notice and this permission notice shall be included in all
|
|
14
|
+
# copies or substantial portions of the Software.
|
|
15
|
+
#
|
|
16
|
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
17
|
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
18
|
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
19
|
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
20
|
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
21
|
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
22
|
+
# SOFTWARE.
|
|
23
|
+
import numpy as np
|
|
24
|
+
|
|
25
|
+
from ..types import TensorType
|
|
26
|
+
from ..types import Tuple
|
|
27
|
+
from .base import OODBaseDetector
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
class Entropy(OODBaseDetector):
|
|
31
|
+
r"""
|
|
32
|
+
Entropy OOD score
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
The method consists in using the Entropy of the input data computed using the
|
|
36
|
+
Entropy $\sum_{c=0}^C p(y=c| x) \times log(p(y=c | x))$ where
|
|
37
|
+
$p(y=c| x) = \text{model}(x)$.
|
|
38
|
+
|
|
39
|
+
**Reference**
|
|
40
|
+
https://proceedings.neurips.cc/paper/2019/hash/1e79596878b2320cac26dd792a6c51c9-Abstract.html,
|
|
41
|
+
Neurips 2019.
|
|
42
|
+
|
|
43
|
+
Args:
|
|
44
|
+
use_react (bool): if true, apply ReAct method by clipping penultimate
|
|
45
|
+
activations under a threshold value.
|
|
46
|
+
react_quantile (Optional[float]): q value in the range [0, 1] used to compute
|
|
47
|
+
the react clipping threshold defined as the q-th quantile penultimate layer
|
|
48
|
+
activations. Defaults to 0.8.
|
|
49
|
+
"""
|
|
50
|
+
|
|
51
|
+
def __init__(
|
|
52
|
+
self,
|
|
53
|
+
use_react: bool = False,
|
|
54
|
+
use_scale: bool = False,
|
|
55
|
+
use_ash: bool = False,
|
|
56
|
+
react_quantile: float = 0.8,
|
|
57
|
+
scale_percentile: float = 0.85,
|
|
58
|
+
ash_percentile: float = 0.90,
|
|
59
|
+
**kwargs,
|
|
60
|
+
):
|
|
61
|
+
super().__init__(
|
|
62
|
+
use_react=use_react,
|
|
63
|
+
use_scale=use_scale,
|
|
64
|
+
use_ash=use_ash,
|
|
65
|
+
react_quantile=react_quantile,
|
|
66
|
+
scale_percentile=scale_percentile,
|
|
67
|
+
ash_percentile=ash_percentile,
|
|
68
|
+
**kwargs,
|
|
69
|
+
)
|
|
70
|
+
|
|
71
|
+
def _score_tensor(self, inputs: TensorType) -> Tuple[np.ndarray]:
|
|
72
|
+
"""
|
|
73
|
+
Computes an OOD score for input samples "inputs" based on
|
|
74
|
+
entropy.
|
|
75
|
+
|
|
76
|
+
Args:
|
|
77
|
+
inputs: input samples to score
|
|
78
|
+
|
|
79
|
+
Returns:
|
|
80
|
+
Tuple[np.ndarray]: scores, logits
|
|
81
|
+
"""
|
|
82
|
+
# optional: apply input perturbation
|
|
83
|
+
if self.eps > 0:
|
|
84
|
+
inputs = self._input_perturbation(inputs, self.eps, self.temperature)
|
|
85
|
+
|
|
86
|
+
# compute logits (softmax(logits,axis=1) is the actual softmax
|
|
87
|
+
# output minimized using binary cross entropy)
|
|
88
|
+
_, logits = self.feature_extractor.predict_tensor(inputs)
|
|
89
|
+
probits = self.op.softmax(logits)
|
|
90
|
+
probits = self.op.convert_to_numpy(probits)
|
|
91
|
+
scores = np.sum(probits * np.log(probits), axis=1)
|
|
92
|
+
return -scores
|
|
93
|
+
|
|
94
|
+
@property
|
|
95
|
+
def requires_to_fit_dataset(self) -> bool:
|
|
96
|
+
"""
|
|
97
|
+
Whether an OOD detector needs a `fit_dataset` argument in the fit function.
|
|
98
|
+
|
|
99
|
+
Returns:
|
|
100
|
+
bool: True if `fit_dataset` is required else False.
|
|
101
|
+
"""
|
|
102
|
+
return False
|
|
103
|
+
|
|
104
|
+
@property
|
|
105
|
+
def requires_internal_features(self) -> bool:
|
|
106
|
+
"""
|
|
107
|
+
Whether an OOD detector acts on internal model features.
|
|
108
|
+
|
|
109
|
+
Returns:
|
|
110
|
+
bool: True if the detector perform computations on an intermediate layer
|
|
111
|
+
else False.
|
|
112
|
+
"""
|
|
113
|
+
return False
|
oodeel/methods/gen.py
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
1
|
+
# -*- coding: utf-8 -*-
|
|
2
|
+
# Copyright IRT Antoine de Saint Exupéry et Université Paul Sabatier Toulouse III - All
|
|
3
|
+
# rights reserved. DEEL is a research program operated by IVADO, IRT Saint Exupéry,
|
|
4
|
+
# CRIAQ and ANITI - https://www.deel.ai/
|
|
5
|
+
#
|
|
6
|
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
7
|
+
# of this software and associated documentation files (the "Software"), to deal
|
|
8
|
+
# in the Software without restriction, including without limitation the rights
|
|
9
|
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
10
|
+
# copies of the Software, and to permit persons to whom the Software is
|
|
11
|
+
# furnished to do so, subject to the following conditions:
|
|
12
|
+
#
|
|
13
|
+
# The above copyright notice and this permission notice shall be included in all
|
|
14
|
+
# copies or substantial portions of the Software.
|
|
15
|
+
#
|
|
16
|
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
17
|
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
18
|
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
19
|
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
20
|
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
21
|
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
22
|
+
# SOFTWARE.
|
|
23
|
+
import numpy as np
|
|
24
|
+
|
|
25
|
+
from ..types import TensorType
|
|
26
|
+
from ..types import Tuple
|
|
27
|
+
from .base import OODBaseDetector
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
class GEN(OODBaseDetector):
|
|
31
|
+
"""
|
|
32
|
+
Generalized Entropy method for OOD detection.
|
|
33
|
+
"GEN: Pushing the Limits of Softmax-Based Out-of-Distribution Detection"
|
|
34
|
+
https://openaccess.thecvf.com/content/CVPR2023/html/Liu_GEN_Pushing_the_Limits_of_Softmax-Based_Out-of-Distribution_Detection_CVPR_2023_paper.html,
|
|
35
|
+
|
|
36
|
+
Args:
|
|
37
|
+
gamma (float): parameter for the generalized entropy. Must be between 0 and 1.
|
|
38
|
+
Defaults to 0.1.
|
|
39
|
+
k (int): number of softmax values to keep for the entropy computation. Only the
|
|
40
|
+
top-k softmax probabilities will be used. Defaults to 100.
|
|
41
|
+
use_react (bool): if true, apply ReAct method by clipping penultimate
|
|
42
|
+
activations under a threshold value.
|
|
43
|
+
react_quantile (Optional[float]): q value in the range [0, 1] used to compute
|
|
44
|
+
the react clipping threshold defined as the q-th quantile penultimate layer
|
|
45
|
+
activations. Defaults to 0.8.
|
|
46
|
+
"""
|
|
47
|
+
|
|
48
|
+
def __init__(
|
|
49
|
+
self,
|
|
50
|
+
gamma: float = 0.1,
|
|
51
|
+
k: int = 100,
|
|
52
|
+
use_react: bool = False,
|
|
53
|
+
use_scale: bool = False,
|
|
54
|
+
use_ash: bool = False,
|
|
55
|
+
react_quantile: float = 0.8,
|
|
56
|
+
scale_percentile: float = 0.85,
|
|
57
|
+
ash_percentile: float = 0.90,
|
|
58
|
+
**kwargs,
|
|
59
|
+
):
|
|
60
|
+
super().__init__(
|
|
61
|
+
use_react=use_react,
|
|
62
|
+
use_scale=use_scale,
|
|
63
|
+
use_ash=use_ash,
|
|
64
|
+
react_quantile=react_quantile,
|
|
65
|
+
scale_percentile=scale_percentile,
|
|
66
|
+
ash_percentile=ash_percentile,
|
|
67
|
+
**kwargs,
|
|
68
|
+
)
|
|
69
|
+
self.gamma = gamma
|
|
70
|
+
self.k = k
|
|
71
|
+
|
|
72
|
+
def _score_tensor(self, inputs: TensorType) -> Tuple[np.ndarray]:
|
|
73
|
+
"""
|
|
74
|
+
Computes an OOD score for input samples "inputs" based on
|
|
75
|
+
the distance to nearest neighbors in the feature space of self.model
|
|
76
|
+
|
|
77
|
+
Args:
|
|
78
|
+
inputs: input samples to score
|
|
79
|
+
|
|
80
|
+
Returns:
|
|
81
|
+
Tuple[np.ndarray]: scores, logits
|
|
82
|
+
"""
|
|
83
|
+
# optional: apply input perturbation
|
|
84
|
+
if self.eps > 0:
|
|
85
|
+
inputs = self._input_perturbation(inputs, self.eps, self.temperature)
|
|
86
|
+
|
|
87
|
+
_, logits = self.feature_extractor.predict_tensor(inputs)
|
|
88
|
+
probs = self.op.softmax(logits)
|
|
89
|
+
probs = self.op.convert_to_numpy(probs)
|
|
90
|
+
probs = np.sort(probs)[:, -self.k :] # Keep the k largest probabilities
|
|
91
|
+
scores = np.sum(probs**self.gamma * (1 - probs) ** (self.gamma), axis=-1)
|
|
92
|
+
return scores
|
|
93
|
+
|
|
94
|
+
@property
|
|
95
|
+
def requires_to_fit_dataset(self) -> bool:
|
|
96
|
+
"""
|
|
97
|
+
Whether an OOD detector needs a `fit_dataset` argument in the fit function.
|
|
98
|
+
|
|
99
|
+
Returns:
|
|
100
|
+
bool: True if `fit_dataset` is required else False.
|
|
101
|
+
"""
|
|
102
|
+
return False
|
|
103
|
+
|
|
104
|
+
@property
|
|
105
|
+
def requires_internal_features(self) -> bool:
|
|
106
|
+
"""
|
|
107
|
+
Whether an OOD detector acts on internal model features.
|
|
108
|
+
|
|
109
|
+
Returns:
|
|
110
|
+
bool: True if the detector perform computations on an intermediate layer
|
|
111
|
+
else False.
|
|
112
|
+
"""
|
|
113
|
+
return False
|