oodeel 0.4.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- oodeel/__init__.py +28 -0
- oodeel/aggregator/__init__.py +26 -0
- oodeel/aggregator/base.py +70 -0
- oodeel/aggregator/fisher.py +259 -0
- oodeel/aggregator/mean.py +72 -0
- oodeel/aggregator/std.py +86 -0
- oodeel/datasets/__init__.py +24 -0
- oodeel/datasets/data_handler.py +334 -0
- oodeel/datasets/deprecated/DEPRECATED_data_handler.py +236 -0
- oodeel/datasets/deprecated/DEPRECATED_ooddataset.py +330 -0
- oodeel/datasets/deprecated/DEPRECATED_tf_data_handler.py +671 -0
- oodeel/datasets/deprecated/DEPRECATED_torch_data_handler.py +769 -0
- oodeel/datasets/deprecated/__init__.py +31 -0
- oodeel/datasets/tf_data_handler.py +600 -0
- oodeel/datasets/torch_data_handler.py +672 -0
- oodeel/eval/__init__.py +22 -0
- oodeel/eval/metrics.py +218 -0
- oodeel/eval/plots/__init__.py +27 -0
- oodeel/eval/plots/features.py +345 -0
- oodeel/eval/plots/metrics.py +118 -0
- oodeel/eval/plots/plotly.py +162 -0
- oodeel/extractor/__init__.py +35 -0
- oodeel/extractor/feature_extractor.py +187 -0
- oodeel/extractor/hf_torch_feature_extractor.py +184 -0
- oodeel/extractor/keras_feature_extractor.py +409 -0
- oodeel/extractor/torch_feature_extractor.py +506 -0
- oodeel/methods/__init__.py +47 -0
- oodeel/methods/base.py +570 -0
- oodeel/methods/dknn.py +185 -0
- oodeel/methods/energy.py +119 -0
- oodeel/methods/entropy.py +113 -0
- oodeel/methods/gen.py +113 -0
- oodeel/methods/gram.py +274 -0
- oodeel/methods/mahalanobis.py +209 -0
- oodeel/methods/mls.py +113 -0
- oodeel/methods/odin.py +109 -0
- oodeel/methods/rmds.py +172 -0
- oodeel/methods/she.py +159 -0
- oodeel/methods/vim.py +273 -0
- oodeel/preprocess/__init__.py +31 -0
- oodeel/preprocess/tf_preprocess.py +95 -0
- oodeel/preprocess/torch_preprocess.py +97 -0
- oodeel/types/__init__.py +75 -0
- oodeel/utils/__init__.py +38 -0
- oodeel/utils/general_utils.py +97 -0
- oodeel/utils/operator.py +253 -0
- oodeel/utils/tf_operator.py +269 -0
- oodeel/utils/tf_training_tools.py +219 -0
- oodeel/utils/torch_operator.py +292 -0
- oodeel/utils/torch_training_tools.py +303 -0
- oodeel-0.4.0.dist-info/METADATA +409 -0
- oodeel-0.4.0.dist-info/RECORD +63 -0
- oodeel-0.4.0.dist-info/WHEEL +5 -0
- oodeel-0.4.0.dist-info/licenses/LICENSE +21 -0
- oodeel-0.4.0.dist-info/top_level.txt +2 -0
- tests/__init__.py +22 -0
- tests/tests_tensorflow/__init__.py +37 -0
- tests/tests_tensorflow/tf_methods_utils.py +140 -0
- tests/tests_tensorflow/tools_tf.py +86 -0
- tests/tests_torch/__init__.py +38 -0
- tests/tests_torch/tools_torch.py +151 -0
- tests/tests_torch/torch_methods_utils.py +148 -0
- tests/tools_operator.py +153 -0
|
@@ -0,0 +1,303 @@
|
|
|
1
|
+
# -*- coding: utf-8 -*-
|
|
2
|
+
# Copyright IRT Antoine de Saint Exupéry et Université Paul Sabatier Toulouse III - All
|
|
3
|
+
# rights reserved. DEEL is a research program operated by IVADO, IRT Saint Exupéry,
|
|
4
|
+
# CRIAQ and ANITI - https://www.deel.ai/
|
|
5
|
+
#
|
|
6
|
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
7
|
+
# of this software and associated documentation files (the "Software"), to deal
|
|
8
|
+
# in the Software without restriction, including without limitation the rights
|
|
9
|
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
10
|
+
# copies of the Software, and to permit persons to whom the Software is
|
|
11
|
+
# furnished to do so, subject to the following conditions:
|
|
12
|
+
#
|
|
13
|
+
# The above copyright notice and this permission notice shall be included in all
|
|
14
|
+
# copies or substantial portions of the Software.
|
|
15
|
+
#
|
|
16
|
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
17
|
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
18
|
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
19
|
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
20
|
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
21
|
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
22
|
+
# SOFTWARE.
|
|
23
|
+
import os
|
|
24
|
+
from collections import OrderedDict
|
|
25
|
+
|
|
26
|
+
import numpy as np
|
|
27
|
+
import torch
|
|
28
|
+
import torch.nn as nn
|
|
29
|
+
import torch.optim as optim
|
|
30
|
+
import torchvision
|
|
31
|
+
from torch.utils.data import DataLoader
|
|
32
|
+
from tqdm import tqdm
|
|
33
|
+
|
|
34
|
+
from ..types import Optional
|
|
35
|
+
from ..types import Union
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
class ToyTorchMLP(nn.Sequential):
|
|
39
|
+
"""Basic torch MLP classifier for toy datasets.
|
|
40
|
+
|
|
41
|
+
Args:
|
|
42
|
+
input_shape (tuple): Input data shape.
|
|
43
|
+
num_classes (int): Number of classes for the classification task.
|
|
44
|
+
"""
|
|
45
|
+
|
|
46
|
+
def __init__(self, input_shape: tuple, num_classes: int):
|
|
47
|
+
self.input_shape = input_shape
|
|
48
|
+
|
|
49
|
+
# build toy mlp
|
|
50
|
+
mlp_modules = OrderedDict(
|
|
51
|
+
[
|
|
52
|
+
("flatten", nn.Flatten()),
|
|
53
|
+
("dense1", nn.Linear(np.prod(input_shape), 300)),
|
|
54
|
+
("relu1", nn.ReLU()),
|
|
55
|
+
("dense2", nn.Linear(300, 150)),
|
|
56
|
+
("relu2", nn.ReLU()),
|
|
57
|
+
("fc1", nn.Linear(150, num_classes)),
|
|
58
|
+
]
|
|
59
|
+
)
|
|
60
|
+
super().__init__(mlp_modules)
|
|
61
|
+
|
|
62
|
+
|
|
63
|
+
class ToyTorchConvnet(nn.Sequential):
|
|
64
|
+
"""Basic torch convolutional classifier for toy datasets.
|
|
65
|
+
|
|
66
|
+
Args:
|
|
67
|
+
input_shape (tuple): Input data shape.
|
|
68
|
+
num_classes (int): Number of classes for the classification task.
|
|
69
|
+
"""
|
|
70
|
+
|
|
71
|
+
def __init__(self, input_shape: tuple, num_classes: int):
|
|
72
|
+
self.input_shape = input_shape
|
|
73
|
+
|
|
74
|
+
# features
|
|
75
|
+
features = nn.Sequential(
|
|
76
|
+
OrderedDict(
|
|
77
|
+
[
|
|
78
|
+
("conv1", nn.Conv2d(input_shape[0], 32, 3)),
|
|
79
|
+
("relu1", nn.ReLU()),
|
|
80
|
+
("pool1", nn.MaxPool2d(2, 2)),
|
|
81
|
+
("conv2", nn.Conv2d(32, 64, 3)),
|
|
82
|
+
("relu2", nn.ReLU()),
|
|
83
|
+
("pool2", nn.MaxPool2d(2, 2)),
|
|
84
|
+
("flatten", nn.Flatten()),
|
|
85
|
+
]
|
|
86
|
+
)
|
|
87
|
+
)
|
|
88
|
+
|
|
89
|
+
# fc head
|
|
90
|
+
fc_input_shape = self._calculate_fc_input_shape(features)
|
|
91
|
+
fcs = nn.Sequential(
|
|
92
|
+
OrderedDict(
|
|
93
|
+
[
|
|
94
|
+
("dropout", nn.Dropout(0.5)),
|
|
95
|
+
("fc1", nn.Linear(fc_input_shape, num_classes)),
|
|
96
|
+
]
|
|
97
|
+
)
|
|
98
|
+
)
|
|
99
|
+
|
|
100
|
+
# Sequential class init
|
|
101
|
+
super().__init__(
|
|
102
|
+
OrderedDict([*features._modules.items(), *fcs._modules.items()])
|
|
103
|
+
)
|
|
104
|
+
|
|
105
|
+
def _calculate_fc_input_shape(self, features):
|
|
106
|
+
"""Get tensor shape after passing a features network."""
|
|
107
|
+
input_tensor = torch.ones(tuple([1] + list(self.input_shape)))
|
|
108
|
+
x = features(input_tensor)
|
|
109
|
+
output_size = x.view(x.size(0), -1).size(1)
|
|
110
|
+
return output_size
|
|
111
|
+
|
|
112
|
+
|
|
113
|
+
def train_torch_model(
|
|
114
|
+
train_data: DataLoader,
|
|
115
|
+
model: Union[nn.Module, str],
|
|
116
|
+
num_classes: int,
|
|
117
|
+
epochs: int = 50,
|
|
118
|
+
loss: str = "CrossEntropyLoss",
|
|
119
|
+
optimizer: str = "Adam",
|
|
120
|
+
lr_scheduler: str = "cosine",
|
|
121
|
+
learning_rate: float = 1e-3,
|
|
122
|
+
imagenet_pretrained: bool = False,
|
|
123
|
+
validation_data: Optional[DataLoader] = None,
|
|
124
|
+
save_dir: Optional[str] = None,
|
|
125
|
+
cuda_idx: int = 0,
|
|
126
|
+
) -> nn.Module:
|
|
127
|
+
"""
|
|
128
|
+
Load a model (toy classifier or from torchvision.models) and train
|
|
129
|
+
it over a torch dataloader.
|
|
130
|
+
|
|
131
|
+
Args:
|
|
132
|
+
train_data (DataLoader): train dataloader
|
|
133
|
+
model (Union[nn.Module, str]): if a string is provided, must be a model from
|
|
134
|
+
torchvision.models or "toy_convnet" or "toy_mlp.
|
|
135
|
+
num_classes (int): Number of output classes.
|
|
136
|
+
epochs (int, optional): Defaults to 50.
|
|
137
|
+
loss (str, optional): Defaults to "CrossEntropyLoss".
|
|
138
|
+
optimizer (str, optional): Defaults to "Adam".
|
|
139
|
+
lr_scheduler (str, optional): ("cosine" | "steps" | None). Defaults to None.
|
|
140
|
+
learning_rate (float, optional): Defaults to 1e-3.
|
|
141
|
+
imagenet_pretrained (bool, optional): Load a model pretrained on imagenet or
|
|
142
|
+
not. Defaults to False.
|
|
143
|
+
validation_data (Optional[DataLoader], optional): Defaults to None.
|
|
144
|
+
save_dir (Optional[str], optional): Directory to save the model.
|
|
145
|
+
Defaults to None.
|
|
146
|
+
cuda_idx (int): idx of cuda device to use. Defaults to 0.
|
|
147
|
+
|
|
148
|
+
Returns:
|
|
149
|
+
nn.Module: trained model
|
|
150
|
+
"""
|
|
151
|
+
# device
|
|
152
|
+
device = torch.device(
|
|
153
|
+
f"cuda:{cuda_idx}"
|
|
154
|
+
if torch.cuda.is_available() and cuda_idx is not None
|
|
155
|
+
else "cpu"
|
|
156
|
+
)
|
|
157
|
+
|
|
158
|
+
# Prepare model
|
|
159
|
+
if isinstance(model, nn.Module):
|
|
160
|
+
model = model.to(device)
|
|
161
|
+
elif isinstance(model, str):
|
|
162
|
+
if model == "toy_convnet":
|
|
163
|
+
# toy model
|
|
164
|
+
input_shape = tuple(next(iter(train_data))[0].shape[1:])
|
|
165
|
+
model = ToyTorchConvnet(input_shape, num_classes).to(device)
|
|
166
|
+
elif model == "toy_mlp":
|
|
167
|
+
# toy model
|
|
168
|
+
input_shape = tuple(next(iter(train_data))[0].shape[1:])
|
|
169
|
+
model = ToyTorchMLP(input_shape, num_classes).to(device)
|
|
170
|
+
else:
|
|
171
|
+
# torchvision model
|
|
172
|
+
model = getattr(torchvision.models, model)(
|
|
173
|
+
num_classes=num_classes, pretrained=imagenet_pretrained
|
|
174
|
+
).to(device)
|
|
175
|
+
|
|
176
|
+
# define optimizer and learning rate scheduler
|
|
177
|
+
optimizer = getattr(optim, optimizer)(model.parameters(), lr=learning_rate)
|
|
178
|
+
n_steps = len(train_data) * epochs
|
|
179
|
+
if lr_scheduler == "cosine":
|
|
180
|
+
lr_scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, n_steps)
|
|
181
|
+
elif lr_scheduler == "steps":
|
|
182
|
+
boundaries = list(np.round(n_steps * np.array([1 / 3, 2 / 3])).astype(int))
|
|
183
|
+
lr_scheduler = optim.lr_scheduler.MultiStepLR(
|
|
184
|
+
optimizer, milestones=boundaries, gamma=0.1
|
|
185
|
+
)
|
|
186
|
+
|
|
187
|
+
# define loss
|
|
188
|
+
criterion = getattr(nn, loss)()
|
|
189
|
+
|
|
190
|
+
# train
|
|
191
|
+
model = _train(
|
|
192
|
+
model,
|
|
193
|
+
train_data,
|
|
194
|
+
validation_data=validation_data,
|
|
195
|
+
epochs=epochs,
|
|
196
|
+
criterion=criterion,
|
|
197
|
+
optimizer=optimizer,
|
|
198
|
+
lr_scheduler=lr_scheduler,
|
|
199
|
+
save_dir=save_dir,
|
|
200
|
+
device=device,
|
|
201
|
+
)
|
|
202
|
+
return model
|
|
203
|
+
|
|
204
|
+
|
|
205
|
+
def _train(
|
|
206
|
+
model: nn.Module,
|
|
207
|
+
train_data: DataLoader,
|
|
208
|
+
epochs: int,
|
|
209
|
+
optimizer: torch.optim.Optimizer,
|
|
210
|
+
criterion: torch.nn.modules.loss._Loss,
|
|
211
|
+
device: torch.device,
|
|
212
|
+
lr_scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
|
213
|
+
save_dir: Optional[str] = None,
|
|
214
|
+
validation_data: Optional[DataLoader] = None,
|
|
215
|
+
) -> nn.Module:
|
|
216
|
+
"""Torch basic training loop
|
|
217
|
+
|
|
218
|
+
Args:
|
|
219
|
+
model (nn.Module): Model to train.
|
|
220
|
+
train_data (DataLoader): Train dataloader.
|
|
221
|
+
epochs (int): Number of training epochs.
|
|
222
|
+
optimizer (torch.optim.Optimizer): Optimizer.
|
|
223
|
+
criterion (torch.nn.modules.loss._Loss): Criterion for loss.
|
|
224
|
+
device (torch.device): On which device to train (CUDA or CPU).
|
|
225
|
+
lr_scheduler (torch.optim.lr_scheduler._LRScheduler): Learning rate scheduler.
|
|
226
|
+
Defaults to None.
|
|
227
|
+
save_dir (str, optional): Where the model will be saved. Defaults to None.
|
|
228
|
+
validation_data (DataLoader, optional): Validation dataloader. Defaults to None.
|
|
229
|
+
|
|
230
|
+
Returns:
|
|
231
|
+
nn.Module: Trained model.
|
|
232
|
+
"""
|
|
233
|
+
best_val_acc = None
|
|
234
|
+
for epoch in range(epochs):
|
|
235
|
+
# train phase
|
|
236
|
+
model.train()
|
|
237
|
+
running_loss, running_acc = 0.0, 0.0
|
|
238
|
+
with tqdm(train_data, desc=f"Epoch {epoch + 1}/{epochs} [Train]") as iterator:
|
|
239
|
+
for i, (inputs, labels) in enumerate(iterator):
|
|
240
|
+
# assign [inputs, labels] tensors to GPU
|
|
241
|
+
inputs = inputs.to(device)
|
|
242
|
+
labels = labels.long().to(device)
|
|
243
|
+
|
|
244
|
+
# zero the parameter gradients
|
|
245
|
+
optimizer.zero_grad()
|
|
246
|
+
|
|
247
|
+
# forward + backward + optimize
|
|
248
|
+
outputs = model(inputs)
|
|
249
|
+
loss = criterion(outputs, labels)
|
|
250
|
+
loss.backward()
|
|
251
|
+
optimizer.step()
|
|
252
|
+
|
|
253
|
+
# print statistics
|
|
254
|
+
acc = torch.mean((outputs.argmax(-1) == labels).float())
|
|
255
|
+
running_loss += loss.item()
|
|
256
|
+
running_acc += acc.item()
|
|
257
|
+
if i % max(len(iterator) // 100, 1) == 0:
|
|
258
|
+
iterator.set_postfix(
|
|
259
|
+
{
|
|
260
|
+
"Loss": f"{running_loss / (i + 1):.3f}",
|
|
261
|
+
"Acc": f"{running_acc / (i + 1):.3f}",
|
|
262
|
+
}
|
|
263
|
+
)
|
|
264
|
+
|
|
265
|
+
if lr_scheduler is not None:
|
|
266
|
+
lr_scheduler.step()
|
|
267
|
+
|
|
268
|
+
# validation phase
|
|
269
|
+
if validation_data is not None:
|
|
270
|
+
model.eval()
|
|
271
|
+
running_loss, running_acc = 0.0, 0.0
|
|
272
|
+
with tqdm(
|
|
273
|
+
validation_data, desc=f"Epoch {epoch + 1}/{epochs} [Val]"
|
|
274
|
+
) as iterator:
|
|
275
|
+
for i, (inputs, labels) in enumerate(iterator):
|
|
276
|
+
# assign [inputs, labels] tensors to GPU
|
|
277
|
+
inputs = torch.Tensor(inputs.numpy()).to(device)
|
|
278
|
+
labels = torch.Tensor(labels.numpy()).long().to(device)
|
|
279
|
+
|
|
280
|
+
with torch.no_grad():
|
|
281
|
+
outputs = model(inputs)
|
|
282
|
+
|
|
283
|
+
running_loss += criterion(outputs, labels).item()
|
|
284
|
+
running_acc += torch.mean(
|
|
285
|
+
(outputs.argmax(-1) == labels).float()
|
|
286
|
+
).item()
|
|
287
|
+
if i % max(len(iterator) // 100, 1) == 0:
|
|
288
|
+
iterator.set_postfix(
|
|
289
|
+
{
|
|
290
|
+
"Loss": f"{running_loss / (i + 1):.3f}",
|
|
291
|
+
"Acc": f"{running_acc / (i + 1):.3f}",
|
|
292
|
+
}
|
|
293
|
+
)
|
|
294
|
+
val_acc = running_acc / (i + 1)
|
|
295
|
+
if best_val_acc is None or val_acc > best_val_acc:
|
|
296
|
+
best_val_acc = val_acc
|
|
297
|
+
if save_dir is not None:
|
|
298
|
+
os.makedirs(save_dir, exist_ok=True)
|
|
299
|
+
torch.save(model, os.path.join(save_dir, "best.pt"))
|
|
300
|
+
|
|
301
|
+
if save_dir is not None:
|
|
302
|
+
torch.save(model, os.path.join(save_dir, "last.pt"))
|
|
303
|
+
return model
|