oodeel 0.4.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (63) hide show
  1. oodeel/__init__.py +28 -0
  2. oodeel/aggregator/__init__.py +26 -0
  3. oodeel/aggregator/base.py +70 -0
  4. oodeel/aggregator/fisher.py +259 -0
  5. oodeel/aggregator/mean.py +72 -0
  6. oodeel/aggregator/std.py +86 -0
  7. oodeel/datasets/__init__.py +24 -0
  8. oodeel/datasets/data_handler.py +334 -0
  9. oodeel/datasets/deprecated/DEPRECATED_data_handler.py +236 -0
  10. oodeel/datasets/deprecated/DEPRECATED_ooddataset.py +330 -0
  11. oodeel/datasets/deprecated/DEPRECATED_tf_data_handler.py +671 -0
  12. oodeel/datasets/deprecated/DEPRECATED_torch_data_handler.py +769 -0
  13. oodeel/datasets/deprecated/__init__.py +31 -0
  14. oodeel/datasets/tf_data_handler.py +600 -0
  15. oodeel/datasets/torch_data_handler.py +672 -0
  16. oodeel/eval/__init__.py +22 -0
  17. oodeel/eval/metrics.py +218 -0
  18. oodeel/eval/plots/__init__.py +27 -0
  19. oodeel/eval/plots/features.py +345 -0
  20. oodeel/eval/plots/metrics.py +118 -0
  21. oodeel/eval/plots/plotly.py +162 -0
  22. oodeel/extractor/__init__.py +35 -0
  23. oodeel/extractor/feature_extractor.py +187 -0
  24. oodeel/extractor/hf_torch_feature_extractor.py +184 -0
  25. oodeel/extractor/keras_feature_extractor.py +409 -0
  26. oodeel/extractor/torch_feature_extractor.py +506 -0
  27. oodeel/methods/__init__.py +47 -0
  28. oodeel/methods/base.py +570 -0
  29. oodeel/methods/dknn.py +185 -0
  30. oodeel/methods/energy.py +119 -0
  31. oodeel/methods/entropy.py +113 -0
  32. oodeel/methods/gen.py +113 -0
  33. oodeel/methods/gram.py +274 -0
  34. oodeel/methods/mahalanobis.py +209 -0
  35. oodeel/methods/mls.py +113 -0
  36. oodeel/methods/odin.py +109 -0
  37. oodeel/methods/rmds.py +172 -0
  38. oodeel/methods/she.py +159 -0
  39. oodeel/methods/vim.py +273 -0
  40. oodeel/preprocess/__init__.py +31 -0
  41. oodeel/preprocess/tf_preprocess.py +95 -0
  42. oodeel/preprocess/torch_preprocess.py +97 -0
  43. oodeel/types/__init__.py +75 -0
  44. oodeel/utils/__init__.py +38 -0
  45. oodeel/utils/general_utils.py +97 -0
  46. oodeel/utils/operator.py +253 -0
  47. oodeel/utils/tf_operator.py +269 -0
  48. oodeel/utils/tf_training_tools.py +219 -0
  49. oodeel/utils/torch_operator.py +292 -0
  50. oodeel/utils/torch_training_tools.py +303 -0
  51. oodeel-0.4.0.dist-info/METADATA +409 -0
  52. oodeel-0.4.0.dist-info/RECORD +63 -0
  53. oodeel-0.4.0.dist-info/WHEEL +5 -0
  54. oodeel-0.4.0.dist-info/licenses/LICENSE +21 -0
  55. oodeel-0.4.0.dist-info/top_level.txt +2 -0
  56. tests/__init__.py +22 -0
  57. tests/tests_tensorflow/__init__.py +37 -0
  58. tests/tests_tensorflow/tf_methods_utils.py +140 -0
  59. tests/tests_tensorflow/tools_tf.py +86 -0
  60. tests/tests_torch/__init__.py +38 -0
  61. tests/tests_torch/tools_torch.py +151 -0
  62. tests/tests_torch/torch_methods_utils.py +148 -0
  63. tests/tools_operator.py +153 -0
oodeel/methods/odin.py ADDED
@@ -0,0 +1,109 @@
1
+ # -*- coding: utf-8 -*-
2
+ # Copyright IRT Antoine de Saint Exupéry et Université Paul Sabatier Toulouse III - All
3
+ # rights reserved. DEEL is a research program operated by IVADO, IRT Saint Exupéry,
4
+ # CRIAQ and ANITI - https://www.deel.ai/
5
+ #
6
+ # Permission is hereby granted, free of charge, to any person obtaining a copy
7
+ # of this software and associated documentation files (the "Software"), to deal
8
+ # in the Software without restriction, including without limitation the rights
9
+ # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
+ # copies of the Software, and to permit persons to whom the Software is
11
+ # furnished to do so, subject to the following conditions:
12
+ #
13
+ # The above copyright notice and this permission notice shall be included in all
14
+ # copies or substantial portions of the Software.
15
+ #
16
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
+ # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19
+ # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
+ # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
+ # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
+ # SOFTWARE.
23
+ import numpy as np
24
+
25
+ from ..types import TensorType
26
+ from ..types import Tuple
27
+ from .base import OODBaseDetector
28
+
29
+
30
+ class ODIN(OODBaseDetector):
31
+ """ "Enhancing The Reliability of Out-of-distribution Image Detection
32
+ in Neural Networks"
33
+ http://arxiv.org/abs/1706.02690
34
+
35
+ Args:
36
+ temperature (float, optional): Temperature parameter. Defaults to 1000.
37
+ eps (float, optional): Perturbation noise. Defaults to 0.014.
38
+ use_react (bool): if true, apply ReAct method by clipping penultimate
39
+ activations under a threshold value.
40
+ react_quantile (Optional[float]): q value in the range [0, 1] used to compute
41
+ the react clipping threshold defined as the q-th quantile penultimate layer
42
+ activations. Defaults to 0.8.
43
+ """
44
+
45
+ def __init__(
46
+ self,
47
+ temperature: float = 1000,
48
+ eps: float = 0.014,
49
+ use_react: bool = False,
50
+ use_scale: bool = False,
51
+ use_ash: bool = False,
52
+ react_quantile: float = 0.8,
53
+ scale_percentile: float = 0.85,
54
+ ash_percentile: float = 0.90,
55
+ **kwargs,
56
+ ):
57
+ super().__init__(
58
+ eps=eps,
59
+ temperature=temperature,
60
+ use_react=use_react,
61
+ use_scale=use_scale,
62
+ use_ash=use_ash,
63
+ react_quantile=react_quantile,
64
+ scale_percentile=scale_percentile,
65
+ ash_percentile=ash_percentile,
66
+ **kwargs,
67
+ )
68
+
69
+ def _score_tensor(self, inputs: TensorType) -> Tuple[np.ndarray]:
70
+ """
71
+ Computes an OOD score for input samples "inputs" based on
72
+ the distance to nearest neighbors in the feature space of self.model
73
+
74
+ Args:
75
+ inputs (TensorType): input samples to score
76
+
77
+ Returns:
78
+ Tuple[np.ndarray]: scores, logits
79
+ """
80
+ if self.eps > 0:
81
+ x = self._input_perturbation(inputs, self.eps, self.temperature)
82
+
83
+ _, logits = self.feature_extractor.predict_tensor(x)
84
+ logits_s = logits / self.temperature
85
+ probits = self.op.softmax(logits_s)
86
+ probits = self.op.convert_to_numpy(probits)
87
+ scores = -np.max(probits, axis=1)
88
+ return scores
89
+
90
+ @property
91
+ def requires_to_fit_dataset(self) -> bool:
92
+ """
93
+ Whether an OOD detector needs a `fit_dataset` argument in the fit function.
94
+
95
+ Returns:
96
+ bool: True if `fit_dataset` is required else False.
97
+ """
98
+ return False
99
+
100
+ @property
101
+ def requires_internal_features(self) -> bool:
102
+ """
103
+ Whether an OOD detector acts on internal model features.
104
+
105
+ Returns:
106
+ bool: True if the detector perform computations on an intermediate layer
107
+ else False.
108
+ """
109
+ return False
oodeel/methods/rmds.py ADDED
@@ -0,0 +1,172 @@
1
+ # -*- coding: utf-8 -*-
2
+ # Copyright IRT Antoine de Saint Exupéry et Université Paul Sabatier Toulouse III - All
3
+ # rights reserved. DEEL is a research program operated by IVADO, IRT Saint Exupéry,
4
+ # CRIAQ and ANITI - https://www.deel.ai/
5
+ #
6
+ # Permission is hereby granted, free of charge, to any person obtaining a copy
7
+ # of this software and associated documentation files (the "Software"), to deal
8
+ # in the Software without restriction, including without limitation the rights
9
+ # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
+ # copies of the Software, and to permit persons to whom the Software is
11
+ # furnished to do so, subject to the following conditions:
12
+ #
13
+ # The above copyright notice and this permission notice shall be included in all
14
+ # copies or substantial portions of the Software.
15
+ #
16
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
+ # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19
+ # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
+ # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
+ # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
+ # SOFTWARE.
23
+ from typing import List
24
+ from typing import Optional
25
+ from typing import Tuple
26
+
27
+ import numpy as np
28
+
29
+ from ..aggregator import BaseAggregator
30
+ from ..types import TensorType
31
+ from .mahalanobis import Mahalanobis
32
+
33
+
34
+ class RMDS(Mahalanobis):
35
+ """
36
+ "A Simple Fix to Mahalanobis Distance for Improving Near-OOD Detection"
37
+ Updated to work with multiple feature layers.
38
+
39
+ This detector computes class-conditional Mahalanobis scores from several
40
+ feature layers and, additionally, computes background Mahalanobis scores per layer.
41
+ The final per-layer score is obtained by subtracting the background score from the
42
+ class-conditional score. With multiple layers, the per-layer scores are aggregated
43
+ by a provided aggregator (or by a default StdNormalizedAggregator if None is
44
+ given).
45
+
46
+ Args:
47
+ eps (float): Perturbation noise. Defaults to 0.0014.
48
+ temperature (float, optional): Temperature parameter. Defaults to 1000.
49
+ aggregator (Optional[BaseAggregator]): Aggregator to combine scores from
50
+ multiple feature layers. For a single layer this can be left as None.
51
+ """
52
+
53
+ def __init__(
54
+ self,
55
+ eps: float = 0.0014,
56
+ temperature: float = 1000,
57
+ aggregator: Optional[BaseAggregator] = None,
58
+ **kwargs,
59
+ ):
60
+ super().__init__(
61
+ eps=eps, temperature=temperature, aggregator=aggregator, **kwargs
62
+ )
63
+ # Will be filled by `_fit_layer`.
64
+ self._layer_background_stats: List[Tuple[TensorType, np.ndarray]] = []
65
+
66
+ # === Per-layer logic ===
67
+ def _fit_layer(
68
+ self,
69
+ layer_id: int,
70
+ layer_features: np.ndarray,
71
+ info: dict,
72
+ **kwargs,
73
+ ) -> None:
74
+ """Compute statistics for a single layer and store parameters.
75
+
76
+ Args:
77
+ layer_id: Index of the processed layer. Unused here.
78
+ layer_features: In-distribution features for this layer.
79
+ info: Dictionary containing the training labels.
80
+ """
81
+ labels = info["labels"]
82
+
83
+ if isinstance(layer_features, np.ndarray):
84
+ layer_features = self.op.from_numpy(layer_features)
85
+
86
+ mus, pinv_cov = super()._compute_layer_stats(layer_features, labels)
87
+ mu_bg, pinv_cov_bg = self._background_stats(layer_features)
88
+
89
+ self._layer_stats.append((mus, pinv_cov))
90
+ self._layer_background_stats.append((mu_bg, pinv_cov_bg))
91
+
92
+ def _score_layer(
93
+ self,
94
+ layer_id: int,
95
+ layer_features: TensorType,
96
+ info: dict,
97
+ fit: bool = False,
98
+ **kwargs,
99
+ ) -> np.ndarray:
100
+ """Compute the residual Mahalanobis OOD score for a single layer.
101
+
102
+ Args:
103
+ layer_id: Index of the processed layer.
104
+ layer_features: Flattened feature matrix `[B, D]` for the batch.
105
+ info: Unused dictionary of auxiliary data.
106
+ fit: Whether scoring is performed during fitting. Unused here.
107
+
108
+ Returns:
109
+ np.ndarray: 1-D array of **negative** residual log-likelihoods.
110
+ """
111
+ mus, pinv_cov = self._layer_stats[layer_id]
112
+ mu_bg, pinv_cov_bg = self._layer_background_stats[layer_id]
113
+ feats = self.op.flatten(layer_features)
114
+ g_scores = self._gaussian_log_probs(feats, mus, pinv_cov)
115
+ bg_score = self._background_log_prob(feats, mu_bg, pinv_cov_bg)
116
+ corrected = self.op.max(g_scores - bg_score, dim=1)
117
+ return -self.op.convert_to_numpy(corrected)
118
+
119
+ # === Internal utilities ===
120
+ def _background_stats(
121
+ self, layer_features: TensorType
122
+ ) -> Tuple[TensorType, TensorType]:
123
+ """Compute class-agnostic Gaussian statistics for **one** layer.
124
+
125
+ This helper forms the *background* distribution used in RMDS. It treats
126
+ **all** in-distribution samples of a layer as coming from a single
127
+ multivariate Gaussian and returns its mean and (pseudo-inverse)
128
+ covariance.
129
+
130
+ Args:
131
+ layer_features (TensorType): Feature representations of shape
132
+ `[N, ...]` for a single layer, where `N` is the number of
133
+ in-distribution training samples.
134
+
135
+ Returns:
136
+ Tuple[TensorType, TensorType]:
137
+ * `mu_bg` - mean feature vector of shape `[D]` (same backend
138
+ tensor type as the inputs).
139
+ * `pinv_cov_bg` - pseudo-inverse covariance matrix of shape
140
+ `[D, D]`.
141
+ """
142
+ feats = self.op.flatten(layer_features)
143
+ mu_bg = self.op.mean(feats, dim=0)
144
+ zero = feats - mu_bg
145
+ cov_bg = self.op.matmul(self.op.t(zero), zero) / zero.shape[0]
146
+ pinv_cov_bg = self.op.pinv(cov_bg)
147
+ return mu_bg, pinv_cov_bg
148
+
149
+ def _background_log_prob(
150
+ self, out_features: TensorType, mu_bg: TensorType, pinv_cov_bg: TensorType
151
+ ) -> TensorType:
152
+ """
153
+ Compute the Mahalanobis-based background score for a single feature layer.
154
+
155
+ For each test sample, this method computes the log probability (up to a
156
+ constant) under the background Gaussian distribution estimated from the
157
+ in-distribution data.
158
+
159
+ Args:
160
+ out_features (TensorType): Feature tensor for test samples.
161
+ mu_bg: Background mean vector for the layer.
162
+ pinv_cov_bg (TensorType): Pseudo-inverse of the background covariance
163
+ matrix.
164
+
165
+ Returns:
166
+ TensorType: Background confidence scores (reshaped as [num_samples, 1]).
167
+ """
168
+ zero = out_features - mu_bg
169
+ log_prob = -0.5 * self.op.diag(
170
+ self.op.matmul(self.op.matmul(zero, pinv_cov_bg), self.op.t(zero))
171
+ )
172
+ return self.op.reshape(log_prob, (-1, 1))
oodeel/methods/she.py ADDED
@@ -0,0 +1,159 @@
1
+ # -*- coding: utf-8 -*-
2
+ # Copyright IRT Antoine de Saint Exupéry et Université Paul Sabatier Toulouse III - All
3
+ # rights reserved. DEEL is a research program operated by IVADO, IRT Saint Exupéry,
4
+ # CRIAQ and ANITI - https://www.deel.ai/
5
+ #
6
+ # Permission is hereby granted, free of charge, to any person obtaining a copy
7
+ # of this software and associated documentation files (the "Software"), to deal
8
+ # in the Software without restriction, including without limitation the rights
9
+ # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
+ # copies of the Software, and to permit persons to whom the Software is
11
+ # furnished to do so, subject to the following conditions:
12
+ #
13
+ # The above copyright notice and this permission notice shall be included in all
14
+ # copies or substantial portions of the Software.
15
+ #
16
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
+ # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19
+ # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
+ # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
+ # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
+ # SOFTWARE.
23
+ from typing import List
24
+ from typing import Optional
25
+
26
+ import numpy as np
27
+
28
+ from ..aggregator import BaseAggregator
29
+ from ..types import TensorType
30
+ from .base import FeatureBasedDetector
31
+
32
+
33
+ class SHE(FeatureBasedDetector):
34
+ """
35
+ "Out-of-Distribution Detection based on In-Distribution Data Patterns Memorization
36
+ with Modern Hopfield Energy"
37
+ [link](https://openreview.net/forum?id=KkazG4lgKL)
38
+
39
+ This method first computes the mean of the internal layer representation of ID data
40
+ for each ID class. This mean is seen as the average of the ID activation patterns
41
+ as defined in the original paper.
42
+ The method then returns the maximum value of the dot product between the internal
43
+ layer representation of the input and the average patterns, which is a simplified
44
+ version of Hopfield energy as defined in the original paper. The per-layer
45
+ confidence values can be combined through an aggregator to yield a single score
46
+
47
+ Remarks:
48
+ * An input perturbation is applied in the same way as in ODIN score
49
+ * The original paper only considers the penultimate layer of the neural
50
+ network, while we aggregate the results of multiple layers following different
51
+ normalization strategies (see `BaseAggregator` for more details).
52
+
53
+ Args:
54
+ eps (float): Perturbation noise. Defaults to 0.0014.
55
+ temperature (float, optional): Temperature parameter. Defaults to 1000.
56
+ aggregator: Optional object implementing the `BaseAggregator` interface. It is
57
+ used to combine the negative per-layer SHE scores returned by
58
+ `_score_layer`. If *None* and more than one layer is employed, a
59
+ `StdNormalizedAggregator` is instantiated automatically.
60
+ """
61
+
62
+ def __init__(
63
+ self,
64
+ eps: float = 0.0014,
65
+ temperature: float = 1000,
66
+ aggregator: Optional[BaseAggregator] = None,
67
+ **kwargs,
68
+ ) -> None:
69
+ super().__init__(
70
+ eps=eps, temperature=temperature, aggregator=aggregator, **kwargs
71
+ )
72
+ self.eps = eps
73
+ self.temperature = temperature
74
+ self.postproc_fns = None # Will be set in `_fit_to_dataset`.
75
+
76
+ # Fitted attributes
77
+ self._classes: Optional[np.ndarray] = None
78
+ self._layer_mus: List[TensorType] = [] # Shape per layer: [D, n_classes]
79
+
80
+ # === Per-layer logic ===
81
+ def _fit_layer(
82
+ self,
83
+ layer_id: int,
84
+ layer_features: np.ndarray,
85
+ info: dict,
86
+ **kwargs,
87
+ ) -> None:
88
+ """Compute mean vectors for a single layer.
89
+
90
+ Args:
91
+ layer_id: Index of the processed layer.
92
+ layer_features: Tensor of shape `(N, D)` containing the flattened
93
+ activations of in-distribution samples for one layer.
94
+ info: Dictionary containing the training labels.
95
+ """
96
+ labels_np = info["labels"]
97
+ preds_np = np.argmax(info["logits"], axis=1)
98
+
99
+ if self._classes is None:
100
+ self._classes = np.sort(np.unique(labels_np))
101
+
102
+ mus_per_cls = []
103
+ for cls in self._classes:
104
+ idx = np.equal(labels_np, cls) & np.equal(preds_np, cls)
105
+ feats_cls = layer_features[idx]
106
+ mu = np.expand_dims(np.mean(feats_cls, axis=0), axis=0)
107
+ mus_per_cls.append(mu)
108
+ mus_layer = self.op.from_numpy(np.concatenate(mus_per_cls, axis=0))
109
+ mus_layer = self.op.permute(mus_layer, (1, 0))
110
+
111
+ self._layer_mus.append(mus_layer)
112
+
113
+ def _score_layer(
114
+ self,
115
+ layer_id: int,
116
+ layer_features: TensorType,
117
+ info: dict,
118
+ fit: bool = False,
119
+ **kwargs,
120
+ ) -> np.ndarray:
121
+ """Compute *unnormalised* SHE confidence for a single layer.
122
+
123
+ Args:
124
+ layer_id (int): Index of the processed layer.
125
+ layer_features (TensorType): Feature tensor of shape `[B, D]` for the
126
+ current batch.
127
+ info (dict): Unused dictionary of auxiliary data.
128
+ fit: Whether scoring is performed during fitting. Unused here.
129
+
130
+ """
131
+ mus_layer = self._layer_mus[layer_id]
132
+ she = (
133
+ self.op.matmul(self.op.squeeze(layer_features), mus_layer)
134
+ / layer_features.shape[1]
135
+ )
136
+ she = self.op.max(she, dim=1)
137
+ return -self.op.convert_to_numpy(she)
138
+
139
+ # === Properties ===
140
+ @property
141
+ def requires_to_fit_dataset(self) -> bool:
142
+ """
143
+ Whether an OOD detector needs a `fit_dataset` argument in the fit function.
144
+
145
+ Returns:
146
+ bool: True if `fit_dataset` is required else False.
147
+ """
148
+ return True
149
+
150
+ @property
151
+ def requires_internal_features(self) -> bool:
152
+ """
153
+ Whether an OOD detector acts on internal model features.
154
+
155
+ Returns:
156
+ bool: True if the detector perform computations on an intermediate layer
157
+ else False.
158
+ """
159
+ return True