oodeel 0.4.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- oodeel/__init__.py +28 -0
- oodeel/aggregator/__init__.py +26 -0
- oodeel/aggregator/base.py +70 -0
- oodeel/aggregator/fisher.py +259 -0
- oodeel/aggregator/mean.py +72 -0
- oodeel/aggregator/std.py +86 -0
- oodeel/datasets/__init__.py +24 -0
- oodeel/datasets/data_handler.py +334 -0
- oodeel/datasets/deprecated/DEPRECATED_data_handler.py +236 -0
- oodeel/datasets/deprecated/DEPRECATED_ooddataset.py +330 -0
- oodeel/datasets/deprecated/DEPRECATED_tf_data_handler.py +671 -0
- oodeel/datasets/deprecated/DEPRECATED_torch_data_handler.py +769 -0
- oodeel/datasets/deprecated/__init__.py +31 -0
- oodeel/datasets/tf_data_handler.py +600 -0
- oodeel/datasets/torch_data_handler.py +672 -0
- oodeel/eval/__init__.py +22 -0
- oodeel/eval/metrics.py +218 -0
- oodeel/eval/plots/__init__.py +27 -0
- oodeel/eval/plots/features.py +345 -0
- oodeel/eval/plots/metrics.py +118 -0
- oodeel/eval/plots/plotly.py +162 -0
- oodeel/extractor/__init__.py +35 -0
- oodeel/extractor/feature_extractor.py +187 -0
- oodeel/extractor/hf_torch_feature_extractor.py +184 -0
- oodeel/extractor/keras_feature_extractor.py +409 -0
- oodeel/extractor/torch_feature_extractor.py +506 -0
- oodeel/methods/__init__.py +47 -0
- oodeel/methods/base.py +570 -0
- oodeel/methods/dknn.py +185 -0
- oodeel/methods/energy.py +119 -0
- oodeel/methods/entropy.py +113 -0
- oodeel/methods/gen.py +113 -0
- oodeel/methods/gram.py +274 -0
- oodeel/methods/mahalanobis.py +209 -0
- oodeel/methods/mls.py +113 -0
- oodeel/methods/odin.py +109 -0
- oodeel/methods/rmds.py +172 -0
- oodeel/methods/she.py +159 -0
- oodeel/methods/vim.py +273 -0
- oodeel/preprocess/__init__.py +31 -0
- oodeel/preprocess/tf_preprocess.py +95 -0
- oodeel/preprocess/torch_preprocess.py +97 -0
- oodeel/types/__init__.py +75 -0
- oodeel/utils/__init__.py +38 -0
- oodeel/utils/general_utils.py +97 -0
- oodeel/utils/operator.py +253 -0
- oodeel/utils/tf_operator.py +269 -0
- oodeel/utils/tf_training_tools.py +219 -0
- oodeel/utils/torch_operator.py +292 -0
- oodeel/utils/torch_training_tools.py +303 -0
- oodeel-0.4.0.dist-info/METADATA +409 -0
- oodeel-0.4.0.dist-info/RECORD +63 -0
- oodeel-0.4.0.dist-info/WHEEL +5 -0
- oodeel-0.4.0.dist-info/licenses/LICENSE +21 -0
- oodeel-0.4.0.dist-info/top_level.txt +2 -0
- tests/__init__.py +22 -0
- tests/tests_tensorflow/__init__.py +37 -0
- tests/tests_tensorflow/tf_methods_utils.py +140 -0
- tests/tests_tensorflow/tools_tf.py +86 -0
- tests/tests_torch/__init__.py +38 -0
- tests/tests_torch/tools_torch.py +151 -0
- tests/tests_torch/torch_methods_utils.py +148 -0
- tests/tools_operator.py +153 -0
|
@@ -0,0 +1,140 @@
|
|
|
1
|
+
# -*- coding: utf-8 -*-
|
|
2
|
+
# Copyright IRT Antoine de Saint Exupéry et Université Paul Sabatier Toulouse III - All
|
|
3
|
+
# rights reserved. DEEL is a research program operated by IVADO, IRT Saint Exupéry,
|
|
4
|
+
# CRIAQ and ANITI - https://www.deel.ai/
|
|
5
|
+
#
|
|
6
|
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
7
|
+
# of this software and associated documentation files (the "Software"), to deal
|
|
8
|
+
# in the Software without restriction, including without limitation the rights
|
|
9
|
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
10
|
+
# copies of the Software, and to permit persons to whom the Software is
|
|
11
|
+
# furnished to do so, subject to the following conditions:
|
|
12
|
+
#
|
|
13
|
+
# The above copyright notice and this permission notice shall be included in all
|
|
14
|
+
# copies or substantial portions of the Software.
|
|
15
|
+
#
|
|
16
|
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
17
|
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
18
|
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
19
|
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
20
|
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
21
|
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
22
|
+
# SOFTWARE.
|
|
23
|
+
import os
|
|
24
|
+
import random
|
|
25
|
+
|
|
26
|
+
import numpy as np
|
|
27
|
+
import tensorflow as tf
|
|
28
|
+
from sklearn.datasets import make_blobs
|
|
29
|
+
from sklearn.model_selection import train_test_split
|
|
30
|
+
|
|
31
|
+
from oodeel.datasets import OODDataset
|
|
32
|
+
from oodeel.eval.metrics import bench_metrics
|
|
33
|
+
|
|
34
|
+
model_path = os.path.expanduser("~/") + ".oodeel/saved_models"
|
|
35
|
+
data_path = os.path.expanduser("~/") + ".oodeel/datasets"
|
|
36
|
+
os.makedirs(model_path, exist_ok=True)
|
|
37
|
+
os.makedirs(data_path, exist_ok=True)
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
def load_blobs_data(batch_size=128, num_samples=10000, train_ratio=0.8):
|
|
41
|
+
# === data hparams ===
|
|
42
|
+
num_classes = 3
|
|
43
|
+
in_labels = [0, 1]
|
|
44
|
+
out_labels = [2, 3]
|
|
45
|
+
centers = np.array([[-4, -4], [4, 4], [-4, 4], [4, -4]])
|
|
46
|
+
|
|
47
|
+
# === generate data ===
|
|
48
|
+
X, y = make_blobs(num_samples, num_classes, centers=centers, random_state=0)
|
|
49
|
+
X_train, X_test, y_train, y_test = train_test_split(
|
|
50
|
+
X, y, train_size=train_ratio, random_state=0
|
|
51
|
+
)
|
|
52
|
+
|
|
53
|
+
# === id / ood split ===
|
|
54
|
+
blobs_train = OODDataset((X_train, y_train), backend="tensorflow")
|
|
55
|
+
blobs_test = OODDataset((X_test, y_test), backend="tensorflow")
|
|
56
|
+
oods_fit, _ = blobs_train.split_by_class(in_labels, out_labels)
|
|
57
|
+
oods_in, oods_out = blobs_test.split_by_class(in_labels, out_labels)
|
|
58
|
+
|
|
59
|
+
# === prepare data (shuffle, batch) => torch dataloaders ===
|
|
60
|
+
ds_fit = oods_fit.prepare(batch_size=batch_size, shuffle=True)
|
|
61
|
+
ds_in = oods_in.prepare(batch_size=batch_size)
|
|
62
|
+
ds_out = oods_out.prepare(batch_size=batch_size)
|
|
63
|
+
return ds_fit, ds_in, ds_out
|
|
64
|
+
|
|
65
|
+
|
|
66
|
+
def load_blob_mlp():
|
|
67
|
+
model_path_blobs = tf.keras.utils.get_file(
|
|
68
|
+
"blobs_mlp.h5",
|
|
69
|
+
origin="https://github.com/deel-ai/oodeel/blob/assets/test_models/"
|
|
70
|
+
+ "blobs_mlp.h5?raw=True",
|
|
71
|
+
cache_dir=model_path,
|
|
72
|
+
cache_subdir="",
|
|
73
|
+
)
|
|
74
|
+
model = tf.keras.models.load_model(model_path_blobs)
|
|
75
|
+
return model
|
|
76
|
+
|
|
77
|
+
|
|
78
|
+
def eval_detector_on_blobs(
|
|
79
|
+
detector,
|
|
80
|
+
auroc_thr=0.6,
|
|
81
|
+
fpr95_thr=0.3,
|
|
82
|
+
batch_size=128,
|
|
83
|
+
check_react_clipping=False,
|
|
84
|
+
):
|
|
85
|
+
# seed
|
|
86
|
+
tf.random.set_seed(0)
|
|
87
|
+
np.random.seed(0)
|
|
88
|
+
random.seed(1)
|
|
89
|
+
|
|
90
|
+
# load data
|
|
91
|
+
ds_fit, ds_in, ds_out = load_blobs_data(batch_size)
|
|
92
|
+
|
|
93
|
+
# get classifier
|
|
94
|
+
model = load_blob_mlp()
|
|
95
|
+
|
|
96
|
+
# fit ood detector
|
|
97
|
+
if (
|
|
98
|
+
detector.requires_to_fit_dataset or detector.use_react
|
|
99
|
+
) and detector.requires_internal_features:
|
|
100
|
+
if hasattr(detector, "aggregator") and detector.aggregator is not None:
|
|
101
|
+
detector.fit(model, feature_layers_id=[-2, -1], fit_dataset=ds_fit)
|
|
102
|
+
else:
|
|
103
|
+
detector.fit(model, feature_layers_id=[-2], fit_dataset=ds_fit)
|
|
104
|
+
elif detector.requires_to_fit_dataset or detector.use_react:
|
|
105
|
+
detector.fit(model, fit_dataset=ds_fit)
|
|
106
|
+
else:
|
|
107
|
+
detector.fit(model)
|
|
108
|
+
|
|
109
|
+
# ood scores
|
|
110
|
+
scores_in, info_in = detector.score(ds_in)
|
|
111
|
+
scores_out, info_out = detector.score(ds_out)
|
|
112
|
+
assert scores_in.shape == (1028,)
|
|
113
|
+
assert info_in["labels"].shape == (1028,)
|
|
114
|
+
assert info_in["logits"].shape == (1028, 2)
|
|
115
|
+
assert scores_out.shape == (972,)
|
|
116
|
+
assert info_out["labels"].shape == (972,)
|
|
117
|
+
assert info_out["logits"].shape == (972, 2)
|
|
118
|
+
|
|
119
|
+
# ood metrics: auroc, fpr95tpr
|
|
120
|
+
metrics = bench_metrics(
|
|
121
|
+
(scores_in, scores_out),
|
|
122
|
+
metrics=["auroc", "fpr95tpr"],
|
|
123
|
+
)
|
|
124
|
+
auroc, fpr95tpr = metrics["auroc"], metrics["fpr95tpr"]
|
|
125
|
+
assert auroc >= auroc_thr, f"got a score of {auroc}, below {auroc_thr}!"
|
|
126
|
+
assert fpr95tpr <= fpr95_thr, f"got a score of {fpr95tpr}, above {fpr95_thr}!"
|
|
127
|
+
|
|
128
|
+
# react specific test
|
|
129
|
+
# /!\ do it at the end of the test because it may affect the detector's behaviour
|
|
130
|
+
if check_react_clipping:
|
|
131
|
+
assert detector.react_threshold is not None
|
|
132
|
+
penult_feat_extractor = detector.FeatureExtractorClass(
|
|
133
|
+
model=detector.feature_extractor.extractor, feature_layers_id=[-2]
|
|
134
|
+
)
|
|
135
|
+
penult_features, _ = penult_feat_extractor.predict(ds_fit)
|
|
136
|
+
assert tf.reduce_max(penult_features) <= detector.react_threshold, (
|
|
137
|
+
"Maximum value of penultimate features"
|
|
138
|
+
+ f" ({tf.reduce_max(penult_features)}) should be less than or equal to"
|
|
139
|
+
+ f" the react threshold value ({detector.react_threshold})"
|
|
140
|
+
)
|
|
@@ -0,0 +1,86 @@
|
|
|
1
|
+
# -*- coding: utf-8 -*-
|
|
2
|
+
# Copyright IRT Antoine de Saint Exupéry et Université Paul Sabatier Toulouse III - All
|
|
3
|
+
# rights reserved. DEEL is a research program operated by IVADO, IRT Saint Exupéry,
|
|
4
|
+
# CRIAQ and ANITI - https://www.deel.ai/
|
|
5
|
+
#
|
|
6
|
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
7
|
+
# of this software and associated documentation files (the "Software"), to deal
|
|
8
|
+
# in the Software without restriction, including without limitation the rights
|
|
9
|
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
10
|
+
# copies of the Software, and to permit persons to whom the Software is
|
|
11
|
+
# furnished to do so, subject to the following conditions:
|
|
12
|
+
#
|
|
13
|
+
# The above copyright notice and this permission notice shall be included in all
|
|
14
|
+
# copies or substantial portions of the Software.
|
|
15
|
+
#
|
|
16
|
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
17
|
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
18
|
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
19
|
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
20
|
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
21
|
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
22
|
+
# SOFTWARE.
|
|
23
|
+
import numpy as np
|
|
24
|
+
import tensorflow as tf
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
def almost_equal(arr1, arr2, epsilon=1e-6):
|
|
28
|
+
"""Ensure two array are almost equal at an epsilon"""
|
|
29
|
+
return np.mean(np.abs(arr1 - arr2)) < epsilon
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
def generate_model(input_shape=(32, 32, 3), output_shape=10):
|
|
33
|
+
model = tf.keras.models.Sequential()
|
|
34
|
+
model.add(tf.keras.layers.Input(shape=input_shape))
|
|
35
|
+
model.add(tf.keras.layers.Conv2D(4, kernel_size=(2, 2), activation="relu"))
|
|
36
|
+
model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2)))
|
|
37
|
+
model.add(tf.keras.layers.Dropout(0.25))
|
|
38
|
+
model.add(tf.keras.layers.Flatten())
|
|
39
|
+
model.add(tf.keras.layers.Dense(output_shape))
|
|
40
|
+
model.compile(loss="categorical_crossentropy", optimizer="sgd")
|
|
41
|
+
|
|
42
|
+
return model
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
def generate_regression_model(features_shape, output_shape=1):
|
|
46
|
+
model = tf.keras.models.Sequential()
|
|
47
|
+
model.add(tf.keras.layers.Input(shape=features_shape))
|
|
48
|
+
model.add(tf.keras.layers.Flatten())
|
|
49
|
+
model.add(tf.keras.layers.Dense(4, activation="relu"))
|
|
50
|
+
model.add(tf.keras.layers.Dense(4, activation="relu"))
|
|
51
|
+
model.add(tf.keras.layers.Dense(output_shape))
|
|
52
|
+
model.compile(loss="mean_absolute_error", optimizer="sgd", metrics=["accuracy"])
|
|
53
|
+
|
|
54
|
+
return model
|
|
55
|
+
|
|
56
|
+
|
|
57
|
+
def simplest_mlp(num_features, num_classes):
|
|
58
|
+
return tf.keras.models.Sequential(
|
|
59
|
+
[
|
|
60
|
+
tf.keras.layers.Input(shape=(num_features,)),
|
|
61
|
+
tf.keras.layers.Dense(64, activation="relu"),
|
|
62
|
+
tf.keras.layers.Dense(num_classes, activation="softmax"),
|
|
63
|
+
]
|
|
64
|
+
)
|
|
65
|
+
|
|
66
|
+
|
|
67
|
+
def generate_data(x_shape=(32, 32, 3), num_labels=10, samples=100, one_hot=True):
|
|
68
|
+
x = np.random.rand(samples, *x_shape).astype(np.float32)
|
|
69
|
+
x /= np.max(x)
|
|
70
|
+
if one_hot:
|
|
71
|
+
y = np.eye(num_labels)[np.random.randint(0, num_labels, samples)]
|
|
72
|
+
else:
|
|
73
|
+
y = np.random.randint(0, num_labels, samples)
|
|
74
|
+
|
|
75
|
+
return x, y
|
|
76
|
+
|
|
77
|
+
|
|
78
|
+
def generate_data_tf(
|
|
79
|
+
x_shape=(32, 32, 3), num_labels=10, samples=100, one_hot=True, as_supervised=True
|
|
80
|
+
):
|
|
81
|
+
x, y = generate_data(x_shape, num_labels, samples, one_hot)
|
|
82
|
+
if as_supervised:
|
|
83
|
+
dataset = tf.data.Dataset.from_tensor_slices((x, y))
|
|
84
|
+
else:
|
|
85
|
+
dataset = tf.data.Dataset.from_tensor_slices({"input": x, "label": y})
|
|
86
|
+
return dataset
|
|
@@ -0,0 +1,38 @@
|
|
|
1
|
+
# -*- coding: utf-8 -*-
|
|
2
|
+
# Copyright IRT Antoine de Saint Exupéry et Université Paul Sabatier Toulouse III - All
|
|
3
|
+
# rights reserved. DEEL is a research program operated by IVADO, IRT Saint Exupéry,
|
|
4
|
+
# CRIAQ and ANITI - https://www.deel.ai/
|
|
5
|
+
#
|
|
6
|
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
7
|
+
# of this software and associated documentation files (the "Software"), to deal
|
|
8
|
+
# in the Software without restriction, including without limitation the rights
|
|
9
|
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
10
|
+
# copies of the Software, and to permit persons to whom the Software is
|
|
11
|
+
# furnished to do so, subject to the following conditions:
|
|
12
|
+
#
|
|
13
|
+
# The above copyright notice and this permission notice shall be included in all
|
|
14
|
+
# copies or substantial portions of the Software.
|
|
15
|
+
#
|
|
16
|
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
17
|
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
18
|
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
19
|
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
20
|
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
21
|
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
22
|
+
# SOFTWARE.
|
|
23
|
+
from .tools_torch import ComplexNet
|
|
24
|
+
from .tools_torch import generate_data
|
|
25
|
+
from .tools_torch import generate_data_torch
|
|
26
|
+
from .tools_torch import named_sequential_model
|
|
27
|
+
from .tools_torch import Net
|
|
28
|
+
from .tools_torch import sequential_model
|
|
29
|
+
from .torch_methods_utils import eval_detector_on_blobs
|
|
30
|
+
|
|
31
|
+
__all__ = [
|
|
32
|
+
"ComplexNet",
|
|
33
|
+
"generate_data_torch",
|
|
34
|
+
"generate_data",
|
|
35
|
+
"named_sequential_model",
|
|
36
|
+
"Net",
|
|
37
|
+
"sequential_model",
|
|
38
|
+
]
|
|
@@ -0,0 +1,151 @@
|
|
|
1
|
+
# -*- coding: utf-8 -*-
|
|
2
|
+
# Copyright IRT Antoine de Saint Exupéry et Université Paul Sabatier Toulouse III - All
|
|
3
|
+
# rights reserved. DEEL is a research program operated by IVADO, IRT Saint Exupéry,
|
|
4
|
+
# CRIAQ and ANITI - https://www.deel.ai/
|
|
5
|
+
#
|
|
6
|
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
7
|
+
# of this software and associated documentation files (the "Software"), to deal
|
|
8
|
+
# in the Software without restriction, including without limitation the rights
|
|
9
|
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
10
|
+
# copies of the Software, and to permit persons to whom the Software is
|
|
11
|
+
# furnished to do so, subject to the following conditions:
|
|
12
|
+
#
|
|
13
|
+
# The above copyright notice and this permission notice shall be included in all
|
|
14
|
+
# copies or substantial portions of the Software.
|
|
15
|
+
#
|
|
16
|
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
17
|
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
18
|
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
19
|
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
20
|
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
21
|
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
22
|
+
# SOFTWARE.
|
|
23
|
+
from collections import OrderedDict
|
|
24
|
+
|
|
25
|
+
import numpy as np
|
|
26
|
+
import torch
|
|
27
|
+
import torch.nn as nn
|
|
28
|
+
import torch.nn.functional as F
|
|
29
|
+
from torch.utils.data import TensorDataset
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
def almost_equal(arr1, arr2, epsilon=1e-6):
|
|
33
|
+
"""Ensure two array are almost equal at an epsilon"""
|
|
34
|
+
return np.mean(np.abs(arr1 - arr2)) < epsilon
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
class Net(nn.Module):
|
|
38
|
+
def __init__(self, num_classes=10):
|
|
39
|
+
super().__init__()
|
|
40
|
+
self.conv1 = nn.Conv2d(3, 6, 5)
|
|
41
|
+
self.pool = nn.MaxPool2d(2, 2)
|
|
42
|
+
self.conv2 = nn.Conv2d(6, 16, 5)
|
|
43
|
+
self.fc1 = nn.Linear(16 * 5 * 5, 120)
|
|
44
|
+
self.fc2 = nn.Linear(120, 84)
|
|
45
|
+
self.fc3 = nn.Linear(84, num_classes)
|
|
46
|
+
|
|
47
|
+
def forward(self, x):
|
|
48
|
+
x = self.pool(F.relu(self.conv1(x)))
|
|
49
|
+
x = self.pool(F.relu(self.conv2(x)))
|
|
50
|
+
x = torch.flatten(x, 1) # flatten all dimensions except batch
|
|
51
|
+
x = F.relu(self.fc1(x))
|
|
52
|
+
x = F.relu(self.fc2(x))
|
|
53
|
+
x = self.fc3(x)
|
|
54
|
+
return x
|
|
55
|
+
|
|
56
|
+
|
|
57
|
+
class ComplexNet(nn.Module):
|
|
58
|
+
def __init__(self, num_classes=10):
|
|
59
|
+
super().__init__()
|
|
60
|
+
|
|
61
|
+
self.feature_extractor = nn.Sequential(
|
|
62
|
+
OrderedDict(
|
|
63
|
+
[
|
|
64
|
+
("conv1", nn.Conv2d(3, 6, 5)),
|
|
65
|
+
("relu1", nn.ReLU()),
|
|
66
|
+
("pool1", nn.MaxPool2d(2, 2)),
|
|
67
|
+
("conv2", nn.Conv2d(6, 16, 5)),
|
|
68
|
+
("relu2", nn.ReLU()),
|
|
69
|
+
("pool2", nn.MaxPool2d(2, 2)),
|
|
70
|
+
("flatten", nn.Flatten()),
|
|
71
|
+
]
|
|
72
|
+
)
|
|
73
|
+
)
|
|
74
|
+
|
|
75
|
+
self.fcs = nn.Sequential(
|
|
76
|
+
OrderedDict(
|
|
77
|
+
[
|
|
78
|
+
("fc1", nn.Linear(16 * 5 * 5, 120)),
|
|
79
|
+
("fc2", nn.Linear(120, 84)),
|
|
80
|
+
("fc3", nn.Linear(84, num_classes)),
|
|
81
|
+
]
|
|
82
|
+
)
|
|
83
|
+
)
|
|
84
|
+
|
|
85
|
+
def forward(self, x):
|
|
86
|
+
x = self.feature_extractor(x)
|
|
87
|
+
x = self.fcs(x)
|
|
88
|
+
return x
|
|
89
|
+
|
|
90
|
+
|
|
91
|
+
def sequential_model(num_classes=10):
|
|
92
|
+
return nn.Sequential(
|
|
93
|
+
nn.Conv2d(3, 6, 5),
|
|
94
|
+
nn.ReLU(),
|
|
95
|
+
nn.MaxPool2d(2, 2),
|
|
96
|
+
nn.Conv2d(6, 16, 5),
|
|
97
|
+
nn.ReLU(),
|
|
98
|
+
nn.MaxPool2d(2, 2),
|
|
99
|
+
nn.Flatten(),
|
|
100
|
+
nn.Linear(16 * 5 * 5, 120),
|
|
101
|
+
nn.Linear(120, 84),
|
|
102
|
+
nn.Linear(84, num_classes),
|
|
103
|
+
)
|
|
104
|
+
|
|
105
|
+
|
|
106
|
+
def named_sequential_model(num_classes=10):
|
|
107
|
+
return nn.Sequential(
|
|
108
|
+
OrderedDict(
|
|
109
|
+
[
|
|
110
|
+
("conv1", nn.Conv2d(3, 6, 5)),
|
|
111
|
+
("relu1", nn.ReLU()),
|
|
112
|
+
("pool1", nn.MaxPool2d(2, 2)),
|
|
113
|
+
("conv2", nn.Conv2d(6, 16, 5)),
|
|
114
|
+
("relu2", nn.ReLU()),
|
|
115
|
+
("pool2", nn.MaxPool2d(2, 2)),
|
|
116
|
+
("flatten", nn.Flatten()),
|
|
117
|
+
("fc1", nn.Linear(16 * 5 * 5, 120)),
|
|
118
|
+
("fc2", nn.Linear(120, 84)),
|
|
119
|
+
("fc3", nn.Linear(84, num_classes)),
|
|
120
|
+
]
|
|
121
|
+
)
|
|
122
|
+
)
|
|
123
|
+
|
|
124
|
+
|
|
125
|
+
def simplest_mlp(num_features, num_classes=10):
|
|
126
|
+
return nn.Sequential(
|
|
127
|
+
nn.Linear(num_features, 64),
|
|
128
|
+
nn.ReLU(),
|
|
129
|
+
nn.Linear(64, num_classes),
|
|
130
|
+
)
|
|
131
|
+
|
|
132
|
+
|
|
133
|
+
def generate_data(x_shape=(3, 32, 32), num_labels=10, samples=100, one_hot=True):
|
|
134
|
+
x = np.random.rand(samples, *x_shape).astype(np.float32)
|
|
135
|
+
x /= np.max(x)
|
|
136
|
+
if one_hot:
|
|
137
|
+
y = np.eye(num_labels)[np.random.randint(0, num_labels, samples)]
|
|
138
|
+
else:
|
|
139
|
+
y = np.random.randint(0, num_labels, samples)
|
|
140
|
+
|
|
141
|
+
return x, y
|
|
142
|
+
|
|
143
|
+
|
|
144
|
+
def generate_data_torch(
|
|
145
|
+
x_shape=(3, 32, 32), num_labels=10, samples=100, one_hot=True, with_labels=True
|
|
146
|
+
):
|
|
147
|
+
x, y = generate_data(x_shape, num_labels, samples, one_hot)
|
|
148
|
+
if with_labels:
|
|
149
|
+
return TensorDataset(torch.Tensor(x), torch.Tensor(y))
|
|
150
|
+
else:
|
|
151
|
+
return TensorDataset(torch.Tensor(x))
|
|
@@ -0,0 +1,148 @@
|
|
|
1
|
+
# -*- coding: utf-8 -*-
|
|
2
|
+
# Copyright IRT Antoine de Saint Exupéry et Université Paul Sabatier Toulouse III - All
|
|
3
|
+
# rights reserved. DEEL is a research program operated by IVADO, IRT Saint Exupéry,
|
|
4
|
+
# CRIAQ and ANITI - https://www.deel.ai/
|
|
5
|
+
#
|
|
6
|
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
7
|
+
# of this software and associated documentation files (the "Software"), to deal
|
|
8
|
+
# in the Software without restriction, including without limitation the rights
|
|
9
|
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
10
|
+
# copies of the Software, and to permit persons to whom the Software is
|
|
11
|
+
# furnished to do so, subject to the following conditions:
|
|
12
|
+
#
|
|
13
|
+
# The above copyright notice and this permission notice shall be included in all
|
|
14
|
+
# copies or substantial portions of the Software.
|
|
15
|
+
#
|
|
16
|
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
17
|
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
18
|
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
19
|
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
20
|
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
21
|
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
22
|
+
# SOFTWARE.
|
|
23
|
+
import os
|
|
24
|
+
|
|
25
|
+
import numpy as np
|
|
26
|
+
import torch
|
|
27
|
+
from sklearn.datasets import make_blobs
|
|
28
|
+
from sklearn.model_selection import train_test_split
|
|
29
|
+
|
|
30
|
+
from oodeel.datasets import load_data_handler
|
|
31
|
+
from oodeel.eval.metrics import bench_metrics
|
|
32
|
+
|
|
33
|
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
34
|
+
|
|
35
|
+
model_path = os.path.expanduser("~/") + ".oodeel/saved_models"
|
|
36
|
+
data_path = os.path.expanduser("~/") + ".oodeel/datasets"
|
|
37
|
+
os.makedirs(model_path, exist_ok=True)
|
|
38
|
+
os.makedirs(data_path, exist_ok=True)
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
def load_blobs_data(batch_size=128, num_samples=10000, train_ratio=0.8):
|
|
42
|
+
# === data hparams ===
|
|
43
|
+
num_classes = 3
|
|
44
|
+
in_labels = [0, 1]
|
|
45
|
+
out_labels = [2, 3]
|
|
46
|
+
centers = np.array([[-4, -4], [4, 4], [-4, 4], [4, -4]])
|
|
47
|
+
|
|
48
|
+
# === generate data ===
|
|
49
|
+
X, y = make_blobs(num_samples, num_classes, centers=centers, random_state=0)
|
|
50
|
+
X_train, X_test, y_train, y_test = train_test_split(
|
|
51
|
+
X, y, train_size=train_ratio, random_state=0
|
|
52
|
+
)
|
|
53
|
+
|
|
54
|
+
# === id / ood split ===
|
|
55
|
+
handler = load_data_handler("torch")
|
|
56
|
+
blobs_train = handler.load_dataset((X_train, y_train))
|
|
57
|
+
blobs_test = handler.load_dataset((X_test, y_test))
|
|
58
|
+
oods_fit, _ = handler.split_by_class(blobs_train, in_labels, out_labels)
|
|
59
|
+
oods_in, oods_out = handler.split_by_class(blobs_test, in_labels, out_labels)
|
|
60
|
+
|
|
61
|
+
# === prepare data (shuffle, batch) => torch dataloaders ===
|
|
62
|
+
ds_fit = handler.prepare(oods_fit, batch_size=batch_size, shuffle=True)
|
|
63
|
+
ds_in = handler.prepare(oods_in, batch_size=batch_size)
|
|
64
|
+
ds_out = handler.prepare(oods_out, batch_size=batch_size)
|
|
65
|
+
return ds_fit, ds_in, ds_out
|
|
66
|
+
|
|
67
|
+
|
|
68
|
+
def load_blob_mlp():
|
|
69
|
+
# load model
|
|
70
|
+
model = torch.hub.load_state_dict_from_url(
|
|
71
|
+
"https://github.com/deel-ai/oodeel/blob/assets/"
|
|
72
|
+
+ "test_models/blobs_mlp.pt?raw=True",
|
|
73
|
+
map_location=device,
|
|
74
|
+
)
|
|
75
|
+
model.eval()
|
|
76
|
+
return model
|
|
77
|
+
|
|
78
|
+
|
|
79
|
+
def eval_detector_on_blobs(
|
|
80
|
+
detector,
|
|
81
|
+
auroc_thr=0.6,
|
|
82
|
+
fpr95_thr=0.3,
|
|
83
|
+
batch_size=128,
|
|
84
|
+
check_react_clipping=False,
|
|
85
|
+
):
|
|
86
|
+
# seed
|
|
87
|
+
torch.manual_seed(1)
|
|
88
|
+
|
|
89
|
+
# load data
|
|
90
|
+
ds_fit, ds_in, ds_out = load_blobs_data(batch_size)
|
|
91
|
+
|
|
92
|
+
# get classifier
|
|
93
|
+
model = load_blob_mlp()
|
|
94
|
+
|
|
95
|
+
# fit ood detector
|
|
96
|
+
if detector.requires_to_fit_dataset or detector.use_react:
|
|
97
|
+
if hasattr(detector, "aggregator") and detector.aggregator is not None:
|
|
98
|
+
detector.fit(model, feature_layers_id=[-2, -1], fit_dataset=ds_fit)
|
|
99
|
+
else:
|
|
100
|
+
detector.fit(model, feature_layers_id=[-2], fit_dataset=ds_fit)
|
|
101
|
+
else:
|
|
102
|
+
detector.fit(model)
|
|
103
|
+
|
|
104
|
+
# ood scores
|
|
105
|
+
scores_in, info_in = detector.score(ds_in)
|
|
106
|
+
scores_out, info_out = detector.score(ds_out)
|
|
107
|
+
assert scores_in.shape == (1028,)
|
|
108
|
+
assert info_in["labels"].shape == (1028,)
|
|
109
|
+
assert info_in["logits"].shape == (1028, 2)
|
|
110
|
+
assert scores_out.shape == (972,)
|
|
111
|
+
assert info_out["labels"].shape == (972,)
|
|
112
|
+
assert info_out["logits"].shape == (972, 2)
|
|
113
|
+
|
|
114
|
+
# ood metrics: auroc, fpr95tpr
|
|
115
|
+
metrics = bench_metrics(
|
|
116
|
+
(scores_in, scores_out),
|
|
117
|
+
metrics=["auroc", "fpr95tpr"],
|
|
118
|
+
)
|
|
119
|
+
auroc, fpr95tpr = metrics["auroc"], metrics["fpr95tpr"]
|
|
120
|
+
assert auroc >= auroc_thr, f"got a score of {auroc}, below {auroc_thr}!"
|
|
121
|
+
assert fpr95tpr <= fpr95_thr, f"got a score of {fpr95tpr}, above {fpr95_thr}!"
|
|
122
|
+
|
|
123
|
+
# react specific test
|
|
124
|
+
# /!\ do it at the end of the test because it may affect the detector's behaviour
|
|
125
|
+
|
|
126
|
+
if check_react_clipping:
|
|
127
|
+
assert detector.react_threshold is not None
|
|
128
|
+
|
|
129
|
+
penult_feat_extractor = detector._load_feature_extractor(
|
|
130
|
+
model=model, feature_layers_id=[-1]
|
|
131
|
+
)
|
|
132
|
+
# penult_feat_extractor._prepare_ood_handles()
|
|
133
|
+
|
|
134
|
+
def hook(_, input):
|
|
135
|
+
penult_feat_extractor._features["test"] = input[0]
|
|
136
|
+
|
|
137
|
+
penult_feat_extractor.model[-1].register_forward_pre_hook(hook)
|
|
138
|
+
for x, y in ds_fit:
|
|
139
|
+
_ = penult_feat_extractor.predict_tensor(x)
|
|
140
|
+
assert (
|
|
141
|
+
torch.max(penult_feat_extractor._features["test"])
|
|
142
|
+
<= detector.react_threshold
|
|
143
|
+
), (
|
|
144
|
+
"Maximum value of penultimate features"
|
|
145
|
+
+ f" ({torch.max(penult_feat_extractor._features)})"
|
|
146
|
+
+ " should be less than or equal to the react threshold value"
|
|
147
|
+
+ f" ({detector.react_threshold})"
|
|
148
|
+
)
|