noshot 0.1.7__py3-none-any.whl → 0.1.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/ML TS XAI/ML/1. PCA - EDA/PCA-EDA.ipynb +207 -0
- noshot/data/ML TS XAI/ML/1. PCA - EDA/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/1. PCA - EDA/input.txt +625 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/KNN.ipynb +287 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/input.txt +625 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/LDA.ipynb +83 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/input.txt +625 -0
- noshot/data/ML TS XAI/ML/4. Linear Regression/Linear-Regression.ipynb +117 -0
- noshot/data/ML TS XAI/ML/4. Linear Regression/machine-data.csv +210 -0
- noshot/data/ML TS XAI/ML/5. Logistic Regression/Logistic-Regression.ipynb +137 -0
- noshot/data/ML TS XAI/ML/5. Logistic Regression/wine-dataset.csv +179 -0
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier/Bayesian.ipynb +129 -0
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier/wine-dataset.csv +179 -0
- noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/Handling TS Data.ipynb +784 -0
- noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/raw_sales.csv +29581 -0
- noshot/data/ML TS XAI/TS/2. Feature Engineering/Feature Engineering-.ipynb +1445 -0
- noshot/data/ML TS XAI/TS/3. Temporal Relationships/Exploring Temporal Relationships.ipynb +603 -0
- noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/Up-Down-Sampling.ipynb +721 -0
- noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/shampoo_sales.csv +37 -0
- noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/Stationarity-Trend-Seasonality.ipynb +392 -0
- noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-min-temperatures.csv +3651 -0
- noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-total-female-births.csv +366 -0
- noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/ACF-PACF.ipynb +175 -0
- noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/daily-min-temperatures.csv +3651 -0
- {noshot-0.1.7.dist-info → noshot-0.1.9.dist-info}/METADATA +2 -2
- noshot-0.1.9.dist-info/RECORD +35 -0
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(A) Breadth First Search.ipynb +0 -112
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(B) Depth First Search.ipynb +0 -111
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(C) Uniform Cost Search.ipynb +0 -134
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(D) Depth Limites Search.ipynb +0 -115
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(E) Iterative Deepening DFS.ipynb +0 -123
- noshot/data/ML TS XAI/AIDS/10. ANOVA/2_ANOVA.csv +0 -769
- noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA (Repeated Measure).ipynb +0 -126
- noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA.ipynb +0 -134
- noshot/data/ML TS XAI/AIDS/10. ANOVA/Sample 1 Way ANOVA Test.ipynb +0 -119
- noshot/data/ML TS XAI/AIDS/10. ANOVA/Two Way ANOVA.ipynb +0 -138
- noshot/data/ML TS XAI/AIDS/10. ANOVA/reaction_time.csv +0 -5
- noshot/data/ML TS XAI/AIDS/10. ANOVA/sample_data.csv +0 -16
- noshot/data/ML TS XAI/AIDS/10. ANOVA/sleep_deprivation.csv +0 -4
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/3_Linear.csv +0 -4802
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression LAB.ipynb +0 -113
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression New- sklearn.ipynb +0 -118
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression.ipynb +0 -148
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/house_rate.csv +0 -22
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression New- sklearn.ipynb +0 -128
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression.ipynb +0 -145
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/default.csv +0 -1001
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/hours_scores_records.csv +0 -101
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(A) Astar.ipynb +0 -256
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(B) IDAstar.ipynb +0 -157
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(C) SMAstar.ipynb +0 -178
- noshot/data/ML TS XAI/AIDS/3. Genetic Algorithm/Genetic.ipynb +0 -95
- noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Simulated Annealing.ipynb +0 -74
- noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Sudoku Simulated Annealing.ipynb +0 -103
- noshot/data/ML TS XAI/AIDS/5. Alpha Beta Pruning/AlphaBetaPruning.ipynb +0 -182
- noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(A) CSP House Allocation.ipynb +0 -120
- noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(B) CSP Map Coloring.ipynb +0 -125
- noshot/data/ML TS XAI/AIDS/7. Random Sampling/Random Sampling.ipynb +0 -73
- noshot/data/ML TS XAI/AIDS/7. Random Sampling/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test Hash Function.ipynb +0 -141
- noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test.ipynb +0 -151
- noshot/data/ML TS XAI/AIDS/8. Z Test/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/9. T Test/1_heart.csv +0 -304
- noshot/data/ML TS XAI/AIDS/9. T Test/Independent T Test.ipynb +0 -119
- noshot/data/ML TS XAI/AIDS/9. T Test/Paired T Test.ipynb +0 -118
- noshot/data/ML TS XAI/AIDS/9. T Test/T Test Hash Function.ipynb +0 -142
- noshot/data/ML TS XAI/AIDS/9. T Test/T Test.ipynb +0 -158
- noshot/data/ML TS XAI/AIDS/9. T Test/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/9. T Test/iq_test.csv +0 -0
- noshot/data/ML TS XAI/AIDS/Others (AllinOne)/All In One.ipynb +0 -4581
- noshot/data/ML TS XAI/CN/1. Chat Application/chat.java +0 -81
- noshot/data/ML TS XAI/CN/1. Chat Application/output.png +0 -0
- noshot/data/ML TS XAI/CN/1. Chat Application/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/LAN.tcl +0 -65
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/analysis.awk +0 -44
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/output.png +0 -0
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/complexdcf.tcl +0 -229
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/output.png +0 -0
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/2. File Transfer/file_to_send.txt +0 -2
- noshot/data/ML TS XAI/CN/2. File Transfer/filetransfer.java +0 -119
- noshot/data/ML TS XAI/CN/2. File Transfer/output.png +0 -0
- noshot/data/ML TS XAI/CN/2. File Transfer/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Client.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerImpl.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerIntf.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Server.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/output.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/rmi.java +0 -56
- noshot/data/ML TS XAI/CN/4. Wired Network/output.png +0 -0
- noshot/data/ML TS XAI/CN/4. Wired Network/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/4. Wired Network/wired.awk +0 -25
- noshot/data/ML TS XAI/CN/4. Wired Network/wired.tcl +0 -81
- noshot/data/ML TS XAI/CN/5. Wireless Network/output.png +0 -0
- noshot/data/ML TS XAI/CN/5. Wireless Network/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.awk +0 -27
- noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.tcl +0 -153
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/analysis.awk +0 -27
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/sack.tcl +0 -86
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/vegas.tcl +0 -86
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/analysis.awk +0 -28
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/reno.tcl +0 -78
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/tahoe.tcl +0 -79
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/analysis.awk +0 -27
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/flow.tcl +0 -163
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/DV.tcl +0 -111
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/LS.tcl +0 -106
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/analysis.awk +0 -36
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/output.png +0 -0
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/analysis.awk +0 -20
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/broadcast.tcl +0 -76
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/multicast.tcl +0 -103
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/output.png +0 -0
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/9. DHCP/DHCP.java +0 -125
- noshot/data/ML TS XAI/CN/9. DHCP/output.png +0 -0
- noshot/data/ML TS XAI/CN/9. DHCP/procedure.png +0 -0
- noshot/data/ML TS XAI/NLP/NLP 1/1-Prereqs.py +0 -18
- noshot/data/ML TS XAI/NLP/NLP 1/2-Chi2test.py +0 -83
- noshot/data/ML TS XAI/NLP/NLP 1/2-T-test.py +0 -79
- noshot/data/ML TS XAI/NLP/NLP 1/3-WSD-nb.py +0 -53
- noshot/data/ML TS XAI/NLP/NLP 1/4-Hindle-Rooth.py +0 -53
- noshot/data/ML TS XAI/NLP/NLP 1/5-HMM-Trellis.py +0 -82
- noshot/data/ML TS XAI/NLP/NLP 1/6-HMM-Viterbi.py +0 -16
- noshot/data/ML TS XAI/NLP/NLP 1/7-PCFG-parsetree.py +0 -15
- noshot/data/ML TS XAI/NLP/NLP 1/Chi2test.ipynb +0 -285
- noshot/data/ML TS XAI/NLP/NLP 1/Hindle-Rooth.ipynb +0 -179
- noshot/data/ML TS XAI/NLP/NLP 1/Lab 10 - Text generator using LSTM.ipynb +0 -1461
- noshot/data/ML TS XAI/NLP/NLP 1/Lab 11 NMT.ipynb +0 -2307
- noshot/data/ML TS XAI/NLP/NLP 1/PCFG.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 1/Prereqs.ipynb +0 -131
- noshot/data/ML TS XAI/NLP/NLP 1/T test.ipynb +0 -252
- noshot/data/ML TS XAI/NLP/NLP 1/TFIDF BOW.ipynb +0 -171
- noshot/data/ML TS XAI/NLP/NLP 1/Trellis.ipynb +0 -244
- noshot/data/ML TS XAI/NLP/NLP 1/WSD.ipynb +0 -645
- noshot/data/ML TS XAI/NLP/NLP 1/Word2Vec.ipynb +0 -93
- noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/tokenizer.ipynb +0 -370
- noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/training_tokenizer.txt +0 -6
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/exp0.ipynb +0 -274
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/lab2.ipynb +0 -905
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/test.txt +0 -1
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/tokenizing.ipynb +0 -272
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/collocation.ipynb +0 -332
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/lab3.ipynb +0 -549
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/nlp.txt +0 -1
- noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/Lab4-NLP-Exp-2.ipynb +0 -817
- noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/collocation.ipynb +0 -332
- noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/NLP-Lab-5-Exp3.ipynb +0 -231
- noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/word-sense-disambiguation.ipynb +0 -507
- noshot/data/ML TS XAI/NLP/NLP 2/Lab06(additional-exercise)/lab6.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP Exp 4.ipynb +0 -255
- noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP_Exp_5.ipynb +0 -159
- noshot/data/ML TS XAI/NLP/NLP 2/Lab08(PCFG)/PCFG.ipynb +0 -282
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/Lab 9 - MLP classifier.ipynb +0 -670
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/MLP-alternative-code.ipynb +0 -613
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/hindle-rooth-algorithm.ipynb +0 -74
- noshot/data/ML TS XAI/NLP/NLP 2/Lab10(LSTM)/Lab_10_Text_generator_using_LSTM.ipynb +0 -480
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Machine-translation.ipynb +0 -445
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Viterbi-PCFG.ipynb +0 -105
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/corpora_tools.py +0 -87
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/data_utils.py +0 -11
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/train_translator.py +0 -83
- noshot/data/ML TS XAI/NLP/NLP 2/Lab12(Information-Extraction)/Information_Extraction.ipynb +0 -201
- noshot/data/ML TS XAI/NLP/NLP 3/Backtrack-without-Verbitri.ipynb +0 -185
- noshot/data/ML TS XAI/NLP/NLP 3/Backward-Procedure.ipynb +0 -597
- noshot/data/ML TS XAI/NLP/NLP 3/Bag_of.ipynb +0 -1422
- noshot/data/ML TS XAI/NLP/NLP 3/CYK-algorithm.ipynb +0 -1067
- noshot/data/ML TS XAI/NLP/NLP 3/Forward-Procedure.ipynb +0 -477
- noshot/data/ML TS XAI/NLP/NLP 3/LSTM.ipynb +0 -1290
- noshot/data/ML TS XAI/NLP/NLP 3/Lab 10 - Text generator using LSTM.ipynb +0 -1461
- noshot/data/ML TS XAI/NLP/NLP 3/Lab 11 NMT.ipynb +0 -2307
- noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-4.ipynb +0 -216
- noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-5.ipynb +0 -216
- noshot/data/ML TS XAI/NLP/NLP 3/abc.txt +0 -6
- noshot/data/ML TS XAI/NLP/NLP 3/ex-1-nltk.ipynb +0 -711
- noshot/data/ML TS XAI/NLP/NLP 3/ex-2-nlp.ipynb +0 -267
- noshot/data/ML TS XAI/NLP/NLP 3/exp8&9.ipynb +0 -305
- noshot/data/ML TS XAI/NLP/NLP 3/hind.ipynb +0 -287
- noshot/data/ML TS XAI/NLP/NLP 3/lab66.ipynb +0 -752
- noshot/data/ML TS XAI/NLP/NLP 3/leb_3.ipynb +0 -612
- noshot/data/ML TS XAI/NLP/NLP 3/naive_bayes_classifier.pkl +0 -0
- noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_1.ipynb +0 -3008
- noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_2.ipynb +0 -3095
- noshot/data/ML TS XAI/NLP/NLP 3/nlplab-9.ipynb +0 -295
- noshot/data/ML TS XAI/NLP/NLP 3/nltk-ex-4.ipynb +0 -506
- noshot/data/ML TS XAI/NLP/NLP 3/text1.txt +0 -48
- noshot/data/ML TS XAI/NLP/NLP 3/text2.txt +0 -8
- noshot/data/ML TS XAI/NLP/NLP 3/text3.txt +0 -48
- noshot/data/ML TS XAI/NLP/NLP 3/translation-rnn.ipynb +0 -812
- noshot/data/ML TS XAI/NLP/NLP 3/word2vector.ipynb +0 -173
- noshot/data/ML TS XAI/NLP/NLP 4/Backward Procedure Algorithm.ipynb +0 -179
- noshot/data/ML TS XAI/NLP/NLP 4/Chi Square Collocation.ipynb +0 -208
- noshot/data/ML TS XAI/NLP/NLP 4/Collocation (T test).ipynb +0 -188
- noshot/data/ML TS XAI/NLP/NLP 4/Experiment 1.ipynb +0 -437
- noshot/data/ML TS XAI/NLP/NLP 4/Forward Procedure Algorithm.ipynb +0 -132
- noshot/data/ML TS XAI/NLP/NLP 4/Hindle Rooth.ipynb +0 -414
- noshot/data/ML TS XAI/NLP/NLP 4/MachineTranslation.ipynb +0 -368
- noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using MLPClassifier.ipynb +0 -86
- noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using Tensorflow.ipynb +0 -112
- noshot/data/ML TS XAI/NLP/NLP 4/PCFG Inside Probability.ipynb +0 -451
- noshot/data/ML TS XAI/NLP/NLP 4/Text Generation using LSTM.ipynb +0 -297
- noshot/data/ML TS XAI/NLP/NLP 4/Viterbi.ipynb +0 -310
- noshot/data/ML TS XAI/NLP/NLP 4/Word Sense Disambiguation.ipynb +0 -335
- noshot/data/ML TS XAI/NLP/NLP 5/10.Text Generation using LSTM.ipynb +0 -316
- noshot/data/ML TS XAI/NLP/NLP 5/11.Machine Translation.ipynb +0 -868
- noshot/data/ML TS XAI/NLP/NLP 5/2.T and Chi2 Test.ipynb +0 -204
- noshot/data/ML TS XAI/NLP/NLP 5/3.Word Sense Diambiguation.ipynb +0 -234
- noshot/data/ML TS XAI/NLP/NLP 5/4.Hinddle and Rooth.ipynb +0 -128
- noshot/data/ML TS XAI/NLP/NLP 5/5.Forward and Backward.ipynb +0 -149
- noshot/data/ML TS XAI/NLP/NLP 5/6.Viterbi.ipynb +0 -111
- noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG Parse Tree.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG using cyk.ipynb +0 -101
- noshot/data/ML TS XAI/NLP/NLP 5/8.Bag of words and TF-IDF.ipynb +0 -310
- noshot/data/ML TS XAI/NLP/NLP 5/9.Word2Vector.ipynb +0 -78
- noshot/data/ML TS XAI/NLP/NLP 5/NLP ALL In One.ipynb +0 -2619
- noshot/data/ML TS XAI/NLP/NLP 5/sample1.txt +0 -15
- noshot/data/ML TS XAI/NLP/NLP 5/sample2.txt +0 -4
- noshot/data/ML TS XAI/NLP/NLP 5/word2vec_model.bin +0 -0
- noshot/data/ML TS XAI/NLP/NLP 6/1. Tokenize, Tagging, NER, Parse Tree.ipynb +0 -312
- noshot/data/ML TS XAI/NLP/NLP 6/2. T Test and Chi2 Test.ipynb +0 -185
- noshot/data/ML TS XAI/NLP/NLP 6/3. Naive Bayes WSD.ipynb +0 -199
- noshot/data/ML TS XAI/NLP/NLP 6/4. Hinddle and Rooth.ipynb +0 -151
- noshot/data/ML TS XAI/NLP/NLP 6/5 and 6 FWD, BWD, Viterbi.ipynb +0 -164
- noshot/data/ML TS XAI/NLP/NLP 6/7. PCFG using CYK.ipynb +0 -383
- noshot/data/ML TS XAI/NLP/NLP 6/8. BOW and TF-IDF.ipynb +0 -252
- noshot/data/ML TS XAI/Ubuntu CN Lab.iso +0 -0
- noshot-0.1.7.dist-info/RECORD +0 -216
- {noshot-0.1.7.dist-info → noshot-0.1.9.dist-info}/LICENSE.txt +0 -0
- {noshot-0.1.7.dist-info → noshot-0.1.9.dist-info}/WHEEL +0 -0
- {noshot-0.1.7.dist-info → noshot-0.1.9.dist-info}/top_level.txt +0 -0
@@ -1,812 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": 2,
|
6
|
-
"metadata": {
|
7
|
-
"_cell_guid": "b1076dfc-b9ad-4769-8c92-a6c4dae69d19",
|
8
|
-
"_uuid": "8f2839f25d086af736a60e9eeb907d3b93b6e0e5"
|
9
|
-
},
|
10
|
-
"outputs": [],
|
11
|
-
"source": [
|
12
|
-
"import tensorflow as tf\n",
|
13
|
-
"import numpy as np\n",
|
14
|
-
"import pandas as pd"
|
15
|
-
]
|
16
|
-
},
|
17
|
-
{
|
18
|
-
"cell_type": "code",
|
19
|
-
"execution_count": 3,
|
20
|
-
"metadata": {},
|
21
|
-
"outputs": [
|
22
|
-
{
|
23
|
-
"data": {
|
24
|
-
"text/plain": [
|
25
|
-
"<bound method NDFrame.head of english \\\n",
|
26
|
-
"0 Go. \n",
|
27
|
-
"1 Go. \n",
|
28
|
-
"2 Go. \n",
|
29
|
-
"3 Go. \n",
|
30
|
-
"4 Hi. \n",
|
31
|
-
"... ... \n",
|
32
|
-
"118959 There are four main causes of alcohol-related ... \n",
|
33
|
-
"118960 There are mothers and fathers who will lie awa... \n",
|
34
|
-
"118961 A carbon footprint is the amount of carbon dio... \n",
|
35
|
-
"118962 Since there are usually multiple websites on a... \n",
|
36
|
-
"118963 If you want to sound like a native speaker, yo... \n",
|
37
|
-
"\n",
|
38
|
-
" spanish \n",
|
39
|
-
"0 Ve. \n",
|
40
|
-
"1 Vete. \n",
|
41
|
-
"2 Vaya. \n",
|
42
|
-
"3 Váyase. \n",
|
43
|
-
"4 Hola. \n",
|
44
|
-
"... ... \n",
|
45
|
-
"118959 Hay cuatro causas principales de muertes relac... \n",
|
46
|
-
"118960 Hay madres y padres que se quedan despiertos d... \n",
|
47
|
-
"118961 Una huella de carbono es la cantidad de contam... \n",
|
48
|
-
"118962 Como suele haber varias páginas web sobre cual... \n",
|
49
|
-
"118963 Si quieres sonar como un hablante nativo, debe... \n",
|
50
|
-
"\n",
|
51
|
-
"[118964 rows x 2 columns]>"
|
52
|
-
]
|
53
|
-
},
|
54
|
-
"execution_count": 3,
|
55
|
-
"metadata": {},
|
56
|
-
"output_type": "execute_result"
|
57
|
-
}
|
58
|
-
],
|
59
|
-
"source": [
|
60
|
-
"df = pd.read_csv('data.csv')\n",
|
61
|
-
"df.head"
|
62
|
-
]
|
63
|
-
},
|
64
|
-
{
|
65
|
-
"cell_type": "code",
|
66
|
-
"execution_count": 4,
|
67
|
-
"metadata": {},
|
68
|
-
"outputs": [
|
69
|
-
{
|
70
|
-
"data": {
|
71
|
-
"text/plain": [
|
72
|
-
"Index(['english', 'spanish'], dtype='object')"
|
73
|
-
]
|
74
|
-
},
|
75
|
-
"execution_count": 4,
|
76
|
-
"metadata": {},
|
77
|
-
"output_type": "execute_result"
|
78
|
-
}
|
79
|
-
],
|
80
|
-
"source": [
|
81
|
-
"df.columns"
|
82
|
-
]
|
83
|
-
},
|
84
|
-
{
|
85
|
-
"cell_type": "code",
|
86
|
-
"execution_count": 5,
|
87
|
-
"metadata": {},
|
88
|
-
"outputs": [],
|
89
|
-
"source": [
|
90
|
-
"source_vocab = set(' '.join(df['english'][25:125]))\n",
|
91
|
-
"target_vocab = set(' '.join(df['spanish'][25:125]))\n",
|
92
|
-
"source_vocab_size = len(source_vocab)\n",
|
93
|
-
"target_vocab_size = len(target_vocab)"
|
94
|
-
]
|
95
|
-
},
|
96
|
-
{
|
97
|
-
"cell_type": "code",
|
98
|
-
"execution_count": 6,
|
99
|
-
"metadata": {},
|
100
|
-
"outputs": [
|
101
|
-
{
|
102
|
-
"name": "stdout",
|
103
|
-
"output_type": "stream",
|
104
|
-
"text": [
|
105
|
-
"{'D', 'l', '!', 'i', 'T', 'R', ' ', '1', 'S', \"'\", 'N', 'O', 'x', 'm', 'f', 'L', 'W', 'H', 'w', 'C', '?', 'o', 't', 'h', 'k', 'c', 'r', 'e', 'q', 'I', 'G', 'g', '9', 'b', 'p', 'a', 's', 'n', 'd', 'B', 'y', 'u', '.', 'A'}\n",
|
106
|
-
"{'í', 'Ó', 'P', 'D', 'l', 'i', '!', 'á', 'T', 'R', 'ú', 'S', 'M', 'N', 'O', 'm', 'ó', 'f', 'L', 'é', 'H', 'C', '?', 'o', ',', 't', 'h', 'E', 'Á', 'c', 'r', 'e', 'j', 'q', 'g', 'V', 'I', 'G', 'b', '¡', 'p', '.', 'a', 'z', 's', 'Y', 'É', 'v', '¿', 'n', 'd', 'B', 'U', 'y', 'u', ' ', 'A'}\n"
|
107
|
-
]
|
108
|
-
}
|
109
|
-
],
|
110
|
-
"source": [
|
111
|
-
"print(source_vocab)\n",
|
112
|
-
"print(target_vocab)"
|
113
|
-
]
|
114
|
-
},
|
115
|
-
{
|
116
|
-
"cell_type": "code",
|
117
|
-
"execution_count": 7,
|
118
|
-
"metadata": {},
|
119
|
-
"outputs": [],
|
120
|
-
"source": [
|
121
|
-
"source_char_to_int = {char: idx for idx, char in enumerate(source_vocab)}\n",
|
122
|
-
"target_char_to_int = {char: idx for idx, char in enumerate(target_vocab)}\n",
|
123
|
-
"source_int_to_char = {idx: char for char, idx in source_char_to_int.items()}\n",
|
124
|
-
"target_int_to_char = {idx: char for char, idx in target_char_to_int.items()}"
|
125
|
-
]
|
126
|
-
},
|
127
|
-
{
|
128
|
-
"cell_type": "code",
|
129
|
-
"execution_count": 8,
|
130
|
-
"metadata": {},
|
131
|
-
"outputs": [],
|
132
|
-
"source": [
|
133
|
-
"# Convert text sequences to integer sequences\n",
|
134
|
-
"source_sequences = [[source_char_to_int[char] for char in text] for text in df['english'][25:125]]\n",
|
135
|
-
"target_sequences = [[target_char_to_int[char] for char in text] for text in df['spanish'][25:125]]"
|
136
|
-
]
|
137
|
-
},
|
138
|
-
{
|
139
|
-
"cell_type": "code",
|
140
|
-
"execution_count": 9,
|
141
|
-
"metadata": {},
|
142
|
-
"outputs": [],
|
143
|
-
"source": [
|
144
|
-
"# Pad sequences to the same length\n",
|
145
|
-
"max_sequence_length = max(len(seq) for seq in source_sequences)\n",
|
146
|
-
"source_sequences = tf.keras.preprocessing.sequence.pad_sequences(source_sequences, maxlen=max_sequence_length, padding='post')\n",
|
147
|
-
"target_sequences = tf.keras.preprocessing.sequence.pad_sequences(target_sequences, maxlen=max_sequence_length, padding='post')"
|
148
|
-
]
|
149
|
-
},
|
150
|
-
{
|
151
|
-
"cell_type": "code",
|
152
|
-
"execution_count": 10,
|
153
|
-
"metadata": {},
|
154
|
-
"outputs": [
|
155
|
-
{
|
156
|
-
"name": "stderr",
|
157
|
-
"output_type": "stream",
|
158
|
-
"text": [
|
159
|
-
"C:\\Users\\admin\\anaconda3\\Lib\\site-packages\\keras\\src\\layers\\core\\embedding.py:90: UserWarning: Argument `input_length` is deprecated. Just remove it.\n",
|
160
|
-
" warnings.warn(\n"
|
161
|
-
]
|
162
|
-
}
|
163
|
-
],
|
164
|
-
"source": [
|
165
|
-
"# Build the model\n",
|
166
|
-
"input_shape = (max_sequence_length, source_vocab_size)\n",
|
167
|
-
"output_shape = (max_sequence_length, target_vocab_size)\n",
|
168
|
-
"\n",
|
169
|
-
"model = tf.keras.models.Sequential([\n",
|
170
|
-
" # Embedding layer with a larger dimension for richer word representations\n",
|
171
|
-
" tf.keras.layers.Embedding(source_vocab_size, 512, input_length=max_sequence_length),\n",
|
172
|
-
"\n",
|
173
|
-
" # First Bidirectional RNN layer with dropout and L2 regularization\n",
|
174
|
-
" tf.keras.layers.Bidirectional(tf.keras.layers.SimpleRNN(512, return_sequences=True, \n",
|
175
|
-
" kernel_regularizer=tf.keras.regularizers.l2(0.001))),\n",
|
176
|
-
" tf.keras.layers.Dropout(0.4),\n",
|
177
|
-
"\n",
|
178
|
-
" # Second RNN layer with higher units and dropout\n",
|
179
|
-
" tf.keras.layers.SimpleRNN(512, return_sequences=True),\n",
|
180
|
-
" tf.keras.layers.Dropout(0.4),\n",
|
181
|
-
"\n",
|
182
|
-
" # Third RNN layer for more complex patterns\n",
|
183
|
-
" tf.keras.layers.SimpleRNN(256, return_sequences=True),\n",
|
184
|
-
" tf.keras.layers.Dropout(0.3),\n",
|
185
|
-
"\n",
|
186
|
-
" # Dense layer for more feature learning\n",
|
187
|
-
" tf.keras.layers.Dense(512, activation='relu'),\n",
|
188
|
-
"\n",
|
189
|
-
" # Output layer to map to the target vocabulary\n",
|
190
|
-
" tf.keras.layers.Dense(target_vocab_size, activation='softmax')\n",
|
191
|
-
"])\n",
|
192
|
-
"\n",
|
193
|
-
"model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])"
|
194
|
-
]
|
195
|
-
},
|
196
|
-
{
|
197
|
-
"cell_type": "code",
|
198
|
-
"execution_count": 11,
|
199
|
-
"metadata": {},
|
200
|
-
"outputs": [],
|
201
|
-
"source": [
|
202
|
-
"# One-hot encode the target sequences\n",
|
203
|
-
"target_sequences_one_hot = np.array([tf.keras.utils.to_categorical(seq, num_classes=target_vocab_size) for seq in target_sequences])"
|
204
|
-
]
|
205
|
-
},
|
206
|
-
{
|
207
|
-
"cell_type": "code",
|
208
|
-
"execution_count": 12,
|
209
|
-
"metadata": {},
|
210
|
-
"outputs": [
|
211
|
-
{
|
212
|
-
"name": "stdout",
|
213
|
-
"output_type": "stream",
|
214
|
-
"text": [
|
215
|
-
"Epoch 1/250\n",
|
216
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 71ms/step - accuracy: 0.0469 - loss: 5.0094\n",
|
217
|
-
"Epoch 2/250\n",
|
218
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - accuracy: 0.1789 - loss: 4.3173\n",
|
219
|
-
"Epoch 3/250\n",
|
220
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.1964 - loss: 3.9905\n",
|
221
|
-
"Epoch 4/250\n",
|
222
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - accuracy: 0.2272 - loss: 3.8061\n",
|
223
|
-
"Epoch 5/250\n",
|
224
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - accuracy: 0.2491 - loss: 3.6146\n",
|
225
|
-
"Epoch 6/250\n",
|
226
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.2903 - loss: 3.4823\n",
|
227
|
-
"Epoch 7/250\n",
|
228
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.3142 - loss: 3.3077\n",
|
229
|
-
"Epoch 8/250\n",
|
230
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.3746 - loss: 3.1610\n",
|
231
|
-
"Epoch 9/250\n",
|
232
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - accuracy: 0.4041 - loss: 3.0410\n",
|
233
|
-
"Epoch 10/250\n",
|
234
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - accuracy: 0.4159 - loss: 2.9495\n",
|
235
|
-
"Epoch 11/250\n",
|
236
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - accuracy: 0.4367 - loss: 2.8008\n",
|
237
|
-
"Epoch 12/250\n",
|
238
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - accuracy: 0.4671 - loss: 2.7200\n",
|
239
|
-
"Epoch 13/250\n",
|
240
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.4879 - loss: 2.5894\n",
|
241
|
-
"Epoch 14/250\n",
|
242
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - accuracy: 0.4859 - loss: 2.5800\n",
|
243
|
-
"Epoch 15/250\n",
|
244
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.5225 - loss: 2.4418\n",
|
245
|
-
"Epoch 16/250\n",
|
246
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.5418 - loss: 2.3120\n",
|
247
|
-
"Epoch 17/250\n",
|
248
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.5356 - loss: 2.2551\n",
|
249
|
-
"Epoch 18/250\n",
|
250
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - accuracy: 0.5543 - loss: 2.1336\n",
|
251
|
-
"Epoch 19/250\n",
|
252
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.5896 - loss: 2.0694\n",
|
253
|
-
"Epoch 20/250\n",
|
254
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.5913 - loss: 2.0148\n",
|
255
|
-
"Epoch 21/250\n",
|
256
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.6096 - loss: 1.9789\n",
|
257
|
-
"Epoch 22/250\n",
|
258
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - accuracy: 0.5712 - loss: 1.9375\n",
|
259
|
-
"Epoch 23/250\n",
|
260
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.6285 - loss: 1.8438\n",
|
261
|
-
"Epoch 24/250\n",
|
262
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.6296 - loss: 1.8180\n",
|
263
|
-
"Epoch 25/250\n",
|
264
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - accuracy: 0.6573 - loss: 1.7583\n",
|
265
|
-
"Epoch 26/250\n",
|
266
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - accuracy: 0.6284 - loss: 1.7271\n",
|
267
|
-
"Epoch 27/250\n",
|
268
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.6527 - loss: 1.7116\n",
|
269
|
-
"Epoch 28/250\n",
|
270
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - accuracy: 0.6587 - loss: 1.6766\n",
|
271
|
-
"Epoch 29/250\n",
|
272
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - accuracy: 0.6805 - loss: 1.5802\n",
|
273
|
-
"Epoch 30/250\n",
|
274
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.6450 - loss: 1.6031\n",
|
275
|
-
"Epoch 31/250\n",
|
276
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.6720 - loss: 1.5405\n",
|
277
|
-
"Epoch 32/250\n",
|
278
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - accuracy: 0.6978 - loss: 1.4849\n",
|
279
|
-
"Epoch 33/250\n",
|
280
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.6767 - loss: 1.4990\n",
|
281
|
-
"Epoch 34/250\n",
|
282
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - accuracy: 0.6608 - loss: 1.5080\n",
|
283
|
-
"Epoch 35/250\n",
|
284
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - accuracy: 0.6814 - loss: 1.4810\n",
|
285
|
-
"Epoch 36/250\n",
|
286
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - accuracy: 0.6651 - loss: 1.4499\n",
|
287
|
-
"Epoch 37/250\n",
|
288
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.6803 - loss: 1.4430\n",
|
289
|
-
"Epoch 38/250\n",
|
290
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - accuracy: 0.7019 - loss: 1.3365\n",
|
291
|
-
"Epoch 39/250\n",
|
292
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7140 - loss: 1.3342\n",
|
293
|
-
"Epoch 40/250\n",
|
294
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - accuracy: 0.7069 - loss: 1.3088\n",
|
295
|
-
"Epoch 41/250\n",
|
296
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.6782 - loss: 1.3735\n",
|
297
|
-
"Epoch 42/250\n",
|
298
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.6910 - loss: 1.3540\n",
|
299
|
-
"Epoch 43/250\n",
|
300
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - accuracy: 0.6762 - loss: 1.3503\n",
|
301
|
-
"Epoch 44/250\n",
|
302
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7110 - loss: 1.2652\n",
|
303
|
-
"Epoch 45/250\n",
|
304
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - accuracy: 0.6811 - loss: 1.3062\n",
|
305
|
-
"Epoch 46/250\n",
|
306
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - accuracy: 0.6901 - loss: 1.2799\n",
|
307
|
-
"Epoch 47/250\n",
|
308
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - accuracy: 0.7170 - loss: 1.2039\n",
|
309
|
-
"Epoch 48/250\n",
|
310
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7110 - loss: 1.1952\n",
|
311
|
-
"Epoch 49/250\n",
|
312
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - accuracy: 0.7179 - loss: 1.2088\n",
|
313
|
-
"Epoch 50/250\n",
|
314
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - accuracy: 0.7077 - loss: 1.2141\n",
|
315
|
-
"Epoch 51/250\n",
|
316
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - accuracy: 0.6844 - loss: 1.2419\n",
|
317
|
-
"Epoch 52/250\n",
|
318
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7056 - loss: 1.1939\n",
|
319
|
-
"Epoch 53/250\n",
|
320
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.6985 - loss: 1.1932\n",
|
321
|
-
"Epoch 54/250\n",
|
322
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.6967 - loss: 1.1998\n",
|
323
|
-
"Epoch 55/250\n",
|
324
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7131 - loss: 1.1645\n",
|
325
|
-
"Epoch 56/250\n",
|
326
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - accuracy: 0.7149 - loss: 1.1319\n",
|
327
|
-
"Epoch 57/250\n",
|
328
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.6939 - loss: 1.1574\n",
|
329
|
-
"Epoch 58/250\n",
|
330
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - accuracy: 0.7075 - loss: 1.0820\n",
|
331
|
-
"Epoch 59/250\n",
|
332
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - accuracy: 0.6948 - loss: 1.0926\n",
|
333
|
-
"Epoch 60/250\n",
|
334
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.6801 - loss: 1.1672\n",
|
335
|
-
"Epoch 61/250\n",
|
336
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7013 - loss: 1.1042\n",
|
337
|
-
"Epoch 62/250\n",
|
338
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - accuracy: 0.6882 - loss: 1.1024\n",
|
339
|
-
"Epoch 63/250\n",
|
340
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - accuracy: 0.6714 - loss: 1.1662\n",
|
341
|
-
"Epoch 64/250\n",
|
342
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - accuracy: 0.7102 - loss: 1.0505\n",
|
343
|
-
"Epoch 65/250\n",
|
344
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - accuracy: 0.6932 - loss: 1.0917\n",
|
345
|
-
"Epoch 66/250\n",
|
346
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.6930 - loss: 1.0961\n",
|
347
|
-
"Epoch 67/250\n",
|
348
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.6762 - loss: 1.0959\n",
|
349
|
-
"Epoch 68/250\n",
|
350
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.6805 - loss: 1.0695\n",
|
351
|
-
"Epoch 69/250\n",
|
352
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.6928 - loss: 1.0430\n",
|
353
|
-
"Epoch 70/250\n",
|
354
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.7095 - loss: 1.0231\n",
|
355
|
-
"Epoch 71/250\n",
|
356
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - accuracy: 0.6972 - loss: 1.0283\n",
|
357
|
-
"Epoch 72/250\n",
|
358
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.6972 - loss: 1.0058\n",
|
359
|
-
"Epoch 73/250\n",
|
360
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7082 - loss: 0.9949\n",
|
361
|
-
"Epoch 74/250\n",
|
362
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - accuracy: 0.7156 - loss: 0.9844\n",
|
363
|
-
"Epoch 75/250\n",
|
364
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - accuracy: 0.6966 - loss: 1.0007\n",
|
365
|
-
"Epoch 76/250\n",
|
366
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7032 - loss: 0.9693\n",
|
367
|
-
"Epoch 77/250\n",
|
368
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.6773 - loss: 1.0381\n",
|
369
|
-
"Epoch 78/250\n",
|
370
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - accuracy: 0.7082 - loss: 0.9865\n",
|
371
|
-
"Epoch 79/250\n",
|
372
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - accuracy: 0.7095 - loss: 0.9825\n",
|
373
|
-
"Epoch 80/250\n",
|
374
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - accuracy: 0.7303 - loss: 0.9108\n",
|
375
|
-
"Epoch 81/250\n",
|
376
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - accuracy: 0.7030 - loss: 0.9647\n",
|
377
|
-
"Epoch 82/250\n",
|
378
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7107 - loss: 0.9578\n",
|
379
|
-
"Epoch 83/250\n",
|
380
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - accuracy: 0.6949 - loss: 0.9572\n",
|
381
|
-
"Epoch 84/250\n",
|
382
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - accuracy: 0.6967 - loss: 0.9605\n",
|
383
|
-
"Epoch 85/250\n",
|
384
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - accuracy: 0.7025 - loss: 0.9509\n",
|
385
|
-
"Epoch 86/250\n",
|
386
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - accuracy: 0.7032 - loss: 0.9204\n",
|
387
|
-
"Epoch 87/250\n",
|
388
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - accuracy: 0.7099 - loss: 0.9160\n",
|
389
|
-
"Epoch 88/250\n",
|
390
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7095 - loss: 0.9172\n",
|
391
|
-
"Epoch 89/250\n",
|
392
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - accuracy: 0.6987 - loss: 0.9775\n",
|
393
|
-
"Epoch 90/250\n",
|
394
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - accuracy: 0.7185 - loss: 0.9092\n",
|
395
|
-
"Epoch 91/250\n",
|
396
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7063 - loss: 0.9117\n",
|
397
|
-
"Epoch 92/250\n",
|
398
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.6998 - loss: 0.9473\n",
|
399
|
-
"Epoch 93/250\n",
|
400
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.6910 - loss: 0.9017\n",
|
401
|
-
"Epoch 94/250\n",
|
402
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - accuracy: 0.7398 - loss: 0.8536\n",
|
403
|
-
"Epoch 95/250\n",
|
404
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7068 - loss: 0.9299\n",
|
405
|
-
"Epoch 96/250\n",
|
406
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - accuracy: 0.7025 - loss: 0.9036\n",
|
407
|
-
"Epoch 97/250\n",
|
408
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - accuracy: 0.6972 - loss: 0.9214\n",
|
409
|
-
"Epoch 98/250\n",
|
410
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - accuracy: 0.7053 - loss: 0.8680\n",
|
411
|
-
"Epoch 99/250\n",
|
412
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.7164 - loss: 0.8557\n",
|
413
|
-
"Epoch 100/250\n",
|
414
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - accuracy: 0.7014 - loss: 0.8846\n",
|
415
|
-
"Epoch 101/250\n",
|
416
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7046 - loss: 0.8894\n",
|
417
|
-
"Epoch 102/250\n",
|
418
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - accuracy: 0.7123 - loss: 0.8689\n",
|
419
|
-
"Epoch 103/250\n",
|
420
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.6986 - loss: 0.8810\n",
|
421
|
-
"Epoch 104/250\n",
|
422
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - accuracy: 0.6938 - loss: 0.8737\n",
|
423
|
-
"Epoch 105/250\n",
|
424
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.6915 - loss: 0.8508\n",
|
425
|
-
"Epoch 106/250\n",
|
426
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - accuracy: 0.7203 - loss: 0.8258\n",
|
427
|
-
"Epoch 107/250\n",
|
428
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7207 - loss: 0.8352\n",
|
429
|
-
"Epoch 108/250\n",
|
430
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7083 - loss: 0.8332\n",
|
431
|
-
"Epoch 109/250\n",
|
432
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - accuracy: 0.7278 - loss: 0.8168\n",
|
433
|
-
"Epoch 110/250\n",
|
434
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - accuracy: 0.7165 - loss: 0.8164\n",
|
435
|
-
"Epoch 111/250\n",
|
436
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7122 - loss: 0.8652\n",
|
437
|
-
"Epoch 112/250\n",
|
438
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.6895 - loss: 0.8835\n",
|
439
|
-
"Epoch 113/250\n",
|
440
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - accuracy: 0.7261 - loss: 0.8021\n",
|
441
|
-
"Epoch 114/250\n",
|
442
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.7056 - loss: 0.8174\n",
|
443
|
-
"Epoch 115/250\n",
|
444
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.6997 - loss: 0.8336\n",
|
445
|
-
"Epoch 116/250\n",
|
446
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.7184 - loss: 0.8023\n",
|
447
|
-
"Epoch 117/250\n",
|
448
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - accuracy: 0.7161 - loss: 0.8175\n",
|
449
|
-
"Epoch 118/250\n",
|
450
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - accuracy: 0.7253 - loss: 0.7816\n",
|
451
|
-
"Epoch 119/250\n",
|
452
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.6828 - loss: 0.8650\n",
|
453
|
-
"Epoch 120/250\n",
|
454
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7056 - loss: 0.8384\n",
|
455
|
-
"Epoch 121/250\n",
|
456
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7084 - loss: 0.7960\n",
|
457
|
-
"Epoch 122/250\n",
|
458
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - accuracy: 0.7124 - loss: 0.8036\n",
|
459
|
-
"Epoch 123/250\n",
|
460
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - accuracy: 0.7189 - loss: 0.7993\n",
|
461
|
-
"Epoch 124/250\n",
|
462
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - accuracy: 0.7062 - loss: 0.8314\n",
|
463
|
-
"Epoch 125/250\n",
|
464
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - accuracy: 0.6996 - loss: 0.7915\n",
|
465
|
-
"Epoch 126/250\n",
|
466
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - accuracy: 0.7194 - loss: 0.7718\n",
|
467
|
-
"Epoch 127/250\n",
|
468
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - accuracy: 0.7217 - loss: 0.8078\n",
|
469
|
-
"Epoch 128/250\n",
|
470
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - accuracy: 0.7015 - loss: 0.7943\n",
|
471
|
-
"Epoch 129/250\n",
|
472
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - accuracy: 0.6963 - loss: 0.8000\n",
|
473
|
-
"Epoch 130/250\n",
|
474
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - accuracy: 0.7237 - loss: 0.7684\n",
|
475
|
-
"Epoch 131/250\n",
|
476
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - accuracy: 0.6916 - loss: 0.8156\n",
|
477
|
-
"Epoch 132/250\n",
|
478
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - accuracy: 0.7013 - loss: 0.8051\n",
|
479
|
-
"Epoch 133/250\n",
|
480
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.7207 - loss: 0.7508\n",
|
481
|
-
"Epoch 134/250\n",
|
482
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.7125 - loss: 0.7844\n",
|
483
|
-
"Epoch 135/250\n",
|
484
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - accuracy: 0.6992 - loss: 0.7764\n",
|
485
|
-
"Epoch 136/250\n",
|
486
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.6766 - loss: 0.8248\n",
|
487
|
-
"Epoch 137/250\n",
|
488
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.7377 - loss: 0.7253\n",
|
489
|
-
"Epoch 138/250\n",
|
490
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.7202 - loss: 0.7765\n",
|
491
|
-
"Epoch 139/250\n",
|
492
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - accuracy: 0.6969 - loss: 0.8062\n",
|
493
|
-
"Epoch 140/250\n",
|
494
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7089 - loss: 0.7659\n",
|
495
|
-
"Epoch 141/250\n",
|
496
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - accuracy: 0.6987 - loss: 0.7767\n",
|
497
|
-
"Epoch 142/250\n",
|
498
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7363 - loss: 0.7345\n",
|
499
|
-
"Epoch 143/250\n",
|
500
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7223 - loss: 0.7375\n",
|
501
|
-
"Epoch 144/250\n",
|
502
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.6950 - loss: 0.7602\n",
|
503
|
-
"Epoch 145/250\n",
|
504
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7111 - loss: 0.7698\n",
|
505
|
-
"Epoch 146/250\n",
|
506
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7176 - loss: 0.7524\n",
|
507
|
-
"Epoch 147/250\n",
|
508
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - accuracy: 0.6982 - loss: 0.7580\n",
|
509
|
-
"Epoch 148/250\n",
|
510
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - accuracy: 0.7007 - loss: 0.7757\n",
|
511
|
-
"Epoch 149/250\n",
|
512
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7129 - loss: 0.7407\n",
|
513
|
-
"Epoch 150/250\n",
|
514
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7118 - loss: 0.7391\n",
|
515
|
-
"Epoch 151/250\n",
|
516
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7184 - loss: 0.6951\n",
|
517
|
-
"Epoch 152/250\n",
|
518
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - accuracy: 0.7104 - loss: 0.7682\n",
|
519
|
-
"Epoch 153/250\n",
|
520
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.7237 - loss: 0.7424\n",
|
521
|
-
"Epoch 154/250\n",
|
522
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - accuracy: 0.6918 - loss: 0.7640\n",
|
523
|
-
"Epoch 155/250\n",
|
524
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.7102 - loss: 0.7112\n",
|
525
|
-
"Epoch 156/250\n",
|
526
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.7121 - loss: 0.7294\n",
|
527
|
-
"Epoch 157/250\n",
|
528
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7085 - loss: 0.7319\n",
|
529
|
-
"Epoch 158/250\n",
|
530
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - accuracy: 0.7228 - loss: 0.7366\n",
|
531
|
-
"Epoch 159/250\n",
|
532
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.7082 - loss: 0.7567\n",
|
533
|
-
"Epoch 160/250\n",
|
534
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - accuracy: 0.7194 - loss: 0.6838\n",
|
535
|
-
"Epoch 161/250\n",
|
536
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - accuracy: 0.7063 - loss: 0.7440\n",
|
537
|
-
"Epoch 162/250\n",
|
538
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - accuracy: 0.7267 - loss: 0.6932\n",
|
539
|
-
"Epoch 163/250\n",
|
540
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7187 - loss: 0.7194\n",
|
541
|
-
"Epoch 164/250\n",
|
542
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7064 - loss: 0.7308\n",
|
543
|
-
"Epoch 165/250\n",
|
544
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7199 - loss: 0.7241\n",
|
545
|
-
"Epoch 166/250\n",
|
546
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - accuracy: 0.7175 - loss: 0.7132\n",
|
547
|
-
"Epoch 167/250\n",
|
548
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7155 - loss: 0.7299\n",
|
549
|
-
"Epoch 168/250\n",
|
550
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7297 - loss: 0.6930\n",
|
551
|
-
"Epoch 169/250\n",
|
552
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7014 - loss: 0.7337\n",
|
553
|
-
"Epoch 170/250\n",
|
554
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - accuracy: 0.7141 - loss: 0.7036\n",
|
555
|
-
"Epoch 171/250\n",
|
556
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7078 - loss: 0.7253\n",
|
557
|
-
"Epoch 172/250\n",
|
558
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - accuracy: 0.6880 - loss: 0.7681\n",
|
559
|
-
"Epoch 173/250\n",
|
560
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - accuracy: 0.7173 - loss: 0.7185\n",
|
561
|
-
"Epoch 174/250\n",
|
562
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.7224 - loss: 0.7112\n",
|
563
|
-
"Epoch 175/250\n",
|
564
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - accuracy: 0.7084 - loss: 0.7109\n",
|
565
|
-
"Epoch 176/250\n",
|
566
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - accuracy: 0.7022 - loss: 0.7254\n",
|
567
|
-
"Epoch 177/250\n",
|
568
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - accuracy: 0.6854 - loss: 0.7694\n",
|
569
|
-
"Epoch 178/250\n",
|
570
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - accuracy: 0.7112 - loss: 0.7081\n",
|
571
|
-
"Epoch 179/250\n",
|
572
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7232 - loss: 0.6849\n",
|
573
|
-
"Epoch 180/250\n",
|
574
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - accuracy: 0.6997 - loss: 0.7505\n",
|
575
|
-
"Epoch 181/250\n",
|
576
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7084 - loss: 0.7166\n",
|
577
|
-
"Epoch 182/250\n",
|
578
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7225 - loss: 0.6921\n",
|
579
|
-
"Epoch 183/250\n",
|
580
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - accuracy: 0.7095 - loss: 0.6944\n",
|
581
|
-
"Epoch 184/250\n",
|
582
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7036 - loss: 0.7312\n",
|
583
|
-
"Epoch 185/250\n",
|
584
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.6912 - loss: 0.7536\n",
|
585
|
-
"Epoch 186/250\n",
|
586
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7251 - loss: 0.7046\n",
|
587
|
-
"Epoch 187/250\n",
|
588
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7212 - loss: 0.6860\n",
|
589
|
-
"Epoch 188/250\n",
|
590
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - accuracy: 0.7216 - loss: 0.6742\n",
|
591
|
-
"Epoch 189/250\n",
|
592
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7156 - loss: 0.6731\n",
|
593
|
-
"Epoch 190/250\n",
|
594
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7114 - loss: 0.6867\n",
|
595
|
-
"Epoch 191/250\n",
|
596
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - accuracy: 0.7149 - loss: 0.7064\n",
|
597
|
-
"Epoch 192/250\n",
|
598
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7248 - loss: 0.6954\n",
|
599
|
-
"Epoch 193/250\n",
|
600
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.7172 - loss: 0.6974\n",
|
601
|
-
"Epoch 194/250\n",
|
602
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - accuracy: 0.7132 - loss: 0.7002\n",
|
603
|
-
"Epoch 195/250\n",
|
604
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.7258 - loss: 0.6998\n",
|
605
|
-
"Epoch 196/250\n",
|
606
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - accuracy: 0.7066 - loss: 0.6914\n",
|
607
|
-
"Epoch 197/250\n",
|
608
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - accuracy: 0.7196 - loss: 0.6842\n",
|
609
|
-
"Epoch 198/250\n",
|
610
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - accuracy: 0.7163 - loss: 0.7118\n",
|
611
|
-
"Epoch 199/250\n",
|
612
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.7163 - loss: 0.6843\n",
|
613
|
-
"Epoch 200/250\n",
|
614
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - accuracy: 0.7078 - loss: 0.7040\n",
|
615
|
-
"Epoch 201/250\n",
|
616
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - accuracy: 0.7055 - loss: 0.7191\n",
|
617
|
-
"Epoch 202/250\n",
|
618
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - accuracy: 0.7086 - loss: 0.6866\n",
|
619
|
-
"Epoch 203/250\n",
|
620
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - accuracy: 0.6877 - loss: 0.7436\n",
|
621
|
-
"Epoch 204/250\n",
|
622
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.6861 - loss: 0.7375\n",
|
623
|
-
"Epoch 205/250\n",
|
624
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.7195 - loss: 0.6821\n",
|
625
|
-
"Epoch 206/250\n",
|
626
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - accuracy: 0.7107 - loss: 0.6883\n",
|
627
|
-
"Epoch 207/250\n",
|
628
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - accuracy: 0.7318 - loss: 0.6618\n",
|
629
|
-
"Epoch 208/250\n",
|
630
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - accuracy: 0.7063 - loss: 0.7098\n",
|
631
|
-
"Epoch 209/250\n",
|
632
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - accuracy: 0.7051 - loss: 0.6967\n",
|
633
|
-
"Epoch 210/250\n",
|
634
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - accuracy: 0.7203 - loss: 0.6881\n",
|
635
|
-
"Epoch 211/250\n",
|
636
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - accuracy: 0.6976 - loss: 0.7021\n",
|
637
|
-
"Epoch 212/250\n",
|
638
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - accuracy: 0.7116 - loss: 0.7052\n",
|
639
|
-
"Epoch 213/250\n",
|
640
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - accuracy: 0.7133 - loss: 0.6944\n",
|
641
|
-
"Epoch 214/250\n",
|
642
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7120 - loss: 0.6692\n",
|
643
|
-
"Epoch 215/250\n",
|
644
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.7176 - loss: 0.7183\n",
|
645
|
-
"Epoch 216/250\n",
|
646
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - accuracy: 0.7284 - loss: 0.6668\n",
|
647
|
-
"Epoch 217/250\n",
|
648
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - accuracy: 0.7320 - loss: 0.6465\n",
|
649
|
-
"Epoch 218/250\n",
|
650
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7158 - loss: 0.6696\n",
|
651
|
-
"Epoch 219/250\n",
|
652
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - accuracy: 0.7253 - loss: 0.6764\n",
|
653
|
-
"Epoch 220/250\n",
|
654
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - accuracy: 0.7182 - loss: 0.6768\n",
|
655
|
-
"Epoch 221/250\n",
|
656
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - accuracy: 0.7019 - loss: 0.6739\n",
|
657
|
-
"Epoch 222/250\n",
|
658
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7258 - loss: 0.6412\n",
|
659
|
-
"Epoch 223/250\n",
|
660
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7027 - loss: 0.6942\n",
|
661
|
-
"Epoch 224/250\n",
|
662
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.7150 - loss: 0.6828\n",
|
663
|
-
"Epoch 225/250\n",
|
664
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7258 - loss: 0.6568\n",
|
665
|
-
"Epoch 226/250\n",
|
666
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - accuracy: 0.7202 - loss: 0.6623\n",
|
667
|
-
"Epoch 227/250\n",
|
668
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - accuracy: 0.7045 - loss: 0.7053\n",
|
669
|
-
"Epoch 228/250\n",
|
670
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.7035 - loss: 0.6864\n",
|
671
|
-
"Epoch 229/250\n",
|
672
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - accuracy: 0.7190 - loss: 0.6696\n",
|
673
|
-
"Epoch 230/250\n",
|
674
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7024 - loss: 0.6931\n",
|
675
|
-
"Epoch 231/250\n",
|
676
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7167 - loss: 0.6678\n",
|
677
|
-
"Epoch 232/250\n",
|
678
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.7211 - loss: 0.6819\n",
|
679
|
-
"Epoch 233/250\n",
|
680
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7160 - loss: 0.6643\n",
|
681
|
-
"Epoch 234/250\n",
|
682
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.6970 - loss: 0.6933\n",
|
683
|
-
"Epoch 235/250\n",
|
684
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.6957 - loss: 0.6944\n",
|
685
|
-
"Epoch 236/250\n",
|
686
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.6934 - loss: 0.6889\n",
|
687
|
-
"Epoch 237/250\n",
|
688
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - accuracy: 0.7144 - loss: 0.6685\n",
|
689
|
-
"Epoch 238/250\n",
|
690
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7016 - loss: 0.6848\n",
|
691
|
-
"Epoch 239/250\n",
|
692
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - accuracy: 0.7084 - loss: 0.6814\n",
|
693
|
-
"Epoch 240/250\n",
|
694
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7161 - loss: 0.6736\n",
|
695
|
-
"Epoch 241/250\n",
|
696
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - accuracy: 0.7126 - loss: 0.6634\n",
|
697
|
-
"Epoch 242/250\n",
|
698
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.7096 - loss: 0.6962\n",
|
699
|
-
"Epoch 243/250\n",
|
700
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - accuracy: 0.7073 - loss: 0.6702\n",
|
701
|
-
"Epoch 244/250\n",
|
702
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7066 - loss: 0.6671\n",
|
703
|
-
"Epoch 245/250\n",
|
704
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - accuracy: 0.7233 - loss: 0.6335\n",
|
705
|
-
"Epoch 246/250\n",
|
706
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - accuracy: 0.6955 - loss: 0.6807\n",
|
707
|
-
"Epoch 247/250\n",
|
708
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7189 - loss: 0.6488\n",
|
709
|
-
"Epoch 248/250\n",
|
710
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7204 - loss: 0.6565\n",
|
711
|
-
"Epoch 249/250\n",
|
712
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - accuracy: 0.6995 - loss: 0.6934\n",
|
713
|
-
"Epoch 250/250\n",
|
714
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7142 - loss: 0.6912\n"
|
715
|
-
]
|
716
|
-
},
|
717
|
-
{
|
718
|
-
"data": {
|
719
|
-
"text/plain": [
|
720
|
-
"<keras.src.callbacks.history.History at 0x2506f420590>"
|
721
|
-
]
|
722
|
-
},
|
723
|
-
"execution_count": 12,
|
724
|
-
"metadata": {},
|
725
|
-
"output_type": "execute_result"
|
726
|
-
}
|
727
|
-
],
|
728
|
-
"source": [
|
729
|
-
"# Train the model\n",
|
730
|
-
"model.fit(source_sequences, target_sequences_one_hot,batch_size = 64, epochs=250)"
|
731
|
-
]
|
732
|
-
},
|
733
|
-
{
|
734
|
-
"cell_type": "code",
|
735
|
-
"execution_count": 32,
|
736
|
-
"metadata": {},
|
737
|
-
"outputs": [
|
738
|
-
{
|
739
|
-
"name": "stdin",
|
740
|
-
"output_type": "stream",
|
741
|
-
"text": [
|
742
|
-
"Enter String : Thanks!.\n"
|
743
|
-
]
|
744
|
-
},
|
745
|
-
{
|
746
|
-
"name": "stdout",
|
747
|
-
"output_type": "stream",
|
748
|
-
"text": [
|
749
|
-
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 21ms/step\n",
|
750
|
-
"Input Sequence: Thanks!.\n",
|
751
|
-
"Translated Sequence: Gracias!\n"
|
752
|
-
]
|
753
|
-
}
|
754
|
-
],
|
755
|
-
"source": [
|
756
|
-
"# Translate a new input sequence\n",
|
757
|
-
"x = input(\"Enter String : \")\n",
|
758
|
-
"input_sequence = x\n",
|
759
|
-
"input_sequence = [source_char_to_int[char] for char in input_sequence]\n",
|
760
|
-
"input_sequence = tf.keras.preprocessing.sequence.pad_sequences([input_sequence], maxlen=max_sequence_length, padding='post')\n",
|
761
|
-
"output_sequence = model.predict(input_sequence)[0]\n",
|
762
|
-
"# Decode the output sequence\n",
|
763
|
-
"output_sequence = [target_int_to_char[np.argmax(char)] for char in output_sequence]\n",
|
764
|
-
"print(\"Input Sequence:\",x)\n",
|
765
|
-
"print(\"Translated Sequence:\", ''.join(output_sequence))"
|
766
|
-
]
|
767
|
-
},
|
768
|
-
{
|
769
|
-
"cell_type": "code",
|
770
|
-
"execution_count": null,
|
771
|
-
"metadata": {},
|
772
|
-
"outputs": [],
|
773
|
-
"source": []
|
774
|
-
}
|
775
|
-
],
|
776
|
-
"metadata": {
|
777
|
-
"kaggle": {
|
778
|
-
"accelerator": "none",
|
779
|
-
"dataSources": [
|
780
|
-
{
|
781
|
-
"datasetId": 5923474,
|
782
|
-
"sourceId": 9689378,
|
783
|
-
"sourceType": "datasetVersion"
|
784
|
-
}
|
785
|
-
],
|
786
|
-
"dockerImageVersionId": 30786,
|
787
|
-
"isGpuEnabled": false,
|
788
|
-
"isInternetEnabled": true,
|
789
|
-
"language": "python",
|
790
|
-
"sourceType": "notebook"
|
791
|
-
},
|
792
|
-
"kernelspec": {
|
793
|
-
"display_name": "Python 3 (ipykernel)",
|
794
|
-
"language": "python",
|
795
|
-
"name": "python3"
|
796
|
-
},
|
797
|
-
"language_info": {
|
798
|
-
"codemirror_mode": {
|
799
|
-
"name": "ipython",
|
800
|
-
"version": 3
|
801
|
-
},
|
802
|
-
"file_extension": ".py",
|
803
|
-
"mimetype": "text/x-python",
|
804
|
-
"name": "python",
|
805
|
-
"nbconvert_exporter": "python",
|
806
|
-
"pygments_lexer": "ipython3",
|
807
|
-
"version": "3.11.7"
|
808
|
-
}
|
809
|
-
},
|
810
|
-
"nbformat": 4,
|
811
|
-
"nbformat_minor": 4
|
812
|
-
}
|