noshot 0.1.7__py3-none-any.whl → 0.1.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/ML TS XAI/ML/1. PCA - EDA/PCA-EDA.ipynb +207 -0
- noshot/data/ML TS XAI/ML/1. PCA - EDA/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/1. PCA - EDA/input.txt +625 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/KNN.ipynb +287 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/input.txt +625 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/LDA.ipynb +83 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/input.txt +625 -0
- noshot/data/ML TS XAI/ML/4. Linear Regression/Linear-Regression.ipynb +117 -0
- noshot/data/ML TS XAI/ML/4. Linear Regression/machine-data.csv +210 -0
- noshot/data/ML TS XAI/ML/5. Logistic Regression/Logistic-Regression.ipynb +137 -0
- noshot/data/ML TS XAI/ML/5. Logistic Regression/wine-dataset.csv +179 -0
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier/Bayesian.ipynb +129 -0
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier/wine-dataset.csv +179 -0
- noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/Handling TS Data.ipynb +784 -0
- noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/raw_sales.csv +29581 -0
- noshot/data/ML TS XAI/TS/2. Feature Engineering/Feature Engineering-.ipynb +1445 -0
- noshot/data/ML TS XAI/TS/3. Temporal Relationships/Exploring Temporal Relationships.ipynb +603 -0
- noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/Up-Down-Sampling.ipynb +721 -0
- noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/shampoo_sales.csv +37 -0
- noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/Stationarity-Trend-Seasonality.ipynb +392 -0
- noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-min-temperatures.csv +3651 -0
- noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-total-female-births.csv +366 -0
- noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/ACF-PACF.ipynb +175 -0
- noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/daily-min-temperatures.csv +3651 -0
- {noshot-0.1.7.dist-info → noshot-0.1.9.dist-info}/METADATA +2 -2
- noshot-0.1.9.dist-info/RECORD +35 -0
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(A) Breadth First Search.ipynb +0 -112
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(B) Depth First Search.ipynb +0 -111
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(C) Uniform Cost Search.ipynb +0 -134
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(D) Depth Limites Search.ipynb +0 -115
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(E) Iterative Deepening DFS.ipynb +0 -123
- noshot/data/ML TS XAI/AIDS/10. ANOVA/2_ANOVA.csv +0 -769
- noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA (Repeated Measure).ipynb +0 -126
- noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA.ipynb +0 -134
- noshot/data/ML TS XAI/AIDS/10. ANOVA/Sample 1 Way ANOVA Test.ipynb +0 -119
- noshot/data/ML TS XAI/AIDS/10. ANOVA/Two Way ANOVA.ipynb +0 -138
- noshot/data/ML TS XAI/AIDS/10. ANOVA/reaction_time.csv +0 -5
- noshot/data/ML TS XAI/AIDS/10. ANOVA/sample_data.csv +0 -16
- noshot/data/ML TS XAI/AIDS/10. ANOVA/sleep_deprivation.csv +0 -4
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/3_Linear.csv +0 -4802
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression LAB.ipynb +0 -113
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression New- sklearn.ipynb +0 -118
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression.ipynb +0 -148
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/house_rate.csv +0 -22
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression New- sklearn.ipynb +0 -128
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression.ipynb +0 -145
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/default.csv +0 -1001
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/hours_scores_records.csv +0 -101
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(A) Astar.ipynb +0 -256
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(B) IDAstar.ipynb +0 -157
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(C) SMAstar.ipynb +0 -178
- noshot/data/ML TS XAI/AIDS/3. Genetic Algorithm/Genetic.ipynb +0 -95
- noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Simulated Annealing.ipynb +0 -74
- noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Sudoku Simulated Annealing.ipynb +0 -103
- noshot/data/ML TS XAI/AIDS/5. Alpha Beta Pruning/AlphaBetaPruning.ipynb +0 -182
- noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(A) CSP House Allocation.ipynb +0 -120
- noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(B) CSP Map Coloring.ipynb +0 -125
- noshot/data/ML TS XAI/AIDS/7. Random Sampling/Random Sampling.ipynb +0 -73
- noshot/data/ML TS XAI/AIDS/7. Random Sampling/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test Hash Function.ipynb +0 -141
- noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test.ipynb +0 -151
- noshot/data/ML TS XAI/AIDS/8. Z Test/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/9. T Test/1_heart.csv +0 -304
- noshot/data/ML TS XAI/AIDS/9. T Test/Independent T Test.ipynb +0 -119
- noshot/data/ML TS XAI/AIDS/9. T Test/Paired T Test.ipynb +0 -118
- noshot/data/ML TS XAI/AIDS/9. T Test/T Test Hash Function.ipynb +0 -142
- noshot/data/ML TS XAI/AIDS/9. T Test/T Test.ipynb +0 -158
- noshot/data/ML TS XAI/AIDS/9. T Test/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/9. T Test/iq_test.csv +0 -0
- noshot/data/ML TS XAI/AIDS/Others (AllinOne)/All In One.ipynb +0 -4581
- noshot/data/ML TS XAI/CN/1. Chat Application/chat.java +0 -81
- noshot/data/ML TS XAI/CN/1. Chat Application/output.png +0 -0
- noshot/data/ML TS XAI/CN/1. Chat Application/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/LAN.tcl +0 -65
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/analysis.awk +0 -44
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/output.png +0 -0
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/complexdcf.tcl +0 -229
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/output.png +0 -0
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/2. File Transfer/file_to_send.txt +0 -2
- noshot/data/ML TS XAI/CN/2. File Transfer/filetransfer.java +0 -119
- noshot/data/ML TS XAI/CN/2. File Transfer/output.png +0 -0
- noshot/data/ML TS XAI/CN/2. File Transfer/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Client.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerImpl.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerIntf.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Server.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/output.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/rmi.java +0 -56
- noshot/data/ML TS XAI/CN/4. Wired Network/output.png +0 -0
- noshot/data/ML TS XAI/CN/4. Wired Network/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/4. Wired Network/wired.awk +0 -25
- noshot/data/ML TS XAI/CN/4. Wired Network/wired.tcl +0 -81
- noshot/data/ML TS XAI/CN/5. Wireless Network/output.png +0 -0
- noshot/data/ML TS XAI/CN/5. Wireless Network/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.awk +0 -27
- noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.tcl +0 -153
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/analysis.awk +0 -27
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/sack.tcl +0 -86
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/vegas.tcl +0 -86
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/analysis.awk +0 -28
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/reno.tcl +0 -78
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/tahoe.tcl +0 -79
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/analysis.awk +0 -27
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/flow.tcl +0 -163
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/DV.tcl +0 -111
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/LS.tcl +0 -106
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/analysis.awk +0 -36
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/output.png +0 -0
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/analysis.awk +0 -20
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/broadcast.tcl +0 -76
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/multicast.tcl +0 -103
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/output.png +0 -0
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/9. DHCP/DHCP.java +0 -125
- noshot/data/ML TS XAI/CN/9. DHCP/output.png +0 -0
- noshot/data/ML TS XAI/CN/9. DHCP/procedure.png +0 -0
- noshot/data/ML TS XAI/NLP/NLP 1/1-Prereqs.py +0 -18
- noshot/data/ML TS XAI/NLP/NLP 1/2-Chi2test.py +0 -83
- noshot/data/ML TS XAI/NLP/NLP 1/2-T-test.py +0 -79
- noshot/data/ML TS XAI/NLP/NLP 1/3-WSD-nb.py +0 -53
- noshot/data/ML TS XAI/NLP/NLP 1/4-Hindle-Rooth.py +0 -53
- noshot/data/ML TS XAI/NLP/NLP 1/5-HMM-Trellis.py +0 -82
- noshot/data/ML TS XAI/NLP/NLP 1/6-HMM-Viterbi.py +0 -16
- noshot/data/ML TS XAI/NLP/NLP 1/7-PCFG-parsetree.py +0 -15
- noshot/data/ML TS XAI/NLP/NLP 1/Chi2test.ipynb +0 -285
- noshot/data/ML TS XAI/NLP/NLP 1/Hindle-Rooth.ipynb +0 -179
- noshot/data/ML TS XAI/NLP/NLP 1/Lab 10 - Text generator using LSTM.ipynb +0 -1461
- noshot/data/ML TS XAI/NLP/NLP 1/Lab 11 NMT.ipynb +0 -2307
- noshot/data/ML TS XAI/NLP/NLP 1/PCFG.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 1/Prereqs.ipynb +0 -131
- noshot/data/ML TS XAI/NLP/NLP 1/T test.ipynb +0 -252
- noshot/data/ML TS XAI/NLP/NLP 1/TFIDF BOW.ipynb +0 -171
- noshot/data/ML TS XAI/NLP/NLP 1/Trellis.ipynb +0 -244
- noshot/data/ML TS XAI/NLP/NLP 1/WSD.ipynb +0 -645
- noshot/data/ML TS XAI/NLP/NLP 1/Word2Vec.ipynb +0 -93
- noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/tokenizer.ipynb +0 -370
- noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/training_tokenizer.txt +0 -6
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/exp0.ipynb +0 -274
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/lab2.ipynb +0 -905
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/test.txt +0 -1
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/tokenizing.ipynb +0 -272
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/collocation.ipynb +0 -332
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/lab3.ipynb +0 -549
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/nlp.txt +0 -1
- noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/Lab4-NLP-Exp-2.ipynb +0 -817
- noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/collocation.ipynb +0 -332
- noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/NLP-Lab-5-Exp3.ipynb +0 -231
- noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/word-sense-disambiguation.ipynb +0 -507
- noshot/data/ML TS XAI/NLP/NLP 2/Lab06(additional-exercise)/lab6.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP Exp 4.ipynb +0 -255
- noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP_Exp_5.ipynb +0 -159
- noshot/data/ML TS XAI/NLP/NLP 2/Lab08(PCFG)/PCFG.ipynb +0 -282
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/Lab 9 - MLP classifier.ipynb +0 -670
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/MLP-alternative-code.ipynb +0 -613
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/hindle-rooth-algorithm.ipynb +0 -74
- noshot/data/ML TS XAI/NLP/NLP 2/Lab10(LSTM)/Lab_10_Text_generator_using_LSTM.ipynb +0 -480
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Machine-translation.ipynb +0 -445
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Viterbi-PCFG.ipynb +0 -105
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/corpora_tools.py +0 -87
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/data_utils.py +0 -11
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/train_translator.py +0 -83
- noshot/data/ML TS XAI/NLP/NLP 2/Lab12(Information-Extraction)/Information_Extraction.ipynb +0 -201
- noshot/data/ML TS XAI/NLP/NLP 3/Backtrack-without-Verbitri.ipynb +0 -185
- noshot/data/ML TS XAI/NLP/NLP 3/Backward-Procedure.ipynb +0 -597
- noshot/data/ML TS XAI/NLP/NLP 3/Bag_of.ipynb +0 -1422
- noshot/data/ML TS XAI/NLP/NLP 3/CYK-algorithm.ipynb +0 -1067
- noshot/data/ML TS XAI/NLP/NLP 3/Forward-Procedure.ipynb +0 -477
- noshot/data/ML TS XAI/NLP/NLP 3/LSTM.ipynb +0 -1290
- noshot/data/ML TS XAI/NLP/NLP 3/Lab 10 - Text generator using LSTM.ipynb +0 -1461
- noshot/data/ML TS XAI/NLP/NLP 3/Lab 11 NMT.ipynb +0 -2307
- noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-4.ipynb +0 -216
- noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-5.ipynb +0 -216
- noshot/data/ML TS XAI/NLP/NLP 3/abc.txt +0 -6
- noshot/data/ML TS XAI/NLP/NLP 3/ex-1-nltk.ipynb +0 -711
- noshot/data/ML TS XAI/NLP/NLP 3/ex-2-nlp.ipynb +0 -267
- noshot/data/ML TS XAI/NLP/NLP 3/exp8&9.ipynb +0 -305
- noshot/data/ML TS XAI/NLP/NLP 3/hind.ipynb +0 -287
- noshot/data/ML TS XAI/NLP/NLP 3/lab66.ipynb +0 -752
- noshot/data/ML TS XAI/NLP/NLP 3/leb_3.ipynb +0 -612
- noshot/data/ML TS XAI/NLP/NLP 3/naive_bayes_classifier.pkl +0 -0
- noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_1.ipynb +0 -3008
- noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_2.ipynb +0 -3095
- noshot/data/ML TS XAI/NLP/NLP 3/nlplab-9.ipynb +0 -295
- noshot/data/ML TS XAI/NLP/NLP 3/nltk-ex-4.ipynb +0 -506
- noshot/data/ML TS XAI/NLP/NLP 3/text1.txt +0 -48
- noshot/data/ML TS XAI/NLP/NLP 3/text2.txt +0 -8
- noshot/data/ML TS XAI/NLP/NLP 3/text3.txt +0 -48
- noshot/data/ML TS XAI/NLP/NLP 3/translation-rnn.ipynb +0 -812
- noshot/data/ML TS XAI/NLP/NLP 3/word2vector.ipynb +0 -173
- noshot/data/ML TS XAI/NLP/NLP 4/Backward Procedure Algorithm.ipynb +0 -179
- noshot/data/ML TS XAI/NLP/NLP 4/Chi Square Collocation.ipynb +0 -208
- noshot/data/ML TS XAI/NLP/NLP 4/Collocation (T test).ipynb +0 -188
- noshot/data/ML TS XAI/NLP/NLP 4/Experiment 1.ipynb +0 -437
- noshot/data/ML TS XAI/NLP/NLP 4/Forward Procedure Algorithm.ipynb +0 -132
- noshot/data/ML TS XAI/NLP/NLP 4/Hindle Rooth.ipynb +0 -414
- noshot/data/ML TS XAI/NLP/NLP 4/MachineTranslation.ipynb +0 -368
- noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using MLPClassifier.ipynb +0 -86
- noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using Tensorflow.ipynb +0 -112
- noshot/data/ML TS XAI/NLP/NLP 4/PCFG Inside Probability.ipynb +0 -451
- noshot/data/ML TS XAI/NLP/NLP 4/Text Generation using LSTM.ipynb +0 -297
- noshot/data/ML TS XAI/NLP/NLP 4/Viterbi.ipynb +0 -310
- noshot/data/ML TS XAI/NLP/NLP 4/Word Sense Disambiguation.ipynb +0 -335
- noshot/data/ML TS XAI/NLP/NLP 5/10.Text Generation using LSTM.ipynb +0 -316
- noshot/data/ML TS XAI/NLP/NLP 5/11.Machine Translation.ipynb +0 -868
- noshot/data/ML TS XAI/NLP/NLP 5/2.T and Chi2 Test.ipynb +0 -204
- noshot/data/ML TS XAI/NLP/NLP 5/3.Word Sense Diambiguation.ipynb +0 -234
- noshot/data/ML TS XAI/NLP/NLP 5/4.Hinddle and Rooth.ipynb +0 -128
- noshot/data/ML TS XAI/NLP/NLP 5/5.Forward and Backward.ipynb +0 -149
- noshot/data/ML TS XAI/NLP/NLP 5/6.Viterbi.ipynb +0 -111
- noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG Parse Tree.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG using cyk.ipynb +0 -101
- noshot/data/ML TS XAI/NLP/NLP 5/8.Bag of words and TF-IDF.ipynb +0 -310
- noshot/data/ML TS XAI/NLP/NLP 5/9.Word2Vector.ipynb +0 -78
- noshot/data/ML TS XAI/NLP/NLP 5/NLP ALL In One.ipynb +0 -2619
- noshot/data/ML TS XAI/NLP/NLP 5/sample1.txt +0 -15
- noshot/data/ML TS XAI/NLP/NLP 5/sample2.txt +0 -4
- noshot/data/ML TS XAI/NLP/NLP 5/word2vec_model.bin +0 -0
- noshot/data/ML TS XAI/NLP/NLP 6/1. Tokenize, Tagging, NER, Parse Tree.ipynb +0 -312
- noshot/data/ML TS XAI/NLP/NLP 6/2. T Test and Chi2 Test.ipynb +0 -185
- noshot/data/ML TS XAI/NLP/NLP 6/3. Naive Bayes WSD.ipynb +0 -199
- noshot/data/ML TS XAI/NLP/NLP 6/4. Hinddle and Rooth.ipynb +0 -151
- noshot/data/ML TS XAI/NLP/NLP 6/5 and 6 FWD, BWD, Viterbi.ipynb +0 -164
- noshot/data/ML TS XAI/NLP/NLP 6/7. PCFG using CYK.ipynb +0 -383
- noshot/data/ML TS XAI/NLP/NLP 6/8. BOW and TF-IDF.ipynb +0 -252
- noshot/data/ML TS XAI/Ubuntu CN Lab.iso +0 -0
- noshot-0.1.7.dist-info/RECORD +0 -216
- {noshot-0.1.7.dist-info → noshot-0.1.9.dist-info}/LICENSE.txt +0 -0
- {noshot-0.1.7.dist-info → noshot-0.1.9.dist-info}/WHEEL +0 -0
- {noshot-0.1.7.dist-info → noshot-0.1.9.dist-info}/top_level.txt +0 -0
@@ -1,287 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": 4,
|
6
|
-
"id": "0243f907-107b-4a84-974b-2a8c1d9b7072",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [
|
9
|
-
{
|
10
|
-
"ename": "FileNotFoundError",
|
11
|
-
"evalue": "[Errno 2] No such file or directory: 'Attachment_ambiguity_WITH.csv'",
|
12
|
-
"output_type": "error",
|
13
|
-
"traceback": [
|
14
|
-
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
15
|
-
"\u001b[1;31mFileNotFoundError\u001b[0m Traceback (most recent call last)",
|
16
|
-
"Cell \u001b[1;32mIn[4], line 3\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mnltk\u001b[39;00m\n\u001b[0;32m 2\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mpandas\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mpd\u001b[39;00m \n\u001b[1;32m----> 3\u001b[0m df \u001b[38;5;241m=\u001b[39m pd\u001b[38;5;241m.\u001b[39mread_csv(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mAttachment_ambiguity_WITH.csv\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m 4\u001b[0m \u001b[38;5;28mprint\u001b[39m(df)\n",
|
17
|
-
"File \u001b[1;32m~\\anaconda3\\Lib\\site-packages\\pandas\\io\\parsers\\readers.py:1026\u001b[0m, in \u001b[0;36mread_csv\u001b[1;34m(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, date_format, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_errors, dialect, on_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options, dtype_backend)\u001b[0m\n\u001b[0;32m 1013\u001b[0m kwds_defaults \u001b[38;5;241m=\u001b[39m _refine_defaults_read(\n\u001b[0;32m 1014\u001b[0m dialect,\n\u001b[0;32m 1015\u001b[0m delimiter,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 1022\u001b[0m dtype_backend\u001b[38;5;241m=\u001b[39mdtype_backend,\n\u001b[0;32m 1023\u001b[0m )\n\u001b[0;32m 1024\u001b[0m kwds\u001b[38;5;241m.\u001b[39mupdate(kwds_defaults)\n\u001b[1;32m-> 1026\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m _read(filepath_or_buffer, kwds)\n",
|
18
|
-
"File \u001b[1;32m~\\anaconda3\\Lib\\site-packages\\pandas\\io\\parsers\\readers.py:620\u001b[0m, in \u001b[0;36m_read\u001b[1;34m(filepath_or_buffer, kwds)\u001b[0m\n\u001b[0;32m 617\u001b[0m _validate_names(kwds\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnames\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m))\n\u001b[0;32m 619\u001b[0m \u001b[38;5;66;03m# Create the parser.\u001b[39;00m\n\u001b[1;32m--> 620\u001b[0m parser \u001b[38;5;241m=\u001b[39m TextFileReader(filepath_or_buffer, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwds)\n\u001b[0;32m 622\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m chunksize \u001b[38;5;129;01mor\u001b[39;00m iterator:\n\u001b[0;32m 623\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m parser\n",
|
19
|
-
"File \u001b[1;32m~\\anaconda3\\Lib\\site-packages\\pandas\\io\\parsers\\readers.py:1620\u001b[0m, in \u001b[0;36mTextFileReader.__init__\u001b[1;34m(self, f, engine, **kwds)\u001b[0m\n\u001b[0;32m 1617\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39moptions[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhas_index_names\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m kwds[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhas_index_names\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n\u001b[0;32m 1619\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandles: IOHandles \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m-> 1620\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_engine \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_make_engine(f, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mengine)\n",
|
20
|
-
"File \u001b[1;32m~\\anaconda3\\Lib\\site-packages\\pandas\\io\\parsers\\readers.py:1880\u001b[0m, in \u001b[0;36mTextFileReader._make_engine\u001b[1;34m(self, f, engine)\u001b[0m\n\u001b[0;32m 1878\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mb\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m mode:\n\u001b[0;32m 1879\u001b[0m mode \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mb\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m-> 1880\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandles \u001b[38;5;241m=\u001b[39m get_handle(\n\u001b[0;32m 1881\u001b[0m f,\n\u001b[0;32m 1882\u001b[0m mode,\n\u001b[0;32m 1883\u001b[0m encoding\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39moptions\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mencoding\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m),\n\u001b[0;32m 1884\u001b[0m compression\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39moptions\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcompression\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m),\n\u001b[0;32m 1885\u001b[0m memory_map\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39moptions\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmemory_map\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mFalse\u001b[39;00m),\n\u001b[0;32m 1886\u001b[0m is_text\u001b[38;5;241m=\u001b[39mis_text,\n\u001b[0;32m 1887\u001b[0m errors\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39moptions\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mencoding_errors\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mstrict\u001b[39m\u001b[38;5;124m\"\u001b[39m),\n\u001b[0;32m 1888\u001b[0m storage_options\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39moptions\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mstorage_options\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m),\n\u001b[0;32m 1889\u001b[0m )\n\u001b[0;32m 1890\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandles \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 1891\u001b[0m f \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandles\u001b[38;5;241m.\u001b[39mhandle\n",
|
21
|
-
"File \u001b[1;32m~\\anaconda3\\Lib\\site-packages\\pandas\\io\\common.py:873\u001b[0m, in \u001b[0;36mget_handle\u001b[1;34m(path_or_buf, mode, encoding, compression, memory_map, is_text, errors, storage_options)\u001b[0m\n\u001b[0;32m 868\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(handle, \u001b[38;5;28mstr\u001b[39m):\n\u001b[0;32m 869\u001b[0m \u001b[38;5;66;03m# Check whether the filename is to be opened in binary mode.\u001b[39;00m\n\u001b[0;32m 870\u001b[0m \u001b[38;5;66;03m# Binary mode does not support 'encoding' and 'newline'.\u001b[39;00m\n\u001b[0;32m 871\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ioargs\u001b[38;5;241m.\u001b[39mencoding \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mb\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m ioargs\u001b[38;5;241m.\u001b[39mmode:\n\u001b[0;32m 872\u001b[0m \u001b[38;5;66;03m# Encoding\u001b[39;00m\n\u001b[1;32m--> 873\u001b[0m handle \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mopen\u001b[39m(\n\u001b[0;32m 874\u001b[0m handle,\n\u001b[0;32m 875\u001b[0m ioargs\u001b[38;5;241m.\u001b[39mmode,\n\u001b[0;32m 876\u001b[0m encoding\u001b[38;5;241m=\u001b[39mioargs\u001b[38;5;241m.\u001b[39mencoding,\n\u001b[0;32m 877\u001b[0m errors\u001b[38;5;241m=\u001b[39merrors,\n\u001b[0;32m 878\u001b[0m newline\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[0;32m 879\u001b[0m )\n\u001b[0;32m 880\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 881\u001b[0m \u001b[38;5;66;03m# Binary mode\u001b[39;00m\n\u001b[0;32m 882\u001b[0m handle \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mopen\u001b[39m(handle, ioargs\u001b[38;5;241m.\u001b[39mmode)\n",
|
22
|
-
"\u001b[1;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: 'Attachment_ambiguity_WITH.csv'"
|
23
|
-
]
|
24
|
-
}
|
25
|
-
],
|
26
|
-
"source": [
|
27
|
-
"import nltk\n",
|
28
|
-
"import pandas as pd \n",
|
29
|
-
"df = pd.read_csv(\"Attachment_ambiguity_WITH.csv\")\n",
|
30
|
-
"print(df)"
|
31
|
-
]
|
32
|
-
},
|
33
|
-
{
|
34
|
-
"cell_type": "code",
|
35
|
-
"execution_count": 2,
|
36
|
-
"id": "7cd7a3aa-9818-45bd-84d6-9c19b11a772c",
|
37
|
-
"metadata": {},
|
38
|
-
"outputs": [
|
39
|
-
{
|
40
|
-
"ename": "FileNotFoundError",
|
41
|
-
"evalue": "[Errno 2] No such file or directory: 'Attachment_ambiguity_WITH.csv'",
|
42
|
-
"output_type": "error",
|
43
|
-
"traceback": [
|
44
|
-
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
45
|
-
"\u001b[1;31mFileNotFoundError\u001b[0m Traceback (most recent call last)",
|
46
|
-
"Cell \u001b[1;32mIn[2], line 17\u001b[0m\n\u001b[0;32m 14\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m _lambda\n\u001b[0;32m 16\u001b[0m \u001b[38;5;66;03m# Load the CSV file\u001b[39;00m\n\u001b[1;32m---> 17\u001b[0m df \u001b[38;5;241m=\u001b[39m pd\u001b[38;5;241m.\u001b[39mread_csv(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mAttachment_ambiguity_WITH.csv\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m 19\u001b[0m \u001b[38;5;66;03m# Initialize corpus from CSV content\u001b[39;00m\n\u001b[0;32m 20\u001b[0m corpus \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;241m.\u001b[39mjoin(df[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mSentence\u001b[39m\u001b[38;5;124m'\u001b[39m]\u001b[38;5;241m.\u001b[39mtolist())\u001b[38;5;241m.\u001b[39mlower()\n",
|
47
|
-
"File \u001b[1;32m~\\anaconda3\\Lib\\site-packages\\pandas\\io\\parsers\\readers.py:1026\u001b[0m, in \u001b[0;36mread_csv\u001b[1;34m(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, date_format, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_errors, dialect, on_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options, dtype_backend)\u001b[0m\n\u001b[0;32m 1013\u001b[0m kwds_defaults \u001b[38;5;241m=\u001b[39m _refine_defaults_read(\n\u001b[0;32m 1014\u001b[0m dialect,\n\u001b[0;32m 1015\u001b[0m delimiter,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 1022\u001b[0m dtype_backend\u001b[38;5;241m=\u001b[39mdtype_backend,\n\u001b[0;32m 1023\u001b[0m )\n\u001b[0;32m 1024\u001b[0m kwds\u001b[38;5;241m.\u001b[39mupdate(kwds_defaults)\n\u001b[1;32m-> 1026\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m _read(filepath_or_buffer, kwds)\n",
|
48
|
-
"File \u001b[1;32m~\\anaconda3\\Lib\\site-packages\\pandas\\io\\parsers\\readers.py:620\u001b[0m, in \u001b[0;36m_read\u001b[1;34m(filepath_or_buffer, kwds)\u001b[0m\n\u001b[0;32m 617\u001b[0m _validate_names(kwds\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnames\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m))\n\u001b[0;32m 619\u001b[0m \u001b[38;5;66;03m# Create the parser.\u001b[39;00m\n\u001b[1;32m--> 620\u001b[0m parser \u001b[38;5;241m=\u001b[39m TextFileReader(filepath_or_buffer, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwds)\n\u001b[0;32m 622\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m chunksize \u001b[38;5;129;01mor\u001b[39;00m iterator:\n\u001b[0;32m 623\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m parser\n",
|
49
|
-
"File \u001b[1;32m~\\anaconda3\\Lib\\site-packages\\pandas\\io\\parsers\\readers.py:1620\u001b[0m, in \u001b[0;36mTextFileReader.__init__\u001b[1;34m(self, f, engine, **kwds)\u001b[0m\n\u001b[0;32m 1617\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39moptions[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhas_index_names\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m kwds[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhas_index_names\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n\u001b[0;32m 1619\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandles: IOHandles \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m-> 1620\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_engine \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_make_engine(f, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mengine)\n",
|
50
|
-
"File \u001b[1;32m~\\anaconda3\\Lib\\site-packages\\pandas\\io\\parsers\\readers.py:1880\u001b[0m, in \u001b[0;36mTextFileReader._make_engine\u001b[1;34m(self, f, engine)\u001b[0m\n\u001b[0;32m 1878\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mb\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m mode:\n\u001b[0;32m 1879\u001b[0m mode \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mb\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m-> 1880\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandles \u001b[38;5;241m=\u001b[39m get_handle(\n\u001b[0;32m 1881\u001b[0m f,\n\u001b[0;32m 1882\u001b[0m mode,\n\u001b[0;32m 1883\u001b[0m encoding\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39moptions\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mencoding\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m),\n\u001b[0;32m 1884\u001b[0m compression\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39moptions\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcompression\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m),\n\u001b[0;32m 1885\u001b[0m memory_map\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39moptions\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmemory_map\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mFalse\u001b[39;00m),\n\u001b[0;32m 1886\u001b[0m is_text\u001b[38;5;241m=\u001b[39mis_text,\n\u001b[0;32m 1887\u001b[0m errors\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39moptions\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mencoding_errors\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mstrict\u001b[39m\u001b[38;5;124m\"\u001b[39m),\n\u001b[0;32m 1888\u001b[0m storage_options\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39moptions\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mstorage_options\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m),\n\u001b[0;32m 1889\u001b[0m )\n\u001b[0;32m 1890\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandles \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 1891\u001b[0m f \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandles\u001b[38;5;241m.\u001b[39mhandle\n",
|
51
|
-
"File \u001b[1;32m~\\anaconda3\\Lib\\site-packages\\pandas\\io\\common.py:873\u001b[0m, in \u001b[0;36mget_handle\u001b[1;34m(path_or_buf, mode, encoding, compression, memory_map, is_text, errors, storage_options)\u001b[0m\n\u001b[0;32m 868\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(handle, \u001b[38;5;28mstr\u001b[39m):\n\u001b[0;32m 869\u001b[0m \u001b[38;5;66;03m# Check whether the filename is to be opened in binary mode.\u001b[39;00m\n\u001b[0;32m 870\u001b[0m \u001b[38;5;66;03m# Binary mode does not support 'encoding' and 'newline'.\u001b[39;00m\n\u001b[0;32m 871\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ioargs\u001b[38;5;241m.\u001b[39mencoding \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mb\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m ioargs\u001b[38;5;241m.\u001b[39mmode:\n\u001b[0;32m 872\u001b[0m \u001b[38;5;66;03m# Encoding\u001b[39;00m\n\u001b[1;32m--> 873\u001b[0m handle \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mopen\u001b[39m(\n\u001b[0;32m 874\u001b[0m handle,\n\u001b[0;32m 875\u001b[0m ioargs\u001b[38;5;241m.\u001b[39mmode,\n\u001b[0;32m 876\u001b[0m encoding\u001b[38;5;241m=\u001b[39mioargs\u001b[38;5;241m.\u001b[39mencoding,\n\u001b[0;32m 877\u001b[0m errors\u001b[38;5;241m=\u001b[39merrors,\n\u001b[0;32m 878\u001b[0m newline\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[0;32m 879\u001b[0m )\n\u001b[0;32m 880\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 881\u001b[0m \u001b[38;5;66;03m# Binary mode\u001b[39;00m\n\u001b[0;32m 882\u001b[0m handle \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mopen\u001b[39m(handle, ioargs\u001b[38;5;241m.\u001b[39mmode)\n",
|
52
|
-
"\u001b[1;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: 'Attachment_ambiguity_WITH.csv'"
|
53
|
-
]
|
54
|
-
}
|
55
|
-
],
|
56
|
-
"source": [
|
57
|
-
"import math\n",
|
58
|
-
"import pandas as pd\n",
|
59
|
-
"from nltk.tokenize import word_tokenize\n",
|
60
|
-
"from nltk import bigrams\n",
|
61
|
-
"\n",
|
62
|
-
"# Function to calculate probabilities and lambda\n",
|
63
|
-
"def cal_prob(p_v, p_n, v, n):\n",
|
64
|
-
" prob_v = p_v / v if v > 0 else 0\n",
|
65
|
-
" prob_n = p_n / n if n > 0 else 0\n",
|
66
|
-
" return prob_v, prob_n\n",
|
67
|
-
"\n",
|
68
|
-
"def cal_lam(prob_v, prob_n):\n",
|
69
|
-
" _lambda = math.log((prob_v * (1 - prob_n)) / prob_n, 2) if prob_n > 0 else float('inf')\n",
|
70
|
-
" return _lambda\n",
|
71
|
-
"\n",
|
72
|
-
"# Load the CSV file\n",
|
73
|
-
"df = pd.read_csv(\"Attachment_ambiguity_WITH.csv\")\n",
|
74
|
-
"\n",
|
75
|
-
"# Initialize corpus from CSV content\n",
|
76
|
-
"corpus = ' '.join(df['Sentence'].tolist()).lower()\n",
|
77
|
-
"\n",
|
78
|
-
"# Tokenize the corpus into words\n",
|
79
|
-
"tokens = word_tokenize(corpus)\n",
|
80
|
-
"\n",
|
81
|
-
"# Count the occurrences of elements and store in the dictionary\n",
|
82
|
-
"element_counts = {}\n",
|
83
|
-
"for element in tokens:\n",
|
84
|
-
" element_counts[element] = element_counts.get(element, 0) + 1\n",
|
85
|
-
"\n",
|
86
|
-
"# Generate bigrams from the tokenized words\n",
|
87
|
-
"bi_grams = list(bigrams(tokens))\n",
|
88
|
-
"\n",
|
89
|
-
"# Count the frequency of each bigram\n",
|
90
|
-
"bigram_counts = {}\n",
|
91
|
-
"for bigram in bi_grams:\n",
|
92
|
-
" bigram_counts[bigram] = bigram_counts.get(bigram, 0) + 1\n",
|
93
|
-
"\n",
|
94
|
-
"# Iterate over each row in the CSV to process the data\n",
|
95
|
-
"for index, row in df.iterrows():\n",
|
96
|
-
" sentence = row['Sentence']\n",
|
97
|
-
" noun = row['Noun']\n",
|
98
|
-
" verb = row['Verb']\n",
|
99
|
-
" prep = row['Preposition']\n",
|
100
|
-
" \n",
|
101
|
-
" # Calculate counts and probabilities\n",
|
102
|
-
" n = element_counts.get(noun, 0)\n",
|
103
|
-
" v = element_counts.get(verb, 0)\n",
|
104
|
-
" p_n = bigram_counts.get((prep, noun), 0)\n",
|
105
|
-
" p_v = bigram_counts.get((prep, verb), 0)\n",
|
106
|
-
" \n",
|
107
|
-
" # Calculate probabilities and lambda\n",
|
108
|
-
" prob_v, prob_n = cal_prob(p_v, p_n, v, n)\n",
|
109
|
-
" _lambda = cal_lam(prob_v, prob_n)\n",
|
110
|
-
" \n",
|
111
|
-
" # Determine the attachment of the preposition\n",
|
112
|
-
" print(f\"Sentence: {sentence}\")\n",
|
113
|
-
" if _lambda > 0:\n",
|
114
|
-
" print(f\"The preposition '{prep}' is more likely attached to the verb '{verb}'.\\n\")\n",
|
115
|
-
" elif _lambda < 0:\n",
|
116
|
-
" print(f\"The preposition '{prep}' is more likely attached to the noun '{noun}'.\\n\")\n",
|
117
|
-
" else:\n",
|
118
|
-
" print(\"The preposition attachment cannot be determined.\\n\")\n"
|
119
|
-
]
|
120
|
-
},
|
121
|
-
{
|
122
|
-
"cell_type": "code",
|
123
|
-
"execution_count": 3,
|
124
|
-
"id": "c9260210-9f95-4af8-9bfa-1accdb867e9f",
|
125
|
-
"metadata": {},
|
126
|
-
"outputs": [],
|
127
|
-
"source": [
|
128
|
-
"import pandas as P"
|
129
|
-
]
|
130
|
-
},
|
131
|
-
{
|
132
|
-
"cell_type": "code",
|
133
|
-
"execution_count": null,
|
134
|
-
"id": "10653987-e0df-47f5-97ce-4e7712c678eb",
|
135
|
-
"metadata": {},
|
136
|
-
"outputs": [
|
137
|
-
{
|
138
|
-
"name": "stderr",
|
139
|
-
"output_type": "stream",
|
140
|
-
"text": [
|
141
|
-
"[nltk_data] Downloading package punkt to\n",
|
142
|
-
"[nltk_data] C:\\Users\\admin\\AppData\\Roaming\\nltk_data...\n",
|
143
|
-
"[nltk_data] Package punkt is already up-to-date!\n"
|
144
|
-
]
|
145
|
-
},
|
146
|
-
{
|
147
|
-
"name": "stdin",
|
148
|
-
"output_type": "stream",
|
149
|
-
"text": [
|
150
|
-
"Enter the Noun: queen marry\n",
|
151
|
-
"Enter the Verb: did\n",
|
152
|
-
"Enter the Preposition: on tio\n"
|
153
|
-
]
|
154
|
-
},
|
155
|
-
{
|
156
|
-
"name": "stdout",
|
157
|
-
"output_type": "stream",
|
158
|
-
"text": [
|
159
|
-
"The Preposition is attached with Verb.\n"
|
160
|
-
]
|
161
|
-
}
|
162
|
-
],
|
163
|
-
"source": [
|
164
|
-
"import nltk\n",
|
165
|
-
"from nltk.tokenize import word_tokenize\n",
|
166
|
-
"from nltk import bigrams\n",
|
167
|
-
"import math\n",
|
168
|
-
"import csv\n",
|
169
|
-
"\n",
|
170
|
-
"# Download the necessary NLTK data\n",
|
171
|
-
"nltk.download('punkt')\n",
|
172
|
-
"\n",
|
173
|
-
"# Read the corpus from a CSV file\n",
|
174
|
-
"corpus = \"\"\n",
|
175
|
-
"with open('hind.csv', 'r') as file:\n",
|
176
|
-
" reader = csv.reader(file)\n",
|
177
|
-
" for row in reader:\n",
|
178
|
-
" corpus += \" \".join(row) + \" \" # Concatenating all rows into a single corpus\n",
|
179
|
-
"\n",
|
180
|
-
"# Tokenize the corpus into words\n",
|
181
|
-
"tokens = word_tokenize(corpus.lower()) # Convert to lowercase for case-insensitivity\n",
|
182
|
-
"\n",
|
183
|
-
"# Count the occurrences of elements and store in the dictionary\n",
|
184
|
-
"element_counts = {}\n",
|
185
|
-
"for element in tokens:\n",
|
186
|
-
" element_counts[element] = element_counts.get(element, 0) + 1\n",
|
187
|
-
"\n",
|
188
|
-
"# Generate bigrams from the tokenized words\n",
|
189
|
-
"bi_grams = list(bigrams(tokens))\n",
|
190
|
-
"\n",
|
191
|
-
"# Count the frequency of each bigram\n",
|
192
|
-
"bigram_counts = {}\n",
|
193
|
-
"for bigram in bi_grams:\n",
|
194
|
-
" bigram_counts[bigram] = bigram_counts.get(bigram, 0) + 1\n",
|
195
|
-
"\n",
|
196
|
-
"# Function to calculate probabilities and lambda\n",
|
197
|
-
"def cal_prob(p_v, p_n, v, n):\n",
|
198
|
-
" prob_v = p_v / v if v > 0 else 0\n",
|
199
|
-
" prob_n = p_n / n if n > 0 else 0\n",
|
200
|
-
" return prob_v, prob_n\n",
|
201
|
-
"\n",
|
202
|
-
"def cal_lam(prob_v, prob_n):\n",
|
203
|
-
" if prob_n == 0: # Avoid division by zero\n",
|
204
|
-
" return float('inf') # Return a large value to indicate verb attachment\n",
|
205
|
-
" _lambda = math.log((prob_v * (1 - prob_n)) / prob_n, 2)\n",
|
206
|
-
" return _lambda\n",
|
207
|
-
"\n",
|
208
|
-
"# Loop to handle multiple inputs\n",
|
209
|
-
"while True:\n",
|
210
|
-
" # User input for noun, verb, and preposition\n",
|
211
|
-
" noun = input(\"Enter the Noun: \")\n",
|
212
|
-
" verb = input(\"Enter the Verb: \")\n",
|
213
|
-
" prep = input(\"Enter the Preposition: \")\n",
|
214
|
-
"\n",
|
215
|
-
" # Calculate counts and probabilities\n",
|
216
|
-
" n = element_counts.get(noun, 0)\n",
|
217
|
-
" v = element_counts.get(verb, 0)\n",
|
218
|
-
" p_n = bigram_counts.get((prep, noun), 0)\n",
|
219
|
-
" p_v = bigram_counts.get((prep, verb), 0)\n",
|
220
|
-
"\n",
|
221
|
-
" # Calculate probabilities and lambda\n",
|
222
|
-
" prob_v, prob_n = cal_prob(p_v, p_n, v, n)\n",
|
223
|
-
" _lambda = cal_lam(prob_v, prob_n)\n",
|
224
|
-
"\n",
|
225
|
-
" # Determine the attachment of the preposition\n",
|
226
|
-
" if _lambda > 0:\n",
|
227
|
-
" print(\"The Preposition is attached with Verb.\")\n",
|
228
|
-
" elif _lambda < 0:\n",
|
229
|
-
" print(\"The Preposition is attached with Noun.\")\n",
|
230
|
-
" else:\n",
|
231
|
-
" print(\"The Preposition attachment cannot be determined.\")\n",
|
232
|
-
" \n",
|
233
|
-
" # Ask if the user wants to continue\n",
|
234
|
-
" continue_input = input(\"Do you want to analyze another sentence? (yes/no): \").strip().lower()\n",
|
235
|
-
" if continue_input != \"yes\":\n",
|
236
|
-
" break\n",
|
237
|
-
"\n",
|
238
|
-
"print(\"Exiting the loop. Thank you!\")\n"
|
239
|
-
]
|
240
|
-
},
|
241
|
-
{
|
242
|
-
"cell_type": "code",
|
243
|
-
"execution_count": null,
|
244
|
-
"id": "e87832bf-5261-478c-9775-904bb4981801",
|
245
|
-
"metadata": {},
|
246
|
-
"outputs": [],
|
247
|
-
"source": []
|
248
|
-
},
|
249
|
-
{
|
250
|
-
"cell_type": "code",
|
251
|
-
"execution_count": null,
|
252
|
-
"id": "a320e598-e9c6-41ec-9ec9-a0b2a5747532",
|
253
|
-
"metadata": {},
|
254
|
-
"outputs": [],
|
255
|
-
"source": []
|
256
|
-
},
|
257
|
-
{
|
258
|
-
"cell_type": "code",
|
259
|
-
"execution_count": null,
|
260
|
-
"id": "e6ba2cde-238c-4397-a3f2-9e3fccb822ec",
|
261
|
-
"metadata": {},
|
262
|
-
"outputs": [],
|
263
|
-
"source": []
|
264
|
-
}
|
265
|
-
],
|
266
|
-
"metadata": {
|
267
|
-
"kernelspec": {
|
268
|
-
"display_name": "Python 3 (ipykernel)",
|
269
|
-
"language": "python",
|
270
|
-
"name": "python3"
|
271
|
-
},
|
272
|
-
"language_info": {
|
273
|
-
"codemirror_mode": {
|
274
|
-
"name": "ipython",
|
275
|
-
"version": 3
|
276
|
-
},
|
277
|
-
"file_extension": ".py",
|
278
|
-
"mimetype": "text/x-python",
|
279
|
-
"name": "python",
|
280
|
-
"nbconvert_exporter": "python",
|
281
|
-
"pygments_lexer": "ipython3",
|
282
|
-
"version": "3.11.7"
|
283
|
-
}
|
284
|
-
},
|
285
|
-
"nbformat": 4,
|
286
|
-
"nbformat_minor": 5
|
287
|
-
}
|