noshot 0.1.7__py3-none-any.whl → 0.1.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/ML TS XAI/ML/1. PCA - EDA/PCA-EDA.ipynb +207 -0
- noshot/data/ML TS XAI/ML/1. PCA - EDA/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/1. PCA - EDA/input.txt +625 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/KNN.ipynb +287 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/input.txt +625 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/LDA.ipynb +83 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/input.txt +625 -0
- noshot/data/ML TS XAI/ML/4. Linear Regression/Linear-Regression.ipynb +117 -0
- noshot/data/ML TS XAI/ML/4. Linear Regression/machine-data.csv +210 -0
- noshot/data/ML TS XAI/ML/5. Logistic Regression/Logistic-Regression.ipynb +137 -0
- noshot/data/ML TS XAI/ML/5. Logistic Regression/wine-dataset.csv +179 -0
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier/Bayesian.ipynb +129 -0
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier/wine-dataset.csv +179 -0
- noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/Handling TS Data.ipynb +784 -0
- noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/raw_sales.csv +29581 -0
- noshot/data/ML TS XAI/TS/2. Feature Engineering/Feature Engineering-.ipynb +1445 -0
- noshot/data/ML TS XAI/TS/3. Temporal Relationships/Exploring Temporal Relationships.ipynb +603 -0
- noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/Up-Down-Sampling.ipynb +721 -0
- noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/shampoo_sales.csv +37 -0
- noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/Stationarity-Trend-Seasonality.ipynb +392 -0
- noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-min-temperatures.csv +3651 -0
- noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-total-female-births.csv +366 -0
- noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/ACF-PACF.ipynb +175 -0
- noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/daily-min-temperatures.csv +3651 -0
- {noshot-0.1.7.dist-info → noshot-0.1.9.dist-info}/METADATA +2 -2
- noshot-0.1.9.dist-info/RECORD +35 -0
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(A) Breadth First Search.ipynb +0 -112
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(B) Depth First Search.ipynb +0 -111
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(C) Uniform Cost Search.ipynb +0 -134
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(D) Depth Limites Search.ipynb +0 -115
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(E) Iterative Deepening DFS.ipynb +0 -123
- noshot/data/ML TS XAI/AIDS/10. ANOVA/2_ANOVA.csv +0 -769
- noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA (Repeated Measure).ipynb +0 -126
- noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA.ipynb +0 -134
- noshot/data/ML TS XAI/AIDS/10. ANOVA/Sample 1 Way ANOVA Test.ipynb +0 -119
- noshot/data/ML TS XAI/AIDS/10. ANOVA/Two Way ANOVA.ipynb +0 -138
- noshot/data/ML TS XAI/AIDS/10. ANOVA/reaction_time.csv +0 -5
- noshot/data/ML TS XAI/AIDS/10. ANOVA/sample_data.csv +0 -16
- noshot/data/ML TS XAI/AIDS/10. ANOVA/sleep_deprivation.csv +0 -4
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/3_Linear.csv +0 -4802
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression LAB.ipynb +0 -113
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression New- sklearn.ipynb +0 -118
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression.ipynb +0 -148
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/house_rate.csv +0 -22
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression New- sklearn.ipynb +0 -128
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression.ipynb +0 -145
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/default.csv +0 -1001
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/hours_scores_records.csv +0 -101
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(A) Astar.ipynb +0 -256
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(B) IDAstar.ipynb +0 -157
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(C) SMAstar.ipynb +0 -178
- noshot/data/ML TS XAI/AIDS/3. Genetic Algorithm/Genetic.ipynb +0 -95
- noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Simulated Annealing.ipynb +0 -74
- noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Sudoku Simulated Annealing.ipynb +0 -103
- noshot/data/ML TS XAI/AIDS/5. Alpha Beta Pruning/AlphaBetaPruning.ipynb +0 -182
- noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(A) CSP House Allocation.ipynb +0 -120
- noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(B) CSP Map Coloring.ipynb +0 -125
- noshot/data/ML TS XAI/AIDS/7. Random Sampling/Random Sampling.ipynb +0 -73
- noshot/data/ML TS XAI/AIDS/7. Random Sampling/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test Hash Function.ipynb +0 -141
- noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test.ipynb +0 -151
- noshot/data/ML TS XAI/AIDS/8. Z Test/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/9. T Test/1_heart.csv +0 -304
- noshot/data/ML TS XAI/AIDS/9. T Test/Independent T Test.ipynb +0 -119
- noshot/data/ML TS XAI/AIDS/9. T Test/Paired T Test.ipynb +0 -118
- noshot/data/ML TS XAI/AIDS/9. T Test/T Test Hash Function.ipynb +0 -142
- noshot/data/ML TS XAI/AIDS/9. T Test/T Test.ipynb +0 -158
- noshot/data/ML TS XAI/AIDS/9. T Test/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/9. T Test/iq_test.csv +0 -0
- noshot/data/ML TS XAI/AIDS/Others (AllinOne)/All In One.ipynb +0 -4581
- noshot/data/ML TS XAI/CN/1. Chat Application/chat.java +0 -81
- noshot/data/ML TS XAI/CN/1. Chat Application/output.png +0 -0
- noshot/data/ML TS XAI/CN/1. Chat Application/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/LAN.tcl +0 -65
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/analysis.awk +0 -44
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/output.png +0 -0
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/complexdcf.tcl +0 -229
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/output.png +0 -0
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/2. File Transfer/file_to_send.txt +0 -2
- noshot/data/ML TS XAI/CN/2. File Transfer/filetransfer.java +0 -119
- noshot/data/ML TS XAI/CN/2. File Transfer/output.png +0 -0
- noshot/data/ML TS XAI/CN/2. File Transfer/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Client.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerImpl.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerIntf.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Server.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/output.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/rmi.java +0 -56
- noshot/data/ML TS XAI/CN/4. Wired Network/output.png +0 -0
- noshot/data/ML TS XAI/CN/4. Wired Network/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/4. Wired Network/wired.awk +0 -25
- noshot/data/ML TS XAI/CN/4. Wired Network/wired.tcl +0 -81
- noshot/data/ML TS XAI/CN/5. Wireless Network/output.png +0 -0
- noshot/data/ML TS XAI/CN/5. Wireless Network/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.awk +0 -27
- noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.tcl +0 -153
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/analysis.awk +0 -27
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/sack.tcl +0 -86
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/vegas.tcl +0 -86
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/analysis.awk +0 -28
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/reno.tcl +0 -78
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/tahoe.tcl +0 -79
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/analysis.awk +0 -27
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/flow.tcl +0 -163
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/DV.tcl +0 -111
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/LS.tcl +0 -106
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/analysis.awk +0 -36
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/output.png +0 -0
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/analysis.awk +0 -20
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/broadcast.tcl +0 -76
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/multicast.tcl +0 -103
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/output.png +0 -0
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/9. DHCP/DHCP.java +0 -125
- noshot/data/ML TS XAI/CN/9. DHCP/output.png +0 -0
- noshot/data/ML TS XAI/CN/9. DHCP/procedure.png +0 -0
- noshot/data/ML TS XAI/NLP/NLP 1/1-Prereqs.py +0 -18
- noshot/data/ML TS XAI/NLP/NLP 1/2-Chi2test.py +0 -83
- noshot/data/ML TS XAI/NLP/NLP 1/2-T-test.py +0 -79
- noshot/data/ML TS XAI/NLP/NLP 1/3-WSD-nb.py +0 -53
- noshot/data/ML TS XAI/NLP/NLP 1/4-Hindle-Rooth.py +0 -53
- noshot/data/ML TS XAI/NLP/NLP 1/5-HMM-Trellis.py +0 -82
- noshot/data/ML TS XAI/NLP/NLP 1/6-HMM-Viterbi.py +0 -16
- noshot/data/ML TS XAI/NLP/NLP 1/7-PCFG-parsetree.py +0 -15
- noshot/data/ML TS XAI/NLP/NLP 1/Chi2test.ipynb +0 -285
- noshot/data/ML TS XAI/NLP/NLP 1/Hindle-Rooth.ipynb +0 -179
- noshot/data/ML TS XAI/NLP/NLP 1/Lab 10 - Text generator using LSTM.ipynb +0 -1461
- noshot/data/ML TS XAI/NLP/NLP 1/Lab 11 NMT.ipynb +0 -2307
- noshot/data/ML TS XAI/NLP/NLP 1/PCFG.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 1/Prereqs.ipynb +0 -131
- noshot/data/ML TS XAI/NLP/NLP 1/T test.ipynb +0 -252
- noshot/data/ML TS XAI/NLP/NLP 1/TFIDF BOW.ipynb +0 -171
- noshot/data/ML TS XAI/NLP/NLP 1/Trellis.ipynb +0 -244
- noshot/data/ML TS XAI/NLP/NLP 1/WSD.ipynb +0 -645
- noshot/data/ML TS XAI/NLP/NLP 1/Word2Vec.ipynb +0 -93
- noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/tokenizer.ipynb +0 -370
- noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/training_tokenizer.txt +0 -6
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/exp0.ipynb +0 -274
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/lab2.ipynb +0 -905
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/test.txt +0 -1
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/tokenizing.ipynb +0 -272
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/collocation.ipynb +0 -332
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/lab3.ipynb +0 -549
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/nlp.txt +0 -1
- noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/Lab4-NLP-Exp-2.ipynb +0 -817
- noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/collocation.ipynb +0 -332
- noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/NLP-Lab-5-Exp3.ipynb +0 -231
- noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/word-sense-disambiguation.ipynb +0 -507
- noshot/data/ML TS XAI/NLP/NLP 2/Lab06(additional-exercise)/lab6.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP Exp 4.ipynb +0 -255
- noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP_Exp_5.ipynb +0 -159
- noshot/data/ML TS XAI/NLP/NLP 2/Lab08(PCFG)/PCFG.ipynb +0 -282
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/Lab 9 - MLP classifier.ipynb +0 -670
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/MLP-alternative-code.ipynb +0 -613
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/hindle-rooth-algorithm.ipynb +0 -74
- noshot/data/ML TS XAI/NLP/NLP 2/Lab10(LSTM)/Lab_10_Text_generator_using_LSTM.ipynb +0 -480
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Machine-translation.ipynb +0 -445
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Viterbi-PCFG.ipynb +0 -105
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/corpora_tools.py +0 -87
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/data_utils.py +0 -11
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/train_translator.py +0 -83
- noshot/data/ML TS XAI/NLP/NLP 2/Lab12(Information-Extraction)/Information_Extraction.ipynb +0 -201
- noshot/data/ML TS XAI/NLP/NLP 3/Backtrack-without-Verbitri.ipynb +0 -185
- noshot/data/ML TS XAI/NLP/NLP 3/Backward-Procedure.ipynb +0 -597
- noshot/data/ML TS XAI/NLP/NLP 3/Bag_of.ipynb +0 -1422
- noshot/data/ML TS XAI/NLP/NLP 3/CYK-algorithm.ipynb +0 -1067
- noshot/data/ML TS XAI/NLP/NLP 3/Forward-Procedure.ipynb +0 -477
- noshot/data/ML TS XAI/NLP/NLP 3/LSTM.ipynb +0 -1290
- noshot/data/ML TS XAI/NLP/NLP 3/Lab 10 - Text generator using LSTM.ipynb +0 -1461
- noshot/data/ML TS XAI/NLP/NLP 3/Lab 11 NMT.ipynb +0 -2307
- noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-4.ipynb +0 -216
- noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-5.ipynb +0 -216
- noshot/data/ML TS XAI/NLP/NLP 3/abc.txt +0 -6
- noshot/data/ML TS XAI/NLP/NLP 3/ex-1-nltk.ipynb +0 -711
- noshot/data/ML TS XAI/NLP/NLP 3/ex-2-nlp.ipynb +0 -267
- noshot/data/ML TS XAI/NLP/NLP 3/exp8&9.ipynb +0 -305
- noshot/data/ML TS XAI/NLP/NLP 3/hind.ipynb +0 -287
- noshot/data/ML TS XAI/NLP/NLP 3/lab66.ipynb +0 -752
- noshot/data/ML TS XAI/NLP/NLP 3/leb_3.ipynb +0 -612
- noshot/data/ML TS XAI/NLP/NLP 3/naive_bayes_classifier.pkl +0 -0
- noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_1.ipynb +0 -3008
- noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_2.ipynb +0 -3095
- noshot/data/ML TS XAI/NLP/NLP 3/nlplab-9.ipynb +0 -295
- noshot/data/ML TS XAI/NLP/NLP 3/nltk-ex-4.ipynb +0 -506
- noshot/data/ML TS XAI/NLP/NLP 3/text1.txt +0 -48
- noshot/data/ML TS XAI/NLP/NLP 3/text2.txt +0 -8
- noshot/data/ML TS XAI/NLP/NLP 3/text3.txt +0 -48
- noshot/data/ML TS XAI/NLP/NLP 3/translation-rnn.ipynb +0 -812
- noshot/data/ML TS XAI/NLP/NLP 3/word2vector.ipynb +0 -173
- noshot/data/ML TS XAI/NLP/NLP 4/Backward Procedure Algorithm.ipynb +0 -179
- noshot/data/ML TS XAI/NLP/NLP 4/Chi Square Collocation.ipynb +0 -208
- noshot/data/ML TS XAI/NLP/NLP 4/Collocation (T test).ipynb +0 -188
- noshot/data/ML TS XAI/NLP/NLP 4/Experiment 1.ipynb +0 -437
- noshot/data/ML TS XAI/NLP/NLP 4/Forward Procedure Algorithm.ipynb +0 -132
- noshot/data/ML TS XAI/NLP/NLP 4/Hindle Rooth.ipynb +0 -414
- noshot/data/ML TS XAI/NLP/NLP 4/MachineTranslation.ipynb +0 -368
- noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using MLPClassifier.ipynb +0 -86
- noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using Tensorflow.ipynb +0 -112
- noshot/data/ML TS XAI/NLP/NLP 4/PCFG Inside Probability.ipynb +0 -451
- noshot/data/ML TS XAI/NLP/NLP 4/Text Generation using LSTM.ipynb +0 -297
- noshot/data/ML TS XAI/NLP/NLP 4/Viterbi.ipynb +0 -310
- noshot/data/ML TS XAI/NLP/NLP 4/Word Sense Disambiguation.ipynb +0 -335
- noshot/data/ML TS XAI/NLP/NLP 5/10.Text Generation using LSTM.ipynb +0 -316
- noshot/data/ML TS XAI/NLP/NLP 5/11.Machine Translation.ipynb +0 -868
- noshot/data/ML TS XAI/NLP/NLP 5/2.T and Chi2 Test.ipynb +0 -204
- noshot/data/ML TS XAI/NLP/NLP 5/3.Word Sense Diambiguation.ipynb +0 -234
- noshot/data/ML TS XAI/NLP/NLP 5/4.Hinddle and Rooth.ipynb +0 -128
- noshot/data/ML TS XAI/NLP/NLP 5/5.Forward and Backward.ipynb +0 -149
- noshot/data/ML TS XAI/NLP/NLP 5/6.Viterbi.ipynb +0 -111
- noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG Parse Tree.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG using cyk.ipynb +0 -101
- noshot/data/ML TS XAI/NLP/NLP 5/8.Bag of words and TF-IDF.ipynb +0 -310
- noshot/data/ML TS XAI/NLP/NLP 5/9.Word2Vector.ipynb +0 -78
- noshot/data/ML TS XAI/NLP/NLP 5/NLP ALL In One.ipynb +0 -2619
- noshot/data/ML TS XAI/NLP/NLP 5/sample1.txt +0 -15
- noshot/data/ML TS XAI/NLP/NLP 5/sample2.txt +0 -4
- noshot/data/ML TS XAI/NLP/NLP 5/word2vec_model.bin +0 -0
- noshot/data/ML TS XAI/NLP/NLP 6/1. Tokenize, Tagging, NER, Parse Tree.ipynb +0 -312
- noshot/data/ML TS XAI/NLP/NLP 6/2. T Test and Chi2 Test.ipynb +0 -185
- noshot/data/ML TS XAI/NLP/NLP 6/3. Naive Bayes WSD.ipynb +0 -199
- noshot/data/ML TS XAI/NLP/NLP 6/4. Hinddle and Rooth.ipynb +0 -151
- noshot/data/ML TS XAI/NLP/NLP 6/5 and 6 FWD, BWD, Viterbi.ipynb +0 -164
- noshot/data/ML TS XAI/NLP/NLP 6/7. PCFG using CYK.ipynb +0 -383
- noshot/data/ML TS XAI/NLP/NLP 6/8. BOW and TF-IDF.ipynb +0 -252
- noshot/data/ML TS XAI/Ubuntu CN Lab.iso +0 -0
- noshot-0.1.7.dist-info/RECORD +0 -216
- {noshot-0.1.7.dist-info → noshot-0.1.9.dist-info}/LICENSE.txt +0 -0
- {noshot-0.1.7.dist-info → noshot-0.1.9.dist-info}/WHEEL +0 -0
- {noshot-0.1.7.dist-info → noshot-0.1.9.dist-info}/top_level.txt +0 -0
@@ -1,113 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": null,
|
6
|
-
"id": "69fb26c3-ddd3-4f19-af31-e71b71c6dba1",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [],
|
9
|
-
"source": [
|
10
|
-
"import matplotlib.pyplot as plt\n",
|
11
|
-
"from sklearn.linear_model import LinearRegression\n",
|
12
|
-
"import pandas as pd\n",
|
13
|
-
"import numpy as np\n",
|
14
|
-
"import seaborn as sns\n",
|
15
|
-
"\n",
|
16
|
-
"df = pd.read_csv('3_Linear.csv')\n",
|
17
|
-
"print(df.shape)\n",
|
18
|
-
"df.head()"
|
19
|
-
]
|
20
|
-
},
|
21
|
-
{
|
22
|
-
"cell_type": "code",
|
23
|
-
"execution_count": null,
|
24
|
-
"id": "b414018b-1bb9-49f6-86bd-3f1865ff0943",
|
25
|
-
"metadata": {},
|
26
|
-
"outputs": [],
|
27
|
-
"source": [
|
28
|
-
"df.info()"
|
29
|
-
]
|
30
|
-
},
|
31
|
-
{
|
32
|
-
"cell_type": "code",
|
33
|
-
"execution_count": null,
|
34
|
-
"id": "c969f072-ab85-471f-a15c-6575b336951a",
|
35
|
-
"metadata": {},
|
36
|
-
"outputs": [],
|
37
|
-
"source": [
|
38
|
-
"sns.pairplot(df, y_vars = ['PRICE'])"
|
39
|
-
]
|
40
|
-
},
|
41
|
-
{
|
42
|
-
"cell_type": "code",
|
43
|
-
"execution_count": null,
|
44
|
-
"id": "22e5738a-f319-428a-94d5-224c8f87e493",
|
45
|
-
"metadata": {},
|
46
|
-
"outputs": [],
|
47
|
-
"source": [
|
48
|
-
"#df = df[df['PRICE'] <= df['PRICE'].quantile(0.9)]\n",
|
49
|
-
"x = df['PROPERTYSQFT'].to_list()\n",
|
50
|
-
"x = np.reshape(x, newshape = (-1,1))\n",
|
51
|
-
"y = df['PRICE'].to_list()\n",
|
52
|
-
"plt.scatter(x, y)"
|
53
|
-
]
|
54
|
-
},
|
55
|
-
{
|
56
|
-
"cell_type": "code",
|
57
|
-
"execution_count": null,
|
58
|
-
"id": "7c0812fa-ecbf-466d-8d4b-cb3f0aeb8d69",
|
59
|
-
"metadata": {},
|
60
|
-
"outputs": [],
|
61
|
-
"source": [
|
62
|
-
"model = LinearRegression()\n",
|
63
|
-
"model.fit(x, y)\n",
|
64
|
-
"print(f\"Equation: y = {model.coef_}X + {model.intercept_}\")\n",
|
65
|
-
"print(\"Precision =\",model.score(x,y))"
|
66
|
-
]
|
67
|
-
},
|
68
|
-
{
|
69
|
-
"cell_type": "code",
|
70
|
-
"execution_count": null,
|
71
|
-
"id": "b06c5ce2-b4c5-4cb6-bd84-9d798d321ca2",
|
72
|
-
"metadata": {},
|
73
|
-
"outputs": [],
|
74
|
-
"source": [
|
75
|
-
"x_new = [[2000]]\n",
|
76
|
-
"y_pred = model.predict(x_new)\n",
|
77
|
-
"print(x_new, y_pred)"
|
78
|
-
]
|
79
|
-
},
|
80
|
-
{
|
81
|
-
"cell_type": "code",
|
82
|
-
"execution_count": null,
|
83
|
-
"id": "8bf92c6c-9fa5-45f4-914b-63a66fef4319",
|
84
|
-
"metadata": {},
|
85
|
-
"outputs": [],
|
86
|
-
"source": [
|
87
|
-
"plt.scatter(x,y, marker = '.')\n",
|
88
|
-
"plt.plot(x, model.predict(x), color = 'green')"
|
89
|
-
]
|
90
|
-
}
|
91
|
-
],
|
92
|
-
"metadata": {
|
93
|
-
"kernelspec": {
|
94
|
-
"display_name": "Python 3 (ipykernel)",
|
95
|
-
"language": "python",
|
96
|
-
"name": "python3"
|
97
|
-
},
|
98
|
-
"language_info": {
|
99
|
-
"codemirror_mode": {
|
100
|
-
"name": "ipython",
|
101
|
-
"version": 3
|
102
|
-
},
|
103
|
-
"file_extension": ".py",
|
104
|
-
"mimetype": "text/x-python",
|
105
|
-
"name": "python",
|
106
|
-
"nbconvert_exporter": "python",
|
107
|
-
"pygments_lexer": "ipython3",
|
108
|
-
"version": "3.12.4"
|
109
|
-
}
|
110
|
-
},
|
111
|
-
"nbformat": 4,
|
112
|
-
"nbformat_minor": 5
|
113
|
-
}
|
@@ -1,118 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": null,
|
6
|
-
"id": "88872eef-23f7-49f7-97ba-a29c775e2174",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [],
|
9
|
-
"source": [
|
10
|
-
"from sklearn.linear_model import LinearRegression\n",
|
11
|
-
"import matplotlib.pyplot as plt\n",
|
12
|
-
"import pandas as pd\n",
|
13
|
-
"import numpy as np"
|
14
|
-
]
|
15
|
-
},
|
16
|
-
{
|
17
|
-
"cell_type": "code",
|
18
|
-
"execution_count": null,
|
19
|
-
"id": "da5c81a7-ad6b-4c80-a584-90522fd94cb8",
|
20
|
-
"metadata": {},
|
21
|
-
"outputs": [],
|
22
|
-
"source": [
|
23
|
-
"data = pd.read_csv('house_rate.csv')\n",
|
24
|
-
"data = data.dropna()\n",
|
25
|
-
"data.head()"
|
26
|
-
]
|
27
|
-
},
|
28
|
-
{
|
29
|
-
"cell_type": "code",
|
30
|
-
"execution_count": null,
|
31
|
-
"id": "fa002c5a-6fb3-4360-8d7e-610c8c921984",
|
32
|
-
"metadata": {},
|
33
|
-
"outputs": [],
|
34
|
-
"source": [
|
35
|
-
"X = data['House Size(sqft)'].to_list()\n",
|
36
|
-
"X = np.reshape(X, newshape = (-1,1))\n",
|
37
|
-
"Y = data['Price($)'].to_list()"
|
38
|
-
]
|
39
|
-
},
|
40
|
-
{
|
41
|
-
"cell_type": "code",
|
42
|
-
"execution_count": null,
|
43
|
-
"id": "d886cc55-92b9-413a-9889-61b564018c10",
|
44
|
-
"metadata": {},
|
45
|
-
"outputs": [],
|
46
|
-
"source": [
|
47
|
-
"plt.scatter(X, Y, color = 'red')\n",
|
48
|
-
"plt.xlabel('Size (sq ft)')\n",
|
49
|
-
"plt.ylabel('Price ($)')\n",
|
50
|
-
"plt.title('Size vs Price of Houses')\n",
|
51
|
-
"plt.show()"
|
52
|
-
]
|
53
|
-
},
|
54
|
-
{
|
55
|
-
"cell_type": "code",
|
56
|
-
"execution_count": null,
|
57
|
-
"id": "4283f26b-e48f-461e-9f0d-e8cc8610172a",
|
58
|
-
"metadata": {},
|
59
|
-
"outputs": [],
|
60
|
-
"source": [
|
61
|
-
"model = LinearRegression()\n",
|
62
|
-
"model.fit(X, Y)\n",
|
63
|
-
"print(\"Slopes(m) =\",model.coef_)\n",
|
64
|
-
"print(\"Constant(c) =\",model.intercept_)\n",
|
65
|
-
"print(\"Linear Equation: y = mx + c\")\n",
|
66
|
-
"print(f\"y = {model.coef_}x + {model.intercept_}\")"
|
67
|
-
]
|
68
|
-
},
|
69
|
-
{
|
70
|
-
"cell_type": "code",
|
71
|
-
"execution_count": null,
|
72
|
-
"id": "8b6b4208-94cb-48b3-8ce8-19971c9bb4af",
|
73
|
-
"metadata": {},
|
74
|
-
"outputs": [],
|
75
|
-
"source": [
|
76
|
-
"x_new = [[600]]\n",
|
77
|
-
"y_pred = model.predict(x_new)\n",
|
78
|
-
"print(\"Independent Variables:\",x_new)\n",
|
79
|
-
"print(\"Dependent Variable:\",y_pred)"
|
80
|
-
]
|
81
|
-
},
|
82
|
-
{
|
83
|
-
"cell_type": "code",
|
84
|
-
"execution_count": null,
|
85
|
-
"id": "728c8310-f244-421a-a453-60142b83307f",
|
86
|
-
"metadata": {},
|
87
|
-
"outputs": [],
|
88
|
-
"source": [
|
89
|
-
"plt.scatter(X, Y, color = 'red', label = 'Actual')\n",
|
90
|
-
"plt.plot(X, model.predict(X), color = 'green', label = 'Predicted')\n",
|
91
|
-
"plt.legend()\n",
|
92
|
-
"plt.title(\"Linear Regression\")\n",
|
93
|
-
"plt.show()"
|
94
|
-
]
|
95
|
-
}
|
96
|
-
],
|
97
|
-
"metadata": {
|
98
|
-
"kernelspec": {
|
99
|
-
"display_name": "Python 3 (ipykernel)",
|
100
|
-
"language": "python",
|
101
|
-
"name": "python3"
|
102
|
-
},
|
103
|
-
"language_info": {
|
104
|
-
"codemirror_mode": {
|
105
|
-
"name": "ipython",
|
106
|
-
"version": 3
|
107
|
-
},
|
108
|
-
"file_extension": ".py",
|
109
|
-
"mimetype": "text/x-python",
|
110
|
-
"name": "python",
|
111
|
-
"nbconvert_exporter": "python",
|
112
|
-
"pygments_lexer": "ipython3",
|
113
|
-
"version": "3.12.4"
|
114
|
-
}
|
115
|
-
},
|
116
|
-
"nbformat": 4,
|
117
|
-
"nbformat_minor": 5
|
118
|
-
}
|
@@ -1,148 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": null,
|
6
|
-
"id": "318b8eae-4e2f-48a6-aa70-270176eee584",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [],
|
9
|
-
"source": [
|
10
|
-
"import numpy as np"
|
11
|
-
]
|
12
|
-
},
|
13
|
-
{
|
14
|
-
"cell_type": "code",
|
15
|
-
"execution_count": null,
|
16
|
-
"id": "b93ed99b-696f-452b-9eda-123eedbc57d2",
|
17
|
-
"metadata": {},
|
18
|
-
"outputs": [],
|
19
|
-
"source": [
|
20
|
-
"x = [1, 2, 3, 4, 5]\n",
|
21
|
-
"y = [2, 4, 5, 4, 5]\n",
|
22
|
-
"mean_x = np.mean(x)\n",
|
23
|
-
"mean_y = np.mean(y)\n",
|
24
|
-
"print(x)\n",
|
25
|
-
"print(y)"
|
26
|
-
]
|
27
|
-
},
|
28
|
-
{
|
29
|
-
"cell_type": "code",
|
30
|
-
"execution_count": null,
|
31
|
-
"id": "c4b85b82-9962-4204-a134-1293c8b8ce64",
|
32
|
-
"metadata": {},
|
33
|
-
"outputs": [],
|
34
|
-
"source": [
|
35
|
-
"SS_x = [(x1 - mean_x)**2 for x1 in x]\n",
|
36
|
-
"SS_y = [(y1 - mean_y)**2 for y1 in y]\n",
|
37
|
-
"SS_x, SS_y"
|
38
|
-
]
|
39
|
-
},
|
40
|
-
{
|
41
|
-
"cell_type": "code",
|
42
|
-
"execution_count": null,
|
43
|
-
"id": "381241c0-715d-4197-b449-5ed3598cbe8d",
|
44
|
-
"metadata": {},
|
45
|
-
"outputs": [],
|
46
|
-
"source": [
|
47
|
-
"product = [(x1 - mean_x)*(y1 - mean_y) for x1, y1 in zip(x, y)]\n",
|
48
|
-
"print(product)"
|
49
|
-
]
|
50
|
-
},
|
51
|
-
{
|
52
|
-
"cell_type": "code",
|
53
|
-
"execution_count": null,
|
54
|
-
"id": "68cdd29b-8e27-49db-8096-1296e3662efd",
|
55
|
-
"metadata": {},
|
56
|
-
"outputs": [],
|
57
|
-
"source": [
|
58
|
-
"b1 = sum(product)/sum(SS_x)\n",
|
59
|
-
"b0 = mean_y - (b1*mean_x)\n",
|
60
|
-
"def lnr_reg(x):\n",
|
61
|
-
" return b1*x + b0 #y = mx + c\n",
|
62
|
-
"print(f\"B0: {b0} and B1: {b1}\")"
|
63
|
-
]
|
64
|
-
},
|
65
|
-
{
|
66
|
-
"cell_type": "code",
|
67
|
-
"execution_count": null,
|
68
|
-
"id": "4cf0b80c-94c3-492d-b1bc-80ac6cb8d728",
|
69
|
-
"metadata": {},
|
70
|
-
"outputs": [],
|
71
|
-
"source": [
|
72
|
-
"y_cap = [(b0 + b1*x1) for x1 in x]#y = mx + c (m->b1, c->b0)\n",
|
73
|
-
"print(y_cap)"
|
74
|
-
]
|
75
|
-
},
|
76
|
-
{
|
77
|
-
"cell_type": "code",
|
78
|
-
"execution_count": null,
|
79
|
-
"id": "fbbeca29-6041-43b5-933c-8c921149eca4",
|
80
|
-
"metadata": {},
|
81
|
-
"outputs": [],
|
82
|
-
"source": [
|
83
|
-
"num = sum([(y1 - y2)**2 for y1, y2 in zip(y_cap, y)])\n",
|
84
|
-
"num"
|
85
|
-
]
|
86
|
-
},
|
87
|
-
{
|
88
|
-
"cell_type": "code",
|
89
|
-
"execution_count": null,
|
90
|
-
"id": "5206d776-9c8b-4b81-aa67-734e760a4ded",
|
91
|
-
"metadata": {},
|
92
|
-
"outputs": [],
|
93
|
-
"source": [
|
94
|
-
"SE = (num/(len(x) - 2))**0.5\n",
|
95
|
-
"SE"
|
96
|
-
]
|
97
|
-
},
|
98
|
-
{
|
99
|
-
"cell_type": "code",
|
100
|
-
"execution_count": null,
|
101
|
-
"id": "db1fd839-e12a-407a-9cd3-5deb707e7f1e",
|
102
|
-
"metadata": {},
|
103
|
-
"outputs": [],
|
104
|
-
"source": [
|
105
|
-
"if SE < 1:\n",
|
106
|
-
" print(\"Standard Error =\", SE, \"So Accept The Model\")\n",
|
107
|
-
"else:\n",
|
108
|
-
" print(\"Standard Error =\", SE, \"So Reject The Model\")"
|
109
|
-
]
|
110
|
-
},
|
111
|
-
{
|
112
|
-
"cell_type": "code",
|
113
|
-
"execution_count": null,
|
114
|
-
"id": "d0d21e07-e52f-4144-b3f9-4dfec2978caf",
|
115
|
-
"metadata": {},
|
116
|
-
"outputs": [],
|
117
|
-
"source": [
|
118
|
-
"#Finding y value for new value of x\n",
|
119
|
-
"x_val = 6\n",
|
120
|
-
"print(\"For x =\",x_val)\n",
|
121
|
-
"print(f\"Linear Regression Equation: y = {b1:.2f}x + {b0:.2f}\")\n",
|
122
|
-
"y_val = lnr_reg(x_val)\n",
|
123
|
-
"print(\"y =\",y_val)"
|
124
|
-
]
|
125
|
-
}
|
126
|
-
],
|
127
|
-
"metadata": {
|
128
|
-
"kernelspec": {
|
129
|
-
"display_name": "Python 3 (ipykernel)",
|
130
|
-
"language": "python",
|
131
|
-
"name": "python3"
|
132
|
-
},
|
133
|
-
"language_info": {
|
134
|
-
"codemirror_mode": {
|
135
|
-
"name": "ipython",
|
136
|
-
"version": 3
|
137
|
-
},
|
138
|
-
"file_extension": ".py",
|
139
|
-
"mimetype": "text/x-python",
|
140
|
-
"name": "python",
|
141
|
-
"nbconvert_exporter": "python",
|
142
|
-
"pygments_lexer": "ipython3",
|
143
|
-
"version": "3.12.4"
|
144
|
-
}
|
145
|
-
},
|
146
|
-
"nbformat": 4,
|
147
|
-
"nbformat_minor": 5
|
148
|
-
}
|
@@ -1,22 +0,0 @@
|
|
1
|
-
House Size(sqft),Price($)
|
2
|
-
1200,500000
|
3
|
-
1500,600000
|
4
|
-
1700,700000
|
5
|
-
1600,550000
|
6
|
-
1300,580000
|
7
|
-
1400,600000
|
8
|
-
1000,550000
|
9
|
-
900,480000
|
10
|
-
800,450000
|
11
|
-
1100,510000
|
12
|
-
1200,550000
|
13
|
-
1300,600000
|
14
|
-
1600,650000
|
15
|
-
1900,710000
|
16
|
-
1800,690000
|
17
|
-
2000,750000
|
18
|
-
2100,800000
|
19
|
-
2200,850000
|
20
|
-
2300,900000
|
21
|
-
2400,950000
|
22
|
-
2500,1000000
|
@@ -1,128 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": null,
|
6
|
-
"id": "202c2b89-4640-4c92-9b71-468bb5344c52",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [],
|
9
|
-
"source": [
|
10
|
-
"from sklearn.linear_model import LogisticRegression\n",
|
11
|
-
"from sklearn import preprocessing\n",
|
12
|
-
"import matplotlib.pyplot as plt\n",
|
13
|
-
"import seaborn as sns\n",
|
14
|
-
"import numpy as np"
|
15
|
-
]
|
16
|
-
},
|
17
|
-
{
|
18
|
-
"cell_type": "code",
|
19
|
-
"execution_count": null,
|
20
|
-
"id": "89500d07-8550-44f8-b65f-250d75f4484a",
|
21
|
-
"metadata": {},
|
22
|
-
"outputs": [],
|
23
|
-
"source": [
|
24
|
-
"import pandas as pd\n",
|
25
|
-
"data = pd.read_csv('default.csv')\n",
|
26
|
-
"data = data.dropna()\n",
|
27
|
-
"data.head()"
|
28
|
-
]
|
29
|
-
},
|
30
|
-
{
|
31
|
-
"cell_type": "code",
|
32
|
-
"execution_count": null,
|
33
|
-
"id": "b686cff0-e3bc-4de3-9ea5-1ca38aef2568",
|
34
|
-
"metadata": {},
|
35
|
-
"outputs": [],
|
36
|
-
"source": [
|
37
|
-
"X = data['balance']\n",
|
38
|
-
"Y = data['student']\n",
|
39
|
-
"data.head()"
|
40
|
-
]
|
41
|
-
},
|
42
|
-
{
|
43
|
-
"cell_type": "code",
|
44
|
-
"execution_count": null,
|
45
|
-
"id": "0432a397-bda3-4d60-98ae-8d727d3e0c4e",
|
46
|
-
"metadata": {},
|
47
|
-
"outputs": [],
|
48
|
-
"source": [
|
49
|
-
"catColumns = data.select_dtypes(['object']).columns\n",
|
50
|
-
"le = preprocessing.LabelEncoder()\n",
|
51
|
-
"\n",
|
52
|
-
"for col in catColumns:\n",
|
53
|
-
" n = len(data[col].unique())\n",
|
54
|
-
" if (n > 2):\n",
|
55
|
-
" X = pd.get_dummies(data[col])\n",
|
56
|
-
" X = X.drop(X.columns[0], axis=1)\n",
|
57
|
-
" data[X.columns] = X\n",
|
58
|
-
" data.drop(col, axis=1, inplace=True) # drop the original categorical variable (optional)\n",
|
59
|
-
" else:\n",
|
60
|
-
" le.fit(data[col])\n",
|
61
|
-
" data[col] = le.transform(data[col])"
|
62
|
-
]
|
63
|
-
},
|
64
|
-
{
|
65
|
-
"cell_type": "code",
|
66
|
-
"execution_count": null,
|
67
|
-
"id": "1f17750f-229a-4d20-857b-2350a2937d94",
|
68
|
-
"metadata": {
|
69
|
-
"scrolled": true
|
70
|
-
},
|
71
|
-
"outputs": [],
|
72
|
-
"source": [
|
73
|
-
"model = LogisticRegression()\n",
|
74
|
-
"model.fit(np.reshape(X, newshape = (-1,1)), Y)\n",
|
75
|
-
"print(\"Coefficent =\",model.coef_)\n",
|
76
|
-
"print(\"Constant(c) =\",model.intercept_)"
|
77
|
-
]
|
78
|
-
},
|
79
|
-
{
|
80
|
-
"cell_type": "code",
|
81
|
-
"execution_count": null,
|
82
|
-
"id": "5e46fa9a-bed2-480f-b5b0-9ecfedcb6f0c",
|
83
|
-
"metadata": {},
|
84
|
-
"outputs": [],
|
85
|
-
"source": [
|
86
|
-
"x_new = [[10000]]\n",
|
87
|
-
"y_pred = model.predict(x_new)\n",
|
88
|
-
"print(\"Balance:\",x_new[0])\n",
|
89
|
-
"Class = {1:'Yes', 0 : 'No'}\n",
|
90
|
-
"print(\"Is He Student?:\", Class[y_pred[0]])"
|
91
|
-
]
|
92
|
-
},
|
93
|
-
{
|
94
|
-
"cell_type": "code",
|
95
|
-
"execution_count": null,
|
96
|
-
"id": "d155d2d7-a269-4766-ade2-e3fa74c33c95",
|
97
|
-
"metadata": {},
|
98
|
-
"outputs": [],
|
99
|
-
"source": [
|
100
|
-
"sns.regplot(x = X, y = Y, data = data, logistic = True, ci = None,\n",
|
101
|
-
" marker = 'x', scatter_kws = {'color': 'orange'})\n",
|
102
|
-
"plt.title(\"Logisitc Regression\")\n",
|
103
|
-
"plt.show()"
|
104
|
-
]
|
105
|
-
}
|
106
|
-
],
|
107
|
-
"metadata": {
|
108
|
-
"kernelspec": {
|
109
|
-
"display_name": "Python 3 (ipykernel)",
|
110
|
-
"language": "python",
|
111
|
-
"name": "python3"
|
112
|
-
},
|
113
|
-
"language_info": {
|
114
|
-
"codemirror_mode": {
|
115
|
-
"name": "ipython",
|
116
|
-
"version": 3
|
117
|
-
},
|
118
|
-
"file_extension": ".py",
|
119
|
-
"mimetype": "text/x-python",
|
120
|
-
"name": "python",
|
121
|
-
"nbconvert_exporter": "python",
|
122
|
-
"pygments_lexer": "ipython3",
|
123
|
-
"version": "3.12.4"
|
124
|
-
}
|
125
|
-
},
|
126
|
-
"nbformat": 4,
|
127
|
-
"nbformat_minor": 5
|
128
|
-
}
|
@@ -1,145 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": null,
|
6
|
-
"id": "48961c1d-3e9b-430d-b529-956467a3194c",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [],
|
9
|
-
"source": [
|
10
|
-
"import pandas as pd\n",
|
11
|
-
"data = pd.read_csv(\"hours_scores_records.csv\")\n",
|
12
|
-
"print(data.shape)\n",
|
13
|
-
"data.head()"
|
14
|
-
]
|
15
|
-
},
|
16
|
-
{
|
17
|
-
"cell_type": "code",
|
18
|
-
"execution_count": null,
|
19
|
-
"id": "f3117a88-f1f0-45b6-8890-0893d84264a5",
|
20
|
-
"metadata": {},
|
21
|
-
"outputs": [],
|
22
|
-
"source": [
|
23
|
-
"mean_hours = data['Hours'].mean()\n",
|
24
|
-
"print(\"Hours Mean:\", mean_hours)\n",
|
25
|
-
"mean_scores = data['Scores'].mean()\n",
|
26
|
-
"print(\"Scores Mean:\", mean_scores)"
|
27
|
-
]
|
28
|
-
},
|
29
|
-
{
|
30
|
-
"cell_type": "code",
|
31
|
-
"execution_count": null,
|
32
|
-
"id": "3e023a56-1fbc-4a7d-9565-49efb6a66074",
|
33
|
-
"metadata": {},
|
34
|
-
"outputs": [],
|
35
|
-
"source": [
|
36
|
-
"data['Hours - Mean_Hours'] = round(data['Hours'] - mean_hours, 3)\n",
|
37
|
-
"mean1 = data['Hours - Mean_Hours'].mean()\n",
|
38
|
-
"mean1"
|
39
|
-
]
|
40
|
-
},
|
41
|
-
{
|
42
|
-
"cell_type": "code",
|
43
|
-
"execution_count": null,
|
44
|
-
"id": "f4574bdb-b5e4-4541-978c-ceea8d30f453",
|
45
|
-
"metadata": {},
|
46
|
-
"outputs": [],
|
47
|
-
"source": [
|
48
|
-
"data['Scores - Mean_Scores'] = round(data['Scores'] - mean_scores, 3)\n",
|
49
|
-
"mean2 = data['Scores - Mean_Scores'].mean()\n",
|
50
|
-
"mean2"
|
51
|
-
]
|
52
|
-
},
|
53
|
-
{
|
54
|
-
"cell_type": "code",
|
55
|
-
"execution_count": null,
|
56
|
-
"id": "da2a298f-e92b-4161-8c5d-c38accb83eda",
|
57
|
-
"metadata": {},
|
58
|
-
"outputs": [],
|
59
|
-
"source": [
|
60
|
-
"data['product'] = data['Hours - Mean_Hours']*data['Scores - Mean_Scores']\n",
|
61
|
-
"mean3 = data['product'].mean()\n",
|
62
|
-
"mean3"
|
63
|
-
]
|
64
|
-
},
|
65
|
-
{
|
66
|
-
"cell_type": "code",
|
67
|
-
"execution_count": null,
|
68
|
-
"id": "e322b3a6-89ea-4cce-bce4-45f53fefa439",
|
69
|
-
"metadata": {},
|
70
|
-
"outputs": [],
|
71
|
-
"source": [
|
72
|
-
"data['mean_x_squared'] = data['Scores - Mean_Scores']**2\n",
|
73
|
-
"data['mean_x2_squared'] = data['Hours - Mean_Hours']**2"
|
74
|
-
]
|
75
|
-
},
|
76
|
-
{
|
77
|
-
"cell_type": "code",
|
78
|
-
"execution_count": null,
|
79
|
-
"id": "86d7a11a-7c35-4c8e-881d-37861322cafe",
|
80
|
-
"metadata": {},
|
81
|
-
"outputs": [],
|
82
|
-
"source": [
|
83
|
-
"mean_x2 = data['mean_x2_squared'].mean()\n",
|
84
|
-
"mean_x2"
|
85
|
-
]
|
86
|
-
},
|
87
|
-
{
|
88
|
-
"cell_type": "code",
|
89
|
-
"execution_count": null,
|
90
|
-
"id": "107dba29-8e26-4b9d-8ec7-179999a025a1",
|
91
|
-
"metadata": {},
|
92
|
-
"outputs": [],
|
93
|
-
"source": [
|
94
|
-
"slope = mean3/mean_x2\n",
|
95
|
-
"slope"
|
96
|
-
]
|
97
|
-
},
|
98
|
-
{
|
99
|
-
"cell_type": "code",
|
100
|
-
"execution_count": null,
|
101
|
-
"id": "77514aa2-58be-4c7d-aebc-2cfd1f9e2474",
|
102
|
-
"metadata": {},
|
103
|
-
"outputs": [],
|
104
|
-
"source": [
|
105
|
-
"c = mean2 - (slope*mean1)\n",
|
106
|
-
"c"
|
107
|
-
]
|
108
|
-
},
|
109
|
-
{
|
110
|
-
"cell_type": "code",
|
111
|
-
"execution_count": null,
|
112
|
-
"id": "f991039c-5805-430d-952e-9012b8f4c783",
|
113
|
-
"metadata": {},
|
114
|
-
"outputs": [],
|
115
|
-
"source": [
|
116
|
-
"import numpy as np\n",
|
117
|
-
"z = (slope*(data['Hours'].astype(float))) + c\n",
|
118
|
-
"data[\"y\"] = 1/(1+np.exp(-z))\n",
|
119
|
-
"data.to_csv('score_updated.csv', index = False)\n",
|
120
|
-
"data.head()"
|
121
|
-
]
|
122
|
-
}
|
123
|
-
],
|
124
|
-
"metadata": {
|
125
|
-
"kernelspec": {
|
126
|
-
"display_name": "Python 3 (ipykernel)",
|
127
|
-
"language": "python",
|
128
|
-
"name": "python3"
|
129
|
-
},
|
130
|
-
"language_info": {
|
131
|
-
"codemirror_mode": {
|
132
|
-
"name": "ipython",
|
133
|
-
"version": 3
|
134
|
-
},
|
135
|
-
"file_extension": ".py",
|
136
|
-
"mimetype": "text/x-python",
|
137
|
-
"name": "python",
|
138
|
-
"nbconvert_exporter": "python",
|
139
|
-
"pygments_lexer": "ipython3",
|
140
|
-
"version": "3.12.4"
|
141
|
-
}
|
142
|
-
},
|
143
|
-
"nbformat": 4,
|
144
|
-
"nbformat_minor": 5
|
145
|
-
}
|