noshot 0.1.7__py3-none-any.whl → 0.1.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/ML TS XAI/ML/1. PCA - EDA/PCA-EDA.ipynb +207 -0
- noshot/data/ML TS XAI/ML/1. PCA - EDA/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/1. PCA - EDA/input.txt +625 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/KNN.ipynb +287 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/input.txt +625 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/LDA.ipynb +83 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/input.txt +625 -0
- noshot/data/ML TS XAI/ML/4. Linear Regression/Linear-Regression.ipynb +117 -0
- noshot/data/ML TS XAI/ML/4. Linear Regression/machine-data.csv +210 -0
- noshot/data/ML TS XAI/ML/5. Logistic Regression/Logistic-Regression.ipynb +137 -0
- noshot/data/ML TS XAI/ML/5. Logistic Regression/wine-dataset.csv +179 -0
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier/Bayesian.ipynb +129 -0
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier/wine-dataset.csv +179 -0
- noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/Handling TS Data.ipynb +784 -0
- noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/raw_sales.csv +29581 -0
- noshot/data/ML TS XAI/TS/2. Feature Engineering/Feature Engineering-.ipynb +1445 -0
- noshot/data/ML TS XAI/TS/3. Temporal Relationships/Exploring Temporal Relationships.ipynb +603 -0
- noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/Up-Down-Sampling.ipynb +721 -0
- noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/shampoo_sales.csv +37 -0
- noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/Stationarity-Trend-Seasonality.ipynb +392 -0
- noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-min-temperatures.csv +3651 -0
- noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-total-female-births.csv +366 -0
- noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/ACF-PACF.ipynb +175 -0
- noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/daily-min-temperatures.csv +3651 -0
- {noshot-0.1.7.dist-info → noshot-0.1.9.dist-info}/METADATA +2 -2
- noshot-0.1.9.dist-info/RECORD +35 -0
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(A) Breadth First Search.ipynb +0 -112
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(B) Depth First Search.ipynb +0 -111
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(C) Uniform Cost Search.ipynb +0 -134
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(D) Depth Limites Search.ipynb +0 -115
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(E) Iterative Deepening DFS.ipynb +0 -123
- noshot/data/ML TS XAI/AIDS/10. ANOVA/2_ANOVA.csv +0 -769
- noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA (Repeated Measure).ipynb +0 -126
- noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA.ipynb +0 -134
- noshot/data/ML TS XAI/AIDS/10. ANOVA/Sample 1 Way ANOVA Test.ipynb +0 -119
- noshot/data/ML TS XAI/AIDS/10. ANOVA/Two Way ANOVA.ipynb +0 -138
- noshot/data/ML TS XAI/AIDS/10. ANOVA/reaction_time.csv +0 -5
- noshot/data/ML TS XAI/AIDS/10. ANOVA/sample_data.csv +0 -16
- noshot/data/ML TS XAI/AIDS/10. ANOVA/sleep_deprivation.csv +0 -4
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/3_Linear.csv +0 -4802
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression LAB.ipynb +0 -113
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression New- sklearn.ipynb +0 -118
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression.ipynb +0 -148
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/house_rate.csv +0 -22
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression New- sklearn.ipynb +0 -128
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression.ipynb +0 -145
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/default.csv +0 -1001
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/hours_scores_records.csv +0 -101
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(A) Astar.ipynb +0 -256
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(B) IDAstar.ipynb +0 -157
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(C) SMAstar.ipynb +0 -178
- noshot/data/ML TS XAI/AIDS/3. Genetic Algorithm/Genetic.ipynb +0 -95
- noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Simulated Annealing.ipynb +0 -74
- noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Sudoku Simulated Annealing.ipynb +0 -103
- noshot/data/ML TS XAI/AIDS/5. Alpha Beta Pruning/AlphaBetaPruning.ipynb +0 -182
- noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(A) CSP House Allocation.ipynb +0 -120
- noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(B) CSP Map Coloring.ipynb +0 -125
- noshot/data/ML TS XAI/AIDS/7. Random Sampling/Random Sampling.ipynb +0 -73
- noshot/data/ML TS XAI/AIDS/7. Random Sampling/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test Hash Function.ipynb +0 -141
- noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test.ipynb +0 -151
- noshot/data/ML TS XAI/AIDS/8. Z Test/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/9. T Test/1_heart.csv +0 -304
- noshot/data/ML TS XAI/AIDS/9. T Test/Independent T Test.ipynb +0 -119
- noshot/data/ML TS XAI/AIDS/9. T Test/Paired T Test.ipynb +0 -118
- noshot/data/ML TS XAI/AIDS/9. T Test/T Test Hash Function.ipynb +0 -142
- noshot/data/ML TS XAI/AIDS/9. T Test/T Test.ipynb +0 -158
- noshot/data/ML TS XAI/AIDS/9. T Test/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/9. T Test/iq_test.csv +0 -0
- noshot/data/ML TS XAI/AIDS/Others (AllinOne)/All In One.ipynb +0 -4581
- noshot/data/ML TS XAI/CN/1. Chat Application/chat.java +0 -81
- noshot/data/ML TS XAI/CN/1. Chat Application/output.png +0 -0
- noshot/data/ML TS XAI/CN/1. Chat Application/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/LAN.tcl +0 -65
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/analysis.awk +0 -44
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/output.png +0 -0
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/complexdcf.tcl +0 -229
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/output.png +0 -0
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/2. File Transfer/file_to_send.txt +0 -2
- noshot/data/ML TS XAI/CN/2. File Transfer/filetransfer.java +0 -119
- noshot/data/ML TS XAI/CN/2. File Transfer/output.png +0 -0
- noshot/data/ML TS XAI/CN/2. File Transfer/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Client.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerImpl.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerIntf.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Server.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/output.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/rmi.java +0 -56
- noshot/data/ML TS XAI/CN/4. Wired Network/output.png +0 -0
- noshot/data/ML TS XAI/CN/4. Wired Network/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/4. Wired Network/wired.awk +0 -25
- noshot/data/ML TS XAI/CN/4. Wired Network/wired.tcl +0 -81
- noshot/data/ML TS XAI/CN/5. Wireless Network/output.png +0 -0
- noshot/data/ML TS XAI/CN/5. Wireless Network/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.awk +0 -27
- noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.tcl +0 -153
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/analysis.awk +0 -27
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/sack.tcl +0 -86
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/vegas.tcl +0 -86
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/analysis.awk +0 -28
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/reno.tcl +0 -78
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/tahoe.tcl +0 -79
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/analysis.awk +0 -27
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/flow.tcl +0 -163
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/DV.tcl +0 -111
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/LS.tcl +0 -106
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/analysis.awk +0 -36
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/output.png +0 -0
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/analysis.awk +0 -20
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/broadcast.tcl +0 -76
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/multicast.tcl +0 -103
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/output.png +0 -0
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/9. DHCP/DHCP.java +0 -125
- noshot/data/ML TS XAI/CN/9. DHCP/output.png +0 -0
- noshot/data/ML TS XAI/CN/9. DHCP/procedure.png +0 -0
- noshot/data/ML TS XAI/NLP/NLP 1/1-Prereqs.py +0 -18
- noshot/data/ML TS XAI/NLP/NLP 1/2-Chi2test.py +0 -83
- noshot/data/ML TS XAI/NLP/NLP 1/2-T-test.py +0 -79
- noshot/data/ML TS XAI/NLP/NLP 1/3-WSD-nb.py +0 -53
- noshot/data/ML TS XAI/NLP/NLP 1/4-Hindle-Rooth.py +0 -53
- noshot/data/ML TS XAI/NLP/NLP 1/5-HMM-Trellis.py +0 -82
- noshot/data/ML TS XAI/NLP/NLP 1/6-HMM-Viterbi.py +0 -16
- noshot/data/ML TS XAI/NLP/NLP 1/7-PCFG-parsetree.py +0 -15
- noshot/data/ML TS XAI/NLP/NLP 1/Chi2test.ipynb +0 -285
- noshot/data/ML TS XAI/NLP/NLP 1/Hindle-Rooth.ipynb +0 -179
- noshot/data/ML TS XAI/NLP/NLP 1/Lab 10 - Text generator using LSTM.ipynb +0 -1461
- noshot/data/ML TS XAI/NLP/NLP 1/Lab 11 NMT.ipynb +0 -2307
- noshot/data/ML TS XAI/NLP/NLP 1/PCFG.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 1/Prereqs.ipynb +0 -131
- noshot/data/ML TS XAI/NLP/NLP 1/T test.ipynb +0 -252
- noshot/data/ML TS XAI/NLP/NLP 1/TFIDF BOW.ipynb +0 -171
- noshot/data/ML TS XAI/NLP/NLP 1/Trellis.ipynb +0 -244
- noshot/data/ML TS XAI/NLP/NLP 1/WSD.ipynb +0 -645
- noshot/data/ML TS XAI/NLP/NLP 1/Word2Vec.ipynb +0 -93
- noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/tokenizer.ipynb +0 -370
- noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/training_tokenizer.txt +0 -6
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/exp0.ipynb +0 -274
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/lab2.ipynb +0 -905
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/test.txt +0 -1
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/tokenizing.ipynb +0 -272
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/collocation.ipynb +0 -332
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/lab3.ipynb +0 -549
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/nlp.txt +0 -1
- noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/Lab4-NLP-Exp-2.ipynb +0 -817
- noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/collocation.ipynb +0 -332
- noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/NLP-Lab-5-Exp3.ipynb +0 -231
- noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/word-sense-disambiguation.ipynb +0 -507
- noshot/data/ML TS XAI/NLP/NLP 2/Lab06(additional-exercise)/lab6.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP Exp 4.ipynb +0 -255
- noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP_Exp_5.ipynb +0 -159
- noshot/data/ML TS XAI/NLP/NLP 2/Lab08(PCFG)/PCFG.ipynb +0 -282
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/Lab 9 - MLP classifier.ipynb +0 -670
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/MLP-alternative-code.ipynb +0 -613
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/hindle-rooth-algorithm.ipynb +0 -74
- noshot/data/ML TS XAI/NLP/NLP 2/Lab10(LSTM)/Lab_10_Text_generator_using_LSTM.ipynb +0 -480
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Machine-translation.ipynb +0 -445
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Viterbi-PCFG.ipynb +0 -105
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/corpora_tools.py +0 -87
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/data_utils.py +0 -11
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/train_translator.py +0 -83
- noshot/data/ML TS XAI/NLP/NLP 2/Lab12(Information-Extraction)/Information_Extraction.ipynb +0 -201
- noshot/data/ML TS XAI/NLP/NLP 3/Backtrack-without-Verbitri.ipynb +0 -185
- noshot/data/ML TS XAI/NLP/NLP 3/Backward-Procedure.ipynb +0 -597
- noshot/data/ML TS XAI/NLP/NLP 3/Bag_of.ipynb +0 -1422
- noshot/data/ML TS XAI/NLP/NLP 3/CYK-algorithm.ipynb +0 -1067
- noshot/data/ML TS XAI/NLP/NLP 3/Forward-Procedure.ipynb +0 -477
- noshot/data/ML TS XAI/NLP/NLP 3/LSTM.ipynb +0 -1290
- noshot/data/ML TS XAI/NLP/NLP 3/Lab 10 - Text generator using LSTM.ipynb +0 -1461
- noshot/data/ML TS XAI/NLP/NLP 3/Lab 11 NMT.ipynb +0 -2307
- noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-4.ipynb +0 -216
- noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-5.ipynb +0 -216
- noshot/data/ML TS XAI/NLP/NLP 3/abc.txt +0 -6
- noshot/data/ML TS XAI/NLP/NLP 3/ex-1-nltk.ipynb +0 -711
- noshot/data/ML TS XAI/NLP/NLP 3/ex-2-nlp.ipynb +0 -267
- noshot/data/ML TS XAI/NLP/NLP 3/exp8&9.ipynb +0 -305
- noshot/data/ML TS XAI/NLP/NLP 3/hind.ipynb +0 -287
- noshot/data/ML TS XAI/NLP/NLP 3/lab66.ipynb +0 -752
- noshot/data/ML TS XAI/NLP/NLP 3/leb_3.ipynb +0 -612
- noshot/data/ML TS XAI/NLP/NLP 3/naive_bayes_classifier.pkl +0 -0
- noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_1.ipynb +0 -3008
- noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_2.ipynb +0 -3095
- noshot/data/ML TS XAI/NLP/NLP 3/nlplab-9.ipynb +0 -295
- noshot/data/ML TS XAI/NLP/NLP 3/nltk-ex-4.ipynb +0 -506
- noshot/data/ML TS XAI/NLP/NLP 3/text1.txt +0 -48
- noshot/data/ML TS XAI/NLP/NLP 3/text2.txt +0 -8
- noshot/data/ML TS XAI/NLP/NLP 3/text3.txt +0 -48
- noshot/data/ML TS XAI/NLP/NLP 3/translation-rnn.ipynb +0 -812
- noshot/data/ML TS XAI/NLP/NLP 3/word2vector.ipynb +0 -173
- noshot/data/ML TS XAI/NLP/NLP 4/Backward Procedure Algorithm.ipynb +0 -179
- noshot/data/ML TS XAI/NLP/NLP 4/Chi Square Collocation.ipynb +0 -208
- noshot/data/ML TS XAI/NLP/NLP 4/Collocation (T test).ipynb +0 -188
- noshot/data/ML TS XAI/NLP/NLP 4/Experiment 1.ipynb +0 -437
- noshot/data/ML TS XAI/NLP/NLP 4/Forward Procedure Algorithm.ipynb +0 -132
- noshot/data/ML TS XAI/NLP/NLP 4/Hindle Rooth.ipynb +0 -414
- noshot/data/ML TS XAI/NLP/NLP 4/MachineTranslation.ipynb +0 -368
- noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using MLPClassifier.ipynb +0 -86
- noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using Tensorflow.ipynb +0 -112
- noshot/data/ML TS XAI/NLP/NLP 4/PCFG Inside Probability.ipynb +0 -451
- noshot/data/ML TS XAI/NLP/NLP 4/Text Generation using LSTM.ipynb +0 -297
- noshot/data/ML TS XAI/NLP/NLP 4/Viterbi.ipynb +0 -310
- noshot/data/ML TS XAI/NLP/NLP 4/Word Sense Disambiguation.ipynb +0 -335
- noshot/data/ML TS XAI/NLP/NLP 5/10.Text Generation using LSTM.ipynb +0 -316
- noshot/data/ML TS XAI/NLP/NLP 5/11.Machine Translation.ipynb +0 -868
- noshot/data/ML TS XAI/NLP/NLP 5/2.T and Chi2 Test.ipynb +0 -204
- noshot/data/ML TS XAI/NLP/NLP 5/3.Word Sense Diambiguation.ipynb +0 -234
- noshot/data/ML TS XAI/NLP/NLP 5/4.Hinddle and Rooth.ipynb +0 -128
- noshot/data/ML TS XAI/NLP/NLP 5/5.Forward and Backward.ipynb +0 -149
- noshot/data/ML TS XAI/NLP/NLP 5/6.Viterbi.ipynb +0 -111
- noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG Parse Tree.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG using cyk.ipynb +0 -101
- noshot/data/ML TS XAI/NLP/NLP 5/8.Bag of words and TF-IDF.ipynb +0 -310
- noshot/data/ML TS XAI/NLP/NLP 5/9.Word2Vector.ipynb +0 -78
- noshot/data/ML TS XAI/NLP/NLP 5/NLP ALL In One.ipynb +0 -2619
- noshot/data/ML TS XAI/NLP/NLP 5/sample1.txt +0 -15
- noshot/data/ML TS XAI/NLP/NLP 5/sample2.txt +0 -4
- noshot/data/ML TS XAI/NLP/NLP 5/word2vec_model.bin +0 -0
- noshot/data/ML TS XAI/NLP/NLP 6/1. Tokenize, Tagging, NER, Parse Tree.ipynb +0 -312
- noshot/data/ML TS XAI/NLP/NLP 6/2. T Test and Chi2 Test.ipynb +0 -185
- noshot/data/ML TS XAI/NLP/NLP 6/3. Naive Bayes WSD.ipynb +0 -199
- noshot/data/ML TS XAI/NLP/NLP 6/4. Hinddle and Rooth.ipynb +0 -151
- noshot/data/ML TS XAI/NLP/NLP 6/5 and 6 FWD, BWD, Viterbi.ipynb +0 -164
- noshot/data/ML TS XAI/NLP/NLP 6/7. PCFG using CYK.ipynb +0 -383
- noshot/data/ML TS XAI/NLP/NLP 6/8. BOW and TF-IDF.ipynb +0 -252
- noshot/data/ML TS XAI/Ubuntu CN Lab.iso +0 -0
- noshot-0.1.7.dist-info/RECORD +0 -216
- {noshot-0.1.7.dist-info → noshot-0.1.9.dist-info}/LICENSE.txt +0 -0
- {noshot-0.1.7.dist-info → noshot-0.1.9.dist-info}/WHEEL +0 -0
- {noshot-0.1.7.dist-info → noshot-0.1.9.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,175 @@
|
|
1
|
+
{
|
2
|
+
"cells": [
|
3
|
+
{
|
4
|
+
"cell_type": "code",
|
5
|
+
"execution_count": 14,
|
6
|
+
"id": "97b25ae4-1eb7-4599-bad4-e959bbb9a275",
|
7
|
+
"metadata": {},
|
8
|
+
"outputs": [],
|
9
|
+
"source": [
|
10
|
+
"import pandas as pd\n",
|
11
|
+
"import numpy as np\n",
|
12
|
+
"import matplotlib.pyplot as plt\n",
|
13
|
+
"from statsmodels.graphics.tsaplots import plot_acf, plot_pacf"
|
14
|
+
]
|
15
|
+
},
|
16
|
+
{
|
17
|
+
"cell_type": "code",
|
18
|
+
"execution_count": 9,
|
19
|
+
"id": "f70584ab-aa4d-4957-9315-3e884f66c559",
|
20
|
+
"metadata": {},
|
21
|
+
"outputs": [
|
22
|
+
{
|
23
|
+
"name": "stdout",
|
24
|
+
"output_type": "stream",
|
25
|
+
"text": [
|
26
|
+
"(3650, 2)\n"
|
27
|
+
]
|
28
|
+
},
|
29
|
+
{
|
30
|
+
"data": {
|
31
|
+
"text/html": [
|
32
|
+
"<div>\n",
|
33
|
+
"<style scoped>\n",
|
34
|
+
" .dataframe tbody tr th:only-of-type {\n",
|
35
|
+
" vertical-align: middle;\n",
|
36
|
+
" }\n",
|
37
|
+
"\n",
|
38
|
+
" .dataframe tbody tr th {\n",
|
39
|
+
" vertical-align: top;\n",
|
40
|
+
" }\n",
|
41
|
+
"\n",
|
42
|
+
" .dataframe thead th {\n",
|
43
|
+
" text-align: right;\n",
|
44
|
+
" }\n",
|
45
|
+
"</style>\n",
|
46
|
+
"<table border=\"1\" class=\"dataframe\">\n",
|
47
|
+
" <thead>\n",
|
48
|
+
" <tr style=\"text-align: right;\">\n",
|
49
|
+
" <th></th>\n",
|
50
|
+
" <th>Date</th>\n",
|
51
|
+
" <th>Temp</th>\n",
|
52
|
+
" </tr>\n",
|
53
|
+
" </thead>\n",
|
54
|
+
" <tbody>\n",
|
55
|
+
" <tr>\n",
|
56
|
+
" <th>0</th>\n",
|
57
|
+
" <td>1981-01-01</td>\n",
|
58
|
+
" <td>20.7</td>\n",
|
59
|
+
" </tr>\n",
|
60
|
+
" <tr>\n",
|
61
|
+
" <th>1</th>\n",
|
62
|
+
" <td>1981-01-02</td>\n",
|
63
|
+
" <td>17.9</td>\n",
|
64
|
+
" </tr>\n",
|
65
|
+
" <tr>\n",
|
66
|
+
" <th>2</th>\n",
|
67
|
+
" <td>1981-01-03</td>\n",
|
68
|
+
" <td>18.8</td>\n",
|
69
|
+
" </tr>\n",
|
70
|
+
" <tr>\n",
|
71
|
+
" <th>3</th>\n",
|
72
|
+
" <td>1981-01-04</td>\n",
|
73
|
+
" <td>14.6</td>\n",
|
74
|
+
" </tr>\n",
|
75
|
+
" <tr>\n",
|
76
|
+
" <th>4</th>\n",
|
77
|
+
" <td>1981-01-05</td>\n",
|
78
|
+
" <td>15.8</td>\n",
|
79
|
+
" </tr>\n",
|
80
|
+
" </tbody>\n",
|
81
|
+
"</table>\n",
|
82
|
+
"</div>"
|
83
|
+
],
|
84
|
+
"text/plain": [
|
85
|
+
" Date Temp\n",
|
86
|
+
"0 1981-01-01 20.7\n",
|
87
|
+
"1 1981-01-02 17.9\n",
|
88
|
+
"2 1981-01-03 18.8\n",
|
89
|
+
"3 1981-01-04 14.6\n",
|
90
|
+
"4 1981-01-05 15.8"
|
91
|
+
]
|
92
|
+
},
|
93
|
+
"execution_count": 9,
|
94
|
+
"metadata": {},
|
95
|
+
"output_type": "execute_result"
|
96
|
+
}
|
97
|
+
],
|
98
|
+
"source": [
|
99
|
+
"df = pd.read_csv('daily-min-temperatures.csv')\n",
|
100
|
+
"print(df.shape)\n",
|
101
|
+
"df.head()"
|
102
|
+
]
|
103
|
+
},
|
104
|
+
{
|
105
|
+
"cell_type": "code",
|
106
|
+
"execution_count": 27,
|
107
|
+
"id": "b6574dd0-e010-423b-bb26-ba2ca142e848",
|
108
|
+
"metadata": {},
|
109
|
+
"outputs": [
|
110
|
+
{
|
111
|
+
"data": {
|
112
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIAAAAK7CAYAAACKxfQOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5gURf7G31nCkoNIFhFzFj09PXM4MSA/zKLiKYYzoKdnQD1zDphQwYiYFRVUBARBBAwgOSMZyZndZZfdZUP//sAZeno6VHVXp5n348PjTofq6uqK3/qGhKZpGgghhBBCCCGEEEJI1pIXdgYIIYQQQgghhBBCiL9QAEQIIYQQQgghhBCS5VAARAghhBBCCCGEEJLlUABECCGEEEIIIYQQkuVQAEQIIYQQQgghhBCS5VAARAghhBBCCCGEEJLlUABECCGEEEIIIYQQkuVQAEQIIYQQQgghhBCS5VAARAghhBBCCCGEEJLlUABECCGERJhHH30UiUTC1b3XXHMN9tprr7Rje+21F6655hrvGfuLRCKBRCJhmebjjz+eumb58uW2eRPl/fffz0gvziTLx+nf2LFjw85qaAwfPhyPPvpo2NkghBBCYk1C0zQt7EwQQgghxJxHH30Ujz32GNwM10uWLEFRURGOPPLI1LG99toLp556Kt5//30l+UskEmjYsCGqqqqwbt06NGzYMHVO0zTss88+2Lx5M4qKirBs2bKU0Mcsb6Js3LgRS5YswZFHHon8/Hwl7xEmEydOTPv9xBNP4KeffsKYMWPSjh988MFo1KhRkFmLDLfeeiv69u3rqh0QQgghZCc1w84AIYQQQvxhn332CeQ5Xbt2xaBBg/D555/jhhtuSB0fM2YMli1bhhtuuAHvvPOOsrw1b94czZs3d31/1DjuuOPSfjdv3hx5eXkZx7OJ7du3o169emFnIzL5IIQQQoKAJmCEEEJIRBg2bBg6duyI/Px8dOjQAS+88ILpdX379sXJJ5+MFi1aoH79+jjssMPw/PPPo6KiIu06JzOr4uJiNGnSBDfeeGPGueXLl6NGjRro3bu3Y74bN26MCy64AO+9917a8ffeew8nnHAC9t9//4x7zPKWSCRw66234qOPPsJBBx2EevXq4YgjjsDQoUPTrjMzATv11FNx6KGHYsKECTj++ONRt25d7LXXXhgwYACAnWV71FFHoV69ejjssMMwYsQIx/wA5iZ4yXwOGDAABxxwAOrWrYujjz4aEydOhKZp6N27Nzp06IAGDRrg9NNPx+LFi52K0JEdO3bgySefxIEHHoj8/Hw0b94cPXr0wMaNG9Ou22uvvXDeeedh6NChOPLII1G3bl0cdNBBqTJ8//33cdBBB6F+/fr4+9//jilTpmSUQ4MGDTB37lycccYZqF+/Ppo3b45bb70V27dvT7tW0zT069cPHTt2RN26ddG0aVNcfPHFWLp0adp1yW8zfvx4HH/88ahXrx6uvfZaAMDAgQPRqVMntG7dOpXX++67DyUlJWl56tu3b6rs9SaFy5cvRyKRMNVoSyQSaWZjyW85bdo0XHzxxWjatGlKECn6LoQQQkicoQCIEEIIiQA//vgjunbtioYNG+Lzzz9H79698cUXX6QEGHqWLFmCK664Ah999BGGDh2K6667Dr179zYV5NjRoEEDXHvttfjkk09QWFiYdq5fv36oXbt2aqHuxHXXXYeJEydi/vz5AICCggIMHjwY1113nVSehg0bhtdffx2PP/44Bg0ahN122w0XXHCB0EJ83bp16NGjB66//np8++23OOyww3Dttdfi8ccfx/33349evXph0KBBaNCgAc4//3ysWbNGKm96hg4dinfffRfPPvssPvvsM2zbtg2dO3fGXXfdhV9//RWvv/463n77bcybNw8XXXSRJ9Ol6upqdO3aFc8++yyuuOIKDBs2DM8++yxGjRqFU089FaWlpWnXz5w5E/fffz/uvfdeDB48GI0bN8aFF16IRx55BO+++y6efvrp1Dc/77zzMu6vqKjAueeeizPOOAPffPMNbr31Vrz11lu47LLL0q678cYbcccdd+Cf//wnvvnmG/Tr1w9z587F8ccfj/Xr16ddu3btWnTv3h1XXHEFhg8fjltuuQUAsGjRIpx77rno378/RowYgTvuuANffPEFunTpkrr3oYcewsUXXwwAmDBhQupf69atXZXnhRdeiH333Rdffvkl3nzzTel3IYQQQmKLRgghhJDQOfbYY7U2bdpopaWlqWNFRUXabrvtptkN11VVVVpFRYX24YcfajVq1NC2bNmSOnf11Vdr7du3T7u+ffv22tVXX536vWTJEi0vL097+eWXU8dKS0u1Zs2aaT169HDMNwCtZ8+eWnV1tdahQwft7rvv1jRN0/r27as1aNBA27Ztm9a7d28NgLZs2TLbvAHQWrZsqRUVFaWOrVu3TsvLy9OeeeaZ1LEBAwZkpHfKKadoALQpU6akjm3evFmrUaOGVrduXW316tWp4zNmzNAAaK+++qptfjRN0x555JGM8gegtWrVSisuLk4d++abbzQAWseOHbXq6urU8VdeeUUDoM2aNcuiBDO5+uqrtfr166d+f/bZZxoAbdCgQWnXTZ48WQOg9evXL3Wsffv2Wt26dbVVq1ZlvG/r1q21kpKSjDwPGTIk7dkAtD59+qQ966mnntIAaL/88oumaZo2YcIEDYD24osvpl23cuVKrW7dulqvXr1Sx5Lf5scff7R97+rqaq2iokIbN26cBkCbOXNm6lzPnj1N28GyZcs0ANqAAQMyzgHQHnnkkdTv5Ld8+OGH066TeRdCCCEkzlADiBBCCAmZkpISTJ48GRdeeCHq1KmTOt6wYcM0TYgk06dPx//93/+hWbNmqFGjBmrVqoV//etfqKqqwsKFC6Wevffee+O8885Dv379Uloqn376KTZv3oxbb71VOJ1kJLCPPvoIlZWV6N+/Py699FI0aNBAKj+nnXZamiPpli1bokWLFvjzzz8d723dujX+9re/pX7vtttuaNGiBTp27Ig2bdqkjh900EEAIJSmXT7r16+fkeY555yTZjKm4llDhw5FkyZN0KVLF1RWVqb+dezYEa1atcqIDtaxY0e0bds2Iw+nnnpqmr8bu7xdeeWVab+vuOIKAMBPP/2UylMikUD37t3T8tSqVSscccQRGXlq2rQpTj/99IznLF26FFdccQVatWqVqsunnHIKAKS0yVRz0UUXpf2WfRdCCCEkrtAJNCGEEBIyW7duRXV1NVq1apVxznhsxYoVOOmkk3DAAQegT58+2GuvvVCnTh1MmjQJPXv2zDDnEeH222/HGWecgVGjRqFTp07o27cv/vGPf+Coo46SSqdHjx547LHH8PTTT2PatGl47bXXpPPSrFmzjGP5+flC77XbbrtlHKtdu3bG8dq1awMAysrKpPNn9axkmn48a/369SgoKEilZWTTpk1K81azZs2M75Csh5s3b07lSdM0tGzZ0jRPe++9d9pvM3Ot4uJinHTSSahTpw6efPJJ7L///qhXrx5WrlyJCy+80FVdFsGYF9l3IYQQQuIKBUCEEEJIyDRt2hSJRALr1q3LOGc89s0336CkpASDBw9G+/btU8dnzJjh+vmnn346Dj30ULz++uto0KABpk2bho8//lg6nXbt2uGf//wnHnvsMRxwwAE4/vjjXecpaOrUqYPy8vKM40bhShjsvvvuaNasWYbj6iR6jSkVVFZWYvPmzWlCoGQ9TB7bfffdkUgk8PPPPyM/Pz8jDeMxoyNtYGeUuDVr1mDs2LEprR9gp/8oUZIac8ZvlxRUmWHMi+y7EEIIIXGFAiBCCCEkZJIRmQYPHozevXunFrXbtm3Dd999l3ZtcvGqX5RqmpYRZl2W//znP7jppptQWFiIli1b4pJLLnGVzl133YW6deu6vj8s9tprL2zYsAHr169PaYLs2LEDI0eODDlnwHnnnYfPP/8cVVVVOPbYYwN55ieffIL//Oc/qd+ffvopgJ1mZMk8Pfvss1i9ejUuvfRSV88wq8sA8NZbb2Vcm7ymtLQUdevWTR1v2bIl6tSpg1mzZqVd/+233wrnQ8W7EEIIIXGAAiBCCCEkAjzxxBM4++yzceaZZ+Kuu+5CVVUVnnvuOdSvXx9btmxJXXfmmWeidu3auPzyy9GrVy+UlZXhjTfewNatWz09v3v37rj//vsxfvx4PPjgg5bmRk506tQJnTp18pSXMLjsssvw8MMPo1u3brjnnntQVlaGV199FVVVVWFnDd26dcMnn3yCc889F7fffjv+/ve/o1atWli1ahV++ukndO3aFRdccIGy59WuXRsvvvgiiouLccwxx+C3337Dk08+iXPOOQcnnngiAOCEE07Av//9b/To0QNTpkzBySefjPr162Pt2rX45ZdfcNhhh+Hmm2+2fc7xxx+Ppk2b4qabbsIjjzyCWrVq4ZNPPsHMmTMzrj3ssMMAAM899xzOOecc1KhRA4cffjhq166N7t2747333sM+++yDI444ApMmTUoJrERQ8S6EEEJIHKATaEIIISQCnHnmmfjmm29QVFSEyy67DHfeeScuuuiijDDsBx54IAYNGoStW7fiwgsvxG233YaOHTvi1Vdf9fT8unXrokuXLqhZsyZuuukmT2nFkQ4dOuDbb79FQUEBLr74Ytxzzz245JJL8K9//SvsrKFGjRoYMmQI/ve//2Hw4MG44IILcP755+PZZ59FnTp1UsIRVdSqVQtDhw7FqFGj0LVrV7z66qu44YYb8OWXX6Zd99Zbb+H111/H+PHj0a1bN3Tu3BkPP/wwSkpK8Pe//93xOc2aNcOwYcNQr149dO/eHddeey0aNGiAgQMHZlx7xRVX4Prrr0e/fv3wj3/8A8cccwzWrFkDAHjxxRfRvXt3PP/88+jatSsmTJiAoUOHSr2z13chhBBC4kBCS4b8IIQQQkjOsmPHDuy111448cQT8cUXX4SdHRIS11xzDb766isUFxeHnRVCCCGEKIYmYIQQQkgOs3HjRixYsAADBgzA+vXrcd9994WdJUIIIYQQ4gMUABFCCCE5zLBhw9CjRw+0bt0a/fr1kw79TgghhBBC4gFNwAghhBBCCCGEEEKyHDqBJoQQQgghhBBCCMlyKAAihBBCCCGEEEIIyXIoACKEEEIIIYQQQgjJcrLeCXR1dTXWrFmDhg0bIpFIhJ0dQgghhBBCCCGEECVomoZt27ahTZs2yMuz1/HJegHQmjVr0K5du7CzQQghhBBCCCGEEOILK1euxB577GF7TdYLgBo2bAhgZ2E0atQo5NwQQgghhBBCCCGEqKGoqAjt2rVLyT7syHoBUNLsq1GjRhQAEUIIIYQQQgghJOsQcXlDJ9CEEEIIIYQQQgghWQ4FQIQQQgghhBBCCCFZDgVAhBBCCCGEEEIIIVkOBUCEEEIIIYQQQgghWQ4FQIQQQgghhBBCCCFZDgVAhBBCCCGEEEIIIVkOBUCEEEIIIYQQQgghWQ4FQIQQQgghhBBCCCFZDgVAhBBCCCGEEEIIIVkOBUCEEEIIIYQQQgghWQ4FQIQQQgghhBBCCCFZDgVAhBBCCCGEEEIIIVkOBUCEEEIIIYQQQgghWQ4FQIQQQgghhBBCCCFZDgVAhBBCCCGEEEIIIVkOBUCEEEIIIYQQQgghWQ4FQIQQQgghhBBCCCFZDgVAhBBCCCGEEEIIIVkOBUCEEEIIIYQQQgghWQ4FQIQQQgghhBBCCCFZDgVAhBBCCCGEEEIIIVkOBUCEEEIIIYQQQgghWQ4FQIQQQgghhBBCCCFZDgVAhPjIpu2bMHv97LCzQQghhBBCCCEkx6EAiBAfad67OQ5/83AKgQghhBBCCCGEhAoFQIQEwNjlY8POAiGEEEIIIYSQHIYCIEICIJFIhJ0FQgghhBBCCCE5DAVAhBBCCCGEEEIIIVkOBUCEEEIIIYQQQgghWQ4FQIQEQAI0ASOEEEIIIYQQEh4UABFCCCGEEEIIIYRkORQAERIAdAJNCCGEEEIIISRMKAAiJABoAkYIIYQQQgghJEwoACKEEEIIIYQQQgjJcigAIiQAaAJGCCGEEEIIISRMKAAihBBCCCGEEEIIyXIoACIkAOgDiBBCCCGEEEJImFAAREgA0ASMEEIIIYQQQkiYUABECCGEEEIIIYQQkuVQAEQIIYQQQgghhBCS5VAARAghhBBCCCGEEJLlUABESADQCTQhhBBCCCGEkDChAIiQAKATaEIIIYQQQgghYUIBECGEEEIIIYQQQkiWQwEQIQFAEzBCCCGEEEIIIWFCARAhhBBCCCGEEEJIlkMBECEBQB9AhBBCCCGEEELChAIgQjzy6NhHceZHZ6KiqsLyGpqAEUIIIYQQQggJEwqACPHIY+Mew+ilozFo/qCws0IIIYQQQgghhJgSqgDomWeewTHHHIOGDRuiRYsWOP/887FgwYK0a6655hokEom0f8cdd1xIOSbEmvLKcstzNAEjhBBCCCGEEBImoQqAxo0bh549e2LixIkYNWoUKisr0alTJ5SUlKRdd/bZZ2Pt2rWpf8OHDw8px4QQQgghhBBCCCHxo2aYDx8xYkTa7wEDBqBFixaYOnUqTj755NTx/Px8tGrVSijN8vJylJfv0sQoKipSk9kIMWTBEMzfOB+9TuiVoVnywm8vYJ+m++CCgy4IKXeEEEIIIYQQQgiJGpHyAVRYWAgA2G233dKOjx07Fi1atMD++++PG264ARs2bLBM45lnnkHjxo1T/9q1a+drnsOg6+ddcd+P9+HnFT+nHf991e+4Z9Q9uPCLC0PKWW6jQbM8RyfQhBBCCCGEEELCJDICIE3TcOedd+LEE0/EoYcemjp+zjnn4JNPPsGYMWPw4osvYvLkyTj99NPTtHz03H///SgsLEz9W7lyZVCvEDhrt61N+72ueF1IOSGEEEIIIYQQQkiUCdUETM+tt96KWbNm4Zdffkk7ftlll6X+PvTQQ3H00Uejffv2GDZsGC68MFPTJT8/H/n5+b7nN4rYaaCQcKETaEIIIYQQQgghYRIJAdBtt92GIUOGYPz48dhjjz1sr23dujXat2+PRYsWBZS76LJoC8uAEEIIIYQQQgghzoRqAqZpGm699VYMHjwYY8aMQYcOHRzv2bx5M1auXInWrVsHkMNo89BPD6X9pp+Z6MJvQwghhBBCCCEkTEIVAPXs2RMff/wxPv30UzRs2BDr1q3DunXrUFpaCgAoLi7G3XffjQkTJmD58uUYO3YsunTpgt133x0XXMAoV0ZoAhZdaAJGCCGEEEIIISRMQjUBe+ONNwAAp556atrxAQMG4JprrkGNGjUwe/ZsfPjhhygoKEDr1q1x2mmnYeDAgWjYsGEIOSaEEEIIIYQQQgiJH6EKgDTNXmOlbt26GDlyZEC5IcQbdvWZJmCEEEIIIYQQQsIkMmHgCSGEEEIIIYQQQog/UABEiCKMfn70GkH0AUQIIYQQQgghJEwoACJEEUYTMDrlJoQQQgghhBASFSgAIsQnnHxcEUIIIYQQQgghQUEBECE+odcAohNoQgghhBBCCCFhQgEQIYQQQgghhBBCSJZDAVAWQZOjaEEn0IQQFSzduhT/+vpfmLNhTthZIYQQQgghMYYCoJhDoU90oQkYIUQF5316Hj6a9RGOeeeYsLNCCCGEEEJiDAVAWQS1TKIFhXOEEBXM3zQfAFBWWRZyTgghhBBCSJyhACjm6LVMKHAIF2PY9zQNIArnCCGEEEIIIYSECAVAhPgEBXKEEEIIyUbWbFuDD2d+iPLK8rCzQgghRIKaYWeAeEPTNNC9TDQw+vmhDyBCCCGEZCNHvXUU1pesx8LNC/Hk6U+GnR1CCCGCUAOIEA8UlRel/s4wAWMUMEIIIYRkIetL1gMAhi0aFnJOCCGEyEABECEeOOG9EyzPGQVChBBCCCGEEEJIWFAAFHMoZAiXORvmWJ6jDyBCCCGEEBImKwtXck5KCElBARAhPkHhHCGEEEIICYv3Z7yPPV/ZEzcOvTHsrBBCIgIFQDFHL9GnwCFapPkAohNoQgghhGQZnN9EmwfHPAgAeGfaOyHnhBASFSgAIiQA6ASaEEIIIYQECTeHCSFGKACKOezYowu/DSGEEEIIIYSQqEABECE+QRMwQgghhGQz1HCONnT+TAgxQgFQzGHHHl2oAUQIIYQQQgghJCpQABQzKPCJLsZvk6YBxB0yQgghhBASINyMJIQYoQAoZhg7cnbs0UX/bWgCRgghhBBCCCEkTCgAIsQnqK1FCCGEkGyGG1zRhnNRQogRCoBiBjvy+EDtLEIIIYQQQgghUYECoJiRYQJGgVBk4bchhBBCCLFH0zT0ndQXv6z4JeysZB3cjCSEGKkZdgaIHBQqxAcOuoQQQggh9oxYPAK3fn8rAEB7hHMnlXDdQAgxQg2gmEEn0PFBP+jyOxFCCCGEZLJg84Kws0AIITkDBUBZBKX80YJCH0IIIYRkM4mEdyfQ1Vq1gpwQMzgXJYQYoQAoZhiFPBT6RJc0DSB+J0IIIYSQDDhHIoSQ4KAAKGZQkk8IIYQQQrIFzm39g8I1QogRCoBiRoYGEAfNyED/TIQQQgjJJRLwbgJGIQUhhAQHBUCE+ASdQBNCCCGE2MM5kn+wbAkhRigAihkZWibcNYkMxl0wDrqEEEIIyQb8dNRMJ9CEEBIcFADFDAp8ooudcI7fjRBCCCFxZO22tWjRuwX+O+K/vqTPOZJ/sGwJIUYoAIoZ1CqJD/xWhBBCCIk7L014CZtLN+OV31/xJX3Ol/yDZUsIMUIBUMygE+j4wF0XQgghhMQdv+eaNAEjhJDgoACIEJ/QT5goqCOEEEJItpFIMApYlGHZEkKMUAAUM+gEOrpkaGfx2xBCCCGE2MJNMkIICQ4KgGIGhQrxIU0DiN+NEEIIISQDmoD5B4VrhBAjNcPOAJEjQwOIZkaRQa8G/fOfP+PFCS+GmBtCCCGEEO/YbWIlQBMwQgiJExQAxQwOktFF/21Ofv/kEHNCCCGEEBIPuIHpH1w3EEKM0AQs5rBjjwec3BBCCCGEZMK5LCGEBAcFQDGDggRCCCGEEJItcG7rHyxbQogRCoBiRkakKXbssYC7W+Hx+6rfMXfD3LCzQQghhMQSu7mmijDwdALtH5x/EkKM0AdQzKDAhxBxNpRswHH9jwMAaI+w7RBCCCFRg0IK/+C6gRBihBpAhJCsZUXhirCzQEgsWVG4Apu3bw47G4SQLKRkRwkWbl6Y+k0hhX9QuEYIMUIBUMzIMAFjxx4LOLkJB7YPQuTZtH0T2r/SHrv33j3srBBCIo6bMPCH9DsEB7x+ACasnACAJmCEEBIkFADFDAoSCCGE+MmcDXPCzgIhJEKo3kz5s/BPAMBX877yJX2yC64bCCFGKACKGXQCHU84uQkHtg9C5OFuPCEkCKq0KgAcqwkhJEgoAIoZdoMkhQzBoqK8NU3jd/MRli0h8lAARAgJgmRfwz7HPzgPIoQYoQAo5lh17Ozw/UXTNJz8/snpxyR3sDRNw5kfnYlT3j+F38snuKtIiDxcjBFCgiDZ13AORAghwcEw8DGDg2Q0WFG4Ar+s+EX4ejNBREFZAX5c9iMAYM22NWjbqK2y/JGdsL0QIg/bDSFEj1+bKVXVNAHzG5YtIcQINYBihrEjt+rYj3nnGCkBBZFDxYCq32VPJOSjaBBn9N/JuKgdtWQU/v7O3zF7/eygs0VIpKEGECFEFC/zl5QPIAqdfYNlGw/+/d2/8a+v/xV2NkiOQAFQzBDtyKeunYoLBl7gc25yF9kB1el6N2FUiTN25d7p406YvGYyun7eNcAcERJ9KAAihARBygSMWiokhynZUYJ3pr2Dj2Z9hFVFq8LODskBKACKGRkaQDYL3O0V2/3ODiGRJk0DyEIbaNP2TYHmiZCoQwEQISQIkhpA7HP8Q7VwTdM03DLsFrw99W2l6eYy+vqfNIskxE/oAyiLaVG/RdhZyFpUDKj6NGgC5g96QY+maUgqWv284ueQckRI9OFijBCix26z0YsGM51Ax48flvyAN6a8AQD499/+HXJuCCFuoAZQzLAaJCesnICHxz4ccG6IKFRvDgerci8sKww4J4TEB/ZXhJAgoAmY/6gWrm0t26o0PUJI8FADKGZYOYE+/r3jM66lGqF/qBhQ9WnQB5D/UOOKEDGoAUQICYLkPJV9TnygthYh8YcaQDFia+lWvDXlLeHrk7bVJHw4YIaDVblT4EaINaKLsc/nfI5pa6f5nBtCSLbCKGD+Q+0qQogRagDFiMsHXY6RS0amHbMbNKkB5B9mA6p0ZDBqpPiOleNnljch1oj0Zb+s+AWXD7p85/WPcIFBSDZjJ0TwMp7SBCx+8FsREn+oARQjjMIfJ6gBRHKdNCfQnLQQIoReA6i8stz0mjkb5gSVHUJIlkIn0P7Dso0+nJ+SoKEAKObYdRq0qfYPswHVbhfMSWOIJkn+YNU+9OXNgZeQdPRt4s6Rd4aYE0JINkMfQP7jRxh4ohaWKQkaCoCyGJqABQs78OiREQaeEOKIfjHWb0q/EHNCCMlmUj6AuBETG/itnFlRuAJllWXC17NMSdBQABRzbH0A0QTMN2Q7a7PvRB9A/pPmA8jim1EwREg6IrvxbDeE5A5+tXf6ACLZxrS109D+lfbo+GZH4Xs4npKgoQAoi6EGUDSprK5ERVUFO/wA0JdxtVad8meiF7htr9geeL4IiTI0xyCE6LF1Au3BhD05T+V8KD7wW9kzcM5AAMCCzQuE76EAlAQNBUAxx67ToAaQf7gdADVNwwGvH4BWL7bCjqodntMj4hz37nFo/GxjbCvfluEDqP+0/iHmjJBoQQEQISQIkn0N+5z4QGGFergGIEFDAVAWwwE1OiQHzGqtGku3LsWW0i1YtGVRyLnKfvQTldkbZqO8qhzj/xyfYXJ3/XfXB501QiILJ6OEkCCgD6D4wfFBPaz/JGgoAIo5tj6AaALmG247a73ggSHK/YcTFULk4eZBsBTvKMYh/Q7B3T/cHXZWCJHGiw9DhoGPH/r56n6v7Ycnxj0RYm6yA9Z/EjQUAGUxFCoEi115Jzt3o08a4i8iYeAJIekIOYHm+KKM92e8j3kb5+HFCS+GnRVCTPFrgVpRVbEzffYnsWTxlsV4eOzDYWcj9rD+k6ChAIgQF5hG9ZKcIOkXWZT++wPLlRB5OBkNluQimJBco6KadT9ucF5lj5vxkxYBJGgoAIo57Cjihf57UQOIEBJFGAY+WDiOk1wlpQHE/oTkMPoxgG2BBAEFQDnASxNewtM/Px12NrIKswm7rQmYybk0DSAuAHzB0gTMg88CQrIdCqcJIUGQjIbKOVB84LdSDzWASNDUDDsDxBtOkuKyyjLc9cNdAIAeHXugdcPWQWQrJxGR2tMHULCYfZNEIkEfQITYwB3IYGF5k6jj16I0KQAi8YH9lXqoAUSChhpAWY4+ElhZZVmIOckuZDtoU59B7PB9x1RTy6Ksl2xZ4nd2CIkFdAIdLCxLEme8bKhQAEQINYBI8FAAFHPYUUQH2W+hF84Rf7AS9pgtcDu+1dHn3BASD6idSAgJAjqBjh9cd6iHG8IkaCgAIsQFMpolVvfRB5D/WJWr2fHiHcV+Z4eQWEAB0C4qqyvx6exPsbJwpW/P4ITfnpGLR2LKmimBPvPbP77FnA1zAn1mLpLyAcQ2QHIYagCRoKEPoJjDQTMeODmBJv4gowFECNkJJ6C7eO3313DnD3eido3aKH+w3JdnsLytWV6wHGd/cjYAQHskmHKasHICzh94fqDPjDp2c00vQRXoBDp+cN2hHmoAkaChBlAOwQFWHU4+fUTuS9MAYofvC1bfhAIgQqxhf7SLH5b+AIC+SsLiz4I/A3/mzPUzA39mrsJ2RQg1gEjwUAAUI8wc7bGjiA52iyazcxRChEMikeAClxCP5EobCuI9c6UsCTFSUUUfQHGD6w71UAOIBA0FQDHCjZotO2p/MPUBJKIBRB9AgUITMEJI1GH/Hy24AAuOZN1nmccHfiv1UAOIBA0FQDHCTahNdtTRhUII/5FxAk0IEYdtSB0cp6MF63YmdmXiJQw8IYQaQCR46AQ6BhSVF6GssgxVWmbYcKeOghMZfzD1AWRnAubgBJpq0P5g9Z0ofCOEiBDEGMpxOlpwARYcybJmG4gP/FbqoQYQCRpqAMWAKwdfiZYvtHR1Lycy/uDaBMzCCfTer+6N5355Tk3mSApLDSC2C0JIRGB/ZI2XCFNu4QIsOFjWhFADiAQPBUAxwE691mnw5ODqD7IdtIgT6Pt+vM9Tnog41AAixBucpKqD4zQhJC6w71cPNYBI0FAAFAO87ICxo/YHUw0ggbK2cgJN/MHsmyQSCQ6whNjA9kFyGc6bMvG7TFjm0eGp8U/hiDePQEFZgel5zl3V44cGUN9JfXFIv0Owumi1kvRIdkEBUAyw1QCS6Cg4wKrD1LeM5KKJg6j/WH0Tlj0hRASGgSfEnjDM9Ih/PPjTg5i1fhZen/R62FnJGfzQALr1+1sxb+M8WhcQUygAigGeNIC4k+sLsuVqFuqUQgj/YRh4QuRhVJ9g4TgdLfg9vLN221qc+8m5GLpwaNhZIS7Rz59WFK7AOZ+cgx+W/MD24QNGDaA5G+bg7I/PxqTVkzynXV5Z7jmNbGB98Xp0/rQzvvnjm7CzEgkoAIoBeQnrz+ToA0jXgXOXRh0iPn0c0+Ag6jtW34Q77oRYw74pWNgfRQt+D+/cMfIOfL/4e3T5rIvQ9exzoketGrVSf1/77bUYsXgEzvr4LG6gOeCm/zBqAJ318VkYuWQkjn33WM/54dpvJw+MeQDDFw3HBQMvCDsrkYACoBjgZTeWg6o/OIV1z7jeZECoqq5SmieSiVX97z+9f8A5yS4+mPEBHh/3OCqrK3HXyLvw3YLvws4SCZhcGVty5T0JscOuHZjNUdduW+tndkgA1K5RO/X3qqJVqb8pAFKPUQNozbY1IeYmO9latjXsLESKmmFngDhjJ711kjRzJ8sf3Ap06AQ6WKzK+MdlPwack+zimm+vAQBsKNmAvpP74qWJL0F7hH0NIW6gkMmaMMwR+T28I20mz7lq5KiVt0sDqErbNb/l3FU9fkYBo0n3TurVqhd2FiIFNYBiADWAoodZueoHSBE4iPoPJ5X+MnP9zLCzQEKCbUsdLMtowe8RPJyrRg+9BpB+g5PtQz1+RAFLQhOwndSrSQGQHgqAYoCqMPDstNUh6wOITqDDgWVMCPECx83cg8II77DdxB+9DyD9XIrzKvVQA8h/qAGUDgVAMcA2DLyTE2j416nkMqYaQJI+fTiI+g/rPCHycPEWLOynxLCql2WVZfhy7pcoKCsINkM6Jq2ehN9X/R7a8/2GfUL8qNaqpSMe6eexaRpAOg139lfq8VMDiOyEAqB0KACKAarU99ipqMPUB5CNCVjyevoACh+2A3WwLHMXLgLUwXbkjTtH3olLv7oUnT/trCQ92e9RVlmGY989Fsf1Pw7bK7YryUPcYf8QPv2n9ZeOeLSjakfqb5qABYevGkA0AQMA1K1VN+wsRIpQBUDPPPMMjjnmGDRs2BAtWrTA+eefjwULFqRdo2kaHn30UbRp0wZ169bFqaeeirlz54aU43CwDQMv4QSaA7I6qAEUD2RN9YgcnFgQ4h2OzWJYldOHMz8EAPy28jdfn2NFyY6S1N9F5UVK8hAnzMYBWSEBhQrq+X7x99L3lFeVp/7WC4BoAuYvvvoAogkYAKBm3q64V6zDIQuAxo0bh549e2LixIkYNWoUKisr0alTJ5SU7BpMn3/+ebz00kt4/fXXMXnyZLRq1Qpnnnkmtm3bFmLOg0WVE2gOsOpQIVhgB+Q/Kpx1E2vYp5BsJwjhDNuRGFblFLYALRcE4dJRvXy+nshjt5mcRK8BpF8w0wTMX7hZ7z81EjVSf8tu2GcjoYaBHzFiRNrvAQMGoEWLFpg6dSpOPvlkaJqGV155BQ888AAuvPBCAMAHH3yAli1b4tNPP8WNN94YRrYDxzYMvJMPIHYqviArWDBzAs3v4T+mpnrs+AkhEcJqLKiqrkJheSF2q7tbwDnKbSiQI9mIfgFshZWpl37Dku1DPbKb9ZqmYUvpFjSr18zx2lwQUItQI29X/a+orkhzcp6LRMoHUGFhIQBgt912TnaWLVuGdevWoVOnTqlr8vPzccopp+C338xVfcvLy1FUVJT2L+5QAyh6qBAsUAPIf8wWVix3dVCISYh3rMbmf370TzR7vhnmbZwXcI6iiVV/o3pu46Vfy8V5Fk1M4oF+AWyFVeAY/fyWcyj1yG4O9xzeE7v33h1DFgxxvJbtcyd6AWhldWWIOYkGkREAaZqGO++8EyeeeCIOPfRQAMC6desAAC1btky7tmXLlqlzRp555hk0btw49a9du3b+ZjwAbDWA6AMoFGQFC3QCHR1oAkaId3JloRvme45dPhYAMGD6gNDyEDb6+U9Q30L2OVxgZUIfQOFjnKeKaACl3a/7JjQB8xfZzfo3prwBAPjfj/9zvJYaQDvRC0ApAIqQAOjWW2/FrFmz8Nlnn2WcM1ZeTdMsK/T999+PwsLC1L+VK1f6kt8goQZQ9JCNAmYGTZH8h06gCZGHE/xgcSpvTuCDxZMGUJa2HWmBTpaWQ5wR8QFktWlMJ9D+ws16/6EGUDqh+gBKctttt2HIkCEYP3489thjj9TxVq1aAdipCdS6devU8Q0bNmRoBSXJz89Hfn6+vxkOGNsoYPQBFAp2UcDsJkpWNtXEH2gCRog/cDxRh9PimhomO7E0AaMT6MhBgVH0kDYBow8gVwRZl0WexfFjJ/qyogAoZA0gTdNw6623YvDgwRgzZgw6dOiQdr5Dhw5o1aoVRo0alTq2Y8cOjBs3Dscff3zQ2Q0NagBFDzvNErMOmYKIcKAGECHycKwgUSSqJmCExIFt5dvw93f+jj4T+1heY7VpnOYcmsI65XhZq906/FZ0/rSz5dyWAuqd6MuVAqCQNYB69uyJTz/9FN9++y0aNmyY8uvTuHFj1K1bF4lEAnfccQeefvpp7Lfffthvv/3w9NNPo169erjiiivCzHqgqGq87LTVYRcFzFYDiD6AAsVOU4sQYg7Hil0EEgaeJmCeiJLAJkp5CRP2IdGjSqvC5DWTMXnNZNx+3O2m11hGJNToBNpPvFhr9J3cFwAwafUkHLfHcRnnqQG0E2oApROqBtAbb7yBwsJCnHrqqWjdunXq38CBA1PX9OrVC3fccQduueUWHH300Vi9ejV++OEHNGzYMMScB4td45VyAs2JiTLsfACZagBREyUyXDvk2rCzkDWwT4kuczfMxfmfn4+Z62ZK3ysahpaowWtZllaUottX3fDp7E8V5SiaBGUCRuFFJnZlokJAyf5EPW7K1GrNQBMwf3GrAaS/tryyXGmesg1qAKUTqgaQSCVPJBJ49NFH8eijj/qfoYjiZXC1CulIvOHWB5AeCoD8hxMVkquc/uHp2FCyAaOXjkbx/4rDzg6xwVEDyGEHt+/kvhg4dyAGzh2IKw7LXu3oOPTnnGftJA7fimQismZgHVePWw0gEefc1ADaCTWA0olMFDBija0GkIwTaA7IypD1AWR2HwVA/sOJCslVNpRsAACUVJRI38t2s4ugx003z9tYstGHnMQH1d+IIcy9wz4kfNx8A5E1A+eu6nGrAaQ3zbOKREwT4p3o6y0FQBQAxQIvjVffIXBAVoesDyA6gQ4HTsz9hX1KdsJ2EyxOu7+cwO8kKI0E2bFZ//xc3G1X8c4cS6KBkAYQxwfluNUAqqiqSP1NDSB79GWsL7dchQKgGGAbBt6hI6bdrj+Y+gCqtvYBlLpP0iTv1xW/Zr1fBz/hpDI4yirLPN3/xdwvMP7P8YpyQ7wg0m4Wbl4YQE5yA0brtEa/eIlD2WTrmCP7XnH4ViQTEQ2gbK3jYeJ2DKio3iXIYIATe2gClg4FQDHAi/SWHYI/2Gn0mGoA2QiM7DhxwIm4cvCVmL52uotcEhIcz/z8jOt752+cj8u+ugynvH+KwhwRP3l3+rthZyEQAokC5qQBxB1cW5SbgFHY4SuicyQSLlbtgNrr6vFVA4gapADoBNoIBUAxwK7xbi3bimELh1meT9MAotReGXZRwETvkxlEl25dKnwt2QUnlf6iL99xf45znc6KwhUqskMUwXYTHmZlzwn8TqI6h4lqvsJEWojGMgyNaq0aIxaPwIaSDUKaKBwf1ONWA0gvyLD0AcQNBADUADISahQwIoZd4z3tg9Ns76UJmD/YRgETnMjITHi4AHAHJ5WEyMN2Eyz6/p1lb01Qcxgvz8nFeZbs/IR1PBhE6+LHsz7G1d9cjaZ1muL363/fdf9f32nR5kWpY+0bt+f38wHXGkA6E7AdVTtMr+H6YSdpPoCq6QOIGkAxwEvjpQaQP9hFATO9nk6gQyEXJ+NhwUlG9sAoSOFhqgHEHVxbwp7b5EL9V9kn5EJ5xYkhC4YA2GlRYNaW1hWvS/29X7P9OHf1AbcaQMU7ilN/l1eWm17D8WMn9LWXDgVAMcBL46UGkD/IRgEzu4+DqP+EvTDIdnI9+g3ZSTa3s8DDwGdxWXolqLLx8hx+v52IBsNIHeP8VDmqwsCnRRPWNH4rH3CrAaSnvMpCAMTNOQDsY4xQABQD7KKAOcEw8P5gpwEkOrkR8RmUhItrQkhQcKwIFqdIV7k8gU8zjwvIJ4mXMPBxXGRUVFV4juJohBpA8cEqOm3yb72/FO2v/0SoqKpAaUWpolxmNyr6EG4q73TFsb1iu+k52SjM2Q4FQDFAmQkYB11luN3B0l8jE6EtlxcAXmCdDw4vdZSDcbSgCVh4sC2kIzSuRsgELOy8yKJpGvZ8ZU80ebaJpQlJIPmIWbllK6YaQNXpGkCigoZ9Xt0HDZ9pSCGQACr6EKu+Mpc2kDu+1RH1n66PgrKCjHNmdTuXoQAoBqgKA88BVh0qdrcorfcf1vngyKVJRrZjbDe5PFkKog9x0nJh29pJYCZgOeYEel3xOpRXlWPJ1iWW19iVvWz95LgcXZw0gADxOr6yaCWqtCrM2TBHXQazFD81gHJpAzlZ18b/OT7jHDWA0qEAKAZQAyh6mGoACdi866/5bM5nws/jAsAdrPPB4aWfYv2ONk7Cak6m/CWXJvBGREzAwibOCwu/zNds50MR/Y7ZhptydvQBZGECxm/qDRUaQJYCoBycX5m5TqEGUDoUAMUAZU6gYzYxiTJmnUfyGMuZZDN+qBmzzUQL4zd2+j6cTKmDbSF8PDmBjllbUJFfMwGlaDAMlfkg7rASPiT/FjEBY7/lDRWCWH6DXdRI1Mg4FmdBvR9QABQDqAEUPaQ1gFj2ocBOPjhyWUtBJZqmodtX3XDHiDt8Sf/F317EPz/8p61fBpqABYujE+gc3ME1I6r9eax9APm0KJKZD7F/8QfR72l1XfK7iJiA8Rt6w1cNoBycm9XIMxEAsY6mQQFQDKAGUPSw1QDyIfpFLnbgKmCH7y8sX/XM3jAbA+cORJ/f+/iS/t2j7saPy37Ee9PfE77HUQMoi8cWhoGPDkF9C2kn6D6ZUQVNWJG7jGZFcS7DuGMmiDCagFEDSD1KNIBy3Am0/v1NTcDYx6RBAVAMUBYGnhVeGbIaQCQc+E3UY7VjLDPJqNaqcfPQmzFg+gClecsGdlTtCOQ5VqFSgcyxgg7rg4Nh4MPHkwlYzMYcv+aFMiZgnJv6g5uFv1n9TQsDr8n7AGL/5Qw1gLyjf39TE7AYa2r6AQVAMUCZCRgrvDJkfQCZOYGWIVck+KrhxDKajFg8Am9OfRPXDrk27KzkLCJO61O/HdoR25k6OE5bE9UoYHF2LhqGXwxZH2PEHW7K1SkMvPEaL88iu6APIO/oBZWmJmDUAEqDAqAYoMwEjBVeGdQAIrmKVT9iJjR45udnMGrJqIxryyrLHNMj4WH8Jq9MfAXf/vGt9fVZ3PcF/W70AZSOk38kP6AGkBxm9VNWwMzd+fBwcgKdpgEEDdUwMQGjXydPMAqYd/QWL45RwNjHoGbYGSDOTFozyfW9ad77WeGVIesDSMQ/kB25osKpGtZ5f7Grz98u+Bb/G/O/ndc9kn5dkzpNUn/rhUEkmn5OrL4jUUNaqHP2WWnEIXJLtuwsy0bucp2WiYlpVL9tnPElDLxBWJc6zu/nCV99AOXI+iFNA8gpCliM+2lVUAMoBqwqWuX6XmoA+YMfZl525IoE34yi8iK8M/UdbNq+Sfpe1nn1pPn9SVjvzi/buswyjfq16qf+LigrUJc5ogSViz0iB30AhY9TfR40bxCmrJlien3cFsJhCNi+/uNryzyQ4LGqA2Zh4I3XpI7RrM+WVUWr0H9af8sNLxXuOnJeA0hXTxkFzBlqAMUALw44jd77iRoYBjM4rv32WgyaPwjvzXgPE66bIHUv63xwyJS1/trC8kI/shNbolBn2ZftIgpRwHJlAm9G1PzrTF49GRd/eTEAc424KORRBhXlayagtOrHZq2fhau/udoyD6nfuVvlQ8WsPmSYgAlEAdOnk8v9V5Ij3zoSm7ZvwsLNC/Hcmc9lnFexWR+FuUOY6OupYxSwHC8rgBpAscDLhELfqZTsKFGRHQIHDSAb9VipRXLMJpJ+MWj+IADAxFUTpe9lGarHacEwefVkR61F/X3G3UUSDDI+OrykRZzx6ucmVzSEAnNSbPOcqWun2l4ft7Ygml9VY+mizYtc54H4j6kGkIgJGOdaKczKIqnBPmLJCNN7ZNx1LNi0wPR4rkcB0wuAzIjaZkLYUAAUA7wMjvoO4dKvLlWRHYJgNICsTG0IiSpzN8zF39/9O9q93M72OoYVtyaOE5M45jmqmGoA5XD/H4ZwwK4+F5ZlaizGeWHhl/maaLCA5LVxK7c44Ea456QBZJVuhgYQhXqmWNVzUQ2gyupKHNj3QKm0c0UDyyioNBJnQb0fUAAUA7wslkorSlN/76jaoSI7BPI+gNw4geaEyDvs5NVjVaaapmHymsnSafAbWeNnHyDjpJUEh13Zby3dis3bNweYm2gRlOaBXZ/k5LMszv2ZyrKUKQejE+g4l2FcKKssw+qi1bbXaNCwoWQDtpZuTTtmagLGKGBCWNVtUR9AdkEznDSAqqqrsLxguUAu44nRVNFInAX1fkAfQDHAiwDomm+vUZcRkiKIzoOTIO+wk/cX46S9Zp7YkMKBONrQBGwXQbyb0+I3gQSqqquw2/O7AQDKHihDfs183/MVBZw0VB4Y84CvzzRi5rMsztFl/BK8WGoAMYJUYNjVxYP6HoTlBcsx75Z5lnVga+lWtHyhZUaa/IbqcdJeEcFprXjRFxfh2wXf4stLvsTFB1/s6hlRJs2MjhpAjlADKAbQXCJ6mHUeScm8qlCqdKJnT3llueM17OTVYzexNwu9aYaKiBe5QFhlE7dFbDZhVfbbK7an/l5fsj6o7ESeZ355JtDnVVRV2J6PW38m2tb9fC9R7RGRMZ+IkdQEGbJgSNpxfdnP3jDb9F5GAXOPkAmYTdm5WV8k1w/fLvgWAND7t96O+Ywb5ZXlaRpAIlpquQ4FQDGAAqDoYdaRzFo/Cx/N/Mj8eheDIQdQayatnoQ6T9XBPT/cY3sdO/xgEdYAivGOud9EwdGtdFr8hp5w0nJJJBJpfoByqbzD6Cvs2oZpxKsYazSqKF+ZDSor83mnZz/7y7Oo81Qd/LDkB+n8EWuM9dlJS8JVFLAc9mFmRMgETLEGkLH8J62e5Cr9qNL7196o81QdDF04NHXMyU9V3PppP6AAKAawokYPq472X9/8S9nCigOoNfeNvg8A8MKEF0LOSW5jXLiKCoDshNrs73YRVlnQBGwXgYeBN3leAgnfnPXGiai+d7aYFrjNu0wYeLd+nO7/8X4AwI1Db5TMHbEjo29xEGYyCpg/iEYBc6MdlO0WBL1G9wIA3D3q7tQxpzoa535aFRQAxQBqAEUP2U7YlRNo3TOyvQOXRTi6hd1OLsvUFXZlqhcA6W3aM9KwGYhzfWAOTMuBTqAjg0idt9shzubvFca72T3TadyI27eIgvaSjBPouJVv1HGjAcQoYOI8NOYhHNz34NRvr1HA7M5xrbgLagA5QyfQMYAdafQIovNgZ+4d24l8IsFBQDF6AZBd1EHjQMzvYE5oPoBsdu+dTGCIPCImYLnqNytqJmCm18d4Z9lNqHAjZkIxqTDwMSuzuCBSrnmJPOk2ZjY3zQgVzzEBAPDkz0+m/fYaBcwOSx9AOWhBQA0gZ6gBFAMoCIgerlU0JTodmoBZo8JxZV6C3Z8bbJ1A5+1yAv3Hpj8s07Cb7OTaxHHIgiE448MzsKpoFYBoT0yinDe/sJuwXz7ocjw29jG1z3OxQ5wr40Mc6l/c+i83iyKR+ud2ruN4rU26vUb1wnXfXhe7bxAmRuGdkzBIv2Hz+jmvpwI/2G34EGdEo4DZ1X9LH0A5qO1ODSBnuAKKARQARQ/ZzsPNN4zDZDfOiEasItbYhYH/aJa5Q3QgdxewZnT9vCvGLBuDm4fdnHHOz0mKGzMLmV39bOeXFb/g8zmf49Fxj3pOSygMvG6BkEtzgsiZgHkUdkQZlWUtK9TxaoqmaRp6/9Yb7814Dws3L5S+PxsRKccMEzAHgaDeBKx2jdqoW6sugMwIbdnSJoJCiQaQRRvKxfkV/VQ5QwFQDAii0pZVluHmoTdj2MJhvj8rG5BdPCU7d6lJETsrS0QGyL6T+uKJ8U9Yns/FQVEFdrsoojtNRm0GquYCm7ZvAhBOu+83uR8eH/d46reImvpeTfbadX0O9lVllWXK0hJZ/OrL3s6/VjZDEzD1uHFgbbzOq4aBinmRvk0YzZGINbIaQMCuviiRSKB2jdoA7DWAclEDxYqgfADFrR9SjaMGUI6XD0ABUCwIYrfv1d9fxZtT38R5n53n+7OyAdmJqJsJO51A70TGv4CeW7+/1fY8TcC8Y5y0iPZVHIjF8LNs9G2o5/CeeGTsI1i8ZbFwfnJR6KPHrz5ZxAeQPmJMthNGX+GlbsetXagwp/YaBczoBNoNeqGP3hSZ2CPrC1G/YZOXyEN+jXwAQHlVecZ1JBOreq4kCpjF+JyL6wdHH0CsnxQAxYEgBEB/Fvzp+zOyCdkOOtm5+2UXH3c+nvUxBs8fLHy9ioUABUDu0NdL446TXV81d8NcPP3z09hesd12IM6lem9GUIvcaeumZRwr3lG8Mw80AUthGVpXoQahzK47ADw+/nHM3zgfL014Cb+u+FVZPog74izQdiPUVd1Hy0SQsjqnFwBxbBcnQwNIwAQspQEEaw2guLUDlbh5d9UaQPq/c1HbnRpAzjAKWAwIoqKyMchBH0DqWF+8Hld9fRUAoOKhijQ/MoD5DpWKCSgnid7R19E2DdvY1tlD3zgUALC1dCtObn+yUJq5RNA269/88U3GM5KLAT8jlRB7LH0A6XaIv5j7Bb6Y+0Xq970n3BtI3sIgjF1bL3U7zgJst+/tOQqYgjLTtw+O7eIkEgnLhbHTN8xL5CG/5l8aQAYfQMQcIRMwlxpAVmlQAyjzWJz7aVWwl4wBQWgAsTHIIesDyJUJWI44cdtatjX1d5D1kJNEd1jV/T0a7pHWV7Vr1M70uklrJnEnxoag+2Kz8UVW0ycXxw+Vk2qnianRBCxXiYIJmJOwI279mSuHy4Z39BwFDJpwPqyuowZQJm6iujlqAOlMwOx8AOXimCCCpQmYaBQwwXO5LhClBpAzuVcrYshxexzn+zPYGOSQ9gGUNAFzGe40VyT4ZhNJ0wm3Q30VKedcHBRVYzQHE10I2ak7c+K4i6C1P53ahJUQIpvHD6t388sEzKqMc1UAFIe6FWffWKJ5V/VelqHFPZahfgGdK/MlFUiHgTeYgFn6AIpBu40SohpAduOAVaCAXPSJxShgznAFFANePftV35/BhgHMWDcDG0s2Cl1ruShAwvQcNYDEUDbJFJh8UADkHRkfQEkSSAgLiqaumYotpVu8ZZLYYuYrQETTJ9fHDL8WmRXVFabPylUBkJ4omIA5jcVxW/ha+XQTvQdwH6hB9rmAmA+guH2DMJENA68/npfIE4sCliPzVxE8RwETNA+jBpCDBlCOz18ACoBiQZM6TXx/Rq4PmNPXTseRbx2JFi+0ELreqvPIS+TZh4GXVIvOBZw6YlP1cod7qAHkH3YOgkUn8rYaQH/V+7HLx+Lod47G3n32dpnT+BPEJCVNAJT0ASQwSdWTi5Mpfb/k9f3191stpBj6PRomYE7Xx60tqDCLkFngOy3M3OZDLwCisFQc4zxIRLtabwKW9AFUWlGacR3JxKt/PVEn0GkaQAlqABmP5cr6yg6ugGKAKun5MW2OsTyX6531mGVjpK636jyshApuwvbmwiRmzbY1riagZZVltuepARQMRtMVYXMCgQnOdwu+AwAUlhd6zWZs8TJJEdVQkdIAog19Cn35quyrk85U125bu+tZOewDKIx6JvtM/fVrtq2J7XxKWAMIzj57/Ip4anVtWhjtmJa/akTKwai17qQRpkHDqqJVqXtbN2gNAFi9bXXGdUQc0forKhyiBhA1gJzIvVoRQ1SpmjfMb2h5Llcnl0lkhWy2GkA2JmAqJjrZQp+JfdD2pbZ4+KeHU8dE33n6uumen5+Lg6IKrAZRowmY6ERFxCliLhH0xNlMA0jk2lzfTUvTAPL4/vr7d1TtwGezP0Obl9qkXZPrYzQQjzGx26BuuG7IdWFnQxhR7SU7LR2vJmAyTqCtoAaQOzJMwCzMiJLM2TAHCzYvALBzDtWhSQcAwPKC5f5lMgfwUwMoF3EKbpGLcxYjXAHFAFUaQHaDIhuDHLIaQF7DwMdh4ivLHSPvAAAMmj9IedpuTcD0k0iyE7syMdZR0XoqYgLGSXwIJmAJexOw5Deuqq7K+v4pidW7qdQA0j+jvKocD4x5IONZudoeomICZtsPGq4fMGOA8jz5hYgD8ox7DH295yhgEk6ghaIoWVxTWV2Z1X2VEZFvkOEEWsInVCKRQKP8RgCA7RXbLdMhu/DiA0jTNOH5mBurg2zCyoG53flcgwKgHIICIHXI+gBy0xnnYgdlVg/daMC5NQHLfzIfg+cPln5etjJnwxw0eqYRnhj3ROqY3QRGxoTA7G9jerlEshxUtXvRjQNTH0A23+Syry7Dnq/siYKyAs95jDP68lVZV818ACUSiZyf0AeJsf5PWDkBdZ+qixd/ezHrIky5FbA5XSvjL0xF+3HSACrZUYJ2L7fDeZ+d5/lZ2UQikbAcc5y0SPRtQYUfp1zAiwDz/IHnY68+e1mmbaUBlIvfwtQELAfXVHZQABQDVE04bAVAOd4wZMtY2gdQ0gTM5QQrFztwL7jVAKrWqnHRFxf5kaVY8t+R/0VpZSkeHvuw6XlbEzArzQkHfybJ+3JNAGRGIGHgTXbyLXcgoeHLeV9izbY1aTu+2dw/2UV8TOJZA0j3jKQPICO52h7C3rXVNA3XDbkOldWVuHvU3ebXZEn9d+sDSIUJmPC1FummRQEzueaHJT9gXfE6DF80XPhZuYBdGHgnoXNeIs9xzDB7BslEZO40ZMEQ2zSsfADlIo4aQFnSZ3uBAqAYEIQJ2AczP1DyjLiiygdQIuFPGPhcweyd3dR/OoFWg5mzbX3ZLtm6JPW30Qm0HXZ+J5Jp5NoExkn7xm16Sa4cfCW6ft414zq3PoDILnzXAMphEzA9YZmApfm7cRGVMsoIm15JlomlBpDFzrxXUz/9eJFLbWV5wXIc2u9Q9J/W33UaVnXAUQMokbAcM+LcJvxEyATMZT9nqQGUg9/CSQMoF8vECFdAMSAIDaBcx28NoFQYeJe7YrnSWQUplacAyBkrbQQzjGHgbR0ZGnZizK5lf6Wu3ZdVluHT2Z+a7iBKRQGz8U2Qa6g0ATP6ADIjV9tD2HUr23eKZXy+6O9x+i4yJmAqyjhNAyjLv5me276/DXM3zsX1313v6n7jd5LRAKIJmDyWJmAKothVQycAcvh2YferfkMNIGe4AooBqjSAsr3B+01ReRHO//x8fD7n88B9ALGzkkM0/Cmxx1QDyMY8SHSHxdYJdI6bgAXdT5t9C5FdSj3Z3D+JOIGW/WYz1s3AuZ+ci+lrp++8X1d+lj6AcjyqCxBc28hYzDoIPuNc/90uihyjgEmadXktQ337yKWxo7CsMOPYjqoduOTLSzBm2RjH+6u1astx26nPETUBI86o0ADSf4PJaybbphfnPksEhoF3hgKgHCKXBkU/6P1rb3y74FtcPuhyaQ0grz6AshFRvwF+OYFWJVjNZqy0EcwQdQKdQKbTSbNvnGsLXtWTNH39tmtDZhNPSw2gLO+TZPCiAXTygJPx/eLvcfL7J2ecq6iqML0nV8fvMHZt3YZGjzuufQB5NAHL0EJxsThz8gGUrZgJjD+e9TG+mveV0P2eNIBoAqYMER9AMmlc9fVVttdm+/cx1QDipnoaFADFAJqA+Y+IMEAf9cZWA0iROUu226t6DR1rBzWA1GCmAWSF0Qm0HUahg9kij/2VOuzalUw5y5h1ZDtenEBv27ENAFC8oxhA5sTU+L1y2QdQKI6fBc1ZnDTm4oBbYZfTWC1jLqpiY8wpCli2UlGdKTDeVr5N+H474ZuIBlDqPmjoO6kv+kzsI/zsXGRF4Qr0HNYTCzcvTDuuQtAtY7qd7QKQXNR6koUCoBgQhBNo4kx+zfzU33YaQKpMwFSohEYZUQGMX5o61AByxskJdNpxzVyQY3qtgCou+6tgFpamJmASE8lcRakPIIH+ne0hPBMwPWZ+T+I8Puvz7tYHkNlYbpWW2XE6gXaPmcZgzbyawvfbaQA5lWMCiVQ/WFhWiFu/vxV3jLwDhWWFsW4TftNvSj+c8N4JacdU1FmZNLJ9LHfUAMry9xeBAqAYQA0g/zGW8bbybXjxtxexvGB56ljtGrVTf9tpAJmRMgFz6HT0TlqzfQD1M5qKkAkYNYAckXECLWwClkjYTvaT57LZBGzp1qV48bcXUbKjJOOcH1HARHf2Uwta+gCSQuXYqmlaRt+USCRyLipeEq874yMWj8DAOQM9PT+bFwtuBS+OkdEs0jIVAJlovVk+VyQMvEla2brhY6YBVKtGLeH77fxdOQqAdCZgeg358qryrG4zKti0fVPabxXCCTv/jCLHsgmz90uLjAYNk1ZPwhuT38jZuiouJiaxhwIga4yTg9tH3I4BMwbg6V+exuZemwEA+TUENYA8mIB1/bwryh4oQ37N/KyXVotG4XLlA0jEBCxLJ4QqMfMBJOoE2g5bJ9A5YAJ2SL9DUFZZhqVbl9pep8wkUtAEzOn7UTNoF26iJ4mkZbp4zWETMK+c88k5AIDj2x2Pdo3bCd0jWp+zwQRMj10ds3LWL5uW6WJUIKqYE7nqBNpMA6hWnrgAyIsPIP0crrB8lzPq8sry9A3TLBc2qECFCRg1gHbhZImhaRqOffdYAEDrhq1x/oHnB5W1yEANoBigLAoYO2FhRi8dDQDYUroldUxEA2hV0Sos2LQg43iy4xH5BmZq5dn47bxGDrEjG8srDGQmFPM3zhcWJuS6yUvStG7sn2MzzqmamOnHDeGIbA4mLdk+adSzvWI7Bs0bhKLyItPzQffPdu0hm7UZVW2EbNy+0fPzAUO7cvjuVdVV+OaPb7CueJ2rZweBm8g4Ro0dryZg1Vq1cD5EfADlUj/lVQPIrl9x0sLVm4Dp58pllWWcg0miRANIYtzO9u8jogGUZP7G+YHkKWpQABQDaALmP8YyNus8RHwAAcB5n52XcUzGnCXbdhWt8NUEjE6glWClrm/G1LVTXTuBTks/aQKWoyYvekLzAUQTMNw49EZc/OXFWLJ1iel5pRpADovfRIIaQEBw9UzaCbTF+XemvYMLBl6AQ/odojaDCnFtAuYQBUymD1FhZpezTqAVaABZbRbIRAHTh6MvrSzNeg121djNiVYUrhAqQ5lyzvZvIqIBlPo7C+cvIlAAFAP8dgKd7R2BG8zKRK8BpJ9siJDSAJLpoF3szMUJtwIYPzQkiDkyZb17vd2FtSJEJoe5NInX48dkRDYKmOWCN4cmSh/P+tj2vBvnuZZpCUxGs9knlh1++MRyfKZNv2fqBNri+u8Xfw8gXTsiarh2Au3wXaSdQAt+Z6uyTlvc5VA/ZaYBJOsE2qxOA3JRwPT5kIkeSnZiN9+ft3GeUP9vN26vKloldG224KQBRCgAyimsBmRZYUY2YhQGmGoA6XwAlVaUSqUvpQHkMKnMFsx8AIk4bxSZpGb74BYUVv4aTK/VNFcmYFa77bkgAHJy1OylHos6gZaJNshNhF2o1AAypmv8DvQBtJMwooDZaac45ad+rfpK8+UHovXYzlmwjDm3iAaQm36PGkC78GICJqUBpDMB06djNAHjfMwZu/pfWFYoNu+16I/KK8vR7uV2QtdmC44aQKyTFADFAT9MwCqrK1Mqm8YdhDh1DFtKtyjJb4YJmEmaeoGFrNDMjWpmtg+gbk3AnMpCtE7QBMwZKaeCEmr8Is5Gc2kSr8eP/lfWCbTsgjcb+ycnlGoACZQf20OAJmASvnD0/zdSr1Y9ZXkKgrB8AElpAAloyJmaUWbpeG/qA0iVE2gnH0C6OVyGAChG6wjVuHl3Ow2gwnJBAZBF2zDTQMz2MdusvKz6iFytqxQAxQA/TMBOHnAymjzXBKuLVmfsIMSlY/huwXdo9nwz3Pb9bcrTdtJEkVUldJooml6b5R2U6ITMeJ3dQPjtH9+i2fPNcPuI253TpQmYK2TNiYwkkBCq21TX9dbuReu3jBPoXBVCmOFX/2w19rDsvZWz23mNnXDCSWAaBwGQl3Jxg6UTaPoAckWYGkB5ibzU/MwoALJKk5hjp4n7zrR3PGkA+elvM6qYmoBRAygNCoBigKqdC32Dn7BqAgDgi7lfZGizxGXwvO/H+wAAfSf3VZ62U+co66DWTXjGbO+gTAcljzvhvUb3AgB8NOsj5+dn6Y5gWGSYgIlqneSyCZjLNpB2vUfnkGaCDFmhXLZPJp3w3Qk0EjnrFN3LOGis2yo0FNPSd8hbLARALjSsjEIxmc0USxMwhzaQ9myT82lRwLJ87pRE0zTTPtnMvN4KOw2g8qpy23tFTcCIM3b1v0HtBtIaQGftc1bqbz8j7kYVUxMwBy3BXIMCoBjgpxPogrKCDBXSXFh4GRHxAaRHtoyS18uYOMn45ogjwhpAxm8j6KCTBItxEu90bepvOoEG4E4YdOfIO9H2pbbYWGIf4tqr1lYS+ovbhV9OoK2Q8c+STXgxAdNff/Q7R+PcT891vOfbP77FZ3M+S0vDMeJVjE3AZAQvVr9lxl1LEzDBBVlheSHav9Ie1w+5Pu24XkCaK2PHeZ+d5/ld7aKAba/Ybnuv1dqktKLUU7vNRezKS9QHnD6NJnWa7LqfGkAArDWAcrV+UgCUQ1gJgDZt3+R4HUlH2gTMjQ+gbDcBczko2dVPmnX5j7BDYRt1ZBEfQLmg8eDoBNqhPbw88WWsLV6LV39/VTrtJDImYFbfJBcnUL45gaYJmCVex8ERi0c4XnP+wPOF03PKjz5yaByQEeC7bfMiGkBO968sWon+0/unlX8umoANXzTc9LjsfFM/VujLbkfVDtt79SZgehgFTB4nQazdfCgZ9U1mUyLbx2wnDSACiMcKJKHhhxPoJAXlBVhesDztWC4svIyIOIGWsY02ktIAkuh0s72DdquWaisAkmgrdsIiTdMoTJJEZhfXbrcrl0zAgkKVE2iagO3CLyfQbjTislnzUZUJmKo8yISBjwNuN5pk33l98Xp0+awLNm7P1FY0jh2i33xr2VbsVnc3aJqG/4z4j23eOJ6bYyxrmb5MbwKmJyMKWIzbR1DYafw7bQDUzKtp68rDSusum3HUAMry9xeBGkAxwE8TsNKKUmoAmWDlqDCJWyfQMtdmuwqtaL2WcQIt01bsFk1Lty4VTifXUGFOZJwcmg3GudoPqWr3fjiBzsXNASv80gAypp38zd3LYMZBkc0g4zmh4A4RXXC4KVOjDyCRNB4Z+wgmr5mcseEI/OUE2kU+kqavi7cszkjPjqh+C1V4aScyfZmVr6FcjwLmBjtBrJMJWDLqm9WYZLqhnYVrCj2OPoCy/P1FoAAoBvipAQRkTupzceElsliSCY9pxKsT6GwcTE01gCR8JHnFzlEiVZjl0SDmBHr00tG4Z9Q9ltelTMBybMFbXlWOKwdfiU/nfKo8ba9me0m6ft7VPP0cnEzp33nh5oXe0hIQ+uXiuAx4M4U2K8se3/bAu9PetbynQe0GtnlwSl+PmbZQ1BAVOFv106LY+ZOZsGqCq++cNFEyOit2KusofovVRatx8RcXY9zycZ7T8qLJJVM2iURCyAQsiuUdNZwEqrYCoL+ivllppVIDaCdWGkDZXhZWUACUQ5h1AolEImOhlYsTzYxdP4cOWHYn3Mm0wuzZ2d4piTrTNF4XhCmE0TE62YXlYsi4KyxhDmb23bO9/huZtX4WPp39KT6c+WHqmB8mLEZMNYAsnru5dLOS/GQD+jLqNqibt7Qc2o1RuErEMCvL92e8jxu+u8Hynrq16qanAWv/NFLjegz6M+E+26ZMrLDbZLt39L2uhARJwY8xFHocNYCu/+56DJo/CKd+cGqgzzWWu8zcVtQEjDhjqwHkYALmpAFk5Xcrm6EGkDMUAMUAVSZg2abW76ffA0cfQAFrAK0tXou7f7gbizYvknpulJEJVaoniIWQnfPD135/DR/P+tj3PESRVya+khYhx4ibbzN17VTTXehcGKBV9e1fzf8Kz//6fHragk6gZXcbTdOI4ILKb/TlFkR0tFwVAPkdrWV7xXbcN/o+TFw1UfpeN6bd7057F29PfVv6WX7htnxld9CdxntjGpu3b8bdP9yN2etnW96THKeN7W/exnn2z4rg2LJs6zKp62X7dDv045AfJmC5OD7IYusDyMkEjBpAGThpABEKgGKB7yZgBmFGFAfHoHFaFEkvkCQWtWa78D2H98SLE17Ese8eK/XcKOPaBMzmGikfQDbXGncUkyzbugz/GfEfXPX1VcLPyRb+2PQH/jvyv7jrh7tMzxvDJYv2I4+Neyw9nb/SyNUFrx7RMvxj0x+4d/S9mLx6cuqYKx9ALss+F8cMlRNokXbDyasaEzAjz/z8DJ779Tn8o/8/TJ9h9FFmFjLb6jnGa4t3FOOG727AjUNvxNbSreIv4iNuFupWWpt25DksN4yCqBuH3ogXJ7yIo94+yvKe8sqdGkDGOey9o++1f1aWL35lMEYBkxFmi5qAEWfstECdNICS34waQLtw1ADKch+rIlAAFAP8dAINcGIJZJaxvnMYs2zMzmO6TsJtFDAR7CaVW8uiMWlUgdt6rSwKmM21ViZgBWUFwulnG1tKt9ie1zT3Ziq5OgCr1mJ88ucn8cemPwDsCg0LyJuAUfjmzPg/xytLy9EEzEPbijt+L9bnbpyb+rvf5H6mUaqskDHX1qClBBZAdBbJon2vmWBMBuN4f9DuB9mm99PynwDYCySsNIBMn6/ra/tP749Z62c53hMksmOgrb8mD22mpKJE+ForEzCjiWCuju9O9J3UF9vKtwEAvp7/deq4sbx+WPKDrdXBOfuek3FfmgAI1AACDD6AWCcpAIoDgWsAZXnHYIadD6AzPjwjYwLu1gTMzzCrcUM0DLxMFDBVWJmA5fKgIWKy51oAZGYCluX1XwTZMhiyYAgO6rtzYZX0C+CUjhINoBz8Vk/+/GTq7yNaHqEsXTqBtkZ6kSwZVKDn8J5KnpvEaIYZ9fFDWBjkYoFvHD/O3vds22cXlRc5ppn0AWQmAJq6ZqrlfTcPuxlHvKmuzapAWrtNkQmY8driHcXC91rNCXJxPHDDrd/filuG34KVhSvTNh3Nym/s8rGW6SQd11MDaBcyGkC5CgVAOURReVFGhIEEEtQAgr0GEPBXmFK9DyCXTqCFrs2RXXjTnSOBcjJG/HBK0w36nVorcm0AcRJEl1SUYEPJhtTvXCsfJ6qqqzBy8Uhs3h6MI+WkXwCAGkB+c+5+56b9XrJlCSasnCB8v1Mknlx2Au0lGqaQybVDmmb+OIz3yph2p9JRNFZ5xa2vFtlvYRQWGH8bBdEiWj3JjRozk21jaPioE9aCfNyf47CyaGXqd1IjRQQrE7AMc3DOBSwZPH8w1mxbk3bMrC5MXzvdMo2ktm+2+QBatnUZRi8djeGLhqO0olTqXhkNoDiUhR/UdL6EhI3KicKpH5yKX3r8knaMPoDSMdupq6yuVKIBJPp8IPu/g6gTaGP9N/qMSbtWkbZcaaXzYKNBU27CE2VEvtfrk183PS6zyMrW+v/W1LfQc3hPtG/cXvgeL2Wg1wCygz6AvGOs3/u+ti8AYMGtC7B/s/09pZVEdszJFvyenHsRErl1mhwl3JjquNFmMo6VboNA6Elu1Jhp7EZFwCaKSuGmTFq/rfwt7beMBpCVCVi1Vp3TY4LMu5ttNpp9P7vvUiNRI+O+bNAA2vvVvVN//+uIf+GD8z8QvpcaQM5QAygHGblkZNpvagClY9y9AHYKgPQdZmFZoXSa+v8LXZvlHZSoCZiR92e8n/q7Xq16mL9xfqoOq3ICbdUmrAbYuLC+eD02bd/keJ2maZi/cX7aMS8Taqfv6hR1Lxv4ct6XAIA/C/8M5HlpPoAETcBS1/tgahM1VhauFDIzMbJg04KMBadVXyDqZ8RpEZ7NPoAWb1ks7A/HFxMwJ+G0jXaWUxj4NCfQEV1wiWpqZGilSTpRXbQlPYJphtm9zbPXbltrejzZDk0FQFm+OeNXn1tcQROwIKnSqkw1Po3YfRcnDaBsmF99OPNDqesZBcwZCoByEKMjW/oAcrbVN2oATVglrt4PUAPIDFETMLuJ3PaK7Ti438H493f/drxW5FlJRHbb49ZOyirL0OrFVmjeu7njQPjo2EdxcL+D047J7ti6rb8ywtK44yRU81LHaAJmzaqiVdjzlT3R5NkmUvd9Pf9rHNj3QJz36Xlpx63KSyaqkhPZ+E3GLBuD/V7bD8e9e5zlNX6r6rsx3zIeV2FqFhZunEAbfQA58dHMj/Djsh/TjtmagBnSbvNSG9N0k+bgdmbhcUHleOclrZIdEk6gRU3AcmAs94KIg3W771IjLzs1gLxg9s5pGkBZ/v4iUACUgxSWp2uvxFUq6peKr6UGkIcJnNNOofH5otfGGTthzY6qHUJ+eJK8N+O9nWkqqhMibSJuA8j64vWpv5123B8f/3jGMdkdVRkfADK76tmEn7vUok6gzb5TcvLUZf8uOG//87BHoz1snxW3tvDril8ByOf7jSlvAABGLR2VdlzEcbPowsp0txZabMdpOz6YuVOlf+b6mb6kr8oHkFVf5sa3X5Txy6TtpYkvZRwzCoDclE+yTZi1DeNcIOomYWGZgBmREaaJRgEj9ohoAG3bYe2bKVt9AHnB7P2stKJyta5SAJSD6DWAEokEfQDBoKpt0nEYNYBkoQZQJlYTh2qtGh36dECLF1qgoqoicyIXgGq3yPeK24681/rkpwmYqnuyDU8+gBRoAF1x2BX47vLv0LROU9f5iCJuy7VJnSamxy01gP56zou/vYgGzzTAZ7M/c8yPiDApl1Cx8WJ7jaxZmcm3sjQBM2oWR3DR5cYEzKgl7ea9MgRALgRrqeiqOThW+FWXRJxvJxE1AYtivY8Sxr6dPoC8Y2VKbXc+16AAKAcx2ktn486iF8wc2Bl9AMnixqwl2wdNK0FOWWUZ1mxbg6LyIqwoXJFx3s4USUY4ZOsDyMIELFsiB7gR5qhw2mkFB2Zr3NYzvQaQWZScZNp2TqCT39xPU7UoIJr/xvmNTY87mYDdPepuAMDV31wt9HwnB5bZgh9RvfzIg6UJmJcoYBHxUSPqBNrLot5s7LAzARMleY/ZvVEpX1GiYgJmNVaYIWoCRuxxigIJ2PsdVaEBlG3fy0qT1u58rkEBUA5i7LDpA8iwU2dhAhaYBpALYVEcMVtUfjjzQ+zx0i5zk8rqyoz6arcYpQmYf3jxASRjAiZ6Ty7Qf1p/tH2prat79U6gzZykAkDbl9ri3envpn4bNYCS39zp28etLejrVtKP2C3DbnG8r1F+I9PjThpAdtf1GtUr5SDcmLckPYf3xEM/PeSYv2xExcaLp+fbLJSc0nfSLI4CrjSAJE18zIQEKkzAUhpAZr4DI27y5RW/+tyflv8kfG1eIs/Sl6OoYDHbuGXYLejzex+pe+wcrCcxuu7Q49UHUPGOYhzY90D85/v/iGc64shoAEW1b/YbCoByEH3FTyBBDSBkTtRMNYA8dBJ2ExUjueIDxWxS+MCYB7C1bGvqt5k6sioNIDuy0QTMK17Klppv5jgtUh4d9yjWFptHwHFCbwJmJQBaW7wWQxYMyTieoQEUs910Gb6c+yX+2PRHyr+PHXVr1TU9blVnM1T7TdpB7996O15DdhKaE2jJSGFWz4n6t3XbT7t5Lxkn0FbYmYDFrc+S1oYT9OvmJ1ZlHPV67ici44gREQ0gY/AePV41gD6a+REWbl6I1ya9JpznqOOkAUQoACLI1AB67tfnQspJNLB0Au1lJ9KFs0h2VuYCoCAmdtkYBUyPU97Nylh2R1WqzpssJlj/rRk4ZyBOGnCS7TV6EzBRx55WJmCOGkAxbgsyWPU9osLgXCknlfjuA0hSO9HtzrHx2qhoqIj2s0ZNISkNIJN3NfYpMqZHqXwYNBb1fDnvSzw45kFcOPBCVGvVuHf0vdLpB0lUTMBksDQBM/i7Yr9nj4gGkJ1vJq8+gLLSvNhJA4h1EjWdL7GmvLwc+fn5qvJCQsKoAfTyxJfx0lmZURtyBSsNoKCdQOeahokZpgKgEE3ArAbYuOE0QcxL5GVMCrz4AHJjAhbn8vWbboO6OV6jbwuijj2NC6rk5D4qi1VV6OtbUn3eC6Jh4FVom+QaXkxJ3PjmccyDhLDaaFoeRdyYgDlda0TEBMxNKHc7zerP5uxyuD5u+TjM2zhPOv0oE4X6ZGUCZuZHk1jjZpzQYzaGOWnUZbswxNEHUI6aKOqRmtGPHDkS11xzDfbZZx/UqlUL9erVQ8OGDXHKKafgqaeewpo1a/zKJ/GRbJT+yjB7/ew055yWGkBediIltBqcIovkEsaF64SVE9Q5gba5VkT4ELdBQ2bAV+Hw2e0Am0v13k9tNjcTPBkNoOW3L0fL+i133heztqAnuXvqhTenvml63E25xLks44gX8y4Zc+2o9mtunEAbzdmM7yYyfmYIgCp3CYBko4A5PS8Oc9xsNgEz/h6+aDiu+eYabCu3Dm2eSxjL56NZH0ndn9IAkjEBi7EARNM03DnyTrw15S3raySEXlHtm/1GaJb/zTff4IADDsDVV1+NvLw83HPPPRg8eDBGjhyJ/v3745RTTsHo0aOx995746abbsLGjRv9zjdRSK7vtB/X/7i031HRAIpbp+wHldWVaTtMx793PI7b4zjL62U0FezKN+tNwAQ0gDLu8fF9TXdrYly+UcBqMihyj4gPoPZN2qfaW5y/lQoNIGCnM2kjuT62qsB3EzBJrSzXgm3DxlIU24wXkzY9eg3aBBJCJmBuhDSiYeD1DvGJOkRNwIx0/rQzPpj5AZ7++Wk/sxcbjGVl5+/HjJQPIBkTsIj3RXb8tvI3vDzxZdw07CbLa2Q0gHIVoV7x6aefxgsvvIDOnTsjLy9zYXDppZcCAFavXo0+ffrgww8/xF133aU2p8Q33ppqLUXNVt6d9i4a1m6Iyw69LGPiXq1VS/sA6nZoN3w+53PL824cO8etU/YDM9OVfZrugzHLxvj6XBHH6HFb3MkMeEo0gCQmGByY/UXWR42oD6C4OVpNoq+PKjSAALFQuyLI+lcBcqfNqB4Tv/njG4xeOtr1/U6bNXbBJaLyzUSdOTtpdejRtwXLvkOBWemabWvw4JgHHcfrOAiAVLT5R8c+intPuDewumUZBcxBQyzJyqKVvuUtTnjVUEtFAXOpARQ3isqLHK+RNXtbunUp3pv+Hm4/9nY0r9/ceyZjgFCvOGnSJKHE2rZti+eff95ThkiwjPtzXNhZCJwVhStww3c3AAAuO/SyjPNmHYeTBtDBux9s+0yGgc9E5P3MwsDb+TNRZQJmNSBHcQLvBjcmYJ6coLswAYtz+UYBL/6qkvemNIAcFmtx+1b6/MosDqUdodMEzDN+9jsXDLxAKA0nH0CieYnipo5rJ9B2GkC68bNGXg0hH0Bu8tR3cl+h62IhAFJgAvbYuMeQQAKHtzxcVbZssTQBEzU5Zl8HQNxHnxWeNYBi9h1EtHbN6qClrz5o+Ef/f2BDyQZMWTMFI7qP8JzHOCC1zVtUVITq6swCrKqqQlGRs0SOBMt+u+3neM2abbnnt2nz9s22561MwOZsmGN5j5PGxObSzZi7Ya6UunkUJ4tBU1GdGRnkg5kfWF6vylmtiFPXOH8fp3poNsBKT1B1z3DasdGn3X96f2zevjnW5SuKn86V9eX//eLvpe4R1gDKAufQqkzAVJkxBnVPHJHWklBULlaLpeIdxeg/rT82lGwQSkNEKyJoXDuBttkM0WvkWGmJqNAyFSUOAiAn5myYg4FzBqZ+W7WFWRtmBZUlaxMwo7mjRV6j0gbC5st5X3q631UY+Aj2RaKI9B2mGkA2fVayD/95xc8ecxcfhHvgr7/+GkcffTTKysoyzpWXl+OYY47Bd999pzRzxBtd9u8SdhYiidNuuFnHUVFdgW8XfGt5j8gi4tA3DnXOnO75cZPKyyKirWP0AQQEY3plGQXMYoCNG7IaQAkkPNVHvZN10/zo0n7ml2dwwcALsr7+B8lzvz4ndJ2VCZhTW43bBFKP3gRMtZ+3oPqIuLYVWf87YWD3/Nu+vw3Xf3c9rhx8peO9ooviMBHWBnLQZkrTALIwsaQAKB2nsj/sjcPQbVA3jFoyyj4dFyakbrE0AaMGkBTvz3jf0/1OYeDdRGGNMkICIIcNmbDHlSgg3AO/8cYb6NWrF+rVq5dxrl69erj33nvx+uuvK80c8YbV7my2VHy3/iecJN9mx5xszFVOZnJFA0jUBEwGVT5J9BNYTdMw/s/x2Fq6NfITeFFknUC70fTQl9UPS36QuvfnFT9nff33Gzflt75kPSasnJApALL4/sn2Fre2kOYDSCe8d+pv7PoXpx1H4by5uSdH2ooXLURPz7WYM4z/c7x4GgEuzGUQ1QQwnrMNomDUAJI1AVNcn+MgABIVFs9YNyM1JzEjyDpmFwVMpF7lSr/lN640gGIsDBHx2yejARS391eF8Kp1zpw5OPXUUy3Pn3zyyZg9e7aKPBFFxNVBp9+4kYZbhflNIioAkolKEsXJYtBUVFXI+fWREFTYXasfMD+b8xlOef8UHPPOMVK7KlFGVgMoL5EXeBSwXCBqffRVX1+F4987HnM3zgWQIyZgusmkiPN3K1Q6gZa+J4vHirDfTZUPogwTqoj0eW6cQBt9ABnfRd8WEgmxKGBEnM/nfI4un5lr+Dv5Z1KJlQmYWSAV4h8pJ9AyPoBiPGbo+w4Z4aKI0CtqczI/Ee6Bt27dispK692xiooKbN26VUmmiBosd22zYNLuhbRFvEknaNZZfvPHN7Zpqooko4cDqPwgVbKjRMlz9QvBj2d9DABYsnWJ46AaNVYUrjBd1Dr6ADLU57xEnvS3kHWQ6uV+komK8nNrArZm2xrsqNrh+flBIKMBZIfVJHt5wXLXaYrCscIcv30ASd1nFJpEpH9z4wTa6T6RqEZ5iTyM+Zd5NE/VZROHsVrGbGrQ/EGO1wSBqAmYpQ+giLSBuONVAyhu6AVAVm3bSeilP2/mazQXEBYA7bXXXpgyZYrl+SlTpqB9+/ZKMkWcadeonet749zwVeCkxeGmfEQdicr4PIjDpMVvNE2TElhOXzddKm0r9BPY7RXbd91js6MbNb6e/zXav9IeF31xUcY5Vz6AFEQpCfL+XEdF+bkJAz97/Wy0faktOr7Z0fPz/ULfdvXCTkcTMEGtwSSvTHwFHfp0kM5bWKZOUcSL0MSPcnHbroxmMVHBjSmIow8gw6aDlQnYaR1OE8ylN7JtLhWVTVxREzArOMabU6dmHanrk+OzWw2gKPZLdujnIyIRe1PHLMqn92+9U39HpW0FgbAA6MILL8QDDzyA9evXZ5xbt24dHnzwQVx0UeZCg4RHLqmyyeDU2bnpDJX6AKIJWIqwykA/OOgFQHEyAXv+t+cBIOW8XCa/ZiZg5VXl6jJnwClvcdEmyTaSkyGZMPAD5+6MVDN/03z/MuYRKx9AIpoLVphNshdsXmD7bKe8EXPTKRX9gbCww4PvHhmzqSggagJm/J0RBczgQy9sE7AolrURlf6qgnpfK/9OxrpeXmk+d+Ac1xxZU+TkN9DP0fTjUVllZvCmqPdFdqSN2VYBW8w29y00gHIV4R74vvvuQ8OGDbHffvvhlltuQZ8+ffDqq6/i5ptvxv77748GDRrgvvvu8zOvRIeIlDKXJJkyOJmAudIAEjQBE/IBlCNOoEXxS5Bp1z70g0qaBpDFDkIckNnxMU7OSytLcey7x/qSLyv0ecx/Mh9jlpmbC8SZoMLAu0XUB1Cc+yp9/+LFCbRof9D2pbZiGZMgzuUvg6Zp6PJZFzR7vhm2ljq7HJAJay6cBw/3RXHX3Y0TaCc/M6IaQCLPUkEcxmoZgWRUNnet/DsZ6/a5n56LXqN6ZV6XI/2WLLIbEclvMGfDHNw58k4A6XV+5vqZGfdEsS8SRcQEzGlt52WzJ1sQFgA1bNgQv/76K7p3746BAwfiv//9L+644w588cUX6N69O3799Vc0bNjQz7wSSaIySEQNP0IiUgPIHzRNw7Yd2wJ/rn5wKKnY5VfISXgYZWS0l4J20Cnii+vf3/07qOyQv3DyAWS1+xsn9HVPtRNoM9YWrxXOjyhx64tkMNanYYuGoXhHMb7+4+uMa2XmPKLfy4tGhYzQJCzcOIF2ujZNAwjhawDFQQAkg4xGpq/5sDIBM9Ga05vZpK7L4n7LC7L1Vf8dXp74slAaUeyLRBEyAXPQAPLi7y9bkIqN2LhxY/Tr1w99+/bFpk2boGkamjdvTk2TEBCZ6PC7mOO04+WnD6DFWxY7XiOrAdRvcj+8PPFl/ND9B3RoKudvIkxE3694R7Evz7drQ1YaQHEyATMi40tDtD7bPk9icidSlnGPGhOkQH7ttrWB+ABKErfdRKs8qnYC7YagIodFAS++jurVqid1vZdnuw0ZbGwXUQw97FbgaGdC8trvr1meSxJkfxglAVC1Vo1/fvhPtGnYBg1qN8CMdTPwc4+fpb6DXdkFKWi0NAEL0AyNmK/1HAVAEeyLRBGJ3OmoAWRxXy4pTriaUScSCTRv3hwtWrTwJGQYP348unTpgjZt2iCRSOCbb75JO3/NNdekVAyT/4477jjXz8tlsrFSu617jiZgLiZEoiZgNw+72fEaWQ2gnsN7YvGWxbjrh7uEro8TGjSc0v4U39K2Ii1CQNWuCAFxtiGWGfCjIGwx5jHuAm2z+uZXv/zI2EeUmoDJRJSM22RSn98oCIDcEAehm1us+i0zAZCxPtrVRWENIIWRxKIYBUyPqAkYYJ//Vye9mvZb2gRMcdlEaayeuW4mflr+Ez6Z/QnemvoWfl/9O0YvHS2Vht1Y6Fe92qPRHqb58DIGxG2siCKHND/EtH3JaABFsS+yQ4UGEE3AJARAGzZswL///W9069YNc+fOVfLwkpISHHHEEXj99dctrzn77LOxdu3a1L/hw4creXbcEfIBpOsUVOzoZwtOHaObyYLo4rS0slQ4TdnBMQ6hDOdtnIczPjwDP//5s1CZaZqGFvVbBJCzdKwGhziZgBknBTIDvgoBkEz9/XDWhxnHlhUsU56nXEFVXyCsARTjyaQep0mhqNDYC640MnJkIaV3Zlq/Vn1Pacl8LyVh4CPaLtyYgGmaJmVCZ4Zdn7J3n72F0hYlSgIgsz6mSquSasNOGweq69qNf7sRS/+zVDgfGjR8MPMDx3Sj2ibixJR/T8mYS1/0xUXYWrbV9r44awDp31fUB5DxHSkAkjAB69GjB/72t7/hjDPOwDnnnIM///zT847sOeecg3POOcf2mvz8fLRq1crTc3IV/fepkaiBStDmEfAnDLzKnfyUCZjk4BgHLa/zPz8fi7YswphlY9ChiZi5ml+TBFETsLS8xDhyQpQ1gEQcPFMAJIdKEzAnH0Bxm0xaLXqdNIBUaJQ44SbqVDYvpPRlrvfHVrdWXed7BQUabvMj83zjd41KO3HjBBqQ2wyR9QGkenFmuUi0iFDmJ1ZlLGUCZqcB5EO9qpGogVo1amUctzIBq9aq8dqk1zKOG4lKG1BFGO9TI1Ej4xsMnj/Y8b44CKdFEI0CZnxH+gCS0ACaPn06LrvsMlx66aVYt24dNm7c6Ge+UowdOxYtWrTA/vvvjxtuuAEbNmywvb68vBxFRUVp/7IRfYN/+OSHseKOFbbXcPG0C6eO77lfn5NOU+UkQoOG8spy9BzeM7Q8yNJnYh88/+vzjtet3rZaKt2wBiar5+onklHaVRRBygeQoEmj7fMUf7ts7MOibtYmGgUsW/ASIKCwrBA3fncjxi0f5ykPL0x4AWu2rfGURrZSsmOXAMisj5LZBPl1xa9C17004SUlgQgy/OaEvOjSNA33jb4PH87cpX0pmicNEhpAFlGrAg0DLzCeZxNBRVHzbAIWY8GDnofGPIT+0/qHUp/yEnmuxuFsKXtLE7C/+tsHfnwAA6YPyNQA8hDwIVsQ1gA6//zzcf/996N9+/Y4/PDD0aKF/2YZ55xzDi655BK0b98ey5Ytw0MPPYTTTz8dU6dORX5+vuk9zzzzDB577DHf8xY2+gZfr1Y9tGvczvZ6/WCbLQ3fLU7v/8aUNwLKiTmapuHNKW9iQ4m9sNNIWBpApRWluGPkHQCAq4+4Gi0btLS8VnbS56dDQ7t8ikwY49aOZPIbRZPROGi4RYkgfAClnhWhha0sMnm3m+A/MOYBjFwyEm9Pe1tZ3kTJtp10PfpvohfEiNQzu3Lp9HEnoec//1v6xoawkMTo8ydiGkBjl4/N2Oyy1QAyvLfXxW6QAiCrxV61Vo0aiMZYJyM0kXHKrwKr9OxMwITSzYJ+a8qaKXjy5ycBAFd3vDrw5ycSiZybG+nrjZ1238RVE/H0L08DAK464qq081aCo2zb1LJDuAd+/fXXcdlll+HAAw/EmDHO6voquOyyy9C5c2cceuih6NKlC77//nssXLgQw4YNs7zn/vvvR2FhYerfypUrA8lrmIjszkZxQRcWfkRyUmoCBg2rilbJ5yGkjkvvb0Tvo2F5wXI8Nf4pbC3dZYusQrNEFY3yG2Fk95Gm5/T1Ql+usXYCLWG+VisvU907bLJRA8gvEkgEEgUsrmHgrRYojhpANuf/2PSHpzx5IW5CNxn0ZV5QVmB6PEmUJ+9Ri4y0afsmqeuN44foPCrKYeDDaDdO0YlEsI0C5sM7JQVoD570YNpxyyhgEarnfqPvk8KYE7pde8TZnYEeuyhgej9IxnekCZiEBlBeXh6uvPJKP/PiSOvWrdG+fXssWrTI8pr8/HxL7aBsQta8S7/wzjVpsRE/OjulJmCa8w6PGVFbIB/37nFYX7Ie09ZNw6BLBwGQLydj6FzVHN7ycMvnmhHrMPD63WeHMq1do7bf2ZEmyou7bMXJB1CSuIWB1yMj1LV7t6hMKMPwaxIU+s0EMzIc3/tQF2XMpGx9AEWwncj4TLLbeTdCEzBnVNYHv0zA9my8Z9pxSxMwiTaSTYQxJ7T6BjLE+TvYRQHT9zvGd6QJmMsw8GGxefNmrFy5Eq1btw47K5HCMkSvRRSwODd2FUTdjEdExdeMqAn21pesBwD8uPTH1DE/J31udtGs8mM1MYx63bHDbsenWqvGV/O+wvKC5QCiKQCKmoBTBX62WRX1M5k/Jy3TuO0munXEardgDFMAFIcyd4v+m6Tt6Ho0AXOdHxkn0Abzwii1Ey+aKHY+gIzHrdKMggZQpARAMlHAAnYCnawrxm9maQImmIcolb9b9GUQ1vu4mUdEyRxVFpFNG6PmIaOAZSLUA5999tn47bffHK/btm0bnnvuOfTt21fo4cXFxZgxYwZmzJgBAFi2bBlmzJiBFStWoLi4GHfffTcmTJiA5cuXY+zYsejSpQt23313XHDBBULpZzP6ii1iApaNiye3RN0EDHCn7RCFXV+nPOg10UQn8H45FNRg7pwy+Vyn41GfvBi/hZ3w6rPZn+GSLy9Bhz47I7NRAKSeoAW0SqOACWwypJ4bY8GoowaQTZmGOaGMumaJKgrLC1N/R90ELCMKjYvobkFjqwEkGAUsI/xyhE3AwhjDlUQBczABU13PkuVk/GaWJmARr+d+EdZ7u3ICHTOhjxV2UcDsNICsNmyitpHuJ0ImYJdccgkuvfRSNGzYEP/3f/+Ho48+Gm3atEGdOnWwdetWzJs3D7/88guGDx+O8847D7179xZ6+JQpU3Daaaelft95550AgKuvvhpvvPEGZs+ejQ8//BAFBQVo3bo1TjvtNAwcOBANGzZ08arZi4h/Bv3Ce+qaqb7nKcpEfXByawIWhY5LdXhxmW/lZkCzyo/+uVY7PHEbQO12fIxh2OMmACreUYx5G+fhmDbHRGoRGHecfAAliXqfaseEVRNSf2uahu0V2zF7/WzTa+3eM0yV8rj1RXasLFyJssoy7NdsPwDp7+ZUxgkksGzrMgDAXk32wuQ1k5XnT2pMchCMRA1RJ9C/r/rdcowwE6qYzU2C7KdlzNXCwKgdVq1V4/dVv+PI1keiTs06GdfLOOVXlT/ARAPIaxSwiJS/F/TvHycNoG07tmHS6kk4ps0xkeyL7EgbE2yigOm/jXHdSxMwQQHQddddh6uuugpfffUVBg4ciHfeeQcFBQUAdlb+gw8+GGeddRamTp2KAw44QPjhp556qm0HMHKkuYNWkt7grRq/lQbQ5tLN/mUsBvgRsUZ1GHhXAqCILnz1Zax/L9FByy978gSsbadFduniPGg6LUaiKACyqy//6P8PzNkwB59e+CkuP+zyAHPlDT/brNIoYAJjTOq5MZjU68vm/h/vT/1drVWj00ed8OtK8xDhkTUBMwp3ozkUZGBWR/d8ZaefkS29tqBp3aZp55xMcHdU7cDer+4NABh86WBc+MWFKrMrhZPJVxzaiRXdv+5uec7MBMxOAygvkef7wjlSGkAC/XLvX3vjvh/vQ+f9OmPoFUPT79esNZeT51VjpQFklQ/Rco3bHMqMNC0Tj2V/2SGXYeDcgfJ5cDGPOPOjMwEAAy8emNFPRXUtYYZdhD/9tzlxwInp99EETNwJdO3atXHFFVfgiiuuAAAUFhaitLQUzZo1Q61a0YsYk0sIaQBlURSwgrIC5Ndw7+g76iZgcdYAcloQ6t9LtQ8HlRpAIhPGqJuAGbHTADK+SxQFQHZtYs6GOQCAj2d/HCsBkF/oTWW8IKwBFOMw8Ho0aJbCH8C+j4mKE+hsYUXhCjSt29RS6K5pGtYVr0u7R3/+49kf+5Ivt9oNcWgXMiZgVucyBEAWptZBCoCs8h6VMdxoHtjn9z4AgGGLzCMeyzjlV0Gy/Ew1gDyYgBnbb9yJkwZQks/nfJ4WDKVaqw49Wu/64vVoXr+55XkRH0DbyreheEexZRocrz04gW7cuDFatWpF4U9I5KoPoKLyIjR9rilavNDCdRpRn4i51QCKwzd2YwLm506ppQ8gizoSaxMwm/zGXQCUJApC0CgweP5gFJZ5FwKJ+gCKs0NJPY5h4G3Gjqg4gY76+OYF/Xt+POtjtH7ROiBI+8bt/cmDWxMwgz+7KH4nURMwO4xjidUCTVS4rAI7M5GoIOOLLGgNDSsNIKu8iI4BM9bNwHcLvvOWuZCJhAmYYH04vt3x2KfpPmnHmtRpEql+6ec/f0arF1uh6+ddha63atvvTn/XVgPUSnMoTtpPXon+ipEAAJ447QmcufeZpueSFfaLi7+wvF964R3RSfzMdTMB7PT54Xax50ckJ5Udv2sNoBh0XL5GAXPxLS19AAk4gY5bWEk787VsEQBFmaAnVgs2L/CchtMiLQ59jhluNQLiYAKWLSTfyarPfXva27b3N63T1Pa835iZ2UZdUKrPX1V1lauoZWambk4mYKo4a5+zTI9HygRMoBwdBUBOTqB9CgMvakkg0x89+fOTrvIUFeIUBcysrTXOb5z2O+x+6ZXfXwEADF041P7Cv3CbX5qAUQAUGx48+UH8cNUPqd/6Bp9s1JcccknaPWbXiJKNE8okfnTSSgVAFirTToSl/SDTAbsRRAr7AHIxEFgtYGVNwCaumoj6T9dHn4l9pPPgF8b64BQGXk/YKsBmiAgb4iaQiLrGkpMPoCRR2kEUwSqPTnk3tpt7T7gX++62r9C9fhKl8OJ+IjPO+iXEdh0GXiKiZVgk81dWWYZ9Xt0HnT/tLHafjUmGVbvwQwBkJaCIvAmYUTjo0Jc4OoFWbQIGcxMwwCISpEQ99+LOIWp4FSq4/W6i8x4zv5dN6jRRkgdViMyJVMw3aAJGAVBW4IdpRFQnKioWeH5MllVPJLLJBMzKCbTw/T6FgU8kEmJRwHR1zmoHt8e3PVBeVY47Rt4hlYcgkdEAiiIifVjUBSpxw1EDyOPkP2o4hoE3tJsErPuQIAl70u4nbrVmwv4uxs0L2UV+mIz/czz+LPwT3y/+PnXMrQkYYP7dkt9H5WaDrKAnquOeXb5khdQqsDMBM82DRN3OrxlvAZB+fuhVqFBeWe4uD4LzHrP1U91adSOvmWiHaw2giGvsB0H4MxfiCn1Dlo0CZsaNf7sx7XdUJycqOic/TMBUlle2mYBZOYEWulfG34IbDSArH0CSJmBxEDzIaABFkbAXdLmIsAZQTBa2Tjj6ADKctxMiB0mcy1yPWfm73e31q0zcppvhAyjkhZZpWdtoeojm11QAZFJmyWfUzBOORePq2XbHw/gGltqHMj6AQjIBExYASTx/9NLRrvIURbwKFeycFtshOvfPS+Rl1J1aebWk6p7fiLyLivmGlbZWHObyqnA1cykoKMC7776L+++/H1u2bAEATJs2DatXr1aaOSKGVad85t5nomZeTRzV+ijHjtvOXCTb8GNiqNoELE5RwGQEIb6agEl+1zuOvUNIA8jqeNgDpSwyGkBRXFBGYaHtBbO2EVWhbZJk/iydQP91PEoLWxEsBbwO9d7YTvISeZGol3EzwXOLTJ8bdj3MCAMfg+9iFe0JsM+/0wLSTgNIpame1aIuDhpAMloYQYwbnfbplPrbTgBkVi/iUNdVoR/XvZqAbduxzXMenK4z1p0aeTUitYETlLUKNYBcCIBmzZqF/fffH8899xxeeOEFFBQUAAC+/vpr3H///arzRywQ8e9zTNtjsPautZh43UTHcIvGTiHsTsAtJTtKcNEXF+GTWZ9YXhN1E7B3p72bVRpAetLCwCueoMuk1/fcvjii1RHSYeDDXug+NOYh3DHiDlf32uU9w2FpBBfxQqauMWgDccKVCVhMxw6AJmBBIxIq3a15gl+LexlnyBlRwCK00DLDTgNINg2nY8ln1KqhLpJwRVWF6fEoCYCctNwA+3w9MOYBvDX1Lcvzo5eOxorCFe4z+Bfvd30/Iz+immFRnD/4hcooYNvKXQqARH0AmVxn1MDLlW9nZa6XS3NI6V7+zjvvxDXXXINFixahTp06qePnnHMOxo8frzRzRAy7Crt7vd1Rq0YtbC3bKpVmXDuBlye+jMHzB6P7190tr4l6FLABMwbESwNIInSyn2HgZb5Brbydk06rtiPyzKAn8DuqduDJn59En9/7YGXhSun77ep9lHZCrcjGgTnq6sZuTMDiTFxNwPTEdewWQaae+SYAcmsCZtQIiuB3stUA8mICFpAGUEW1nAAoSv2WSjOcR8c96jE35pt1ohpAcZhP+IFXrZI7jrvD1X0yUcCM19ZI1IiUpqKQCZiC/DIKmAsB0OTJk3HjjTdmHG/bti3WrbPXMiHqkPHvI5Se0QQsQgOjDBtLNjpeE/UoYIC7xW4QCxFN0/D4uMcxcM7AXcck6oo+j7IdveO1EvkorSzNyI9VWvq2EaYJmN5BoJv2aXdPGCZgXQ/oKnW9H87uiT1uwsBHcWFrxKp+y4aBj4oG0IczP0z9fceIO/D7qt9DzI17HH0ARUADSBQzgU/U51VmGkDJd7A1AXMYF7dXbM84luyrk5sxKoiDBpAIUciXmWaLH06g445+zuHVCfQNR93gLg8eooAlEolIuTagCVhwSM9c6tSpg6KioozjCxYsQPPmzZVkijjjJcS7aXqGTiHsTkAEs05PJN9+eLyPQhSwIBa/v638DY+MfQTdBnVzdb8bEzAv0UesOKbNMQA8OoHW/R2EdsqOqh2pv93smkbNCfRhLQ6Tup4mYMGT0gByCjscoR1ELzhG2DGagEVQA+jNqW/iuP7HhZ0Nz5j1wTL9VNgmYE73RrmdpI3Tf+XTiwZQ07pNLZ+h0gm0lQaQW4GvH4j4F4xC3TDb+KIJWCb6sdGrVonb+YuXKGBRc04flBNohoF3IQDq2rUrHn/8cVRU7OxoE4kEVqxYgfvuuw8XXXSR8gwSZ1Qs/OPoBHrGuhkZx8ISXEVCABTA4nfT9k0Zx2TMJvyMAiYj0f9Hu38AsC4zEZXxoKOA6QVAbkLn2g2aGb44/vrdqkEr6efYccVhV6T+lvX9ELWFdi4g6gMozmFk9UibgEVEAyhbcPQBJDEehL2IfvG3F9N8L2aEgY9gOzEz9ZHdKTcbO1vWb2l5fZg+gKLyDYzaYlHYgBXVALJqs/k14h3e3Q1haZV4iQKW0S9FQPgog2sNIJqAyQuAXnjhBWzcuBEtWrRAaWkpTjnlFOy7775o2LAhnnrqKT/ySExQbgKWJU6gZQfOKPoAAqKrAWS6g6AXhDgMRG7eyw8fQI7PtNqlC3GSphcAiZDRpl1oAJ3c/mSpZzrRoUmH1N+yWkw07woeJx9ATv1BVLHqU6RNwCKoAZTNRMEETLR+Pzz2Ybw7/d1d9xl22qOImaZHshxFo4DJam4FoQEUJRMwkToQBQGQWR2QCQOfX9NcABT1NiCLyihgfmMatMFi8y8sgprnWTqBzqF5pnTP26hRI/zyyy8YM2YMpk2bhurqahx11FH45z//6Uf+iAB+TECNncD64vX4ffXv6LxfZ9TIk9c+CArZxYeqzk51p+lWA2jYwmE4otUR2KPRHkrzk8SVAEf3TdyEgRfF7aRp1FWjcOZHZ1o+14ujaJXoBUBefQBp0FCyowQ/LPkBnfbpZOkDSPVgqNdcqluzrtS92egDKOoma04aQEmipELuBWkTMCSU+jDJdZzMSeJsApahdRlBQampBtBfi1q793byIWK3MFbZfqw2SSIlABIxAYtAH5pmAvZXfsw0j03bLDRLZ+BRrPeqCE0DSMIEzGyzP0qmqXZzomVbl2HRlkVoWmeXSanb/G4o2eDqvmxCSgBUWVmJOnXqYMaMGTj99NNx+umn+5Uv4oC+watYRDg5gT78zcOxoWQDXj37Vdx27G2en+cXbgb0BBKeO70oaAANmj8Ib019CwkkUP2IPxMbkR0Eu/OuooAJfhu3uy//3PufOGnPk/Dzip/TnmuVH6dr/EJWA8iIcZF+9TdXY9D8Qbj0kEst669qAYVeeFy3lpwASCQvUReoxA0nH0BxE7glcesTxMwHkEoTFmJPFKKAuUXTtLR2FPYi387czosGkKkAyGRhnEyvY6uOmLBqQup4j449MGDGAKfsmxJXJ9BG7bAo5MuTCZhmLgAau3wsTmp/ksJcho9KH0Aq8mB73V//6YmCP0hR9n51bwDAC2e+kDoWdj8aZ6RWYzVr1kT79u1RVRVtNbdcwxcTMEOjSkpLhywc4vlZfuLGBEzFojEKAqCkfx4/BRMymgBu7veCl29gzFdFVQVmrJuRqRkToqZDeZUuCpjks0t2lGQIrwbNHwQA+GLuF4FpAOnLuU7NOlL3xlXYYEfU3ymZP8d2H2MfAnrs2lXL+i0z2kleIo8aQB5w0oqp1qoxY/2MXedlokL61D+rCgMfZWR9AGnQsKFkA5YXLDcdh+3G5mf/+Wzabzf+7ZJYOoG2CuoQkb4qin5Y9GOTmyhgZmU+c/3M2LQBUfTvE5ZjYS/zCA0a1hav3fU7BiZgeoFxFNpKXJFejT344IO4//77sWXLFj/yQwQJKwx81BcsQlHADIt4Fe8UBQFQEIjuAIncL3KfjN8ELwOX8b1+Wv4TjnzrSDw69tH0Z1hM0oKOAiaCvl53fKujKx9AyjWAdJP7erXqKU0biH7/FCf0IWOdfADlgglYIpEwdQLtJiIfEeO5X55LC3EfJyfQRozmL1HLH2BuApbSALIzAdM0tHyhJTr06YCN2zdmnLfTjGiU3yjtt5e5z56N9zQ9bvX8qPgAqtaqI9dvCmsAWbyPWdnu0WiPSGuYuEHfjqPuBNrs2qrqKnw066PU77D7Jdk5p+p2k0ta5NI+gF599VUsXrwYbdq0Qfv27VG/fv2089OmTVOWOSKGkihgJhpABWUFaFKniee0VeIYjlhEqGC4Ji+R51l1U/WgZvdNNU1DUXkRGtdprPSZIohOAKyQ7twlBiMvuy9W+Xpi/BNpEUwsw8AHIHgor9RpAEnW88VbFtveY6XppFoQ6UUDiASLyCaDqUloBBe2Rtw6gaYJmL8Yv8sT45+wPW9HJH0A6W6N2oIfMDcBS/kAsjMB052bvX52xnlTEzCL9/ciUP38os+x72v7ZhyPuglYVPKhR9QJtIwJWJ2adSL5rl7Q1+PQTMBkfAAZri2rLEv7HcV+yY5sq09BIi0AOv/8833IBpFF34j90BZ5d9q76DW6F57753PodUKvXc+NuHRUSF3Z4PAsbiZgXT/viu8WfoeZN83E4S0PV/pcJ7w6gdYjOmiJLigv/vJi4TwZiarGlR6vPoD0dVTUIamfJmCypjMi9SDq/ZORKOdX/61UCN7jgJOWQ0YUMGoA+YYGLWNBFQkn0G5NwDQNUVdQTNb/tMhG1QJOoHXntu3YBgBoVrcZCsoKUKVVSX0Lt+3pqsOvwj677eOYP5HjfmJWf6q16sj1oWlOoE0Eg6lzEk6gq6qrIveeXombBpARK/P/uBD1yGtRRloA9Mgjj/iRD+IBP0zAeo3eKfS5d/S96QKgiM9ghEzAjLu4MTMB+27hdwCAvpP64q0ubyl9rhNGJ5aJRLoDbdWDh4wJ2LS17rUP3QijknbuQS3i9QOdSJnYOftzMgFL+QDy0Ql0g9oNPKUVZNnnIvo+yFIDKK5h4C3y6KgBZDQBSzAKmEqM38W4oIq1E2ijBlAE24mVcELmvuIdxQB29hlJ7WqzRZrV+1uFD3eiqLzI8lzUNYBkAmkEhR9OoK2EgXEey/XfxsoHld8IawDpzLqTGPMclhAriex6LOz8xpnob3sTU/SN2KzjlHawGtPO14jTpOqF317ADd/dsOt6RQNPLvoASpa1qrC4YSLs3FD3rjPXzcTuvXdHn4l9/MqW5bNd3W8jqLP0AeSjBpAX89KHf3oYbV5qg1VFq9KOR11AHSfSNIAcyjUXfACZnU+AJmB+EkkNILfjndEHUEzaiZAJmO5dSnaUANglAAKCMQHbXrHd8lzUBUC2TrJ/eRatXmzl+Rmyc0qzMPCic2Wr6K1V1eYCoHYvt8OdI++Uyl9U0L+n0ZwqKISjgJlc98jYdKWO9q+0R0FZgYpsuULkXfRlrtrxdi7NIaVXmXl5eahRo4blPxI8+o79/a7vo2Hthhh+xXCpNGRsSKOM04B+z6h70n5rUOMEWrUwI6rl7BQdxFQd2MNEVyYMvBdkJjZJ7vvxPmwp3YI7Rt7hU67E8iF8j4wGkOSETxRVAqAnxj+BdcXr8MS4dB8hUW03VkR5siGkAfRX/qPu3NaIG5MQs8g2iUTCs2km2YVKTYioLO6TRC0KmN1YrW/DQk6gLTSAkv2xjJlGfg13GkC9z+xteS5KAiArp8lW3P/j/akovF6QFQCZ+QAy9fkm8T5VWpXp9au3rcbLE1+Wyl9U0L9PWGOBzDzC6doqrQrvTnvXa5YCI2r9fJyQNgH7+uuv035XVFRg+vTp+OCDD/DYY48pyxixx8oH0NUdr8ZVR1wlL+2P2cLJCjedQRQ1gKKKaXQQyV1zGYKaMLvRAAoa0XL8ZcUvuH3E7Zi1fpbl/Rk+gCzeS7WAQr9DpsLBfByEDWHSoHaD1IJMFhEfQKYmYBFa5Moi7QQaCawuWu1nlogOmXHWL9MALz6A0kyoI9h3WWltWJ1L3afXAKrYqQGUSCRSfYjfPoAW37bY0v+P8fm71d0NW0p3RjEeunAojml7jPTzVBPE/NHLmsDOJNyuzpgdz7a5sv799YE6guCIlkcA8BYFzIwwx3CROWeajzL6AHKNtACoa9euGccuvvhiHHLIIRg4cCCuu+46JRkj4hgbjBvzIRkb0igjO7hENQx8VBdR+rIy2xmUCtMbQHh3M3p07JFxzGsdCEKAKmpmc9KAk6Tvt3IKrbq979FoD+Ql8pBfI186DHxU20SU8WJKKqIBlMRtHxA1ZPOel8jD6m0UALnFqR/yQtQWmkZt1ij2ZykNIF3eZMuxtLIUgLMJ2GEtDzO9340PoJp5u5Yyx7Y9Fr+v/j3tvP4daiR2WSo8Pv5xPHZa+BvXQfSZXkzAZMPAl1eZC0JkHYLHAf37B20Clvwe2bJ+A+Tn0qpNwHJJoKTM0cixxx6L0aNHq0qOOCASotcPvl/8faQ7cNlJVVSjgEUVMw0gt7hx2O2Vs/Y5C/3/r3/Gcbs2JLJra9S28RtXJmAuzHRUC7bq1qyLgnsLsLnXZl+EZnGY4ASJfrEji4gPoLiWt0on0NQAUoejCVgEnEB78gEUQaGPHrPy/bPwT1zy5SVYvGWx0H1JYY9eAGT2LayCALjRANIHF+hzdqZPPv3zjePOxV9cjPkb50s/0y1uHW17RXYsMHMCbWoCZvI+pRWlpmlmWxSw7xZ8h26DuqV+Wwm+vPDQyQ9ZnksJgGQ0gATG7Dh9I9WankntwFxAieSgtLQUr732GvbYYw8VyREBVIeBl+lARiwe4fl5fuHKBMxHDSD9zpQMUQ15bTYpcNrVtJr0in4rlYPR7vV2Ny03YR9AMTABs7xfIu9m4YBVkEgk0DC/IerWqqs0XX36ccLv/AamARRxzQZRnEJdm5mA3X/i/X5ni/xFJJxAu+yHjaG+o7zI0uftqq+vwlfzvrK/XtdukjvyeYm81Phh/BbXH3m9ZVpufAA5maumCYAMY9qg+YNw7qfnSj9TJUEIgGTHGjMNIFGT36QWmJFs0wD6v8//L80/kx8mYHam8rIaQED050jSUcAUa+wc0OwApelFGenZYdOmTbHbbrul/jVt2hQNGzbEe++9h969rZ2wEf9Q0aBlGt3W0q2en+cWp8WF3eBidm9ReRG27djmOV9Wz11/93pX6UV1EWXqA8hlXkU6btXlYDXpFvYBFOKk3WukJTeLdNWTBdUCpai2k6igSgDk5APIygTsmZ+fSTvXf1r/SDuYlF2cJBIJ/O+k/6Ftw7bSz+qyfxfpe7ywYNMC3PPDPUocyvqFoz85ifY+dNFQr9lRitEJdBT7LrM8rdm2xvE+fbvRmwulTMAMY32/zv0s03KjASQjoDa7dnnBculnukXWCbQq/HICbYaVKVTcfACNXDwSj4973PSbvfr7qxnHgnYCLasBJHrdwLkD8crEV9xmyxNhh4G38yWWbUirJ7z88svp5kd5eWjevDmOPfZYNG3aVGnmiDVpYeAVLKpWFK0QvjbKO1e2AiCTfN87+l4lz7WazO1Wdzcl6UeFtChgJgIcszJ2a26RvDeIiXJcTVlkkPHTkjyv2rxUdXpmGhlkF35rADlFhfnfmP/huD2Ow2kdTkPxjmJc/93Onf+LD75YiRNwt1hGAZMUQCSQQI28GvhHu384akkYcasd6paj3j4K2yu2Y87GOfj+yu8DfbYqZBaP64rX+ZIHTyZgiejOnYBd9V/2HfXfJTkvSGCXE2j9Iq1OzTqoVaOWZVquTMB05k1mfZKdCZjVPUESxBzHkxNom6igMusBqyhgUeXsT84GABzW4jBccNAFqeOLtyzG7SNuz7jeDxMwu7rpxgeQyLXT1k7DtLXT0GmfTji4+cFiGQ0J1RpAcaqfXpGegZx++ulo166daUewYsUK7LnnnkoyRsRRsUtfWFYofG2UG4h+MHpryls4a9+zsFeTvQCYTx5nrJuh5LkqdzVa1m8ZWSGbmyhgVkRpJ8iuDekHzKiYgLkpc315my1kzfDDBIzswu+FhxcBkD5vTvm0q5tri9cCSN8dLa0oDVcAZNF+HMPAGwWOf9VnV4EXAm4L2yu2AwAmrpoY6HNlUOkDKGpUa9XI03bVkyi+i9vx7aflP6X+1vsAStZxMw0hK9y0Cy8mYIA7x9MqiaIGkB7ZMPBWRFUDaEvpFgycMxCXHnIpmtVrlnF+ZdHKjOvN8MMJtF178EsDKMnm7ZulrleBbB5VawBFsX76hXSP0KFDB2zcuDHj+ObNm9GhQwclmSLOHNv22NTfQTqBBsJtIE6dgz5vNw27CQf1PSj122ygUlV2h7Y4VEk6SaIqZHOMAuaQ77TwjQIdt5nfDS94LdcoTtpFkREg2e34ecHvvooCpnR81wAS8AmRbPNh77KLIG0CBg8CoBiUR9SIwuRcmQ+gCI7xKQ0gD+NcckfeygSs0z6dbO930y70TqDdaAC50TpyS1hOoFUIgLwSVR9Al3x5CW4Zfgsu+fIS0/OiddIPH0AqNYCA6M+RZNu/6ihgcZ7jyyLdI1gNWsXFxahTp47nDBF75t0yD73P7J3meFKkwTx7xrO252U6hag2kG3l2/D9onTV9rLKMoxYPAJ/bPoDP6/4OeMe2UFx+BXDTY93P7y7VDpxQ9M0/Lj0xzT/EWYDebJu6P1EWZkeFZY7a52prmtudv5lr9tSugWjloxSPtHx7API5n59+x+5eCQKygp2HletAaQ4vf7T+6OovMi39OOOl8meiA+gJHb10avZQJDY5Wvz9s0YtWRU2jEvGkBBb9wkiXIbiVK9sPo+bgU3UVv4mpprKxBKmUUBSx7bvd7ueL/r+9Jptm3YFm92ftPyvFNfpV8kmtV//RjiN2H5APISETJZVzybgElEAZu6ZioWbl4onLYXxiwbAyBdk02P/r3nb5yPmetmml7nxQRsxJWZwXVm3jRTqQYQEO3+HxB7l7SogzQBc42wCdidd94JYOfHefjhh1GvXr3UuaqqKvz+++/o2LGj8gySdA5qfhAOan5QmgqiSIPZd7d9bc9bdQpmfgqi2kA6f9rZdHA555NzLO+R7QzP2c88Lf0OlFfMTA0srw3oWwycOxCXD7o87ZidCdhx/Y9T9uwg3vHrP74Wuk7kuxz99tFYVrAMb3Z+EzcefaPXrEk9W/R+u7SSdu9AtDSArPJ85kdnuk4z2/Ey2RPxM5c8ble3UhpAJj4lwsJNZEINWkbAAC8aQCL3XHDgBcJ9kyhR3wFOIhNR0g/yEnlKF+YZTqAjJOwy4qWc7TSA7jvhPlMTGz1WQoYbj74RNw27yfSeNAGQSV+VJgCyqP/FO4otQ9OrRMZPokq8jL1JPzCeTcAENYDWbluLo985emf6j0SnnWiahoP7WfvE8SIAat+kfcaxw1sejrHLx1reI+3XKeLCHzco32iNcL+sGuHaM336dEyfPh2apmH27Nmp39OnT8cff/yBI444Au+//76PWSVWiDRqp0mf1XmzXYOoNhAzDR8nojQZTg6ymhaM42MZhiwYknHMzgRMv3OjQUs55JQdgKJQDrJ1ZFnBMgDAF/O+8CM7ANy1Qf0kOJt8AE1aPUl5mkHhd/+jSgPIiwmY2b1hjSElO0qwotA64IFZf2Nn3pt8Nze76yKTd7ONhTM6nCH9rLjgJcqnaiw1gHLABMwL+ihgxjDwIv2RGyGDU/tz0gACgE3bNznmTQVxiQIGAFNumIKb/nYT3uj8BoD07/fFxfLzGycfQMmyWbxlsXTafiJadqrNkQCagDmh2gdQFPtlvxDWAPrpp52qcT169ECfPn3QqFEj3zJFnElz0OljGPg4aQC5wU81/Bb1W0hd/1Knl3D2J2cLT8ISSIQqjJPpeFu/2BpF97lTs46UDyCJ+/00AXNDmgBItI5FPAx8RvoRn9wEjScNIIkxxk6zwSxUfFjs+cqe2FK6BTcffbPpebN28dZ5b+GE904wvd5vEzCzhe2xbY/Fj8t+lH5eNhDkeKd6blCtVUdeAyiZP08+gP6aFyQSmVHAVGxWmuFkAlZRVeEpfZXEyQfQ39r8DX9r87fUb/3363JAFwBqo4BVa9WokagROXNJM01XM7wII6zKhSZg9qgWukWt7vmJdI8wYMAACn8ihp8N2kwAFGYDUb2I8EMA1KFJB5y595kYfdVoV3kRdXwc9gTSzATMLk/LC5ZLP6OkokRpJAKr/F3b8VpP95teq7iuGnePk1F9RNFPgo1YDbpRDwOfi8g4mvSy2NHfKxMG3uqaKEyskqbTIxZn+lsAzPNo945eHFyLfBuz8dfrAjbKCwCn/tWpDjXKVzc3Ve0DSHRcl+3XVaJiTmFnAuZWA8gJJyfQFdUVtufdsL1iu2dffEmiKgASSUNlFLBkPQl7bmtEtM+NugZQ2MJPVaQFk1HtAyhidc9PXPUIkydPRq9evdCtWzdceOGFaf9IMIhMztOud+ggLE3ATFTQw2wgqp/tx4L0723/jh+u+gGHtTxM6j43PjLC3FU3MwFTzWPjHsPcjXN9Sz+JU2SSJLL27n7x+qTXUf/p+vhk1ifC9+gnwaLvEQcTsLT0I7y4NcNNfvd+dW9f0ze7VyoMvIWD8SiZv1jVQ7N82dXZ5Dk3bd2tCVjc6rhKHMPEK6xXvpiAOTjyH7JgCOo/XR/P/mIftMMvUlHAvPgAsgkD71fdddIAemfaO7bnAbl3Xl20GvWfro/zPjtPIpc7MROABOIEWsBP5Wl7nSachhttsWqt2vZdkwKUsMcHIykNIId8+THnUxoGHonIC4GCNgE7ac+T0n5Hre75ifTq9/PPP8cJJ5yAefPm4euvv0ZFRQXmzZuHMWPGoHHjxn7kkTggtKvi5ANIwgQsmzSAvExIOjTpgH132xcju49MO+52giiqZmq83owgHKOZRgELqPN0cmqeJC+Rhy8v+dLxOrN6nkRfzrKTHZXoy/aliS8BALp/LR59LgomYJ6cQAvUrahPblSwZtsa4WvtyqNDkw7C9zr5ALI1ATOZPIe9y2b1Pm41gNzs/IqMPWb5zCYtOmM98OoDSGW9svo+XqKAOWnLXjfkOgDA/T/en3EuCJREATPTAKqW0AByEWlKygeKAiHU+zPeBwAMX2QeFdYOv6KvOeFW4KynfeP26LxfZ1x6yKWoW6suAPlNMbtvmexHo6Atqkd0XqHaH40ZjfN3rbOT+fJLsBrGOC07h/MqdDPO/evUzJ1o5tIziaeffhovv/wyhg4ditq1a6NPnz6YP38+Lr30Uuy5555+5JGYILM7K5SeRaOLmg8g1R2SlwXjP9r9A4tuW5ShPeK2fPQmYA/99JDQPVblEcRAZBcFzA+ObnN06u8fuv8gdM/i2xbj4oMvdrzObuLjZcc3SuhNwETrR9TDwBN77Mp70W2LhO+16idFHLZGUgPIanFv0tZFNID8aus1E95NwJ4a/xT2emUv1/cHxfKC5Wj/SmYkHBnipAFkRn6NfFdpq0JFPTYNA69J+ACSHCP0mkYiWGoABbS5E2UTMCdn2olEAkOvGIqBFw90lQdHE7C/6k7U5k7CPoD80AAytIdx14xL/S2tAZRIZN0cTHatY2wH+jXukv8swYju5ubh2Yi0AGjJkiXo3LkzACA/Px8lJSVIJBL473//i7ffflt5BokzftlVA9GLAhYlH0BWPlXclk9KAAQNa4vXus4XEIwDYtMoYDbv7nXhoSLSjlX9EU07VCfQHtud3gRs1vpZaecso4BFSAOIyGNX3jKRIZ2+m0gYeH17CHuCL+PfRUQDyC9zTzPBtGwbevCnB/Fn4Z+p31FdANw7+l5s27HN9hqnPlDl3ERGS0wEEW2n/JrhCoBSJmBenEDrhD2uooBJjjmy7UGFbycv7T3KTqBFzMSM+GECFvb4YES0jpkJIy48SMw1ikg5NqzdMBUtWJ8vv6KARXWs0CPbFmvl1Ur7rRcAxeF9VSI9G99tt92wbdvOQbpt27aYM2cOAKCgoADbt4fnvC7X0DdiJRpAEiZgxoGyqroKFw68EI/89IjnfDihXAPIQ9mpdvim1wASxepaP/3PBPkMPWmOHgUHMeOExqr+2JmAJR3H2t1vhnIn0AqjgJVUlAjdE0UfQHbheuM2gIcZBl6F2YRIGHgzM7GgJviPjX0MFwy8IGNiblUuZvkSEaL54fwTMBdMx62Oi2IsezcL5UA0gHw0Acs2DaDC8kIAcmarsshuDMlo/1mRrRpAbjZopOar0Gyvj7oTaKd3NY4Dc26eg9v+fpuyfCz+z2LUqrFLgOHGB1DUkc2j7NirLz8gfe6faxuU0m970kknYdSoUQCASy+9FLfffjtuuOEGXH755TjjjDOUZ5A44+ciQsQH0E/Lf8LXf3yNx8c/7ls+koSpAXR8u+PTfus1KvQY8/iPPf4hlL7K7xjEhMI0CpiPph1pjh4FB4nkPUkzvZ7H9DS9zm7nq6yyLPV3mBpAXtFrrJVWlKadszTxiaAG0ENjxMwjo0YYpjeqnEA7agDZtAsz9fmg2saj4x7FN398g5FL0v20qTIB21iyEYA7k1uRRY4KDaC4ILKQD9J00GpMcFt3RUzAwvY/oSKwg94H0IaSDWnn/DIBk8GqPcu0YU/hvs18AAUg8FBhAmbG2fueLXytpmmx1ABKImsCVrdWXeH6bNXm9M80aq+40gCSuDYOPoBk64pxTZumARRR82i/kJ5JvP766+jWrRsA4P7778fdd9+N9evX48ILL0T//v2VZ5CYI+sDSEbdX49IFDDjYjJOyEweXjvntbTfVpJnY/mM7zEeL3V6STgvUlomUfABFNCk3IsJ2PArhmPVf1fh1L1O9ZR2qE6gPQ7G+voqGmo4Sj6Aku+/tWyrdfo5NoA7YSyPMzqcYXnO7l4nH0B2mg1mmo1BT/D1QlzA+n1uH3F7xjGROutGA0ik3zTrx+20FUWIahsRMT9xqjellermIqp9ABkXv2GbgPmlibJ061IA5uXn2gm0TVsRNfNOpW/RnmXe3ZMJWEgaQG6dzjvRrnE7jLhS3G9KnKOAOWHsr2vm1fTc3+rLwpiWrAYQEF3hmltk1zo0AduFVGuvrKzEd999h7y8nbfl5eWhV69eGDJkCF566SU0bdrUl0ySTEQm51LpeTABC1JKHGYYeOO1lj6ADOVTM68m2jRsI5y+ykgcqhCOAuZjXXBjApYs0xp5NdC2UVvL67wuqsyI2kCr11gzLoitUL1YZBj4dILMb8v6LV3b/ztFAdNjZQIWJR9AMuVuN0YkFyxu+luRvrLflH4Zx9z46YgDQhpAAc41VAgKjPfFxQRMRTm7jWAn2yeKmnk7IdOGPZmAheQDSAS3fUvLBi2FrtP++s+KyDqBdmkCVjOvpvAaw25+msrHX22jfeOdzvIvPfjStOOO9ycSlpYLUUHkXfR1SHbz5ZqO16T91puERXVzxC+kBEA1a9bEzTffjPLycr/yQ1zgZxQwJyfQ64vXC0esUkGYJmDGchbVAJLNiwo/M0EMoMlnBzUp19dFWRMwx7QFJz6hOoH2WPf1AsuyqnQB0C8rfjG9R7WAQoX5StT8A8SFRCIhVYfKq3aN8071QCgMfAgmYKk8Gd5bqt+3mRQmJ9OqNC5FNEX9EFZHAWMf3Of3PhnXBFlv/PAB5JT/sJ1Aqyxfs3YjUndlF2GyY5RV+ku3LsXDPz2MDSUb8Pqk1zFs4TDLNDyZgIWlASRQrm60rAHxbxAXE7DPZn+GD2d+mPot+n5mAiDRe5vUaeJ4TfIbzrhpBn699tdUhFsZH0BWG9dRwe8w8D069kj77WZdkS1IzySOPfZYTJ8+He3bewvXSbwh45/BeL3MeScNoEu/ujQjopCfhBkG3nitqA8gUZLfUXTws8u7ahMws3dKRQzRL/4EfIG4xc3ulLAAKMdMwEQ1gFT7G/F7gM21AdyJNPVxybJZXrA89belBpBJmpa+DEI0AbMySxPBrtySk2lXGkAm5XRS+5Mc7/NsAhahNqIvA2Mf/PGsj22v9xs/ooA5jZW1a9R2lbYqVJp1m5Wf0fzCLce0OQaT10wGgJSjaS/5AoCun3cFsFPwWFReBADQHlEfZMPUB1AA9Vqk3butf6LzaA32AqAoOIEurSjFFYOvSDsmujlrrBeiJmD77rav5Tn9M5P5aFKnSZpPUpk+3a+ABUGif1+VYeBzTQNIeiZxyy234K677sKqVavwt7/9DfXr1087f/jhhyvLHBHDj9CaSUwFQLoOafyf412lK4Kmafhi7hc4otUROHD3A1PHVOJlISKjAST0jf7q1HZU7RDOg9WAFPYOihleB/V6teql/pY1AXNCdFEVayfQOoGlCiGjG7wIlIp3FOO96e/ZRgGLMqYhxn2ecOjbnJdnOd1rZ9piFlo67LbhRfCvJ9lXq3ICLTKRzxYfQFPWTMHQhUNTv0WE8LKLfS+o9gFk1ACKoiaj31HUhDSAzITKRq1CL30ZEuh9Zm/cM+oe0/NJ4Y8dcYwCJlJmezbe01XaMuO6rAaQpmmB9llm82/R509ZMyXtt6gGkGi7k4nGaXVdFPsdPbImYLLCWFsBUIQ2R4JAeiZx2WWXAQD+85//pI4lVcsTiQSqqoINDZ2rqA4Db4WZ1oVdB16tVSvTGhi6cCi6DdrpcDy5E6O685KZ8BjL+Zg2x5hed2SrIzOOtWvUzjl9hSGFg/ABZGYC5ufgUr/WLmGzahOwFvVbCF0XqgaQwjDwogvWKIWBH7t8LMYuH+tb+sQaJx9AdnUz2Q7C9AHkpe3Y9SFJoapfTqBr5tXMSFvGTCNqzlT1HPNO+vgZNd9GqjWAjD6AoojfPoCMIZiNJJAQ8yvmYVxKJBIpHypuUR0FLCpOoE9od4JvaQM7v6Ndn2QqAIIW+sI8ZcYs2Z/67QQ6dVwmsleExwTAhQmYZFs0pq/XSsy1+aO0AGjZsmV+5IN4QEa7RBYRJ9B6qqqrkFdDjQDo99W/Sz3bDTITnWQ5z71lLr6c+yXu/Medaeen3zgd3y34Dncff3fGvf9o5xwK3o3gzKo8gogCFrQJmF4DSBTRMm3fpD3e7fIulhUsw1M/PyX9HDOiZgKmz4/ev4sdbgbEo1ofhWlrp5me8zuEtV0dm79xPmrXqI19dtvH1zxEGbd1yHLnUcAELCUozkITsJQGkCIn0Mb29tUlX+H8geenHZPRAArL4efs9bPRKL8R2jcRX2i79T/iF2Z1ZJ+m+yjzAWRqVh3y4kxlu3SjAZSXyBOaJ9iNSyJRwLwu9PTtfWXhSrRrbL3BV1VdhV9W/IK/tfkbGtRuEJoGkAid9umEPmf3wX677Sd1nzITsL/mrWG3AyNeLChExhrRcVlWA+iBkx5QNp+NEvpysIsK63QvkN4n+T0/jRrSAiD6/okGsmHgnbDqgJycQBup0qpQC2rsvO38zhhZtHmRq2fIDLzJcj64+cF45NRHMs53bNURHVt1dJUPQG3nE6QT6KDw0wQMAK476jpMXzvddsCMswmYPu/CUcAk+5Yu+3dBp306WQqAwtrJKywrxMH9DgYAVD9cnXM7PQBw0O4HeXZQb4WdFqCZVkHYGkAy9dDWCXSVWifQxnyZLSxlNGVMzRl8boNrt63F4W/udAVg5UPFjGzXADJqP0RRG8hvH0AiAiARWjdobXnOqVwTiYTnNqCvA3u+sqdtPX9pwkvoNboXTml/CsZeM9ZcmzqAuiAy5uUl8vCfY//jeF1G2j46gdY0DVGxzJH9TipMwMx8ABkxe0ZeIg+Htzw847oo9jt6ZNvm1398LZe+oR2kRReOSkULCFcrzo8++ggnnHAC2rRpgz///BMA8Morr+Dbb79VmjkihorFjFUHVKdmnYxjIhJ8v7DK56TVk5SmZ4bfi0ZXGkAWnblqEzDRPNgNLkp9ACk2AUulK+HrxAmv77uycKXjjrEM+vyEFQY+rB2W1dtWh/JcPWZl6feEQ19nPjj/A9fpWKqeC9QPM03BMISj+mfK1OsgTcCM+TJbMMtoAAWhCWrkj01/uLovatHNzL67UxhrO8w0gLaWbhXyORMUSqOAmfRtTk6g8xJ5tm3zq0u+wo1/uxHXHXmdp3x5HYdk2lW/Kf0AAOP+HAcgWB9AdWvWTf3tVbNK1X1OG8hA9DbP3I7TTvU5ibAGkIIIeVHTrjLi9zrLTgMo1zYGpXvBN954A3feeSfOPfdcFBQUpHz+NGnSBK+88orq/BEL9BVVKAqYwo7d1gRMoeBBZqfES2QOUeIUwSisKGCyacjgxgRM1qxAJty1E14mMZ/P+Rx7vrIn/vX1v2yvk7L91tX18kpBEzAXddLuHt8Hd4v0o+58NQjaNmrrOUKhFXZmoFHQADI+U5UJWMPaDQEoNAEzPMus/5LyASRgZhYVomwCtn+z/VN/q/IBdPuI27Hb87uh8bONd5m+BNg32fmi8csHkFcTsIsOvghvnvemoy8hx2d4bAPVEK8DRi28IH0AdT+8e+pvPzdfhDWAHEzArHwAhY2IrzvLexXO62VNwIzHs8UJtKf0jRpAORwGXrpHeO211/DOO+/ggQceQI0auwru6KOPxuzZs5VmjojhpwmY7G6FSsGDjI28F7XsqBBlEzDR0KWiqqxuyK+Rn/rbDxMwN9fb4eUbPDH+CQDAJ7M/SR1zKj+n6HH6byO665wtYeBF/VQRc5x8ANlGAfurvEN1Am1YeEgJgEz6mrP2OQun7XUaHjrlIQAuo4AJaACZmUXJaMqEUdf17yAT0TJq/hf0+UmFgXZwYmuHMQz8oi27zNZFNTL9JmwfQImEhRNoQ5/i1Qm013FIpg4YN1uC1ABKcxXho+BX2AeQoAlY2ngScB9m9i5e+iYhDSC7ebNLJ9AJZNbzBBI5P/8xlon+20Z1c8QvpGv1smXLcOSRR2Ycz8/PR0lJiZJMETn8dAIta6/st+mRapMnN06g/ULaXMmmMw/CBMwsvLMdXic5+TV1AqAYmIB5eV9Z1d0bv7sR9Z6qh6Vbl1peo8+7fvFhmw8Xdd7unrAWeVHd9YrLhMMpCpgeSw2gCJmAeeVfR/wLY64eg93r7Q7APw0gswWz15DLQe5y5j+Zj/7T+mccN+vLnv312SCyJIy+but3ib1oAFnd60XDQCV++wBy0twRLVuvTqC9jkMy9xuFe1GOAqYi7do1alteZxSCGomCE2hTwbzJRocoXp1A68951QCKA0FridMHkAQdOnTAjBkzMo5///33OPjgg1XkiQiQ5s/AR9teWS0PpRpAEp2t2+d6CQOvmqhon5ghukNhO5BpmqfOvWX9ltL3qLCZ1hNVJ9BvT3sbVVoVXvztRctrVKsvt2tkHfnEMj2agIWKb06gBcLAh+0EWnbMTF5ntbuqxzcNIBOzKFX+NvzCWDbXf3d9xjVR8/Fhhv49UhpAHn0ARb3vUZk/NxpA1Vp1IIswr+OQTB4zTMACjP6mf08/x169ANzMb6ieOJqAJfHLBMwu3dKK0tTfMk6gzY7TBIw+gPRIrzjvuece9OzZEwMHDoSmaZg0aRKeeuop/O9//8M999zjRx6JCSJqgW7TSzseogZQECZgUlHAQlq82mGpERVEGHjJwdBp98eOt857K11S79O3kIl25MSabWswfe10V/kQUYM3u84u/24GfrtyXvHfFeb32AzgQWoADV04FPu+ui8mrJwQ+s56GBy4+4HKJntWCzdTTTWjCZiJr7C4mICJ9jNunECbPs/oA8hjZCyzer9622ps2r7JU7peCTJIgVvSNIDy/NUAShL24kypE2iTtuMkABLdJArKBOztqW/jgNcPwLKtyzLSECXpKD5JkBpAqqMFW6EXculN9Y04mYBFwQm06NzLS3oyFJYXOqYlejwvkZeTcyE99AG0C+nZeI8ePfDII4+gV69e2L59O6644gq8+eab6NOnD7p16+ZHHokJ9WrVwx6N9kCzus2wR6M9PKcn4wNIZLdXBXQC7Z6wTMD8qht5ibx0W12fvoWjCZjk4Hnxlxd7yY70s20FQC4GftWOWYNsQ10+64IlW5fg7E/ODtWnQFioLGsnQYRd+Sbbfag+gDQtTSguOikXVbl/87w35fMkINA11QCS+K5W49uA6QOE0/CD2GoAefEBZHNvVBYefjuBdooCpkHzrNHulHfjXMKOG4feiIWbF+L2EbenP9/D9wrSB5Aepz7vb63/5jrtiqpdQi5HEzCb72MZBj5kknlwtYkmogFkk25BWYGrZ5i1pTx3gb+zCrtNlqj5ofMbV297ww034M8//8SGDRuwbt06rFy5Etdd5z4sI5EnkUhg2e3LsOauNUJOIQPzASShebKueB3O/vhsfPPHN+L5CdEJdNR8AAHqy8PNs2WigImW4eWHXp7228oUQzWqn6FX3/UjH3YO7VTgJtpKmD6AzJ69vWK7sJli0PhdpxdvWawkHUsNIJ3vkmqtGt0Hd8ePy35Mu8Zs8hy2DyDh9iXodLPTPp1Q8j85H4h2viaSmJW7aB9aWlFqWc5N6zYVSsMvwghPL0P9WvUtI636oQEkG1HTLyasnIAzPzoTs9d7D+ji2gRMwK+YJw0gmDuatsPox8fLXDBQDSDBfA69fCgm3TDJ9XP0GkB23/iNKW/gp2U/WZ43dQId8HhtF/HWDSo1gGSfEcsoYAFbWtAJtAs2bNiA+fPnY+HChdi4caPKPBFBaubVtJW2y2BpAiYbBUxC8+SuH+7CyCUjccHAC4SfHaYTaL9RuThWHgZesJycnNmJTnCNgodEIhFIR63SCbSb672mpdoEzGnH1ojTRDasATZK7dxPnOzZ3S4wRUzAxi0flxa1LklYTqCNQj+VUcDMqFerHg5odoB4/kQ0gEw0r2TMV6y+d4v6LYTScINIeUXdBKxmXk3MWDcj9TtXfABVaVUYvXQ0bhl+i+e03AiAVAjAnNK447g7pOdaKqOQmfV9ftULvQah3TvXqVnH0/zzoOYHpf52av/P//a85blIOIG2EdC5yZeQE2ibdK/teC0A4KQ9T7K8RtQHUBxMwLxqTMmmTxMwCYqKinDVVVehTZs2OOWUU3DyySejTZs26N69OwoLnSWVJF6Ihv9OIiN4WF+8Xtmz3S4oFm5eKHxtFJ1AqzaJc/NsP6KAGcvCGLnDr2/hxdltFPASHcUMWQ0gDZqtP5SwBtioqZT7xcZ7/NmMcTIF1KBhe8V2y3P6/wPB9k9mz1RtApZkxk0zxDIHZw2giw66yJMJZlF5kWXfHPZEN+oaQEZURAEzCiHTzployY1eOho3D73ZtRZp2LiJAqbCBMyOoZcPxaWHXOq5/nvSAArQBKx+7fqpv+3e2evGTJM6TbD2rrUouLfAU9lG3QTMDV4FGmfucyYW37YYo/812voZEj6Ach3bKGDUALLn+uuvx++//45hw4ahoKAAhYWFGDp0KKZMmYIbbrjBjzwSBbjVbJBVhwwrDHwUbKiDTj/I72DnCyptp90hWpjoO5rZKgfROTtGAQtoB9et9kbYGkBV1VUZ6vJ6fDcBs/h+kTUBU1ynm9RpsitthYt843c7od0JO5+hy79T3xy0DyDjM9w8U9QELIlTBByZ59WtVdeTCVgikQjFRFik3kXdB5DdwsntYrBaq3YMtqE/f+ZHZ+LNqW/ioZ8ecvW8sDGrB0LuCjw6gd6ryV6W5/Zvtr/wM/SoNEHz2wRM3wfVr7VLANSusXXUThVjRasGrdC4TuO0sj1o94Ns7sgk6TA7zP7Bbs2jOpCG3TP17LPbPrbWHqIaQDUSNSI1/zHDdyfw1ABKIT0bHzZsGN577z2cddZZaNSoERo2bIizzjoL77zzDoYNG+ZHHkkASEUBCyoMfABRwGSIpAaQRXkEEgXMhTmU6OTZWBbGncHQTMBkI58p3L3yHAXMjRNoyShEVVoVyivLLc/TBCxcVISB/+yiz/D9ld+np2vj4DYSJmCG6DOibUGF77Fj2x6LyTdMzsyfw7dIIOHJBCwvkWdZzmELYKJuAmYkWf9XFK7Aoi2LXKXxw5If8Pa0t03P2dXHcX+Ok37W8oLleObnZ4QcyPqFGxMwwNqhrSjN6zdHu0bmwo7k+ON1IyLKGkDtG7dP/V2vVr3U383qNsP0G6eb3qNyXNZ/vwN2PwATr5uI644U8xGbdCYdtTDwYWoACT1DxgdQBDSq7BApr0HzB7lPnxpAKZx7YwPNmjVD48aNM443btwYTZuG61iQWOPaCXSIGkAyDqiDEHhEzQm03aQhyAm+qMM+LyZgxmO+RQFTnK7bgd1tPuzuC2IiFboGkEUbjZpKeRI/hcoq+yv9d+u0Tyc0zG+48xl/5d/W91dITqCN/ZKbRYVs2F0zTmh3Ato2bJuZPwcTsEQi4ckELAFrh5++agCJ+ACKmwmYpCDcjF9X/urqvjXb1kjf8/d3/o6N2zdi1oZZ+Oyiz0yv8bsfdBMFzIr/O+D/0n471bGjWh+FlUUrLfPktd91M44l27JsYBVZ2jdpjwWbFwBINwEDgI6tOpreo3IcWrJ1SVq6x+5xLEYtHSV0b3nVzs2jMKN22n0fN3kJU3PdmN+8RJ5UXYvSXEkVdoFTqAHkwIMPPog777wTa9euTR1bt24d7rnnHjz0UDxVVXMB1yZgkuqqMhM7N4MeNYB2YedUMpAw8D6agBmv0zQtEPtlRx9AslpPKjWAQggDL1vnq7Xq1CRORXqy+G0CVrKjBJ/N/gyFZc7+7tYVr8MXc79IC5EbJAkkUg4kvZK2S2ahieckbAjaDE//vOlrp6f1iTIaQDLHTa81RF55s/ObmHjdREeNPksNIFEzWhuHn9QAssf4ff3ut1RFVk2ycftOX2Bjlo1xnSevuNYA0tXvjy74CG92fhOvnfNa+jW672HURjSmYZYnr+b2bupDlVaFVUWrfNcAalC7QepvvQmYHX4JKewEbse3Oz7j2CezP8HqotWRMwH7fM7nQmO+GVZzsjc7v2n7TBmsvp+x3sbCCXTArjb05ZFrGkDSK6o33ngDEydORPv27bHvvvti3333xZ577onffvsNb731Fo466qjUPxJ//IwC5ubZYfoA8htZAYfdxFB1eajYtZK53tQELGG+8FSJU7pfzP3Cl+fK5sPNfYFoAGlyGkCN8zO1Sf1AVXvoNaoXrhh8hWXkQj1HvnUkLvvqMrw04SUlz5YlkUikfF54Rf/dzPopW8HvX/UuaB9A+vr+yu+vKNUAkiGBdLX7Sw65BMfucaxrDSCZEPZRHS/DfL5+gRwVzLTkUuc89NthLvZUmIC1btAaNx59Y8Y307dLmch7ybTDMgHb77X9AvUBpDcBs8M3jeq/ysmsvBrUboC6NeumHZu0ehIOeP2AyJmAfb/4e1zy5SXufABZlO2NR9+Y+tuvdzTWK9nvHIZAJOhNQn3Z55oGkLQJ2Pnnn+9DNkhUCdUHkMSzs8IJtGTnU6lVhusDyGTSKmIKIkJUTcDM1MrtMCuPBZsWoHGdxmjVoJXntOzUWTPuD0B9uapazgfQ2GvG4si3jpTOlyyqVMoHzh0IAPhp+U+O164rXgcAGLpoKO498V7Ta/zuU0QWXCKktT2DlooTKQ0gQROwRZsXoX7t+mjTsI2brKYwfmfXPoBMvpEXDQLRaDx2z36z85u4adhNts8U8QFUVV2FKWum4MjWR9o6GVVN0CZgY/41Bqd/eDoA8cW/XfnFhTAXz26igAGQ3ugxbSMWbcytCZgqJ9BllWW+awDVq7lL6CPa//u2ofZXOck4BC+pKIlcGHgAGLV0lG9zKL/6GWO6siZgQbGldAtWF63GYS0P8/1Zdt8j16KkSc8OH3nkET/yQXzGMbqRlRNoGy0cs05LRgNIZScfhEp51KTDdpPoIKKAiZzTIzPIZUjpDSZgfqss+8WqolU4sO+BAADtEetyM3WEKVDOdj5Dghj4q7VqlFWJawB1aNJB6fMtVaEV9TV7Nt4Tm0s3S93jxY+LFxJIKBMAOUXKsHPwbmYqatUXbCzZiP1f36m1ZNc+RDDWd31/6dkHkKQJmF64klwEOwl0k3+3btAaa4vXpl131r5nOT5XJOrU4+Mex+PjH8flh16OTy/61DFNEUTKJkgTsAQSOK3DadL36QVAIuPNBQdegK//+Fr6OYC9j5Gom2zIYNUf1a9VHyUVJdiryV6mbcCIyDVmuDUBy3i+FyfQkpuqstSttUurRtR3ld8aQGbUSNSInc8+Nwg5gfbhHQ9rcZi5DyCJZwVV9q1eaIWK6gpM/ffUUDfaaQImQXFxMYqKitL+kXhiNSHeWrY1Y0c/2SlUVldmXO97FDArnzdZ4ARaNv3K6krfVfw3bd9kWbZmz66oqsCW0i3C11vhFAXML/z+xjPXzVSanlmUByuC8AHkZAKW4VsjoAFXVEvNjsKyQlcCwjB3lUR23EWw1AD6629N05x9AAloAC3cvNBzXpMY6/uOqh3Saajqc1rUb4EHT3oQj5/6eMqcxaxfFdF+EI1MtqNqh+M3efbXZwEAn80xdxTsF0FqAGX0kUjgpU6ZZpndDu2Wdo9su/UibBUxoYwbZm3cShj+23W/4eKDL87w5yPihN3sOzn5AJL9tiq/gd8aQHoTMNH39F0DyCT9mnk1rX32KRiv3aK6LYalAfTmeW+aagBFkYrqnX4Sf1jyg+s0nv/n80LX2X2PqG3y+410bVi2bBk6d+6M+vXrpyJ/NW3aFE2aNGEUsCxk3sZ56NAnfZc+2QmaCoBkNIAcOtPImYAFbJvqhCpn3FbMWDcDzXs3R6ePO5meNzMBO3HAiWj2fDPb60VwmtTFJgqYz2Hgjc+wNQELwgeQQxSwsHZ3RB2VW1FYVogmzzXB1LVTpe9VEUHIDYlEpgaQ2/po6QRaxgRMQANIX3+99unG+p6cZBrzYkciYS5skanHyfufOP0JPHTKrkAZZmOlSNmajbtmlFeWO46XYUXjCtu06qojrso49vEFH6f+FhWy6VHRzlVrh4SpPeEk4NRzeMvD8eUlX+LA3Q8UGuetHNE73pf0SeNxnPf0TUy+sUqNOL1fHX1/apdn330AWZiAiWgABY3qeZKI0MWPudlxexzn2QQsDI0Yt23rhD1PELrO7nvkmgaQ9JbFlVdeCQB477330LJly5wrsLjiGAXMptEZ1c+T15oN8MljVdVVvix8gnJq2efsPrh9xO1px6KmAVSlVTmq+Hvh7alvA9gZSaTL/l0sn+GHCViGBpCgCdixbY/F76t/F36OEdXf2HUYeJN8WPp70k0ew/YBVK1V2/oAMuZP9cRTNBqGLJPXTHZ9r50JmN9CZbdhl404OoG28/1lYjJs1Rfox4yKqgrk18y3TNdpjDE+Qx+NTdgETGAB6piGxCJHRANoR9UOsVDrWpWjDyCRPll2LBfJm14Y5zdm38rJx5zxt8j39qQBJNB+4kalJiaoNKIva5HFcxgmYFF2zJ1mAiZofhzG3LZGXg3LbxdVEzC/tKj9Enh5jQJm52PUl/WdjSaxE8LBEXJMy8cOaQ2gWbNmYcCAAbjssstw6qmn4pRTTkn7R6KJykpvptKfpEqrwtwNc9HkuSZ45udnPD1Hxh5etU+BI1sdqTQ9EaSdQNvsBKsYNNN2jxRMQr2YgFkdM/LhBR9K5cnNM2Rw+x1k6oJeEGt3X1BRwOzaYliDr9eoIl7aU5hq1747gdaHgXfQNhExAdMvWOyEBP0m90PjZxtjwsoJltfYmYDJaAD5hZP2jVW92VG1Q9ivhIxZnhlvTXkLjZ5thF9X/Or4PFFWFa3CEW8eoSw9N4hodTkJPY148fVl5icr7rjVLhMyg3S4RrkJmOG7qNYAUvndXZmA+TQu272X3dgUlmYioL4NZpsT6Nd+fw2Nnm2E31e532j1A7fmjtnU58oiPTM95phjsHKlXCQcEj4n7nkiDmtxmGWnK9Mp2DqBrq7CHSPvQPGOYvxvzP/s03FoeDIhUYPotKMmOa6qrrIuDwWLfacO1S50rd31ImR00gYfQE5RPtwSlW9sqgFk4TRWLwhUrgGEBHod3wttG7YVur5aq8YrZ72C5vWaSz/LT7yagHlpT0GZgD152pNpvxNI4KKDL8J+u+2HHh17AHD/Ho5OoAWcxIuYgOnLys5nT8/hPVFSUYLuX3e3fq6dCZiEBpDXKGBWfYqVoPSRUx5Bqwat8NDJD5meF9WesXPMLbrguGnYTdhesR1XDL5C6HoRnvvlOWVpieBGiJdIJIQEEXpUCFuVm4CFqFkkaqpoh4gGnsyYbxeVKihkfFu6Qe9wPmwfQMn3MhPo2DmB1veNUdKAUxkGPi1dn4QQGWHgEwnPz/rPiP9ge8V2XDvkWk/pWOE2f2ELO+OI9Grp3XffxXPPPYcPPvgAU6dOxaxZs9L+kWhSq0YtzLxpJr657BvT827UAq2igPkpUfXT5EmPV78Prp7pwgm0nzjZj/tpAuY2CphnAVBETMBk0NcDWyfQLvPy3JnPYeV/xYT+1Vo1DmlxCNbfvd70fFg+gDz7kxGo44f0OwSJxxIYvmh42vGhC4da+kXyWh4vnPlC6u/LD7s843y9WvWw4NYFeK/re56eY9WukuVtV7dkNID0309vsuWUthnGb5ZmAuZRA0iFCZjVLvejpz6KNXeuQdtG5kJXURMwOw2gG767ASsKVzim4Qazsj3hvRNQVlmG5QXL8frk1315rmpkNYBoApaO2/mJk38fu+vtjgHuTcCM38CTCZjP31NfD8OOApbsC2SdQGeTD6CoaQDJELgDbrg3AXMj7Ox3bj9Xz8oWpEesjRs3YsmSJejRo0fqWFKqmEgkUFUVnuoesSeRSCiJCuOkAaSq05DZKckGDSA3JmBOoZf9zI/sM7w6n/NbDR+Izu6AqJZFIpEIxAeQ6IQ5uagVXTgHNdnyGlXE6Z7SilLM2zgPAND5084ZIcwHzhko/UwR9P25VYQ1FUK39k3ao3aN2qhXq176M/UmYA7aiCI+gPTHRaJ22QqADPlJMwHz6ANIBbamkjbfTDSamQbNtnzuHHmnUDqAXDmYle1vK3/Dp7M/xdbSrcLpqMK0LxX4/rLOzv0yAcs1EwUhJ9ABm4AZUe2YW+U31guAoqIBZPZ+ok6gg67/ItqsMrh1Au11Lgtk5lfWBCxOfY8bDSAVGlFxRroXvPbaa3HkkUdiwoQJWLp0KZYtW5b2fxJt9OqhbqmoqkD3wd3x5pQ3M849+NODntNPIqMOHYSkOmoaQOtL1uOCgReYnlNtAqZih1LKBMxEUCAyMfQ6sYtqmEzAvJzLKsvS2uHm7Zul7leNky8uv+2v/YoC5rRD53TeTQhyEfROns3CXRtxW961a9RGwb0FWHfXOnMn0Jq1uZGMCZi+/oiYOtn5isjQAHLheHhzqXl7UmEC5nbXV8oHkM33LqkoEX6mzPtaPXNb+Tbf2oEdGe0ikXAse6Ppn5UGg91vVUTZ4bAdbueaIhpAssI5Y3qygt0MH0CKNYBUjs16wYGwE+gQfADVSAg6gf6rbMory9Htq254f8b7Qs/uN7kf/vX1v5T6E/pk9ifS97h1Aq3CdDzDBAxyAg+7emn3XoPmDULisQSe/eVZ4WcBzmOWHWELO+OI9Ij1559/YsiQIdh33339yA/xGauoMDID0MC5A1FYXmh6bs6GOThxzxNd5U2EoDSAzIiKdkiSORvmWJ5T7QTa9Bk+moBlPEvQBMzroKncBCyAevnAmAdSfz/7q/WAqzKCxQMnPWB6XHayVb92fek8uSEIEzA3eO1T9ItOKw0gVeijy1g904xUPyFgAqavPyImYHYCxwwfQLr0vJijWh1LkpfIE46uJYLZewiZgDmo00stnD1qAAH+CUFl0TQNjfIbSd1j9v5N6zTFxu0bU7+9jD22Gywx3aFWoW1uKdDXlZfZPMWpvnrNm2oNIJVESQPIrh+00wAy6xvfnfYuBs4diIFzB+Kajtc4Prvn8J4AgK4HdMVFB18klmHYt8W7frhLOB0Zc0OzclIhUPZqAuaWi7+8GABw/4/3474T7xO+LxATsIit48JEujacfvrpmDlzph95IQFgNfDJDEpWwh9ZnBp6mOrQYUy6otYxiTqBFsWrCZhI+UTNCXQQYeD9zIvV5OXx0x43PS6ys66nZl7NDOfFfqB/9x+W/IARi0fg/tH3u16EGwlrV8kvrQNZROqWiAaQUhMwmyhgfmLsg0Qcncog+h6fzfkMT//8tOV5KS0mBRpA5VXlofizMevTa9eojdV3rkbvM3uLpSFgkuzJB1BMhTx2GDcbC+4tELpPxPm2vrxkTMCS/UWTOk2E8mKFcg2gsE3A/NIAMhH+J7ETmKY5gf6rbKy0MZ0oKi9ydZ9XUgIgtxpAKkzADOVeI69G2rFT9zrV/v4QzO+C1gDKxr5XFOkRq0uXLvjvf/+L2bNn47DDDkOtWumd/P/93/8pyxxRjwoTMCdUNSipKGCKJ5Zm6flddioXkYFEAbMZ3E2v9xjNJE0DKCYmYCoHF6/fVFVe2jVqZ1lOTova/Jr5GcdaN2ytJF926N+926Buqb/3b7Y/ehzZw+wWy/vdnPcLK388QDAC5eQz7RwOmwUNUGUCZicAMp5LiwLm8XvZ9dUZAiCL7+DWNOG4PY4T+rZrtq3BwLlqfE+p0AAqryw31SILmuS3a9OwDfZsvKflNWlCBjMtsESmMNstdmNplB0O22EUADWu01joPlnzLpm6WbfmzvrXtE5T4XuAzHIU7T9ENzGVmoDpBCuiWml+aYY4hYGXMY91O55JO/xWNJYnBTiiDvsz7g/ABKxjy44Yu3ysdb5C7D9kyUvkoWmdpthattX2On09qplXU0jTOFuRHrFuuukmAMDjj2fuANMJdPRRYQLmxK8rfxW6zs2iyuqegrICoWeKYvYcWbVxWVQu2FSbgKlIL4goYJ6dQCvW5Ni2Yxs2bd+E3evtLpePiGiDOS18Vv13FWaun4nOn3YGYL+onfbvaaZCVKX1XlJALBoJyVFbMaSJkp0JmBnGfC75zxLs8+o+rp/vpwmYiKZLVXUVflr2E9aXrEe3Q7ulnbMzAfNTG1G0PotqAOnTG9l9JE7rcBrWbltrem2X/btg0/ZNmLBqglS6jtfqnX1rGt6d9i6ObH0kjm5zdMa1dhpAX8z7QviZqrDr062ENsayETEz8jr2DJo3COP/HJ9xXMXY+8XcL9CsbjOcsfcZntMSxbUPIN33EhFMyLTP5AZEvVr1XOUtifCml8/+fswQ1QDSm6r67QTaDDsTsOnrpmekEZSWrarvkxTguHUC7ZcJmJP5ZFq+bPqeMOqMHXmJPMzvOR8jFo/ANd9eY3mdPt/tGrXDws0LXT0vG5AW+1ZXV1v+o/An+lgNyie0OyHgnKjlg5kfKE3PrBOKmhNoOwLRALKJXOI1TzJq3XqiZgIGABd/cbGSdMIwATNDX8ZtG7XFufudi7YNd4as7rRPJ8v7jmx9pOnxICZ2VmUn+my/NIC8vruZE+jkQtRJvRsA9m66t6fnJ9HgrLrthwlYlVaF0z88HZcPuhwLNi2wfB6gVgPIDlETMFGBuL7dJtvX/7d33nFSFGkff3o277IsadklZ5CcJCoKKAgKqCACIqJgwJwwv6d4Zk9Rz3DmrIc5nnqiKCYwB4yHoqICIio5s/3+gTP09FR3V1VX59/XDx93erqrayrXU0+wSrN9/fZc9W6XBvNew7j4/P+ep2OfP5b63NGHea/VODP/x/mhWGwb675tPT5fll6bgC1ftzzjN8OM23H7h9U/0ITHJ9C+D+zrKh1RWMJBHnicQItsYpnvcKkVolwDyAcTMPP8y6NR7Ra7NWJKS1m+d97383LSCMuhGC8iJmAsvIgC1rlh56xrKrSMVMKzjrAipaWoqlYVjWo/yvG+NJ0bdpZ6V1xwJWLcvHkzFRcXq8oL8AErH0Dn7HEOXfT6RT7nxp4gTk8y7zEMQlfscwWNaDvCl/eGCacoYH6bgPGohofNCTTRzo1PGPLhJgy8EdaCe8H0BfTEV0/QtJ7TpPKmCtZv3F6znZ7+5ml36UZIA+ibk77ZuUnvfazn7xcxAePSADJoxWzcttHx/cZ0fl77M3Vo0GHXe035YUWWkcWuf/KOQSxtOd7NggoNpJ/W/MR1H1H27120cpHtvVZ1u+hX++e8ws45ereqbvTgwQ9S09pNhdIgyl1LuZl7jM6kzbgVDixbt8zV87JM7jaZjnj6CFdp8ER15DHPY7Fbg93o61Vfc+WDx18l028f4zlW//AyCtinMz6lt5a+leM4mUej2i12a8SUlvLMD5kbgjABY6FaA+j2UbfTyLYjs77ndfPAImwCOV6n2yktRc9Pep627NjiOO7HHWHR+Y4dO+iSSy6hJk2aUK1atTKh3//2t7/RXXfdpTyDQC1WGkAs3xy8lBaUUqs6rYSfC7UTaEPeTuxzIvWo7uH5O8NmAuY0kIq+ww8TsLD5AFKJax9AihaZPatzNXmaVTSj0/qfJmUm6YcJmFXoWN53h9UHUJYA6K8+0aZeGzq1/6lMfyuq85kuP510y/6drhMuH0AGociGrc5hyo3pODl3zBIACZSDaBSwHIGDlQ8gSSfQTvBuOD799VP+NA2/wWkctyrbTds3cb/PS8z5m9xtMu3dcu+sa5qmOWqZmM3pVZzYqyaocen43Y+nlJaixuWNiYioe1V37md5nEBb3Z+5xjGui2i9O4WBF4lO67UTaKMgMqWlqFtVNzqhzwm2vsmCCAPPu9bKmICFTODgRFoDTloDSIF2jtG/4jG9j8kZ15zGrECcQLswASPiK+8D2h9AYzuO3fnOCPk5Uo3wbueyyy6je++9l66++moqLNwlTOjatSvdeeedSjMH1MPyAZTuCLKISvLdEIQGkF9CgaiZgGXe5YEJGGtzZM7Pi5NfpLMHnp21kAujCZgMrHy4NgFzGQb+k+M+oVP6nkK3jrrVVT5y3sFo96f2O5XeOuotpe9xg+OmV7K/eRkGnpdXprwi/X6jBpBVGaXNfkRNwDZscxYA2fmc8lIDyA7uKGCSTqDt0iTyfgxzFIYGtKD++LiPmddzBIMS+WOVt0oNoM9Xfm75nUon0Ma683Jzl26D84+cTyf3PZmenfSs8LPmv40Yf1cQc7abNY/Xm2pjedith4ztNYgw8Npf//Hi1zpcxfjVtHZTenDsg5bf8/xuFQLlMR3G0AWDLqBnJj6TuSayt1FRFp/9+pnQ4a9bc/qgnH5HEeEedf/999Ptt99OkydPpry8XQ20W7du9PXXfOqUIDhYGkD7tdnPVZoaaZ4MzkFMnqx3+yXcCovwIU2QUcDM/j900nM0Gka0HUFXDbsqK59hcwLtd/p2yEzmRkFc9+rudMPIG4QdWjvBavfXj7ieulfznxqnER0feOvDSVvD6b1e1buKcXef1vtIq0Kn32+nAXTfp/fR+7+874kJmPF+ltagEZFFqBN29dmmHp9T7aA1gGTTlNHc9YMe1T2oula1svScNtJmEw03c8+ZL59p+Z3K8lTZB+xIt5e29drSP0f+0zLamt2z5r+NOG1ivZ5neaOCcWsAKRSaZml42AglffEBZGdCpGn064ZfndNI+wCKkAnYjSNvdD0WqdAASmkpunTopTSmAzs6tx8+gLrf2p0umX8J171u+oFbn0tJRHj1+Msvv1DbtrmO82pqamjbtuSGU4sKVj6A3GDnzC2Nruu0dsvanGtOz+RcgwYQF35EAZMxAeMdnHMEQLpOzSua0+n9T6e/7fW3rMW3W4eQRoI+PbfDbaQ7mXfzbMLdEjbNNxbba7a7eu/WHVtp0zb1JjCi5hKqyyfdX2r0GtvN5TPfPMOlAaTUBMxOA8hDIcWjhzya5YhSJNQxC1ZeVfgAEsGYZlg1gKxwEgxa4aRlUquwVtZnN2b0fmFsc0an6KpR1Qa5wsBLzh8iYwCvyZfTc1bv3bx9M3deRHCKApbGMx9ANk6guc2vXZqABSEQUFG2XpmUipqArdm8xvU7Z82fxX2vWxOwMLtxCBvCJdW5c2d68803c64/9thj1LNnrm8IEC5YJmBuB0geE7BJT0yiiisr6JMVn7h6VyAaQBGUKPsSBYysJ3er+3nzZRUBaPZ+s+nvQ/6ena7CqAZhmTzM/enC1y4UmkRZyLQJP06Mg+xfvO92FAA59IETXziRKzS3KH6c4tphNAGzM2kyhhwm4tMA4jEByxIAOWz0s8xfBPqCqI+RNvXa0HOTnrN9noiovLCc6128eRJNQ4QoaAAR8TkE5ql7njDwFUUVWZ9lw5474coEzFQXxv51zHPHSKfrhJs2yBMFzOp+u2sqcfIJZHWf1b1vLVVn7mxsq9wCII/Ky9YELEBtaDtUrJ1VlGdFcYXzTRKIHG7/64N/UZ2r6tBtH9yW851I/Ymsq91EASMKb7sKI9y1Mm3aNFq3bh1ddNFFdNJJJ9FVV11FNTU19OSTT9IxxxxDl19+OV144YVe5hUogOVZ3m2H0TRnW95HvniEiIiuW3gdd7pBRgEzEkUTMOUaQDbl7pcJGM/7jWXYu1Fv7vdlnpeo68rSSk/TJyK65A0+FVo7ZNqEGz8lvFiViUx/8Grz6VQO0j6A3I69CjZLRC7s7v9Kz84EjGjnSSOPCViWhsIOcQ0FOy0jlRpAKuaEx8Y/Rl0adqFnJj5Dh3U9jMZ1HEdNypu4fpeXGkB2vp7SBKkB5NVczUq3tKA067NnAiCFvt98MwFz0QaztBp5fACxBLSKtSF1Xc/8Yz1raQIWgBuD1nVbZ/620/DwQwPIDlEfk2E5nOPBqTztvp8zbg51bdiV7j/oftXZysHpwPS5/+08yJjxnxmW9/C0Z+P8YYdfTqDBTrh71H333UebNm2i0aNH0yOPPEIvvPACaZpGF154IX311Vf03HPP0bBhw7zMK1CAFwO9iBNoIWdgQfoAirgJmAocNYAE6+KXdb/QGz++wXUvywSMJx/GMjyml/gJp+jkUZRXRO8e/a7we1Tngwe3PoCigOhv5O1zbjWAvIJns+TH+8+aexbNXTLX8r6UluLaiN724a6TRtG6vOj1i6jpdU0zYa+DcgJtxqpeuld3p0XHL6IxHcbQQ2MfoscPfZxfA8jOBMwjDaDPfv2Mqq6polvev8X23tBpAMmagDmsAcybp6I8b0zA3LZVYyj2tCDbc0fEHmsA+b0+00mn/R7cj/a8Z0+q0Wuk2lAat5q8dlw65NIsoU/QGkB2fiJF3+nX+viM/57hOg035TmhywT67PjPqEODDq7zwUKly4RDHj2Eet7W0/GwRtM0WvLnEmp0bSO66q2rXL3TCmgAicNd+8aBbL/99qP58+fT+vXraePGjfTWW2/R8OHDPckgUM/ItiOzPqswAVMdMcryeb98AAVgAuZHOGwRHH0ACZqAiWixGAVAlaWVdFTPoyzvNf/WyV0nU1VZFU3sMpH7fWlEJw8/I+C5JUgNoBtG3GD5nVW7D1O5uvUB5Ac8efDKBxDRLi1PFiktxaUB9MqSXRHJRNvr/B/n07J1y+jyNy9nPu9XGPg0x/U+juqX1KcZu1ufnnqBVxpA05+dTr9t/I1+3/S77b1+aZnIYtcHbj3gVirJL6E5h8zJus4qU7N2RRg1gHTSacmfSzKf03XjtWBfVRvkWVf6YQK2cdtGmrtkLr3z0zv0w+ofuH0C+T0vpLRUThh4K4zt1+soYEwfQJzvZPkA8lKA+dTXT7lOw/jbygvLqV+TftS9qvuu7wPUUslymcDpZ6isoIx5/YmvnqBPf/2UFv680PZ5jTQ6a+5Z9OuGX+ncV8+1zhvp0nULDSBxhMR/YVqQA3n+c9h/6J8j/pn57LZeRQRAvKewuq7TvZ/cy7zuB1ZaJV4SZifQLMY/Np7WbF7DvcjZsn0L97uNDiqXn7mc6pXUs7zX/FsfHPsg/XLGL57ZUBvx6vTRizYXlA+gCZ0n0Cn9TrH8Psh2L+uU3Iy5nPrc0Ufp+3me98NcL+f9nHXHqwFkRHbzdPP7N9Pz/3veVgPom9+/kUo7Dc/vvnXUrfTrzF+psozfRJSF6ObJKw0g3vYVNhMwkfwct/txtO68dbRXi70c0zWb03vlBFpleaYFP04Cbbe40gAS1GqUdgItaAJmlyeRKGBeomla1qY+8ChgNr+f2wk0IwqYqADzuW+eo7539KVvVrkb93kxa7EtmL6APjruI1/e7YSMBlDtoto510TajNkHoGXeVJiAiYaBD8HhXVAI7V7at29P9erVs/0Hwo+maUoHf5Ew8LwD97d/fMu87kdnbVDaIBANoLDBU6fXL7yeOz2RqCPG6FNOdsqsNuFHeEsivgh4YUFKA8jFSfEB7Q4gIqJT+51qe5+5/PZvt7/0O70aH5zarrlsP1j2gSf5MGNUEw/CXI+37eel8oQ1cNxsnkb/e7SnYeB58Wocsit3LyL3aaR54utNNaxyuX6/64XSYNWZeS6sLK3MEQCFUQPITEYDyGNhsSsfQDwmYA7rM9Zzlw65VDpPOe+XiCTnBxpp3AI0X6KA2fx+N77NRNvvmDlj6P1l79PkJycLPacK854rSGSCppgjHuak6dDORbW9ZJDVAApyvgqaXI/ANlx88cVUUeH9qTqIFiktxa1KyLsJcFIz94qDdzuY/j3u3zTv+3mZa1HUfFMdycBq87RlxxZPBlC3Ic/9IiyTOg8ybcLNSfGzk56l3zf+7qgBYexfn874lLo07LLzug+CNd6+7aQBFNQpkjGSFE9diTgr5YG3jnhNwFTkyep5lY66oyL0VYXIHBg2DaDpvaZnfeadr+wOyd6Z/k6OLwtWgA0rhARqLsozJwpYTTw0gJw0tFnPqTLFZEUzFYkC5iXmsrCrBz+jgLHKh9ttRNoEzPBbttdspyLi07gzPvfn5j+5nnFLVPYMvHVQkFdAcz6fQy9++2LmmtVvZM3tGmlcfeG6hddJH2DAB5A4QgKgiRMnUsOGDb3KC/CRrEnWRxMw3glxzeY1rp6XpU5xHSrKL/JkETumwxh69ptnlafLQrUJmJV2QWFeoSdlZVX/YUPTNHkVdF1XGgGL532iuNkopLQUl/mL8bdWlVW5Eqp5NT44OTkM6hSpOL8487dINDpV8NaVlAmYwuhHvO/kJehFpq0JWADmHDL3BQXvfGVs2yPajqB7Prkn87kgVZBzei5S7qUFpbRh2wbu+1WR7gOeC4A81gCSSteUlkg75Y365fSc14hoJPuhAWQbBl7UCbRRAyjkwSmsftthXQ+jhxc9TOfuudMPzol9TqSb37+Zjt/9eN/yZmyTvAf3BakCmvTEJK57WdpZvO3LjfYqfACJwy0ACnrBA7zDtQmYpnGrEvIO3Gu25AoA3v/lfTp/3vlCeRNF1LGxCI8e8igVX1bsfKMCVDuBtlK59UrtPekaQGHxAeT1RoHIWhgtUwZeLbi90gByW895qTz68bQfaXvNdiorZDtq9BIhH0AcGkAdG3Skr1Z9RUTsMl26Zind/N7NXO80m+GF3TmxKoJeqwWqAaRw8W8c2/s37Z/9Hk3L0fgRKfeywjJfBEDmutih76D/fvtfemHxC56+V1UblK1P1ZtA89jBHQbebw0g4j+Q8kMDyM5Uizefn/36Gd383s1ZZkgiJmBhEkjfc+A9dErfU2j3xrsTEdH1I66nw7sdTr0b9fYtDzIR9AryCrjTZK0Z/RDKpH9LlLTyg4ZbABSmTgTChRdOoNdtWZdzre+dfcUzJ4kXi1ivnER6BbcGkAdjw6GdD6Ub37uR+jXppzxtlbjxAaSTbvlsWDSA/HYsHNbJW9QHkJ80r2jOfa/VuDah8wS6buF1wu/m9gGkZfsAsjMpTcMq0/0e3I++XvU11zsPf+rwrM8q6yjoU0a/3x8ZH0Acm0oZEzBziHeNNBrScgjd/P7NWdd4sYqqoxrzZqxGr6ERD43w/L2uNIA4DgFkfI6Y8ySyxssRAJnaUFiigGmaliUoKS0otbzXDw0guwNfjTQa0HQALfh5gW0aBzx8gFC6YcCqPAvzCqlf011r2vxUfo5w2U94D+5FDnqZAiAfDiXS/TvoA5AowS0AqqlJxulZUlCpZuskAPptw2+Zv3kXX0Gd1sZF0KncBMxGA0j1Iue+g+6jQzodQgOaDqD92u6nNG3VhFVgwSKsGkDGvu62PIOKAhb1SBKX73M5tanbhoiITnnpFO7xV3UUsM3bN2f+ZpUpr/CHheycwutk1k/8fr+m8flwIPJ+7m5Ttw199+d3zO94+rOMCZh5A5TSUjS241g6oN0B9J/F/9n5boE6sduYq8Q8fvsl0HflA8i4NuXwAeRHnngFPk7PeU1KS1FpQSm9M+0d0knnFwB5rAHEKoeUlqLnD3ue6l9dXzhdP9YlbgjigODLE76kTrd0crxPJgpYQSpXA4j1G9//5X2mdqGfGkDCTqAjvnZzg5APIBBPvI4CZpTgGyX3dpNjUJ3SSxMwP1HiBJoj7KYXJmCdKztTaUEpTerKZ3McJCkt5coHkFXX88QEzOcoYDLwLP7t8CwKWEh9AIkysOlAeu+X93KuF+cX04l9TyQiorNfOZvbFl+1E+gsAZDiMo2TCZidw2Ev2qJIX/R67u7ftL+lAEglWRpAJu3dtO+3MwacsUsAJFBGTlF1VGFu8371Aa81gGTen6MBpNAHkGrn+rKkf+OAZgMc7/VDAygtqGGVg6ZpVK9ELnK0cZ4II0EcEHSs7Mh1n3EM4PYBxDABY9XpkPuGME1b/SgPOIEWJ9Dj6zfeeINGjx5NjRs3Jk3T6Omnn876Xtd1mjVrFjVu3JhKSkpo8ODB9MUXXwST2ZjhpxPo95e9n/k7KovwoARQz016LpD3sjDWqdUCxwsTsCgN4G4Wun63MZn3+XFiLGOTrooavYZeWfKKo9PxuGgAXTr0Urpynyvp6xPlNWmMuNUA+nPTn/Tqklczn3lNhGVQ6gQ6YBOw0oJSmjNuDk3oPMGX94loAHktDLUbI1TOHU4aQEREQ1oOoZtG3kSvT31d6N2yG1+3+CXQV9V3repaJv0cJ9BuTMBCqgEk0gZ90QByMAGT5ee1P0s/m3SM2lNuNIBYbdvKr5n5AMgLoqSNHxYCLbENGzZQ9+7d6aabbmJ+f/XVV9Ps2bPppptuovfff5+qq6tp2LBhtG5drn8YEBwiYeCjclIeVD5HtR+lJB0V+ecJA++FCVjQmysR3PgAssOYpqq26HcUMF5kVJIt0xL8jTe8ewMNe2AY7XXvXrb3hdkHkAhlhWV0zp7nUIcGHZSkx+0DKJXtAyi9MehzRx/a94F96Y4P7yAikwAoJBpATH8iIRBST+gygcZ1HJdz3YuFdpg0gGwFQDwmYBI+gMzrG6O/iRP7nkh7t9xbqIx4oiN6QRQO4NxqgRKp759O5RaWAwCR+dNPDSAWbt754+ofbb839vEgxuqorGF5fQDxagBZ4acJmChRWbt5QaACoJEjR9Kll15KY8eOzflO13W6/vrr6YILLqCxY8dSly5d6L777qONGzfSww8/HEBu44vbzinrBJr13eLfF5Ou64F1yvR7wzKhy0YH8Ov0PAwaQEEO4H6ELDc6xvUbP06MrTSA/Fi4/brhVyLaGWnEDpYGkDHfsv0t6osP2ShgRERbtm/JmPI8+uWjRKSmTK0Iy5guShjyrWnWTqB/XP2jp6Z7rLy4QcYHkPmdboWCDUoacN+rEr+d+svA5QTaoY3xmICJYFz/LF+3POf95vlhR80O+vaPbwMzAePBuPn3SnsiYwLGqC839eG0Jgp6zAzDAQEPbjSAjMg4ZVdNVMo8TIRWZ+r777+nFStW0PDhwzPXioqKaO+996Z33nnH8rktW7bQ2rVrs/6BXFQ6gdY0ex9ARuw2lKe/dDq1v6k9XfnWlYEP4GHYmDWr3Yxa120t9awSDSBDu7ASABWkCqABJOsDiLPchtw3RCp92fcZqV1UW8m7efFrcycKSwPI+K4wjBeqEOl/vOO+2QRM13Xqc0efnPvCqAHEIixjlMpF74OfPWj9Hovf+/Hyj6nlDS2p27+6Za4FGgbeIxMwnu9E2kSD0mAEQKr6wICmzj5mZOHRACopKBFP12wCJuIDyHDvnvfsmTk4SLPP/ftkfZ74xERqd2M7uv/T+4Xz6YbQmYDZCBzdCJ0cNbJiNB97iSsfQAJlHJb5koXfa9wwEVoB0IoVK4iIqKqqKut6VVVV5jsWV1xxBVVUVGT+NWvWzNN8xolHDnlE6rmUluJWJcwybTEtFP/53j+JiOj8eecHpwGUdgIdglNXnfTQqGxb5SMvlRf4ZKta8n/Z0MsCezcr3YU/L1SSpkw9nb3H2UrebYeVCZiUE2hdp03bNilvk6yFrBINoBCMM26QdQJNRLRo5aKcdLKEaiHxAcRydB+W00ZW+cu2/cvetB73rH7vI1/sXDMs/mOx6/fzYpe+VyZgPO8RaRNlhf6EgTejSqPTS38bPBpAA5oOoCndptDFgy92TCNzTZEGEBHlONL/ZMUnWZ8f//JxIiK6+u2rpd8pg8hvVHkIbIVXJmCyJnl+rVXDLPBI4xS8x4jb/m5V19trtjv6V/SaqT2m0oEdDqSbRrJd0cSZ0AqA0rCk9nYDx3nnnUdr1qzJ/Pvpp5+8zmLkSQ9Wh3Y+VOp5ERMwnvs0slY395rC1M7FftBCjTSymxY/zSeUawAFbAJ2/qDzSb9Ip/LCcsd73fgA8ruNidZTaUGpL6cjKsPAf/P7N1R6eSlNe3aa22xlwSo7Fdoq6Y1CVOHtq3laHpeD5zBqABXnFyvNhyh+bSbsIt1pJOAEOuQaQDImYDzfiYxdXkTP5EGVCZhfDlet2r6maXT/wffThXtfyJ+WQifQvNhF6/MCaR9AEXMCLasB5NfYFJYDAjvql9bnPrhnlaeIBjSrXeq6Tu1ubEdt/9mWKw9eUZhXSE9PfDoTBTVJhFYAVF1dTUSUo+2zcuXKHK0gI0VFRVS7du2sfyAXp1MWXtVAIvWS5CC0SmYPn00d6negS4ZeQkThOZmXFgApKD9W1B7WPcp9AIXk9ISnDYj0E5H0vSgD0XoKoh7cvvPtn94mIqJ7P7lXQW524bgACmC8ePnwl31/pxkhDSDdesGYnoO89AEkO5YW5RXlXPOzb9iOE4y5W7bc7E5iRXyxeK216tfmyvyeg3Y7yDYPIm0iKAGQkzN7Xng3jjKo0ExR3T+jIgASKS+VkYCtSAscrcLAyxIVp9xh5MlDn6TWdVvTC4e9wL1vY5WnqAmY+f7Vm1fTD6t/oJ/WQkkjKEIrAGrVqhVVV1fT3LlzM9e2bt1K8+fPp4EDBwaYs/jBmixFTxJkBEDGAeGVJa9k5cfvAfz0AafT1yd9TY3LG+fkLUiC1AAypmGVj4MeOYjmfDHH9buMROH0JI2madL53bx9M3W/tTvNeH6G4lyxEW0TViE9VROkE2henBZAfptq1i2uS8PaDPMkbdlNhBM87S+MGkBhjQJGpHaj6xjpjtUHXG4MVOOlCdg/hv3D9j0ibcLJqapXqDK3YK33bh91u5K0swQTCqOAqdQ4sWtDC35akPnbdwGQrAmYRwJtOyfQXgbQCHr9HpZDTBYHdzyYvjvlO+rTpA/3Aeacz3PX+CLrye012+m5/z2XdW315tXczwNvCFQAtH79evrkk0/ok08+IaKdjp8/+eQTWrp0KWmaRqeddhpdfvnl9NRTT9Hnn39ORx55JJWWltJhhx0WZLZjgdMAJSoA4vWbYpXusAeGZd0T9ADulQDqgYMfyLlWmFdIB+92MPN+P6Iw8WC3eXr0i0eVvivMk6cZNyZgLyx+gT779TO67cPbcr7zYoMZdJ+yQmUYeK9wqwKtGi8F5HPG7Vzs3TjyRsd7edu+TjqXdo+XWlVhbf+qkf2dthpAFvXs1C/8RqUJmFXodyL3TqBLC0q571XJlu1qIkoyf78Hc5bKNF05gRZo0/s/vH/m7zCbgBnLw6s+G5gJmOH3RGk96Td+RLElIvp90+8519ZsWSP9bqAGf0cnEx988AENGbIrws0ZZ5xBRERTp06le++9l84++2zatGkTnXDCCfTnn39Sv3796OWXX6bycmffHIAf1iQrKgDq0rCL8LusJh2Ww1C/8WqzcHi3w+nQzodS0aU7zQpK8kto9bmrmSeCui7vBNpN/h/5/BG69cNbad9W+ypJT5SwnK7z/GbRCdS4GHFjPiZD0H3KCmM5857+Ljp+EX3/5/c0Zs4YT/NGtHNjbD69IiIunzZR5ID2B9CW/9vCZabC21d1XecqIzszMbfc/pEaDQWieG4q/tj0B23atokZYUnT2D6AwqYBpFKAbNe23WqF1S+tL5UntziFz+bFqZxVtQHZ+vQyDLwd7/z0TpZmg5emciyEtDd9GMO8dgJ96RuX0ms/vEa6rtOUblPoqJ5HEVHwwv6wrGGdcNM+3a551myGAChoAhUADR482D6ig6bRrFmzaNasWf5lKoG4NQGTDT1pd0/Q0a/2arEXERHVKa6jPG3jxiqlpWw3WkGYgE18YiIREb3+w+uZa35qIkVpcyUaBt5YL0bnsttrtnt+Whj0okglpQWlvi2yHvrsIeZ1L4UVQcPro0REA4jHvCsqQrUwL/Dtym3f1vtmmVubuevju+ikviflXBcZk72ut6N7Hm3p48u8vigrkI+25WUY+Hol9aTy5BYvTcC8QOVawE2f5R3f97h7j6zPoTYBMx7GejR/XbnPlTvTZ/kAUiCQ+9trf8tce+2H1zICoKD3D1HBTR24bTN+uRgA1oRT3x54jtNkKCIZTi8GeAYTXgFQ0BuqRuWN6NeZv9KyM5Z5+h6negjLROZnPsKyueLZyPBOoGe9fFZOmzYKgDZu2yiVrghh3VDL5MtPHxrrt65nXg/aCXQYENIA4gjfHaRZXVhRWQ5p8z4rflz9I/O6iBNor+ttj+Z7WH5nXF+snLmSVp61Uvo9omHgRYQiogIgHp8n58w9h27/0F7LzS7SmxM/nrarbbgVgPEi7QRaoSkgUUydQBvqy6v5yy6yUpydQEflENOVUNTl+kdVREIgDwRAwLUJmMhgZ+UE2nxPGAQfDcsaMtXhVWJXduZTcxFUL8LDvBkLcrLn9QF0zYJr6K2lb2WbgBmErBu2en8aEtY6tGrjdouTgrwC334Pz+Y3rGXrNSJRRJwWjOYyDHoRb8QcCj7MC3y7tliUnxvRzIiViZBVYAbea35hbI+VZZWufO2Y27bTZklkM2VuT058tPwj2+8X/ryQrn7najru+eNs77MzyXGieUVzaltvZ8jmiZ0n5nyvqt5VjKVBmYCZ8dvM2yvNfS8IIgy8XwRdtrwEqQHkZiwCaoAAKKE4RQAQCgP/12DHM+jxagmFQQDkB04TtqyUXGYxtuTPJTTr9VnM7/wM1RjmzZUZkQXXK0teocve3OUs3djGzeqwXiwgVPl/CAP5qfzABQTQAOLvq9+s+sZybEljLsOgF/FGlp62lJ6btMsPlJ/1rdQRLml0SKdDLL8vL2T7V7TyAbTg5wU51+LiAyhHAOTQ1mUPwnhwipizauMqrnTchoH/4JgP6I0j36DDux3uKh1evDQBc+MEmtX/L5l/Sc61MJuA8RzGqkK1s/iwawBFBVVzi0z7CUuAmyQTqA8gEA7cOjRMTzo8kw+PbwkIgHai67r0ICkzIA+8ayD9uuFXqfepRHRS8kpgxOsEmje/f3/j71mfjcK9Tds2iWVOgiV/LvH8HTJYlbNdvRak/NMAssLLkOVOBP3b0yxZzdemLn/r8qzP5vxrmpYbajlEi/jKskoa2Gxg5nOY5ye7ctM0jdrUbWP5vZXpt5UG0MKfF+ZcC7JsVAqADmh3AH2w7AOqW1yXiIjqltTNfMfa2Kv2hWjE6bSc9zTd7al7RXEFDWoxiPldmA5uvA4Dz+LC1y/MuRZmE7BR7UbRW0vfIiKiWoW1vMqSJW7mMKe5Iej5MUx9wQ5XGkAu52eYgAUPBECAiUpV0t6NetOHyz8kop2mGzzvDvMCWyVh8gEUBuEPkfikFBaTA1GMwj1zPUdlAaECKR9AeQXK+8bDix6miV0m8ps1cYQ1d0MUxkFZ00UuE7CQCLnSGLViw5Y3EWzNjq2EsZwbyx9W/0APLWI7TfcDlQKg8wedT63qtKJ9Wu9DRDsDQrwy5RUqyCtgrmO81ABihUz+ePnH9Mu6X2hU+1HcB0UqzS6+O+U7envp23TE00coS1MVTBMwhU6gecvR7yhgPO3q+1O/pzd/fJMmdZ1E/Zr2I13XqaxQ3lm6FbWLatt+n57b/nfS/+iZb56hs+aexZ22UBj4AMyxImMCZshnVVmV9B5g3vfzhM1aoQEUPBAAJRSncMsytsuaphFrHyTq2DMKGx9VOE3YQUQBC5qwTJ5cJo2aJi2sMZ6AmOsZk6M9XpysTn5yMum6TpO7Tea632uHxVEQAqraOGgUbg0gouyx2s/5SbRtOTnbthvXrMqcty22uqEV131eoVIAVJhXSFN7TM26lhYGuX23sACIETK51+29iIjoixO+4BZI2LXbtvXa0rd/fMudp9Z1W1Pruq2ZAqCw9V0WsXQCzdFPW9ZpSS3rtCQiosEtByvPQ63CWrR+63oa23Fs5pqdr7B29dvRlG5T1AqAAhbQV5ZWBvp+XozjUJ3iOkICIGMdXP7W5Tlavk7AB1DwwAcQ8NwJtHGjy+M3I0kCIKeyC4sTaD8Jy8aXV1gpi3ECNPeFLdvj46/HCRmtg4JUgSebDJZJi1V7TOf7kxWf0LJ13kYLjBs8zoPDtok0nuZHdX7SNM3R7FjmO57v/cCv8OQsVJuANarVKPP3+8vet7zv+z+/5zansLtPpcNiN/Wgot8HYQLGwu/2GIbDs4XTF9Lf9vob3Tjyxsw1p7FBtJyc6sOP8blTZSfm9cO7HU7t6rfz/P0qMPYJ0Tpw41Jg2bpljo7tgfdAAASYiKiuZpxAW0ywRm0GaABl4zTotq7b2qechIcwLGJ4EfEBZMbOBCxODpudsFvw96zuybyuaVrGN4dKRKL+1eg19M2qb6jnbT1p1L9HKc9LFPqBqk0/0wdQCAQKRoLSABLF1gcQsTUWu1d1JyJ3v+v+T++XflYVgQqABAQMosKIOz66gxb9uijz2dg3ivKLlJiAqdy0qjrEkQ4Dr9oELGTCaCuCbP9pOjfsTH8f8ndHv0LGNqxaAGRVXyrnFCtfasfvfryyd3hNliWIj+uNJrOb0A3v3uDb+wCb4EcLEAhOUcBkFjNWA4iVpoNoGPiwaIaoxPY0lnS6Ztg1UulGZcHCIkr17MoHUI21YHTz9s3S6UYNW5MVm0WJF+rrInbsOulMjaEkITvOMKPChDgMPFG2hkSYBUB2aBrbBCx9zdIETGM7gTZy+0e3u8+gS+KkAWQu73d+eifzt3FNVZRXlL3GshlP7drt7OGzHfNkhzG/rjSAVISB56gLkffI9ne/1zJRWju5aS9hMAGzOqRTqUnnNW40gED0QY0D9yZgDpOtqLd3lgBI1/VInIiL4vSbKsvkbInDdnoeRXg2oCktJe8DSGebRqbTTQpOGguW32kaDWk5RGleSvL5NYCC7GNhEY6oLANoALlH13VHH0CssSV9TSYiX5q1W9Zy5tI7oqIBxCUAMtVFUX5R5m/jAUFRfpGlmb0ZO02hBqUNHPNkh7FPuFmrGf3myNan6nYgOxb5vWaN0hrZjQaQozmqD/Pjxm0bmdeDHINEHTE7+YIF8SY5uwyQhVPHl5lIrAYQ0XDJTAEQ6UoGqP5N+7tOQyVOk4Xsbw7LBlGGKC1iVGkAmdv7oObsULtxxM1GX3VbETEB87KPXTrkUs/SVom0BpDpOVaY8TCMYQe0OyDzt7GvhyFvROL5sHJanxEAWWjoaprm2E8TLwDyWAOoKG+nAGjbjm1ZAqDCvMIsDSA74aSM49V9W+9LN4wQM9dwUw9Vtaro6J5H04zeMxwjSVnBs24S6TsqNR29JKybeCefb15qAHlVB2EUAL1x5Bs0sNlAWjB9Adf90ABKNogCBlwj4siY1wk067uUlnIVHakor4jenvY25f09PCqajgKgCAlDVCG6iClI5Ybk9QtVPoDMi5SwLuS8wM1mWnU5sU7QrOrXq4XlxYMvpgv2uoBmzZ9leU+Qbd6IbBmwngujBtAR3XdFODK2g7BqADlhFQUsPQ9ZzdU8/ezPTX8qyKE7gtzEqI4CZm7/hXmF9Nmvn1HP23rSYV0Py1zXSLP1J2fE7jurcW7ulLmOeTXn12093DHmDlfPh2XdNHcJX9mpIkqbeGN7EfE5SiTmA8grYf2GrRuY10V/i0r6NOlDb097m/v+oHwAgXAQndECeIbbiAkZJ9BWGyXBcMlWDkHdDlBuzHW8wik/0hpAIdg8ySJaz3eMvoOalDeh20bdpjQfXG3VwqkqD7yntknGqS2oXrSICFa8qrN0u2O1q9tH3U6NyxvTc5Oe8+TdoqgsgzD6AOLRag0SVv5sTSotooCxTMBETXqsTsT9JComYFw+aswaQPlFdM4r51CNXkMPfvZg1n122qRGRM3xRVDlA0gFYVvn+UWUNvHQAAoeaAAlG9R4QnFyAi2bFgtLDSAbJ9BXvX0V87obrBxgBolTSF7Z/J4/73ymuvd3f3xHHW/uSHd/fLdUun4g2h47N+xMP5/xMx3b+1iPcmSNMifQITR/8QtXJmABLvR10unIZ470JF3j/40c2vlQ+uWMX2hAswHK3yuDKhMwonBqAFmNv2ERAAmbgFkIrNPXjOllCYAYJnpu8yICbz+PigkYD6s2rsr6XJRXxPx9uq5naQCNe3ScZZp2JmBux9Isk8GABTCqnUBHhaDL3Qonp/9ehoE3jksbtm2g3rf3pgtevUDofSxiIQCCD6BEE52WCnynU2UnoftFfQCVFZYx72cuckh3LwAK0QB30d4XERHRzfvfbHmPW79Hb/z4Rs61E144gb5e9TVNf3a6dLqq2avFXlmfwyaks8OrMPBxXJxaIeoEep9W+3iWF5G69FoDKAqozGuUhKB+CoBEyuH4Psc7RtWzMwGzOjkPekPNWwZR0QCSIT+Vb7k22rpja+bzC4tfsEzDy3YLDaDgCbrcrfDdB5DFQfOqjavoo+Uf0eVvXS70PhZxiwIGkkc4RwvgOTy2n5/N+EwoLR5fGW8ufZP2e3A/+mbVN1SrsBbzftYAquvunUCHSbAwa/AsWn/eehrZbqTtfW7ybJwkN2zdQAfOOZBe/u5l6fS84rWpr9FHx36U+RyWSYk3CpgsdmHg/eLf4/5N7x79biDvTiMaBt7ok0J1n9Z1nWY8P4POmXuO473GTZdK0v02LP3ADruFeI/qHpbf5fi8YjgZDoMgLOwmYEZKC0qpbb22jvfZOYE2/q4cDaAQ1IcTcdIAYmGlAbRp2yau5+18KLrNv6jA0EtknGzHgaDLXRZzfVWWVlLDsoaW99foNbbjUZYg26Ge5/8wnzOXuXlgEVYhHIuothczJ/Y5MegsRJLotFTgGVaLXF5nZiImYCvWr6CXv3uZxj06ztYETOS6LM0rmhMR0VE9jlKaLi9WGlCqMNbLDe/eQM9+86yn75MlpaWoXkm9zOcoTUpehYH3cnF6ct+TM38XpAoy0WWCQiaSUeZvxUKSxX8spts+vI2ufufqTFQjq3d4LQBiEbZNi11+REPSsiI/Bk3YTcCMbbO0oJSInMvN1geQlQlYRMbkMGoApevFLVZa0DrpWVHB7JCJAsaLqNNwL4lKe1VN0OUugp3JYElBib17hL/+s/ue9R4Wg+8bbJ9RC+IgAGpfv33QWVBClNp9mIhOSwWewXQCLTCBZjSABE5Lv/jtC8sICax36+TeCbQ5f6f2O5W+PvFrumO0u4gTYcVYXn9s+iPAnDhj3CyG5aSZ12G5LEYNoGOfO5aW/LlEOi0RjKclKvqVW2w1gJycpCvO+9I1SzN//7D6h5zvjWOFVwKg9OKVOQ6GpG+kka07rjDwIfitYdcAktl085qAiQrkwiCwC2MUMFWbkxq9xlID6JYPbuFOwwqVPoCC3gQndUMYdLmLYCdgdtL4r9Fr7A9KODWAFvzEFy7dKg8sgowCJkrtotq07Ixl9MfZ2fuD+w66L6AcAT+JzmgBlKJygnRKS3RhaLXIcYt5ktFIow4NOoR2wHb7m43lGIbNlB1GAdC2mm0B5kQMNz6AjKexi/9YTAc8fEDms5f1VZC3K9KVCtNKtwxsNlD6WdV5/2XdL5m/l69bnvN9w7KGVFawU3PPMwHQX3Uf9j5L5BxxyvI5njDwIRAoWP2Grg27+pcHwTbu1G7sTMDsnEBHgTibgFmN1TrptH7req40EhMFLKlOoEOq+cR0Au1ifHc0AePUAJr0xCTpPFj1paDbviiNyhtR3ZK6Wdfiohlk5pBOhwSdhVCRH3QGQPCIhD62Q5W6vNUAGscJ20uMi8WwnFhbYRQAbdnOdq4XRlz5ADL5Y/h61ddus8OFub8HvWDp06QPvXHkG9SyTkvhZ1XnfduOXcJHlrmERhpt2LaBiLyrL17V9jDgRnvLKa0wjPfm3/DdKd/Ryg0rqV39dr7lgbfOeTd/diZglj6AQrqxNBNGEzBVZWdlAiYyt9tGAYuRD6CoCCxVE6ffbdeGavQa+3mSUwPoxzU/ymWO4mECZoWqPWGYeHHyi7R3i72DzkaoiH5LBa7JT7mTA8qYgNlhZefuVohhzl/QixSvidLvK8wrzPxdp7hOcBkxwLPxGtR8kLwPIJvTWC83+sayJgpHOxnUYhA1q2iWc90pb6ondOMGiSkAMuRn6tNTlb47TXrxGoZ6cUJaA8hsAqZpodQAMtO6bmvq37R/0Nmwxanc7Ey+rUzAouIEOsgNsB8aQG61o+2cQLulc8POmb+D3gRHYez0gij9bhlNxTSqNIDcYDXORikKmBVu94RhZETbEVRSUBJ0NkIFBEAJxThRuBYACTiB5sFqkeNaAMQwAYszxt8Xxs2UEU3TaN4R8+iZic9QVa2qoLPjyO2jbqfbRt2W5VBZFC8X43YYTcCIwt0PnBZvp/U/Ten7WAIgL51Os+D1bRAGVGoWhnGMitKGihc7E7BfN/xKj3/5OG3bsQ0aQIJYagB57QNIoN944QPow2M/pPsPup/2bb1v5lrQAqCoRwGb0HmC1HNBl7sVTmHgRXHyAWT8zuo9v234Tfr9dkRlrLQjrO3o1H6nBp2FWBHOWga+whIAiSwG7MLA67ou+QEGhgAAcAtJREFUvGmxkqC7nbCTpgFkHMTDbgJGRDSk1RAa02FM0Nngon399nRs72OpIK9Auh3ZagB56QPIoN4bBifQdjj1+YI8tVHMRDSAvMKur5q1t4JG2gm0OQw8MTSAQiDsCoNwtF+TfkREju08nVencrMzAXvq66do/GPj6bqF14VKI6tJeRMiIhrQdIDtfWH0AaTSBMxqjcWrdeCFD6BejXrRlO5Tsq4FvYFU0W+P7nm0gpzIcUKfE6SeC8N4xYLpA8hBg0eZCZjFe/rf5Y0mZ9BtXwVhXRM2Lm8cdBZiRfRbKpDCOFF4qe4nY7plFQUsaRpArgVeIR3Eo4Lt5lZB2dppAHm52QqbE2g7ePq8yrJyFAD5UFas33PH6DvoztF3UnlRuefvF8Gu7EUWwl+t+irXB1AIooKFYQy958B76KyBZ9EnMz6xvY83r3ZRwNI897/nsk/RAxbGzT9yPs0cMJMeP/Rx2/viHAXM0gRMYG20XffOB1BWWhEIAy8jKPUL2fILa0ATFm7W81YHy5kACkYTMIs5yquoq0G3fRWEVYjFW7YvH/4yXbT3RdSiooXHOYo28TP0A8KoMgFjRqiQMN2ySsftIjRqA3Pruq2VpRX0Aj7OeOEDyEvMDv7CsMm1wu92axT6sKLR+VFWDcsa5lw7uldwp9F22JqUCPgA+vaPb2nxH4uz7zHV/ZzP50jk0B1hmDMqyyrp6mFXO97H2vywYP0m87WUlsoxowhyDmlTrw39Y/g/HO9rWrup5Xe1CmvR+q3rqbpWtcqsZfC6rViZgDlpQ5jv9YOg5xSeunAqszAKE50Iq/8ZGbN+Wx9AxG7zLyx+gQ5ofwCXBpBXBN32VRBaARBn2Q5rM4yGtRlGD3z2gMc5ijbhrGXgK0wTMIFBzNYE7K//VKBcAyikA/WC6QvokE6H0COHPOIqnaww8CG2d48iKhbSrDTWbF5DRN4uWsyTe1gneyJODSCFZRWkBtCccXPosK6H0Sn9TvH8XaqQLXvWc/O+n5d9z19j1qqNq6hGr6F/vOMsAFBNWOcIFio1gHIEQLq6edxLLhh0AU3sMpGemvBUznfvTHuHxnUcR68e8aon7/bcCTSxtTVFDhLs7lU53gQ9p6ioizCaEzoRVg2gU/udSod1PSxrTSvjrD6NlQ+gR754JCft3zf9LppdVwTd9lUQ1t8gOkaF9XeEBWgAJRS/nEA7OWtjYeUwTvXpVVg3WP2b9qfHxj/mOp0sJ9DQABLGboFiXEjLLtZY7bnOVXVo1VmrpNLjIT+Vn5Vfq01FWPB708l0Am0oHy83eeM7j6cJXeScfwaFbRQwwXZ11dtXZaet6/TOT+/QHnfvIZU3FYS5b1ghY9pi3jiyNICiQHlROf173L+Z33Wt6upoQuYGq7aiahNiZQImEkzALgy8SoLuN1waQHE0AQupBlBJQQk9NPYhIiKa8PjOOc7NmtQqClh6L2P87qLXL5J+jwxBt30VhPU3iPbJsP6OsADxGPA0DLyMCZiVbS+cQIth3ugDdXilAURE9NbStzyrL7fafn7Ds0iMiw+gKC5WZP1k8dSZTjrNXjBbKl/AGl4TMHMoZRwi2OO1E+jtNdvZAiABDSBZk01Rgj55V/FbgtSmiZsGEAsnJ86OYeAZz2cEQAGud8O8nrLDmO+g+68VomUb1t8RFlA6ICcstEpUae6oGNCj5gTaLdAA8g7jqatsO7Jq014uIMwCoLA7geYSFPhoAuYlUVw4mutnj2a7tHXctqswmB1FqU7S/cApz1ImYDhAcMTrzcYhjx1Cy9Yty7kuogEkcq8bgt54qXh/kL9h07ZNUs+FVQOIhZcaQEFGvQ3zeoqXsM57on0ySgLRIIAAKKGojAKWcQKtKAw8a7EZhTDmYQM+gNxh1269MgHjebcbWBNoWCd7ovBFAQPZmOvH2L5sNYA4NbuCFlxHcTF/waALbL+3CwNv/GysWxFHw0nFqq2obEMvfvtizjURDSC7MU1lPoOeU8y/5caRN+bcE2Yn0Gu2rJF6Lgob3lP6nkJNazelGbvPsL3Paf5grQ3SdRbEvDGw2UDau8XeVKe4ju/vVk3QAlwrRMeoBw5+gOqX1KdbD7jVoxxFG/gAAmyzEIGO5qTqr8IETIUAKGkmYO/+8i4d9cxRdN1+1wW+kYobKk5Srdq0l5oPTAFQiDe5QUYBC1oAFIXxyVw/vGrkT3z1BFfaQQsdwl4HrP7RpHYT22dY/Z3HCTSwJ6i2IjIX+XWQFvQG0lgXy89cLhX5LVAB0GZJAVAENIBuGHkDXT/iemdNRQkTsIwAKIB5462j3iKi8M8ZPIR1TShatr0a9aLfzvotFnXiBeEU8wHPMS4EvAwDL3Ny6JUGkHlCD+sgp4oTXziRFq1cRPs+sG/gG6m4kaUBJGsCFsCmytwHdNJDfWpobrej24/OvcdjEzAsHqxR6QSalXbQgoc4zhGs9my+lqflwQRMEEsNII/HD2VRwBTks3tVdyIi2r/d/q7TcoOxLqwEOU5jS5B9f0TbEVLPhXkuN+LU1pzGGysTsLQALIh5Q9O02KwVghbgWiHTJ+NSJ14QzloGnmPc6ChzAs3oaDKCG9bgff+n94tnzERUwsB7QdAbqShiGwVMgQaQVRqapnlWX6wJtCDlnQ8wtxjL4c9z/qRnJj6Te4+HJmAfL/+Yjnv+OE/eFQfM47vKTRM0gJyxcvRvVw+yGkCYQ+yxdALtsSAhTFHAPjj2A1pz7hopjRuVGOuCp/xfPvxl2zT85OXDX6aqWlU51z845gPHZ6OgAcSLUxj4sGkAxYmwznthFUxFFZRmQjEKfdwKgOwQOZ1Kwxq8z3z5TBXZySKOp7tWYEJUi3Fz5IUPIK9gTaBe9n+3GMuoTnEdzxcmZgFQkCHIo8AJu5/gWdrQAPIGGR9AYZs/Zg6YGXQWcrBqK79t/E3ZO1jC+jD5AMpP5VPtotqu01EJz5zRvbp77nMB9f2K4grm9VqFtRyfjYoGEItDOh3CfW+NXhM6H0BxIqyClrAKpqJKOGsZeI7RT4DIBvC9o9/LuWZnAiajKeGn9kNSuOvju4LOQqyQEWyaeWvpW5bfebXhMk+guq57GgXQLX5vPI3ve+SLR2jTdrloLEnhiO5HeGbuEQYNoDjCEwVMJ53OeeWcXZ9DVhdX7nslfXTsRzSk5ZCgs5LBj01TeVF5zjWRNdaWHVtUZicSWK37jO25YVlDWnLKEiorKNv1XMg2mzz5ibIG0ENjH8r67OQDaOHPC3OuQwNIDWEVAIU1X1EFpZlQujTskvmb6QTaYrJhLUDsJiZVGkAqSLIJGFBL16qumb9lBYvf/P4N87qXgkpW2lHRAPKbb//4NrB3RwVN06hbw26Zz/VL62f+dtuuQqEBFMM5gmkCZloKPv310/TC4hcyn8O2ocpL5VHPRj1DpfHgR1spLSjNuSZi1rVlu7UAKE5t3djGeX9Xq7qtqEFpA2YafuLmvWHqD6IU5hVmfXYyATv4kYNzrtctqZv53mtGtR+V+XtQ80Gev89PwnpYHtZ8RRUIgBJKg9IGtHD6QvrgmA+EpKqsDmgXBj5MGkBmMJgEw7XDrw06C65IaaksAapqlvy5xLcoYDrpkfEBJMO0HtMU5WQnQQskwoixrdYuqk3vHv0ufXTsR+4FQCHQOonSHGFsm3abJx4TMFbaaPv2+NFWzJtkIrFDts3bN1t+F6W2LoLs74qiQCzKGkBGnMYaq3khLSD1Y6x6eOzD9PDYh+nBgx+k5yY95/n7/CSsbR8aQGoJ79Ev8Jx+TftZfiflbZ1lAqbAVEYVcV3gRI2+TfoGnQVXDGs9LOuz6snytP+eRlO7T1WaZhpWXsOsAeRWAMDjNyGsRGW8Mi+23fbv5hXNaemapdAA4kCmfHhMwHLeEzINoDDiR1th1VP6kK0gVUDbarYxn9NII530ZJqAWdRLWKOAuXEmHqcNspMJmN11P8ar8qJymtR1kufvCYKwrj3CPh9HjfiMFkApVgMoTwhZI1JRwHwyAYvTZCnDc988R4t+XUSvff+ar+8NelPnlii3G1bewzypum0rUVaJjwpW47XsOJ4WSOq6Tm//9LZ0vlQQ1oWwE6JRwBzDMkd8zPaDoNpK+pDNbqxL129STMCM604RrZisSHoKy6NeST2qW1xXWXpWJGW+s9pXpPsCxit3hHUsiOp8HFaiu5MBgeCHCZhffj/COsj5xZg5Y6jbrd1o6P1D6b1fcp17e8HgloN9eY8Kdm+8O/O6eZHlxaTkmRA0YhOo27EgysK6pJLesH2/+ntau2VtoHkJ+xwhkz9ZDSBoAdkTVFtJr7Hs6jD9XVI0gIxt1apcnNqz6rlyfKfxrp6PuxNoMzIHy35qAMWZsK4Twz4fRw2sjgETkQHArlOKOChM45UACJtBaz5a/pEv74nSycyThz7JvB7ldsSKAhZm3C7k4rQgDivGNqSiPaU1gH5Y/YPrtNwS1oVwmqyy5+wrTCfQHD6AwkiY8mXVVo7rfZyyd7B+b1rrwa4O03lLig+gLA0gAa0YXj9aomikcecjqU6gjeikuzIBW7VxlSf5SgphFbREee0dRlCaQAimCZhNGHgZYY5XAiBz/uK04HFLSX5J0FkIHc0qmtHQVkNzrpuFCl5Mll5tbFhOoMOM27EgLgviMGNpAibZhlFn3sKqLy4NoBAJW8KIcR44ttexmb/rFNfx9L3pQzZbARCHCVicMLZVkU0jj+aQLH5sXpNy4OEkABr979F+Zid2hFXQgj2bWsJZyyBwVKmW8ziBLs4vzvrsmQAopFLtMFBS4I8AKGqmBDKn5WEmahOoax9AIV0Q3z3mbsd7ojheGfPs1gdQGIhSHVj1lX1a7eP4rNO4AOGPGDKm7zyw+pSICZiVk2iiaLV1J4zlZDUHsNq0ce2pcq7UNI07PTdOoOMkPJcxAfOq3yWNsK4To7z2DiMoTcCkrKCMeV3UgSTPgDyu47isz375AGKFVE0qfmkARW0jwWrbfiyy0gvYCZ0nuE5rtwa7Zf52mkCvGXaN6/epxK2wMIwLhsfHP06Tu012vK+8sNyH3LhHdZ8Ok9AurAvhNJabRcP14W2GO6YT1ShgYc2XnxtREROwpCCtAeSRCZhfhGns9BKrOcevvUPc4W37LA15L4linwwz4Vsdg0CZM24Oda7sTPcddB/ze1ETMB4NIPOG2msTsLMHnk0Dmw2ksR3HevKeKOKrBlCEhEBBawCpmPCMGhVO6cn47PKSuEYB49mQPX/Y89SpshM9P+l5H3Ikj3ETrtIHUBgI+4KTp7x57uHxARRWYUsYMa57vJ7veEzAZOesqd2nSj0XNFmaPAJ9OCsKWMiEZlxOoEM638ngxgcQcAdv2/f7gC1sfTLqhGelBULBhC4TaEIXMa0DtxpA5lOL9OKpcXljWrZumVBe7Ejn86phVylLMy74dXIUJeGPFX6U1bzv5xGRmgm2IFWQ+ds8gZrrI2wCINc+gBTXlYpNsKZpXIv53RvvTl+c8IXr9wVFHHwARWnByds2WfUSVQ2gsGI0tfK67HhMwJzGm64NuzKvH9b1MPmMBQhPmbPu8dIJNG96bsacMGq8yqDrupQJ2MXzL6ZZg2d5lKvkwNtWfRcAhfxAJmrEY7QAvmE3Ocn6ADJv0tKDu9W7zD6DgHv8PDmJ+mbCj0kvLfhUsQEtyNslAErn/ZBOh1BlaSUd3PFgIiKa1mMa1SupR8f2PpaZRlC4bSth0iZJoxG/P4gooFqoG6Y6i8OCk6cPcWkAhVB4f91+11FxfjH9ffDfg85KFjzrHtXvggnYLlSsZ6JUZu3rt6c9m+8ZdDZ8w65+wzhORQ3etu+3yWFcBJxhITwrLRBZ7AYLHg0gc6fOCIAsFt/rz1tPBZcU5Cxsi/KKaMsO6ygXUZrQ/cYvoUzUhT9E/m5QZSe8vVvsTfN/nE9EJg2gv/rUo4c8SjV6TUbb4q4D76Lba24PlfYFkfuFvF+mjaLEQbDgFaESAEV0zhDNN1cUsBCO3d2qutH689aHbtwyrntUbkiZYeAFnECLEtX2L2samWUCFtAYLfPeL0/4MnabYxkTMKfv3FKcX0ybt2/2LP2wEFoNIEOb+PKEL6nTLZ18fX/ciNeIAZQzc8DMzN+XDLmE7QNI88YHkNXgYrXYc9IMiuqmq2d1T8/f4ZcGUFhPkq1gbXr8PPWQbbPGvsPSANI0LacfhW0TRbTLKfWp/U6Vet4v5+YiiESEiQKWYeAlBQZhcmQapU2VGwfubjSAWtZpKf1eFYRx3PLTlJZHA0jWxC+qaybZsScMUcBk1kd5qbzI1hULp/qz1QDyUFBdWlDqWdphglsDyOex1ziOhemgKKpEZ3UDAuHqYVfTsjOW0bIzltH/7fV/7ChgaSfQLBMwCR9ARhOw/drsx3yGNcgX5Rc5viuKvHv0u7Ry5kpP3+GXUCaMp8iiREEDyNgXjdHuoiZ4mNpjKi07Yxldt991Us+HdcEWq8V6jE3AjMLTsHNUz6MyfxvbF0/9OLVHu3F7Wo9pHLlLFllOoBXOeXZh4O0Ep471G6FDGR5kD7S88gEUt/L1GlkfQE7fuSWs6wnV+KEBdOaAM4WfMeYrTmuooIAACNiiaRo1Km9Ejcob2d5jhRsNIE3TqKyQHY7+7IFn51xz0gCK0mmukYK8Aqosq/T0Hb6ZgDlM7FHAz1MPWYFNlgYQwwQsSjQqbySdb9UmYCoW8lETwjmheuwIk0aHUXgaZ3g0gGSfTSLt67f37V1e+gCK6ljFZQLGcgLtYRQw3jnMUqMyQUIknXTb8rebc7wsp+5V3T1LO2iM5c07prsZ++sW1xV+xvi+qI5NYQIzNxDCbhJjdUgeVeicKGAGm3arTn7ZPpfR29PezrrGEgBdPvRy2/yBnfhmAhaxMPAsfDUBU7BwZ5mA8XDFPldIvTtMhNEEDNjjtwbQmQPOpEM7H8r8zig8jQuszZPTuFCj11huusKksRU0v5zxC315wpdUWbrrwMbr+U6FD6A4aOYaCZsGkOqDl31a7aM0vbDh1Gfs6vf/5v2f6uwQEdFTE56iFhUtPEk7bPjhBFpGeGTMVxQPM8MGBEBACDsTMBbGcKhWWGoA2aSbn8qngc0GZl1jTYq7N959Vz4xYFgSdaGMn/iqAaTAB5CsCVjtotpS7w4TYXQCHbdxyGrskA4D77MPoOYVzalN3TbM78KuAbRbg92UpONGQBAmja2gaVzemDpWduQyfZeB6QRagQ8gK6I6VskKtLzUAHKLsS461O9AYzuOJSKydJMQZXSSNwG7ZoG8LzQ7OtTvQPu0jrfgLY0fJmAyY0tUx6OwAgEQcE16olyzZU3Odw8tesjxebsoYCIdfkLnCbl5w4DBha9OoEO8yOLBzw2qioW7UYshaeYaRg2g8/Y8z/K+vk36cqWH8SQX1doDfmuUaKRZjn9h9wHUuWFnenHyi/TpjE9dpePGCbTqMcWc3nenfKc0fT/wNQw8hwaQ7LgVxfmZyEUUMK80gEitE2iddLr3wHvpwYMfpEcOecRt9iKHX+tVI5qm0cG7HUyPj3+cvj35W9/f7ye8bdXN2O9aAyiiY1OYSNZuALjGLgrY6s2rc76b8/kcxzRzTMBqnE3AWLAGFAwYfCAMPD+qT7yHtBxi+Z2K8L3GTazIojYOWmFGs9B29drR9J7Tmfcd2OFAv7IU63FIRf/2W6NE02wEQBEwARvRdgR1q+qWdc3YxnjqxKlN2moAKRaIm8u8dd3WStP3gw4NOmT+9nrOS5vZu/EBFIex3kjYooB5QXlROU3uNpkqiiuCzopydN3eB1AgAiDaeSA9rtM4alOPrTEaF3zRAJLoX1k+gHAY5xoIgIBr3E6U5gX/uq3rMumKdHI74ZTV92AnCAPPpigvN7Kc6g2PqF8tHqycQCdNA8howqPCSWqU2q5fWJqASW7CgvApY6WxEXYTMBlY9eU0Lvy+8Xemhi/Ps6KEXeuKh0M7H0rXDr+W3pn2TlZ5Xz70cvryhC+l02X1qT82/UFECANvhGc94+gEWvK3X73v1bR/u/2lnrXKF1F2v437POTGBAy4J7QaQBoO9FUC731ACC86ndWGWtP41WaJxP0TgV34GQa+bom49/+gKMrPFQCp3qB67bshKwpYwvqDUbic0lKW7Zx3sa+i7UZ1U+UXfvsA0kiz9NkSB2EEz9ju9Dt/WfeL5XeqNbbi4FQ6paXojAFnEBHRgp8XZK6fN8jaDFUjzVFoyqrLp75+KvNOy7RhAiaM7G8/a4+zaP3W9fTC4hd2pSXoziDpONVfEAKwJNUf7291M/bLlCc0gNSSrONg4BonLRsZrAaRlJZynXbSJMbXDJNzgOfniUqvRr18e5dbmBpAijc8du1ShRNoWROwOGAUJqiot35N+rlOI27jkGoTF7+11DRNS5QGEAs3UYVUCOysNBbjwIl9TqQTdj+Bnp/0vO19PO3ebp52pQEUM42SoKOAeT3PxsGU3g6nMPBBmYDFGZk2G2gUsJjXhx9E/6gFBI5rEzArDSDBdJnCqYSFDWxe0Zza1WtHi/9YLPScbz6ATAvNprWb+vJeWVgaQKo1FFSYJtk9x2sGFUeM2gQpLWVt6sBRzod1PSwRY4goqjePQbRRKw0gv7WRVNG0dlP67s+dzpN5ovmVF5VLv0tFfVn5LIsDRflFdPMBNzvel9JSjtHDZAVAsj6eojre8axnmE6gFQWo8HpzGjeBnRk3YeC9Iqp9gRe3PnlE2bB1g/Azca8Dv0nWbgC4hmlm5ZEGkAoTMJHvw87Fgy92vMdYF80rmnOn7acJGBHRW0e9RUNbDaUXJr/g8ESwFOcV51xTrQFkl5606r7huYZlDXddj3gfEMUsALKCp5xVlV1SFjGyY4rfbVQjaw2gqNbVs5OepSEth9AbR75Bx/Q+hka1H0W37H+LJ+9SMR4a+2YcTMBk4NlM2Qk2YAK2C2kfQCGOAhbVsUgG+ACKBm4EQEv+XCL8TNIO9L0mmTMtCBVWg4hyE7CIDxgX7n0hvfbDa/T6D6/b3pf+nSzzJSv8dAJNRLRH8z3o1SNe9eWdbvBDA8huYagiCphRELhq4yqp9KIKrwYQD1EfP7zCWKay5jsH7XYQPf3100QUkAmYg+ZF1OhU2YnmTZ2X+fzcpOds73ez0VeiAWToW8bIfUmCZ3yxm6ftBHFJMwHj+T2s9ZGqKGBezBVxqyMnYAIWftyM/TIHB1k+gFAfroEGEBDCycxKBjsTMCENICcTsBgMGCLCB5FJEmHg2fD6ADqqx1HS7/DCCbTxOeOGav3W9VLpRRVuDSCOsUGZBlAMxiEjxo3J34f8XSoN47gWFhOw6T2n+56PILlynyulnlPtA+iQjoe4Ti+KWLX7O0ffmfnbTgggMo/0bdKX2tdv75inqAq9edYZN+1/E7Wp24ZuG3Ub8zk3v33L9i3SzwKYgEUFp7G/bb220s+yiNOBfhiAAAgI4bsJmEgYeIe8xWHAEDFVERG2QKWWDa8G0N0H3i39Di/CwFs5P09aPfNGAeMhDuOH1zQub5z5W2T8MdaT3+VsZQJ255g7GXdHH1a9aJpG5+x5Dp23p3WUKitU+wAqLSh1nV4UsSrHg3Y7iEa0HUFE6nwAnbPHOfTNSd9kPkftYMYJnnG+bb229O0p39KxvY9lPscz9z5x6BPM66s3r876LLKW5fJfFLP6MhNGE7C4HdyowG7MuWrfq2jB9AWW38vUITSA1AIBEHCNVxpAqheWcUCkTEQ2u775AIqYGjPLpCUSYeAt2n0YtcK8xA8fQKJ1FDdBklU7uWKfK7jTCFIDSNM02l6z3dd3ho1025aZL1X4ADL2CdU+1qICT9mr8gFkfpel35mIrp+ko4AJagBZlfnm7Zul3s9L1NZRojiGgY/B2iQOuFm7bqvZJvw++ABSCwRAQAg/w8BrpAlN5E55i+pixgiP2mT6N4dRAyhqEzdrElMdGtqLMPBWmm9J0wBSGQXMqi7mHTGPeT3p9GrUi2b0nsF1b5YGUADjdNx8AMkiM96oPqhJWqTCNFZlbwyGoSoMPG89R3WTpSQMPGMc2nj+RqpTXMf2HqLcdY75vtP6nSact6jWhQyhDAMf8/KXWZs7aR3aCfKkBEAx288FTTJnWhAqrAYRTdPohcX8UaKsBoRDOu30KXDOHueIZy5kiCyOw6jtEbWTK5ZwUnWYYq99ABlJmgBIpWaJMg2gmC1c7Po0y4TSTMs6LYP3AWQRBSwppBfWom1T1E+fkVHtR2X+Nta5aif7YeWkPidlfbbSLOU14RUSAMVsDDJzZI8jiYiod6PeQs85aQCVFJRk+QUUmWfdRgEzXo/aQZoouq7bbvaDGK/j3mdkcHI8b9dOt+1wpwEE3AMBEBCC6WfHQyfQm7ZtcpW2RhrNGTeHfjj1BxrfebyrtMIAz+Yo4wMojCZgEVu4+KIB5IUPIAvn51Erf7fw+gDy0wQsbrhtU4uOXxSsCRjFLwqYLKKn3KxInekDFzsu3OvCLAGIsZ8mJQz8P0f+ky4belnms13UzoxWr6QTaPPYxdvHorrh6te0H/10+k+2PkhY2GkADW45eOd1Q3uXPWhJ2jwsSo4GlWmMCaL84q4BJIOdsF7TvNUAAu5J9soVCCNrAma3uLGSIouGgbfKW14qj1rUacGdTpjhEgBpzuriZpKmGcKLHwIgt75pRNIUMqmMyOJ/Wo9plt/xaha4MQETrSMsYrIpyivyzQl0Wgu0Td02WdfNJ8oH7XaQZ3kII7I+gFjjDI8GT+u6rS1P+IM2B/QLTdOoVZ1Wmc9W2nK8JrxCPoA4N9RRHqua1m4qrK1rpwFUUVSx8zqHHxKWAEOpE+iIaVKLouu65SEWkffr1TiPOypxEjpXFFdYfg8NoOCBAAi4hqdT9m/anxZOX0iHdj405ztLDSCD7bsVA5sNtM1H3AYMEQeZMAFzjxsB0CfHfcJ1n60PIFkNIAU+gKJySnnLAbfQ2QPPzrluHlecVJKdsKoLFWPM8jOXu04jKNz26ZSW8k0DaFKXSfT61NfpvWPey1zTtGwNoFePeJUeHvuwZ3kIGrv6ktIAInvhgtV7rPz+ZEV6ibAAggfj77PVAEpr9Uo6gXYyAUu3iRVnrqDHxz9uneEEkzGTVKAB5HbOiMrcLIuTBpBXAqBbD7iVfj79Z/Zhcsz2EmZkfp/TmFOcX2y5DpbRAAJqgQAICCE7COal8qhf035UVVbF/M7qXU4LQGPYYWYaMVtAcmkqcCwWzcAJNBuWcJIVGYxFs4pmXPeFNQpYVCjKL6KhrYbmXDeXnesoYKo0gEx107pua6quVS2URphw26c1Tcsy+/FyoZ3SUrR3y72pXkm9rPcZNYCGthpKJQUlnuUhjMj6AGL1KREzZfP7iYi6VXWzvC9uGH+fpQaQYR2kKgy81ZhVVauKBjQbYPlckjALSllaclZljihW7nDyAeTVOqZvk77UpHYT9mFyzPYSZmTapK37gr++61TZifn90Ja5azbZ9/Vv2l84LQABEBBE1gTMTi3cLgy8yAY4CVJ7hIH3FzcaQLxtT1YAdGKfE2nxyYsdn+N1IhpleMYlJ5t0J6zqwm0Y+KiPUa4FQKTl+GryCqu0k+4DKN0GRcueZaYtY05pfO+ezfe0vC/OFOcXO94jO345agAZTZ84TJySgJUWCk8kItaY6NYJtFP6ccIcBcwvDaB0P0nCXkIFdv7a0mVpHntO73863XPgPXRa/9Ncv/+bk76h+w+6nyZ1neQ6rSQCARBwDc/AmB4EWJObpQYQhwlYt4bJOS0kIupe1d32e+NpITSA3MPaEPH6FeBdPMtqpkzpNoXa1msr9FzUBHBu2Lpja9ZnkRNyFlbPNyhtIJaxmNG5srOr5zVN880EzEpQmKQoYM0rmlt+55sJmPkZD80rw4yxrKwEQMZ1kN38+dK3L3G9h/U5y/lxgoU+g5oPIiKiFhUtuDSArMrK6/VUpwZsrYq4YFX2abwq33R9ph1+A3t4/Cqa+0jLOi3pyB5HSkXTNbeD9vXb05TuUxIfiEOWZIRbAMqQVY1MC3lYCxi7KGBOaZ+1x1m0Q99Bo9qPktZOihIzB86kbTXb6OL5FzO/N5ZvUP5empQ3oV/W/cJ+T8QEEEE7gZYVDlktUuOq6eBGgEPEN06kn/90xqfU/dZdgtjWdVtz5NDwLokNc5g5pd8ptGHrBhrRdkTOd7wbeCufVaphtYGkRQEb3HIwXTPsGnpv2Xv06BePElEAJmA2GkB298UNY3lbCoAUaHCKRAGz0h5NAo+Of5RufPdGOrb3sfTC4heyvhPxAeQkwLBbB9mtxd49+l16cfGLdGr/Uy3viQM66bZzgtcaQA+NfYiqrsl2VxH3sUgGO5+ksnMK8A+IzYBreDp4WsjDmvjsTCuc0i7OL6ZZg2fR7o13p1qFtaTyFiWK8oto1uBZ1KF+B8t7ZMLAq5xQjY65ow5rgqtTXIfrWZnNr0gavN8l1QTMTO2i2q4EnelxqltVNxrTYYx0OnGjMK+QLhp8EfVr2k9Jep5qAFn0mRYV8YgSyYOmaXTmwDNpZNuRzO9E05IxAatbXJdL6Be3+duM8XeX5Fv7neIJA2+HrAlY0qiuVU2X7XMZtajTItcEjKUBJGICpkCA0LdJX7po8EXKD6HCjnl89loA1LCsYc53Se4XVvAIklWavEMIpxZoAAEhZDugnX27rQmYwPva1mtLFwy6gJauWUoPfPZAJo04wrORFdIAUqiZY3cqEGUTsNnDZ9NvG3+j3Rrs5vjco4c8yv8OGzm86jDwUdPAUsENI26gX9b+kuVc1oyIc3W3xHVMcgPPpkoFTA0gTaPZ+80mnXSa3nO6Z+8OG6wyFy17lkN8nvY9ou0IevX7V5l5EU0rLlitkYwHYbIb3xwBEIfz1qSTo8WjMgoYytgR45hw0d4X0UvfvUSDWwymac9O884EDEIeIXhMwHKuo+2HBgiAgBCyJmDpxY2TCViz2s3op7U/Zd4lehp86dBL6cvfvtwlAErggM7yAWQsVxYqBTN2k0LUBBDG9nf6gNO5nxvfeTyt3bKW615pDSDORbzx76gJ4HixK6dT+p2S+duq/YmYgIlSlFdEW3ZskXo26si0N799AJXkl1CD0gb0wMEPePbeqCC6OM9P5eeaFzkolg9vM5zfBCzm8zePCZixbGTH7w+WfWD5XiKTDyCK/3zBA48GELcJmI3PJadnk4qxzGoX1ab7DrqPVm5YSUTeawA55QfsxO6w14t5PO7zgd/ABAy4hqdTFuXtDHHq5ATaHA1GpsMbTyXjOmhbbmRpl8NI4yTpVA4qJ9S8VJ6lGVjUFpR2wiwnvI4CJpsmkEO2TN846o2sz1jE5MJzqq4CY9qXDrmURrYdSWM7jvXsfWGGJSQWbZt5qTxHB8NERLeNus02ncT6ADJtclmwIq2JYvZxlSOQMJqAxbzMeXGjAeQmChiwxut1jexhXFKx1QDiGEfuP+h+ldkBgmCXAISQdbRclP+XAMhBA8j4t6gJWBqjfXTSBm1jeRmFOnbhGokUm4BpefSPYf/w/D1+YHfCoQppLR8JH0AiRKmueMcJKwGkqBNpp/5kpG+TvrbfJ22MYuFX6Gnjey7Y6wJ6YfILUtFI4oqMBlBOGoz23K/JLv9QrE1DYn0AGX5f3eK6zHu82PTyHjpEaQ5QDZcPoICigCUBVjl7LQBKsgaQTF+X0QAy1uuU7lOE/CnGvQ78BgIg4BqeRZqd0zqrjZWMCRgRf5juKMPayHau7Ez7t9uf6TDyXwf8yzY9pRpALrRmwoabBYeKMPDSUcAStqHy43cZ6+Ifw/5BTcqb0LXDrxVOB4sYe/zSAEo6KnwAMU3ALPwsXb/f9dSkvAndMOIGy/eznksK9UrqMa/LakLbwXt4EDWNXZWY10TptlhSsMtZt3QUMI5yfeDgByyFgkkjXX5BCoCSTreqbtS8ojnVL6mfuWa7PvVgTK9fUp/2bb0v7dNqH6ajbiAGWjsQQnYhImMCpmma1PuMwqakLGCa1W5Gi45flOVHIP3b/3XAv6hTZSfb5+3KiRUtxg67BWvU6sOPBYEXJmBWp5TlReVS6cUFNz6AjPe0rtuafjr9JzpjwBmu85SkTa4VWeZIHgrzUNZsZE/YebV5NNLo1P6n0k+n/0Tt6rfjeib9XJwx/u66Jf5pANn5pEEf2YmVEMcYBdSLKGDpZw/vdjgtO3MZ1zNxhGWiauwLreq0Uv9OTsFoEqmuVU0/nPoDzRo8K3PNrQmYmcfGP2b7vaZp9PLhL9PcKXMxTikAAiAghNcmYMYBXiM5EzCjD6DtNduFn48CLPt0sx+H9D1Gv0BW2GkACW8KGH4h0kRNpdyVBhDngsGLMPBW+S4vjKcAyO1iQNQEzM077RywAmgA+YXsXG4kP5XPDPM7e/hsZrpWzumTqgFk/N21i2pT09pNc++RNIXnfS8RwsCzyDEB0xgCIEkTMLsytnLInTRYv904fpv9WqkgySZgPJgP5d2agJk/c0Vj9WA8TCpYDQHXqHQCbTQB00l3rQEUVwGQGVY5pRchPIOl3SZUxalw5j0R0wBy5QRagQmYbLheq81VXDWAeMcJN+3Pq8V41PqEF/BE1lH9HrALWRMw1gYgpaXo9AGn0/OTns+6ZoZH6yTu9WX83XlaHi05ZQn7PtUmYDZzB3wA7cT829PlYhQASUcBw5gvBMsEzAs/SzImTXFBRqgiEwbeDBzQBwcEQEAI2TDwdn55rJxA86Zt965tO7YJPx8FrE6njH+n7+HRpFKuAWQx+J+zxzlCaQWNHxoDXqgdm58b13EcERGdv+f5UunFHT8XHuZ3wWFoNp46gcYCM4PsXG6E5QMonUatwlq27+IhSfWlaZpv/gttw8AbyjzJggorJ9BGLVqr9QFrTE/Pwc1qN1OVxVjDWtMa9wc7atRrACVpvDHDK+zNElrLaAAluIzDBgRAwBd4tRzMA4rMBtw4SWyriacAyAxrgb11x9ad33H4UrJb6KnSAPryhC/p+N2PF0oraPwwAeP1AfTkoU/StB7ThNMnIvr3uH/Tlyd8SYd3O5z7mSjB7V/BygdQgKd7EABl1x80gPxHNgy8lQmYMU3z33bXcu6JeX3xar6p3jTxajpAA2gX6TowByphPssQHvVu3Ju+Pflb+vqkr/nzkGABnBGWBpDXJmDVtaqz8wDBRQ4yY5at8Dnm433YgAAICGHl4NGJ9EDBdI5ntCk1CA90XZfaDBjzGFcNIDNm30lGeOpHpQlYSkvltJMJnSdQx8qOkZtEuzTs4vk7eCfRssIyalOvDfM7O3TSqSCvQLj8+zftz31v0ERp4WDua0neZKUR9QMA3MMaC1hh3e1gCfuZUcAc6jSpda7S+XllaaXUe4lghsEiJwoY5Wqh8JqApWlTrw2VFpTajvkQ+uzEyQeQFwcnxneaI7AldYwyY7Vfs7vPSJ8mfayfwdjjKxAAASHs1MZnDphp+VxGAMSY+IyDulkDyO2gmxgfQA7+YII0Abtm2DV094F3C6URFtrUa0PvTHuHFp+8WPhZL8LAs/rDD6f+QPOPnC+WORt+PO1Hmn/kfNuJOqpYLa79XHiY8wANoGzgqNl/0uNKRXGF0HN2JmAq/DrFfUPArQHEsQ56dPyjUu81k+UDKMHCCCsTMKOQVMQEjPu90IggIrYGYZYGkAcmYHACLYaoCVitwlrUq1GvrGtwQB8cYsc9ADBId9rG5Y0t77HVANL4JMoyNK9orjS9sGB3gsRSyQ/SBGx0h9FUWlAqlEaYGNBsgKfp80YBM/tySn/Xok4LalGnhWUaohomzSuaR67f+LE4c/OOPC0vo7KeowGU4E1WGr9MwIA9ouO0lRNo4/+J5PtO3DcEKtt97aLaUu8lshY6JFk70coEzNjmzeWY9u9j56NRBOO7jM6nkwbLrNRrJ9AQ+LDh3a+xym/P5nt6kicgBwRAQAgvbPmtNIB00qUH4benvU1L1yylrlVdpZ4PO1anU+a/ebGbTEXrwBwGXrVQLyqo9gHkdG+S4Y44EZAPoLxUHu3Y8ZcACBpAtmDh7T+yZW7nA8gokJDtX0ka72QjPqYRKSvbwAPof0RkvcayWs/M2nsWHd3r6J3PKhKc5afy6eXDX6bN2zdT/dL6StKMClZtNKWlqEavEfIBdPHgi+mi1y9yfifnYRzYiejBsdNax2nsSbJA2guSM7sCJcguHGR8ABmfS8Prk2Vgs4E0sctErnujyO6Nd8/67NYEzFajSHDiy9OyTcDs1ETjDO9CmrdPmZ15Y6GuDq8d0tr5U4IASI25EJAnXf6NajUSeo7lMyjdl+qW1M25ZsTos6Z3497sfMV8jFNpAqaq32CjuxMeDSDjPaf0O4Wa1G5CRM5jerv67Sy/Mwt6hrUZRqM7jObLdExhacqJmIBN6TaF6z6YgDljHB9sD44Z44iTAAdjj79gpQVck1HP5NDyEfUBZB6Q/3PYf6TzGSduPeBWOnPAmZnPdqqrPCZgqjWAsj4nVAOIF96Fv5UJWJrXp76uPG9RQcQhtp/cd9B9RER0z4H37MoDnEDbgkVgcPRv2p8uH3o53TbqNq77zcJ+ol3jmdFkZfP2zTnPdq3qStcMu4b+Pe7fdPP+N9PMATPp0xmfymc+gqh0Au1mnrVyAp1k81QeDSDjusmsvc56No1VNNRrh1/rS+CJKGDVN9Lji8jBiZLDOMxLRMRvhscqc9Z4IrL+gRBOLRAAASFkTcBkfADpup416M4ZNydyvkm8on5pfbpm+DWZz25VulVqIZijgCVVA4gXu8g7ZsGeXT1bOW1OwiLe7eKMK1KeRDmOaDuCiIiqyqos04EGkH8+gAryCjxLO8pkHDdrGp036Dw6pNMhXM/ZmYCVFZRlrlm18TMHnkkTu0ykeiX16B/D/0Hdqrox04orKsPAi/Qb8xgEH0C55EQBYzgiNpZj1nWHcivIK8jqH0RE4zqOozMGnCGd37hhpe2c0QASMAGTMceP+9hjRmZ9Ixo92K0JGFALBEBACDsNHh4TMKfvICxwDysMvNPAajeZypiA2X0G2di1efMpmJ2mF6K3OONmQyPzLMt5ZZKcQBt/64l9TqR9Wu3DvM9rE7AL97qQztvzPGpQ2kB52nHEjf8yozDp6n2vppP6nESdKzvL5SNBG4L0b/3niH9yP9OhfofM30ICIIEgEkklxwQsrQGUstAAstAMIkKZqkTGBExFRFbU4U7s2rkR1ncwAQsXcAINXMNjApYePFkDgJ0PIKgj8+E0cbkxAZMJA2/3GWQjFAbexmQgyZOn28WZV1pyrJDYKtKNIjftfxP999v/0qvfv2p7nxcL7YuHXKw8zTghO3aw5hbjmHXWHmcFkq+owNJsOLnfyXTKS6dk32dRDvVK6uU8z4N5zKkormDel+Q1l1UkL+Ma1S6ASVZajHVvvZJ6tGHbhpz0wU6s1jobt20kIrG2yTuOJNkJtIzQ327tsnXH1pxrTKGQhfkp8B5oAAEhivKLaFqPaVnXRDSAWIO2cUDJ2fDGfNBVhdlZcNZ3HGW4vWa7srzkaXlZpzNJ1QAqzCukaT2m0fhO423vsw2laVKD5o2mlzT8MAFzI6ix085KkpmF1aIdYeDDhZuFuMo5O+4bAt7onbwmYLzaQ+l++Pyk56lHdQ968tAnuZ5LElYaQMbxqVWdVjS+03ia3nM6FeYVWj7L4tlJz1KP6h5qMhtznNq/U7tXoQEUd3gFarwCoC3bt0i/A/hDcls7kOauA++iU/udmvks5AOIpQGExb9rnBaPTnV07YJrleUlL5Vn6RwxzrDq4K4D76JHxz9q+xyvBlCOE2izoC/mmyUVuFmAiPgcMJNUEzAzPEI0CP39Icvvi8ShQfo+L8ehuLcFt2sfs6+9k/qexPVcuu4PaH8AfXzcx9S1qqvtfUnEUgPIsJ7RNI0eHf8o3Tnmzqx7eUzAelT3oI+P+1hVdmMHr3B0wfQFdFjXw5S80zaYCtZXRMRvlbFlB0MABBOwUBHq3fasWbMym9f0v+rq6qCzBYjts0FWO8HK2VuSNkZucYom4mZgFZ34Uloqa7OcVA0gXnh9ABHJ9bEkLOKDNgF78tAnqaIo14yCxzw2KSZgRNZ+GxAG3n+yVO/N5qQC/cnOBEyWu8fcTXWL69Jj4x9znVZUkDE/Mfcb1ZvUJK/BeDSArOpFptywTiJ6ZuIzVFFUQc9OfFZJ5C6Re8z3mZ9JwjqKB2P7H95muOV9vCZgRiBk85fQr7Q6d+5My5cvz/xbtGhR0FkCxD658sIELMkLEFX4YR5jJE9LpgaQLLwmYCktxW0umbTFCm8btSoXtyZgB3c8mP445w/L7+0E20mqKx5hFwRA/mAUxpmjo7nxmaHiFPeonkfRqrNX0YBmA1ynFWZUCj7dRAEDufD4ALJa88qM6YhQSDSmwxj645w/aHSH0VnXbYWjHBruKkzA3GgAxwljGZXkl1jex2sC5tRXuld1574XiBH6lVZ+fj5VV1dn/lVWVgadJUD86plpeE3A7KTu6PzWOKmu+ilZzzEBS8jJlmwZ2wnIcsLA25gM4PTEW5yEF7ymfOZxLEkaQFa/1c600YrDux2uJE9JxU5LU+T03StTiSQIAnlNwKzKVNaEjHctleQ1V44ZF+WagFnx9yF/Zz5rR0EKAiAitkWBU/m5/T5zn0U/K8ororKCMq404g6v0JplAuaoAcSopyTMA0ER+pJdvHgxNW7cmFq1akUTJ06kJUuW2N6/ZcsWWrt2bdY/oB6mBhCHeYqIBlCSFx+i2E2WGjlHAbNNW3BBn+MEGhpAtogs/EUFr0mBt43yOCG2QlUUsBwNoASdxlsKgAQ1Ie4eczddNvQyZflKIsYxOj+VHRDWzdiCBTs/bsdznn4zpOWQnGu8Y1mSxiYzOSZgLA0gizob0XYErTprldD7IACSgyWEzrnH9P38I+cz77PqQ3+e8yfWsX9hd9hshKkBxNjTIQpYcIR6pu7Xrx/df//99N///pfuuOMOWrFiBQ0cOJB+//13y2euuOIKqqioyPxr1qyZjzlODiy/PbIhFK18AAF+nFRkXaUtagJm0gDChsAeOw0pOyfQvOWahEW8WxMwHqz81/Bg1wehAZQNT13WL60PAahLjJEfZbUJWZEJUS/8cGsAcZSp1TxSWlBKx/Q6JutaEuYEtxy424FZn9N1sHn75sw1Y+QvM/VL6wu9DyZg2chohVqmZeo/DUobON6Xdqg+pOUQKimwNnVKGrxj1v7t9s/8vXeLvYmI6Ljex9mnzRjnsCf0jlDvzEaOHEnjxo2jrl270r777kv/+c9/iIjovvvus3zmvPPOozVr1mT+/fTTT35lN1FIawAZNmDfnPQNrTprlaVTvSSflItiJ0TjOSHhTZsHsw8gYI/Iwp/39AWLSTZWdvxeh4E3AhOwXEQFm27HNJDdF0SczT9x6BO296Fe+DFqfcgc4hjXRFb9pkavoVsOuIU+OOYD4fwlWQu7f9P+NHfK3MzndB38vPbnzDXeeZanT0ADKBte7TiWEJp1jxFzX/nh1B9o2RnLsu47ptcx9NGxH9GLk18UyXbssfNDmebz4z+nPk36ZD6/dPhL9PFxH9ORPY7MuVeV+R4QJ9/5lvBQVlZGXbt2pcWLF1veU1RUREVFRT7mKpmIquyzTMDa129PRETL1i2zTAtCHz4cneT5OIiao4AlBdnFspAPIM5+ZzbpiDu8m04eAYTos3aUFpTmXIMTaHt4NduwMHSHnUabXX+oKquyvRcan/wYBQgy5cajaauTTvmpfOrduPeua5xjTtt6bYXzFCc6V3bO/J0eb/o37U9E6n0b4tDGGlVOnjP3m+aOFnVaMNPs2ainULpRZuxuY+mDZR9Qi4rcsiDaNWbwRMHr3LBz1ufi/GLqUd2Dna6DCRgOFLwjUruELVu20FdffUWDBg0KOiuJh+W4mScKmNN35jSStDlyg5MPIFdpi/oASiVTA0hWWGkbBczUz+wcpvOmGUd427gbMy7RNv3e0e9RcX5xzvUkawDxaGAZ2/hBux1Ebeu2pWsWXJN9v8+O7eOIrJDeTihNBMGcCEZBPa+ZvBHjWJKul0+O+4TWbV1Hg+4ZlHNP5jmHuerz4z+n3zb+Rq3qtrK9L+6wzJAO7ngwPTPxGerVqBd/Ohx9AhpA2Qg5ohfUIoGQOpeZA2dShwYdaFBz+/21ysiFdmkD7wm1AGjmzJk0evRoat68Oa1cuZIuvfRSWrt2LU2dOjXorCUe1iBg13nTEnZmFDBjWgarRAh/+FF9QpL1rIQJmJuNdtKw0wAyb4yhAcRPu3rtcq7xOCG2oob4BTVdGnbJUoE2kt587dZgN/p61dc0st1I7nSjjqgG0PhO4+nzlZ8z73Oqsz2a7UFv//Q2Na3dVCyTCcFWA8jB5MIOCOb4MW76ZTZTrNPz7tXds+5h9bnG5Y1t0zWf4CcV1nyb0lI0psMYoXR4DoegAWSNm/GIdQ8EQLkU5BXQ2I5jHe/jdUPAi3Gfx9QAglDIM0K9S/j5559p0qRJtGrVKqqsrKT+/fvTwoULqUULtooa8A9Rnw1p9T/WRKjS2VtSsfUB5NIEDBpA3iLrBNquXowCoCQIUo1CtAmdJ1DvRr3psK6H5dxnqYHC0cZVCTXT9fHqEa/SQ589RNN7TVeSbhTgCgNvGKvyU/nM/sHjA+jOMXfS8/97niZ0niCZ23hjpwHEG9CBVQ/YXPGTpQEk4QPI2J+s5hHjmmvulLm0fN1y2q3BbqJZTSS8GrdO8BzIQAMoG5HgMI7fm7UUsc8QJl1mPD6AQDQItQBozpw5QWcBcOAUBax5RfPM36zNKHc0owRsZGWRjcDmBXlanmWUBZAL78Jf0zTuyTdpp4nGsqhXUo/O2uMs5n1uBJOqhZqNyxtb5jOuiGoA5Wl5lu3cLIgwHy7ULa5LMwfOlMxp/DFGATPDE9CBCCe2bnHrA4hlAmbG2Of2bb2v8DuSjKq2zGOSzfJDk2R4hW9cJmAQUitDlVA0TZYWI+YOX0EvAFKImoDxpmVE/+s/4IytDyCX/jJE6zWlpWhgs4F04V4X0sNjH5Z+b5x4duKzlt+JlC9vZIykmYDxCsastHh8jQKW4DGNp/yN9VeQV8CsT54xDYt8e2SdQDtFDEO585MVBUzGBxBnFDAghypNEbs+8czEZ2jmgJk0qcskJe+KO08e+mTONWENIAgapFFtAmYETqD9JVm7BKAMWSlww7KGOdfsJkfjCVetwlrc70kyzDDwPpuAaZpGFw+5WPqdUaZD/Q4510Z3GE2XDLmE/vba33K+kzW3sOs3SXMCzROZgsjdZkhEq83Ox0aSNBnNbZvLBMzwd2FeIVsAZBrTNE3LKVcIIuyxNQHj1QBi3IcFOz9GQb1de7WqD64oYAkab1SjSlBgdyAzpsMYYZ9CScDKBMwcmUvGxQHGKHn8Fp6ZD4SAOrBCAlIwNYA4BtVLhlxCo9uPpicOfWJXWpyD8aj2owRzmRxsHQkrnOz+c9h/nPOSMOFDmreOeotGtB1Bz05ia/vwmLKIwO0DKAEaJ9waQBI+gP4x7B80uv1omjV4lmM+Xj78Zdq/3f505+g7He9NAjIRz7IWfCm2BhCR87gGAZA9tiZghrJtX7999ncO/jRwus6PcUMjY07HYwKWhPHfK1SNIXbrM+CM2S+c1XeWz0Pgowwv51VWXRbmFdL5e55PJ/c9OcudCHAPNICAFCxNBJ6BuH5p/ZwNMu/JFSZRa4xCF5a6qyoTsP3b7U/7t9ufXlj8gnVeElpPezTfg16c/KLl91bt3PbkV7Ne+NhqACWsDnjVkkWjgF2090U0c+BMbl8yw9oMo2Fthtnek6QNWVF+UdZnnvI3/m2pAcRx6gsBkD28UcDKC8vp+UnP06h/7zyAMWtrwQRMHqMJGKtvOB2uwQTMW1QJDpJ6KOYGq7JnaVOJmoABcUryS4hI/fjuFAWMiOiyfS5T+k6wE8zUQAqWeqblIsVBBRmDs3ucNIB8NQHDYoeJrCbDtB7TaHib4Tnhfe3q1FgHSTABcOsDyAovxqYk1Eeac/Y4h7pVdaOr972aiMQ1gKwEQETQAHILbxQwnXQqKSjJfIYJmDqMm1nW2ORUlsb+JLv+AtYocwKdsAMZ1diZvvOsbzEmifPsxGdptwa70fG7H0+dKjvR9SOuJyJvyxJ7QX+BBhCQQjQMvB22PoASdFruhiwNIMURD0QHZSx22MiYgGmk0V0H3pX5zKPyT5S8OrDTgDPC44PGa5I0ptUvrU+fzvg085nHBM9s889qyzKRX0A2IsLQ4vzizN8wAVOH0QSM1TfSZWnpBJpDuJOk8UY1fjiBBmystEKtNEJ502J9BrmM7jCaRncYnXMdbTk+QAAEpBCJAuY0YGCh7h5bDSC3JmCCz2KCYCOryWCF3XN2AsE44toHEBaEvsCjAcTjBJoHjEP22GkAGdFIo06VnaiqrIpKCkqy/DCwxhaUOz9OGkBOJmA8/QkmYPL44QQasLEKDCAjzEnCGsgv9mi2BzWvaE7t6rXL+S4/lU/X7XedUHpZYeAl/KABeTAqASlYA7LVIOvkuZ03Chiwxk4DIqWl3JmACU64MAFjI6UBZOpTWZOlzXNZTqAT0Ifc+gCywouFYxLqwwoeH0A8TqDNYeBZfQGCCHt4NYB00qlOcR366fSfSNO0rOdYmljYbPFjnCuZGkAOZcmj3QMBkDzwARQ+rKJC2gEhgjqK8otoySlLcuqhrKCMVp+72pWwE/XkL1ghASmcVDKNOE1+lurNUF3mxssoYH2a9CEiolqFtYjIuV6SZn7Ei4wGEG845jTp03knR8Rxw60PIJiA+cPBux3MvG4lzLH1AQQn0K6Y3ms6Ee080eWhIK+A8lP5uSZfMAGTRtO0zIbJHG2NSI0JmNF8D4ihqi1jLBLHygSMNf6Izt9JnoNVkJfKY5a5F5puOFDwDmgAASlY6plWk6XToIAO7h47kx+3JmD1SurR72f/nokCYOSlyS/RiIdGWOYF7MKPMPD/O+l/tG7rOmpQ2kAqzaji5Jg2jbAGEJxAK6VNvTa0cuZKOua5Y+iZb55h3mPUhCjIs9AA4hjTsOmyp1ejXrTizBVUv7S+7X127RUmYO5Zc+4a2rpja+aAxYhTWfKMZ81qN5POW9JRpgGEQzFX2DqBhj84AKTATA2kYPoA8sIEDJJ6LuwWGCqcQNcrqZeJBGOs+6paVUJ5STJSGkA237HSK8ovSpzwh8i7MPBesHvj3X17VxipLKukw7sdTkREreu2JqLs8i8rKMv8Xb+kPtf4BUGEHFW1qoRPbZ1MgrHZEqO0oJTqFNexvYcnDLyZdN+a1nOadN6SjrIoYDgUE8ZKK1SmTszPJHGN5DWy477xgAH7PX+BBhCQQiQKmKMGkAv1ZrATOx9AfoeBx8aLjQoNIGOf4H0uCZOqUehoN27wRKHiuS7D8jOX028bfqM29dooSzOqjOs4jhZOX0gdKzvmfFeYV0jfnvxtJvw4a/OkaZrj/ABTJO9hhoFHufuGXR94/5j36bs/vsuYcANxoAEUHLxBZXhMwMzflxaU0pRuU+iBzx5wl0mgFOz5/AUCICAFSyIvawIGJ9DuMS4wWGHg3SxkROsHdcbG6hRQpQ+gpGIsCzuBV5AOUatrVVN1rerA3h8mNE2jfk37ZX02YhSSWbVzJ8EmNFHUYFfOLFM8jEvqcGrjduNZvZJ6VK9JPdVZShTQAAoHVhHBMtcY9VScX0ybt2+2/J4VxQr4j+M8jgMFz8BMDaRgaQBZLbhFfAChs8tht8BwW6aiz6/fut7V++IKjwZQh/oduNPj3eAmQSCXJQCy0wCycgJt0cYxHvkPj0DBXC9JaONhQfS0HciTbtcbtm1gf58A7c4ggQZQcFjtC5g+gByEQhiTogHGM3+BAAhIwfQBJKkBZAQDgBxZGkCUu4FSaQLm5MPEyZ9BUrESABnt0Ue0zXaoLeoDKKm41QDCAjFYRDXdUlqKCvMKM5/LCsty7gHewzIvhtBUPas3r2ZeR4h3b4EGUDiQOSR2eqZDA/7DNuAPrIMcrM28AyZgQAonlUwjsqEB9b/+A87YagBJhMk0Yt6AnbvnuVSYV0ij2o+i7TXbM9efm/Qc/bz2Z+rcsLP0u+KMlcCmVd1Wmb+dFjfG/oCN1i54hWFWPoCswOLDH+wW60wNIE2j0oJSmjNuDu3Qd9CFr11Ia7es9TyfIBeYgHlHery3EgBB881boAEUHCI+gGQ4pNMh9I9h/6ABTQdIPQ/Ug/2ev0AABKQQiQImKwAiIupU2Yl+Xvuz9PNJwS4MvIooYEaK84vp/EHnExHRR8s/ylzfv93+WPzbwCqb7lXdHdWbrYBwYhe8JmCdKzvTyg0rc65DmBYeREzAJnSZQEREl75xqfcZA0TkHJEH45I60mPZms1r2N9jw+QpquaFVnVaOd8EsrCMAmYaX3jqyCpK5MyBM13kEBjBGip6YLcGpGANzlYDQEHKPgy8HfceeC8d1eMo+uCYD6TTSAJ2J0yufQDZLOhlolIlFdZGtiAvu2+Y6xGbKT54VewfOFgs6gfatD/YlTNrbDP3i6L8IuV5As7ABMxb0gKebTXbmN/DBMxb3M6/L01+iY7pdQydu+e5inKUTESiDmeecRBUg3AALcbggAYQkMJOa8FMZWml1Dt0XadG5Y3o7gPvlno+SdiFgXerlcO7uYawwh6mAChVkFVuXvgKSMIpMa8PoCa1mzCvo+2GBy4TMNM9RXkQAHmFeYHu1FegBaoeK0EPNk/e4lZwsF/b/Wi/tvspyk2y4A3MwDN3G++pX1LfXcaAZzB9AEF45xmYqYEUIlHArtz3Sl/ylGRsNYBcbm77Nunr6nmwE9bGyGwemaMBhGhHXPCagFlhudiEYMgXRJ2dm69BAygYWBF40GfUkR7LLAVACRDuBwnacjiQiehltlJ4Z9o7NLjlYHrliFeU5w/IYxzDMJ75CzSAgBSsAdlqE1VZxq8BBGmvHMYTcJU+gIa0HEIlBSWW32PA5sdKAGRs84gWIoexzaNNRhsuH0Cme4wRwYBa7PqTlW8NoIZ02VsJgGACBuKKXaAZjbRM3+BxFq1pGg1oNoBem/qaBzkFRDt9g7qFdXiHud07MFMDKUQ0gGTBRs6ZiwdfTO3rt6ez9zg7c02lTwacgKmDxweQWSMI5e8PVuUMgbQ/2PlrgAlYuHCaX9Bn1OGoAQSNUN/AXOwvvHOCVb10bNCRhrQcQuM7jfcmg4CIiB4f/zg1r2hOz016Tmm6N468kVrVaUU3jrxRabpgF9AAAlLAwVo4uHDvC+nCvS+0vcfNiaxjWHIsQLnh8QHkxel50upIpQkY8AdREzA4gQ4HMAHzhx01O5jXcUjmH9BsCw+appFT009pKZo3dZ4/GUow4zqNo3GdxilJyzieHb/78XRS35OUpAvYYEQDUjA1gBRsorCgcY/KBbnTs92qulHd4rrUubKz9DuSgpQGkNkHEPqHIyijaGMec1hmkeZ+MWvvWUREdGSPI6kor4gGNR/kWf6ShpMTaLN2CjbK6oAJWHiAeba/2JmAZWkA4fAm0hjnF+PfmEe8BxpAQApWFDDlJmAJ01zwCi81gIryi2jFzBVYHHHA5QMIYeBdI6UBZGUChvL3BbtxhscJdNeqrrTpgk1UnF9Mtx5wK/wG+ISmafTr+l+zr2FDphwroTbWSP5hF2gDeIuMmSnm7miD+vMeiNiAFCzpvIrFyA6dreoM+PHbB1BhXiEWRxyoMAET6WPpTXC/pv24n4kDaIvRhssHEGNcSjuhLMovwuLRJzTSqFejXtnXUPbKSI/3MAELHmgk+Itd5C8eH0AgemA88xeMaEAKlgaQCnXkTds2uU4DZCOycCnKK6I/z/kz8xmnuergMQEza1K5Kf/fz/6dlp+5nKprVUunEUUqiiqEn7EMA4/27wu86v6Ze1AvoaGqVlWWxhU2yuqBE+jggZazv9gJdniEPpgjokFWGHiMZ76CmRpIkbVg/2ugVaG9s2n7LgEQpMFyuPEBVFlWSXWK6yjOESCy0QAyLFTMPoDcUKuwVuKEP0REtYtqCz+DU8TwwqsBBPwnXQ/NK5rvuoaNlzKcfABhjeQf0CwNDjutdow3AMgBARCQguW3RIUG0MZtG12nAbIRmSBzJlpstJRhJQAyAh9A7pERAFmB8vcHt2HggXfYCRnS9WAUXKPPqAdOoIMHmm3+4tYEDONQ9IBA218wogEpjINrWjUWJmDhgGcDZfmsWXsIGy1lsOphYLOBzL5kBSZIZ3o26in8DNp5sNiZgLEcOmMzFi6M4xbqRj1W2tUwmfAPmICFB5iAxROMZ/6CKGBACq98ABk1gDAYqEHkJAQaQN5h3Bgd3fNo2rP5njS522Rav3V95nqOBhAWMdy8d/R7tHTN0hyntDxYniKi/AOnae2mOdcwLoWDdD1kaQChzygHJmDBAxMwf2G5mUiDMPDxISsMPMYzX8FRDZAiS2vhr4nRKlKFCD2rxU/vQTY8TlSNjOkwxvJZTK7qMNbDbg12o6k9plJKS2WbU+KUUZo+TfrQuE7jgs4GkMDOBIwpAMK45Bs8BzHGzTGEc+qxqgOYgPkHNNv8xc4EDGHgAXAPRjQgBUvl240T6C9O+ILO3/N8una/a13nLemIhoG3O03BJKoOHrt1+AAKBssoYCj/wCnIK6Bjeh2TdQ31Eg7S/QYmYN4CE7DgweFMcNhqAGEuiDSIAhYcmKmBFMaNqgofQJ0qO9Fl+1yWFYEK6oBqcFqQs8z5WN8Bd1gJ2owLGHMUMHP5Y4IEccTOBxAR0aGdD82+H+NSKIAJmD/ABCx4YALmL3bjCIQ+8QTjmb9AAASkYGoAKTABA+7JESI4TJZ26vuYaNXBpQGEU8ZAgA+g8MAqczeO7YE7eBblMAHzFkQBCx6MOcFhGwXMSnsXczcAtmBEA1JkaQApDANvpG5xXaXpJQVz1BynhYutCRgmUWVY1YOtBpZp4VNaUKo+YwDtPGBEyx9ChnDACgOPjbI60msgSw0gaIT6Bg5n/MXOCbSdfyCn6yC8FOUVBZ2FRIGZGkjB0gBSJQB6fPzj1L9pf7p99O1K0ksaBXkFWZ+FfABBA8gzeEzAnNTMJ3SZQMPbDKfLhl6mPoMgB7R/f3AyAYNz+uDgKWvjegB1457Xp75OfZv0pblT5hIRNIDCAASb/mIn5OGpC9RX9BjaaiiNbj+azt/z/KCzkggQBh5IodoHkJFxncYhmo8LClNiGkB2i3cs5tXBYwLm5AOoMK+Q/nv4f9VnLuFA0BMtUF/+YWcClq4HmICpZe+We9O7R7/reB98ZvgHfACFBzvtoDQQAEUDoxZjXiqPnp30bIC5SRboIUAK1VHAgDpyNIAcFuR2p+9YzKvDUgMIYeADB34EgsUuDLzT/SA4WCZgJfklQWUnccAEzD8wN/uLnZCHR7iDOQIAeyAAAlL44QMIyFGQyhYAufEBBNTBowEEARxIOkwTMDiBDgweIYNxc1y3BL77/AIaQP6BMSc47EyA4QMo2mAMCw6MaEAKL30AAXeYnUA7CXWMAiPzIgcnjOrg8gGEU0bPuWDQBTnXsFgMFtHyR32Fg3Q9GMe2OsV1AspNMrhl/1uIiOjWA24NOCfJoFejXkRENLzN8IBzkizstEIRBQwA90AABKRg+QBCGPhwYDYBczq5Ks4vzvxt3lhtr9muLmMJh0cDKCcKGBYxyrl06KW05tw1OYJSFhA0+A8zDDycQAeGXR9I18Om7Zsy1yAA8pbj+xxPa89dS8ftflzQWUkE7x39Hq0/bz3VL60fdFYShe24wzEvY+4GwB4IgIAUxo0qywfQ6f1PJyKic/Y4x9+MgVwNIIeJ0Bh60byxggBIHTw+gJzCwAM11C6qnfUZAoVgQRj48MJTN5u27RIAGQ8UgBrSWosn9TmJiIjKi8qDzE6iyEvlUVlhWdDZSDR2UcB4D9MAANkgChiQIstxLcMH0DXDr6FpPadRp8pOvuct6Zh9ADkt4KEB5A8IXRpeLP0IQDDkC05h4HPuR72EAgji/OGSIZfQxC4TsZ4CiUQmOi3miGgANxPBAQEQkMK48MtoABlMwFJairo07OJ7voB4FLCifGgA+YHVqZVtFDYsYnwBvpfCA9MEDE6gAwNCnuDRNA3rKQD+gscHEOYIAOxBDwGuSW+e4AQ6HPD4NjECDSB/kDEBA95hLPeK4gr2Pdj8+gJMwMKLXd1AQA0A8AK7SF/wAQSAe7DbAFKwNq3dqroFlR1gwGwC5gR8APkDj916WUG2rwEsYvyhbjFCV4cFZhh4aMYFht0YlA7hi3EKAKASY3hwOxMwmG9HG4SBDw4IgIBr0j6ADul0CN0+6nb6+LiPA85RshHdLBlNwMwaKBAAqcNYtkaTI+MEWFZYRkf1OMrXfAHryEVYRPoDwsCHF7s+sHXHViKCHwcAgHfYaQBZhoHHHAGALRAAASlYPoA0TaNjeh9DPap7BJQrQCRuRtS0dtPM3zAB8w5jveSndrlfMy5gygvLaf92+zO/A95RWlAadBbAX8DBZ3TYsn1L0FkAACQMnvEf5vQA2AMn0MA1cKAaLnLUZS1OQgpSBXTJkEuoT+M+ls9CAKSOLA2g1K4+U5BXQHePuZs2bNtAjcobYXMbAJZq5DhF9AUnlX44gQ4Ouz6wZccWx3sAAMANdmsiq7kA6ygA7IEACLgGi/FwYV6MWwnoJnWdROfseQ6t3LDS8lkIgNRhZQJGRHRUT7bZFzZW/nHwbgfTU18/FXQ2AAfoF/5ht5FKC4AAAMAr7MZ7SwEQ5ohIAPPh4MDOHbgGA224ME6I9UrqUXlRueN9aaAB5B1WJmBmeOzbgXu4Iomg/H3Bqc3DCXQ4gQkYAMAL7EK9Z80XcAINgBQQAAEpMLiGF2PdXDb0Msv70looduYXtQprKc5dcjGafUFrLnisHD8D/0EY+PBiV9abt2/2MScAgKRg51rC+J3VWgprrGiAKGDBgR4CQMxgOehmYXTebeapCU9R96ru9ODYB9VnMKHwhIEn4gtxCtzzn8P+Q92qutGLk18kIr7w48B7oJkVHTI+gFAfAACFGA/M7KKAwQQMADngAwhIgcE1vNj5mrG6z8xBux1EB+12kMpsJR47lWbgP70a9aJPZ3ya+Yw6CQ5HEzA4gQ4MrjDwOMUFACjEbr1k/A5OoAGQA6soIMXAZgOpY4OONLr96KCzAkwYJz67jRLTBAyTpmfwLFqI4AMoKGr0mqCzADjBAYR/sMp69vDZVKe4Dt048sYAcgQAiDt261iewzQcEkSD20fdThVFFXTdftcFnZXEAQ0gIEVhXiF9fsLn2KCGEDcmYNhYeQevCRgIhh36jpxrGN/8wTEMPJxABwarrE8fcDqd2v/UXXMI6gMAoBCjVmFBXkHWd1waQFhjRYLu1d3pj3P+gMAuACAAAtKgw4aTLBOwlJwJGFAPrwkYfAAFAzSAogP6hX9YlTXmDwCAH5ijpsIELF5gLgkGlDoAMYPbBCwFEzA/4TUBM4L68I8dNQwNIAgafEHU7BH9AgAA4ouu79IAsjUBswoDj7kbAFsgAAIgZhgnPh4n0Jgo/YE7ChjqIxBYJmDAHxxNwOAEOjAgbAMA+I2dRi40gABwD1ZRAMQMXk0TO+EQUI9MFDAIg/yDteDEIjKcoF/4B8oaAOA3dpEFebTWcUgAgD3oIQDEDOOEyOMDCD5n/AFOoMMNywQM+INjGHg4gQYAgMRgNAEzw1pLta7b2vIeAEAu6CEAxAzRKGBZz2Jj5Rm8vpngkykYmFHAIKgLJagX/8AYBADwGzsNINbB5sLpC+mx8Y9lPmPcAsAeCIAAiBlZUcBszLwyTqARBt4XRB3dAn+BBlBwGE97ecYg9B//4KmPPZrt4UNOAABJwU4DiDX+V5ZV0iGdDtl1D9ayANiCMPAAxAxeTROWCRjwB14n0FjE+Ad8AIUDpgkYnECHmv/b6/+obkldGtV+VNBZAQDEADsNIJ7xH3M3APZAAARAzMiKAmbjA6h5RXM/sgMYYAMbPhAFLDhEBZ0QjPoHz0aqpKCEZg6c6UNuAABJgNcHkBVmn0AAgGwgAAIgZvBoAJ3e/3Q6ovsRO++HaZLv2JUzfAAFA8sEDIIGfzCWPUtoDSfQwYE+AADwG1kNoJcPf5me+99zdGr/U73IFgCxAQIgAGIGjw+g2fvNzvyNzZT/lBaUct2HzZd/QAMoOIzmd3Z+y9KgX/gH5ofwU12rOugsAKAUWQ2gYW2G0bA2w7zIEgCxAnYIAMQM3ihgwH8uGXIJHdXjKOrbpK/lPdjcBgN8AAWHUfhmZ7aaBvXiHxiPwsu7R79Lw9sMp5cPfznorACgFLc+gAAA9kADCICYYdwccW2m4HTYN/5vr/8Tuh8bXf9AFLDgMJZ9fip3WWLuBxinACDq26Qv/ffw/wadDQCUU5xfbPkdBEAAuAe9CICYYZwcRaMlQOAQPKiDYGCZgEHQ4A9ZGkAOJmAsARHwDoxHAAC/+b+9/o86V3ama4dfm/Md5mUA3IOVFAAxIysKGIc/DRBesNDxD2gABYfR/I4ltDb2g4fGPuRLnsBOMAYBAPymYVlD+vyEz5nfQQMIAPegFwEQM3iigGXdDxOwUIE6CIa7D7yb8rQ8GtpqaNBZSRxGAZBT+8fiHwAAkgsONgFwD1ZSAMSMrChgcKgaaVA3/rFn8z1p0wWb6MwBZ2auofz9QUT7CgIgf0EfAACECRySAeAerKQAiBmIAhZtsOEKjoK8ApR/ALD8LxmBnzIAAABEWNcCoAL0IgBiRlYUMA5V2SwTMGyuQgVOuoIF5e8P0AAKLyhvAECYwJgEgHvQiwCIGW6igIHggUAuWCD08R+jDyAW0GoMDvQHAECYwBwAgHvQiwCIGVlRwDh8AFk9C0DSgQDOH5xMwIxg8Q8AAMkFcwAA7kEvAiBmuIoChg1v4GT5O4FADiQAmICFF8wJAIAwgTkAAPegFwEQM7KigBl8AFlNmljgA7ALCOD8x9EEDHUSGChvAECYgAAIAPegFwEQM6z8ZRSkChyfxcQaPNDIAkkDJmAAAAB4wLoIAPdgJQVAzMiKAmbwAVSYV8i+3yBwaFze2LuMARABjP0hP5UfYE6Sg5MJGJxABwc2WwCAMIE5AAD3oBcBEDOsooD1qO7BvN+4wG9R0cKzfAE+YO4SHiAA8gdoAIWX1nVbB50FAADIYHRtAACQAyspAGJGVhQww0T58LiHaWr3qfThsR9aPlteVO5p3gAIO0YBHARA/uDkA8gIBED+MO+IeTStxzS6fJ/Lg84KAABkwMEYAO7B6haAmGEVBaxp7aZ070H35t4Pk5dQAR9A4QH9wR8cTcAIfcJvhrQaQkNaDQk6GwAAkAUOAQBwD3oRADEjSwMoJaYqy+MoGviHaP0B9xiFPhAA+QM0gAAAAPCAOQAA96AXARBjRCfKgjwIgILGqOEAgZz/GPsABED+4DROwQk0AAAAIswBAKgAvQiAmKHreuZvUWd52PAGj1EbAgI5/zFGy4MAzh9mDpxJbeu1pYsHX+x4Lxb/AACQXDAHAOAe7PYAiBk67RIACWsAYcMbONtrtmf+hkDOf4x9AOXvD5VllbT45MVc92LxDwAAyQVzAADuQS8CIGZkaQCJ+gCCxkngGAVAEMj5D0zAwkeWE2hEgAEAgMRyUt+TiIhoUpdJAecEgOiC1S0AMQMaQNEGGkDBYjQBQ/mHD5z+AgBAcmldtzVtPH8jFecXB50VACILVrcAxAyjDxlRH0DQAAqeLA0g1IfvwAQsfMAJNAAAgDQlBSVBZwGASIOVFAAxw2gCBg2g6GEUAGGz6z/QAAo36BMAAAAAAPJgJQVAzDCagIn6AMKGN3iMAiDgP0atK9H+A7yhQWmDzN+VpZUB5gQAAAAAINpgtwdAzDBqABmdp/IAk6Pg2VazLegsJBqjFpyxL4HgqK5VTQunL6QavYaa1G4SdHYAAAAAACILBEAAxAyjBpBoxJzmFc1VZwcIAg2gYDGagBn7EgiWfk37BZ0FAAAAAIDIEwkTsFtuuYVatWpFxcXF1Lt3b3rzzTeDzhIAoUVGa+HNo96kZyY+Qy3rtFSfISAEBEDBYtSCMzpUBwAAAAAAIOqEXgD0yCOP0GmnnUYXXHABffzxxzRo0CAaOXIkLV26NOisARBKZDatezbfk8Z0GONBboAoEAAFi9EErKKoIsCcAAAAAAAAoJbQC4Bmz55N06dPp6OPPpo6duxI119/PTVr1oz+9a9/BZ01AEIJzFaiDQRAwaJpGj009iG6Zf9bqFlFs6CzAwAAAAAAgDJC7QNo69at9OGHH9K5556bdX348OH0zjvvMJ/ZsmULbdmyJfN57dq1nuYRgLBRXlgedBaAC+oW1w06C4nnsK6HBZ0FAAAAAAAAlBNqAdCqVatox44dVFVVlXW9qqqKVqxYwXzmiiuuoIsvvtiP7AEQSvo26Uun9D2F2tRrE3RWgASTu02m+T/OpyEthwSdFQAAAAAAAECMCLUAKI05kpGu65bRjc477zw644wzMp/Xrl1LzZpBjR8kB03T6IaRNwSdDSBJfiqf7j7w7qCzAQAAAAAAAIgZoRYANWjQgPLy8nK0fVauXJmjFZSmqKiIioqK/MgeAAAAAAAAAAAAQCQItRPowsJC6t27N82dOzfr+ty5c2ngwIEB5QoAAAAAAAAAAAAgWoRaA4iI6IwzzqApU6bQ7rvvTgMGDKDbb7+dli5dSjNmzAg6awAAAAAAAAAAAACRIPQCoAkTJtDvv/9Of//732n58uXUpUsXeuGFF6hFixZBZw0AAAAAAAAAAAAgEmi6rutBZ8JL1q5dSxUVFbRmzRqqXbt20NkBAAAAAAAAAAAAUIKIzCPUPoAAAAAAAAAAAAAAgHsgAAIAAAAAAAAAAACIORAAAQAAAAAAAAAAAMQcCIAAAAAAAAAAAAAAYg4EQAAAAAAAAAAAAAAxBwIgAAAAAAAAAAAAgJgDARAAAAAAAAAAAABAzIEACAAAAAAAAAAAACDmQAAEAAAAAAAAAAAAEHMgAAIAAAAAAAAAAACIORAAAQAAAAAAAAAAAMQcCIAAAAAAAAAAAAAAYg4EQAAAAAAAAAAAAAAxBwIgAAAAAAAAAAAAgJgDARAAAAAAAAAAAABAzIEACAAAAAAAAAAAACDmQAAEAAAAAAAAAAAAEHMgAAIAAAAAAAAAAACIORAAAQAAAAAAAAAAAMQcCIAAAAAAAAAAAAAAYk5+0BnwGl3XiYho7dq1AecEAAAAAAAAAAAAQB1pWUda9mFH7AVA69atIyKiZs2aBZwTAAAAAAAAAAAAAPWsW7eOKioqbO/RdB4xUYSpqamhZcuWUXl5OWmaFnR2pFi7di01a9aMfvrpJ6pdu3bQ2QEhA+0DWIG2AaxA2wBWoG0AK9A2gBVoG8AKtA1/0HWd1q1bR40bN6ZUyt7LT+w1gFKpFDVt2jTobCihdu3a6DjAErQPYAXaBrACbQNYgbYBrEDbAFagbQAr0Da8x0nzJw2cQAMAAAAAAAAAAADEHAiAAAAAAAAAAAAAAGIOBEARoKioiC666CIqKioKOisghKB9ACvQNoAVaBvACrQNYAXaBrACbQNYgbYRPmLvBBoAAAAAAAAAAAAg6UADCAAAAAAAAAAAACDmQAAEAAAAAAAAAAAAEHMgAAIAAAAAAAAAAACIORAAAQAAAAAAAAAAAMQcCIAiwC233EKtWrWi4uJi6t27N7355ptBZwl4yKxZs0jTtKx/1dXVme91XadZs2ZR48aNqaSkhAYPHkxffPFFVhpbtmyhk08+mRo0aEBlZWU0ZswY+vnnn/3+KcAlb7zxBo0ePZoaN25MmqbR008/nfW9qrbw559/0pQpU6iiooIqKipoypQptHr1ao9/HXCLU/s48sgjc8aS/v37Z92D9hE/rrjiCurTpw+Vl5dTw4YN6aCDDqJvvvkm6x6MHcmEp21g3Egu//rXv6hbt25Uu3Ztql27Ng0YMIBefPHFzPcYN5KLU9vAuBEtIAAKOY888giddtppdMEFF9DHH39MgwYNopEjR9LSpUuDzhrwkM6dO9Py5csz/xYtWpT57uqrr6bZs2fTTTfdRO+//z5VV1fTsGHDaN26dZl7TjvtNHrqqadozpw59NZbb9H69etp1KhRtGPHjiB+DpBkw4YN1L17d7rpppuY36tqC4cddhh98skn9NJLL9FLL71En3zyCU2ZMsXz3wfc4dQ+iIhGjBiRNZa88MILWd+jfcSP+fPn04knnkgLFy6kuXPn0vbt22n48OG0YcOGzD0YO5IJT9sgwriRVJo2bUpXXnklffDBB/TBBx/Q0KFD6cADD8wIeTBuJBentkGEcSNS6CDU9O3bV58xY0bWtd12200/99xzA8oR8JqLLrpI7969O/O7mpoavbq6Wr/yyisz1zZv3qxXVFTot956q67rur569Wq9oKBAnzNnTuaeX375RU+lUvpLL73kad6BdxCR/tRTT2U+q2oLX375pU5E+sKFCzP3LFiwQCci/euvv/b4VwFVmNuHruv61KlT9QMPPNDyGbSPZLBy5UqdiPT58+fruo6xA+zC3DZ0HeMGyKZu3br6nXfeiXED5JBuG7qOcSNqQAMoxGzdupU+/PBDGj58eNb14cOH0zvvvBNQroAfLF68mBo3bkytWrWiiRMn0pIlS4iI6Pvvv6cVK1ZktYmioiLae++9M23iww8/pG3btmXd07hxY+rSpQvaTYxQ1RYWLFhAFRUV1K9fv8w9/fv3p4qKCrSXGPD6669Tw4YNqX379nTMMcfQypUrM9+hfSSDNWvWEBFRvXr1iAhjB9iFuW2kwbgBduzYQXPmzKENGzbQgAEDMG6ADOa2kQbjRnTIDzoDwJpVq1bRjh07qKqqKut6VVUVrVixIqBcAa/p168f3X///dS+fXv69ddf6dJLL6WBAwfSF198kal3Vpv48ccfiYhoxYoVVFhYSHXr1s25B+0mPqhqCytWrKCGDRvmpN+wYUO0l4gzcuRIGj9+PLVo0YK+//57+tvf/kZDhw6lDz/8kIqKitA+EoCu63TGGWfQnnvuSV26dCEijB1gJ6y2QYRxI+ksWrSIBgwYQJs3b6ZatWrRU089RZ06dcpswDFuJBertkGEcSNqQAAUATRNy/qs63rONRAfRo4cmfm7a9euNGDAAGrTpg3dd999GYdqMm0C7SaeqGgLrPvRXqLPhAkTMn936dKFdt99d2rRogX95z//obFjx1o+h/YRH0466ST67LPP6K233sr5DmNHsrFqGxg3kk2HDh3ok08+odWrV9MTTzxBU6dOpfnz52e+x7iRXKzaRqdOnTBuRAyYgIWYBg0aUF5eXo7Uc+XKlTkSeBBfysrKqGvXrrR48eJMNDC7NlFdXU1bt26lP//80/IeEH1UtYXq6mr69ddfc9L/7bff0F5iRqNGjahFixa0ePFiIkL7iDsnn3wyPfvss/Taa69R06ZNM9cxdgCrtsEC40ayKCwspLZt29Luu+9OV1xxBXXv3p1uuOEGjBvAsm2wwLgRbiAACjGFhYXUu3dvmjt3btb1uXPn0sCBAwPKFfCbLVu20FdffUWNGjWiVq1aUXV1dVab2Lp1K82fPz/TJnr37k0FBQVZ9yxfvpw+//xztJsYoaotDBgwgNasWUPvvfde5p53332X1qxZg/YSM37//Xf66aefqFGjRkSE9hFXdF2nk046iZ588kmaN28etWrVKut7jB3JxaltsMC4kWx0XactW7Zg3AA5pNsGC4wbIcc/f9NAhjlz5ugFBQX6XXfdpX/55Zf6aaedppeVlek//PBD0FkDHnHmmWfqr7/+ur5kyRJ94cKF+qhRo/Ty8vJMnV955ZV6RUWF/uSTT+qLFi3SJ02apDdq1Ehfu3ZtJo0ZM2boTZs21V955RX9o48+0ocOHap3795d3759e1A/C0iwbt06/eOPP9Y//vhjnYj02bNn6x9//LH+448/6rquri2MGDFC79atm75gwQJ9wYIFeteuXfVRo0b5/nuBGHbtY926dfqZZ56pv/POO/r333+vv/baa/qAAQP0Jk2aoH3EnOOPP16vqKjQX3/9dX358uWZfxs3bszcg7EjmTi1DYwbyea8887T33jjDf3777/XP/vsM/3888/XU6mU/vLLL+u6jnEjydi1DYwb0QMCoAhw88036y1atNALCwv1Xr16ZYXrBPFjwoQJeqNGjfSCggK9cePG+tixY/Uvvvgi831NTY1+0UUX6dXV1XpRUZG+11576YsWLcpKY9OmTfpJJ52k16tXTy8pKdFHjRqlL1261O+fAlzy2muv6USU82/q1Km6rqtrC7///rs+efJkvby8XC8vL9cnT56s//nnnz79SiCLXfvYuHGjPnz4cL2yslIvKCjQmzdvrk+dOjWn7tE+4gerTRCRfs8992TuwdiRTJzaBsaNZDNt2rTMfqOyslLfZ599MsIfXce4kWTs2gbGjeih6bqu+6dvBAAAAAAAAAAAAAD8Bj6AAAAAAAAAAAAAAGIOBEAAAAAAAAAAAAAAMQcCIAAAAAAAAAAAAICYAwEQAAAAAAAAAAAAQMyBAAgAAAAAAAAAAAAg5kAABAAAAAAAAAAAABBzIAACAAAAAAAAAAAAiDkQAAEAAAAAAAAAAADEHAiAAAAAAAAAAAAAAGIOBEAAAAAAACaOPPJI0jSNNE2jgoICqqqqomHDhtHdd99NNTU13Once++9VKdOHe8yCgAAAADACQRAAAAAAAAMRowYQcuXL6cffviBXnzxRRoyZAideuqpNGrUKNq+fXvQ2QMAAAAAEAICIAAAAAAABkVFRVRdXU1NmjShXr160fnnn0/PPPMMvfjii3TvvfcSEdHs2bOpa9euVFZWRs2aNaMTTjiB1q9fT0REr7/+Oh111FG0Zs2ajDbRrFmziIho69atdPbZZ1OTJk2orKyM+vXrR6+//nowPxQAAAAAiQACIAAAAAAAToYOHUrdu3enJ598koiIUqkU/fOf/6TPP/+c7rvvPpo3bx6dffbZREQ0cOBAuv7666l27dq0fPlyWr58Oc2cOZOIiI466ih6++23ac6cOfTZZ5/R+PHjacSIEbR48eLAfhsAAAAA4o2m67oedCYAAAAAAMLEkUceSatXr6ann34657uJEyfSZ599Rl9++WXOd4899hgdf/zxtGrVKiLa6QPotNNOo9WrV2fu+e6776hdu3b0888/U+PGjTPX9913X+rbty9dfvnlyn8PAAAAAEB+0BkAAAAAAIgSuq6TpmlERPTaa6/R5ZdfTl9++SWtXbuWtm/fTps3b6YNGzZQWVkZ8/mPPvqIdF2n9u3bZ13fsmUL1a9f3/P8AwAAACCZQAAEAAAAACDAV199Ra1ataIff/yR9t9/f5oxYwZdcsklVK9ePXrrrbdo+vTptG3bNsvna2pqKC8vjz788EPKy8vL+q5WrVpeZx8AAAAACQUCIAAAAAAATubNm0eLFi2i008/nT744APavn07XXvttZRK7XSr+Oijj2bdX1hYSDt27Mi61rNnT9qxYwetXLmSBg0a5FveAQAAAJBsIAACAAAAAGCwZcsWWrFiBe3YsYN+/fVXeumll+iKK66gUaNG0RFHHEGLFi2i7du304033kijR4+mt99+m2699dasNFq2bEnr16+nV199lbp3706lpaXUvn17mjx5Mh1xxBF07bXXUs+ePWnVqlU0b9486tq1K+2///4B/WIAAAAAxBlEAQMAAAAAYPDSSy9Ro0aNqGXLljRixAh67bXX6J///Cc988wzlJeXRz169KDZs2fTVVddRV26dKGHHnqIrrjiiqw0Bg4cSDNmzKAJEyZQZWUlXX311UREdM8999ARRxxBZ555JnXo0IHGjBlD7777LjVr1iyInwoAAACABIAoYAAAAAAAAAAAAAAxBxpAAAAAAAAAAAAAADEHAiAAAAAAAAAAAACAmAMBEAAAAAAAAAAAAEDMgQAIAAAAAAAAAAAAIOZAAAQAAAAAAAAAAAAQcyAAAgAAAAAAAAAAAIg5EAABAAAAAAAAAAAAxBwIgAAAAAAAAAAAAABiDgRAAAAAAAAAAAAAADEHAiAAAAAAAAAAAACAmAMBEAAAAAAAAAAAAEDM+X/M93ekCZ8JggAAAABJRU5ErkJggg==",
|
113
|
+
"text/plain": [
|
114
|
+
"<Figure size 1400x800 with 1 Axes>"
|
115
|
+
]
|
116
|
+
},
|
117
|
+
"metadata": {},
|
118
|
+
"output_type": "display_data"
|
119
|
+
}
|
120
|
+
],
|
121
|
+
"source": [
|
122
|
+
"df.plot(title = \"daily Minimum Temperature\" ,figsize = (14, 8), legend = None, color = 'green')\n",
|
123
|
+
"plt.xlabel('Date')\n",
|
124
|
+
"plt.ylabel('Temperature (°C)')\n",
|
125
|
+
"plt.show()"
|
126
|
+
]
|
127
|
+
},
|
128
|
+
{
|
129
|
+
"cell_type": "code",
|
130
|
+
"execution_count": 24,
|
131
|
+
"id": "3ba0f2ea-069c-4aa2-aa4b-0d90a54ee21f",
|
132
|
+
"metadata": {},
|
133
|
+
"outputs": [
|
134
|
+
{
|
135
|
+
"data": {
|
136
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAMWCAYAAADs4eXxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACPP0lEQVR4nOzdeVxVdeL/8fcFWdy4pciWqGTmRpliCphlLpil7alZJImWmVNq/aaoLHWmSCtH08qxQckZM6fMsjILzaW+oqmJleM4WJIb5JKCK+v5/UHcuNzLppwLXF/Px+M89J7zOZ8Fjrfe53MWi2EYhgAAAAAAQI3zqO0OAAAAAADgrgjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AALfw+uuvy2KxKDw8/ILrWrlypaZMmXLhnaoHMjIyZLFYlJycXO19Dx06pClTpigtLc1h25QpU2SxWC68g+fpxIkT8vf313vvved0+6RJk2SxWDR48OAK6/n+++/14IMPKiwsTL6+vmrSpIm6deumGTNm6LfffrOV69OnjywWi9Plxx9/lCStWbNGTZo00cGDB2tuoACAOs9iGIZR250AAOBCXXPNNdqxY4ckadOmTerZs+d51zV+/Hi98cYbuhj+E5mRkaGwsDAtXLhQcXFx1dp369atuvbaa53ue+DAAR04cECRkZE119lqmDhxotasWaMdO3Y4hP/8/HxddtllOnLkiDw9PfXLL7/osssuc6jj7bff1rhx49S+fXuNGzdOnTp1Un5+vrZu3aq3335bXbp00fLlyyUVh+79+/dr8eLFDvV06dJFDRs2lCT17dtXoaGheuedd0wYNQCgLmKmGwBQ723dulU7duzQLbfcIklKSkqq5R6Z78yZM07XG4ahs2fPurg3jlq2bFlrgfu3337T3//+dz366KNOZ9s//vhjHTlyRLfccosKCwudBuDU1FQ98sgj6t+/v7Zt26Zx48apT58+GjBggBISEvTf//5XDz74oN0+DRs2VGRkpMNSErgl6dFHH9XixYu1f//+mh84AKBOInQDAOq9kpD98ssvKzo6Wu+9955DKF23bp0sFovWrVtnt77s5dVxcXF64403JMnuEuGMjAxJ0rlz55SQkKCwsDB5e3vrsssu06OPPqoTJ0449Ovdd99VVFSUmjRpoiZNmuiaa65xOCGwYMECdenSRb6+vmrWrJnuuOMO7dq1y65MXFycmjRpoh9++EExMTFq2rSp+vXrZ+vj+PHjNW/ePHXs2FE+Pj62EJmenq4RI0YoICBAPj4+6tixo21sFdmzZ48efPBBtWvXTo0aNdJll12mIUOG6IcffrD7eV577bWSpAcffND2cyq5LN/Z5eVFRUWaMWOGOnToIB8fHwUEBOiBBx7QgQMH7Mr16dNH4eHh2rJli3r37q1GjRrp8ssv18svv6yioqJK+5+cnKyCggINGzbM6fakpCR5e3tr4cKFCg0N1cKFCx2uanjppZdksVg0f/58+fj4ONTh7e2tW2+9tdK+lDVkyBA1adJEb7/9drX3BQDUT4RuAEC9dvbsWS1ZskTXXnutwsPDNWrUKJ08eVLvv//+edU3efJk3X333ZKKZztLluDgYBmGodtvv12vvvqqYmNj9dlnn2nSpEl655131LdvX+Xm5trqef7553XfffcpJCREycnJWr58uUaOHKlffvnFViYxMVHx8fHq3LmzPvzwQ82ePVvff/+9oqKilJ6ebtevvLw83Xrrrerbt68+/vhjTZ061bbto48+0ltvvaXnn39eX3zxhXr37q3//Oc/uvbaa/Xjjz/qtdde06effqpbbrlFjz32mN2+zhw6dEjNmzfXyy+/rFWrVumNN95QgwYN1LNnT+3evVuS1K1bNy1cuFCS9Nxzz9l+TqNHjy633kceeURPPfWUBgwYoBUrVugvf/mLVq1apejoaB09etSubFZWlu677z7df//9WrFihQYNGqSEhAT961//qrDvkvTZZ5+pa9euuuSSSxy2HThwQF9++aVuu+02tWjRQiNHjtSePXu0YcMGW5nCwkJ99dVXioiIUGhoaKXtlVZQUGC3lD1J4O3trejoaH322WfVqhcAUI8ZAADUY4sWLTIkGfPmzTMMwzBOnjxpNGnSxOjdu7ddubVr1xqSjLVr19qt37t3ryHJWLhwoW3do48+ajj7T+SqVasMScaMGTPs1i9dutSQZMyfP98wDMP4+eefDU9PT+O+++4rt9/Hjx83GjZsaNx888126/ft22f4+PgYI0aMsK0bOXKkIclYsGCBQz2SDKvVavz222926wcOHGi0bNnSyM7Otls/fvx4w9fX11be2fjLKigoMPLy8ox27doZEydOtK3fsmVLufu+8MILdj/DXbt2GZKMcePG2ZXbvHmzIcl45plnbOtuuOEGQ5KxefNmu7KdOnUyBg4cWG4/SzRq1MgYO3as023Tpk0zJBmrVq0yDKP4d2WxWIzY2FhbmaysLEOSMXz48ErbKtvnsouzY+DZZ581PDw8jFOnTlW5fgBA/cVMNwCgXktKSlLDhg01fPhwSVKTJk10zz336Ouvv3aYLb5QX331lSQ5PDTsnnvuUePGjbVmzRpJUkpKigoLC/Xoo4+WW1dqaqrOnj3rUFdoaKj69u1rq6u0u+66y2ldffv21aWXXmr7fO7cOa1Zs0Z33HGHGjVqZDfzevPNN+vcuXPatGlTuX0rKCjQSy+9pE6dOsnb21sNGjSQt7e30tPTHS59r6q1a9dKcvzZ9ejRQx07dnQYb1BQkHr06GG37uqrr7a7UsCZEydO6MyZMwoICHDYZhiG7ZLyAQMGSJLCwsLUp08fLVu2TDk5OdUdlp22bdtqy5Ytdstf/vIXh3IBAQEqKipSVlbWBbUHAKgfCN0AgHqr5LLgW265RYZh6MSJEzpx4oTt8vAFCxbUaHvHjh1TgwYN1KJFC7v1FotFQUFBOnbsmCTpyJEjkoofJlZRXZIUHBzssC0kJMS2vUSjRo3k5+fntK6ydRw7dkwFBQWaM2eOvLy87Jabb75Zkhwu5y5t0qRJmjx5sm6//XZ98skn2rx5s7Zs2aIuXbqc90Paqjve5s2bO5Tz8fGptP2S7b6+vg7bvvrqK+3du1f33HOPcnJybMfL0KFDdebMGS1ZskSS5O/vr0aNGmnv3r1VG9zvfH191b17d7slLCzMabnSfQUAuLcGtd0BAADO14IFC2QYhj744AN98MEHDtvfeecd/fWvf5Wnp6ct6JS+71qqOHyW1bx5cxUUFOjIkSN2wdswDGVlZdkeLFay7cCBA+XeE1wSKjMzMx22HTp0SP7+/nbrKnrnddltl156qTw9PRUbG1vubLuzMFjiX//6lx544AG99NJLduuPHj3q9D7pqig93rInI5yN93yVtFP6HdolSh5iN3PmTM2cOdPp9ocfflienp7q16+fPv/8cx04cKDCkyfno6RvNTVmAEDdxkw3AKBeKnnVU9u2bbV27VqH5YknnlBmZqY+//xzSVKbNm0kSd9//71dPStWrHCou+Rp1WVnIkueGF72YV7Lli3T6dOnbdtjYmLk6empt956q9z+R0VFqWHDhg51HThwQF999ZWtrvPRqFEj3Xjjjdq+fbuuvvpqh9nX7t27O51JLmGxWBye2P3ZZ5/p4MGDduvK+zk507dvX0mOP7stW7Zo165dFzTe0ry9vXX55Zfrp59+slt//PhxLV++XL169XJ6vNx3333asmWLfvzxR0lSQkKCDMPQmDFjlJeX59BOfn6+Pvnkk/Pq488//6zmzZsrMDDwvPYHANQvzHQDAOqlzz//XIcOHdL06dPVp08fh+3h4eGaO3eukpKSNHjwYAUFBal///5KTEzUpZdeqtatW2vNmjX68MMPHfa96qqrJEnTp0/XoEGD5OnpqauvvloDBgzQwIED9dRTTyknJ0e9evXS999/rxdeeEFdu3ZVbGyspOKA/8wzz+gvf/mLzp49q3vvvVdWq1X/+c9/dPToUU2dOlWXXHKJJk+erGeeeUYPPPCA7r33Xh07dkxTp06Vr6+vXnjhhQv6+cyePVvXXXedevfurUceeURt2rTRyZMntWfPHn3yySe2+9OdGTx4sJKTk9WhQwddffXV2rZtm1555RWHGd+2bduqYcOGWrx4sTp27KgmTZooJCREISEhDnW2b99eDz30kObMmSMPDw8NGjRIGRkZmjx5skJDQzVx4sQLGm9pffr0sZ1sKbF48WKdO3dOjz32mNPjpXnz5lq8eLGSkpL0t7/9TVFRUXrrrbc0btw4RURE6JFHHlHnzp2Vn5+v7du3a/78+QoPD9eQIUOq3b9NmzbphhtuqPDqBQCAG6nVx7gBAHCebr/9dsPb29s4fPhwuWWGDx9uNGjQwMjKyjIMwzAyMzONu+++22jWrJlhtVqN+++/39i6davDE7hzc3ON0aNHGy1atDAsFoshydi7d69hGIZx9uxZ46mnnjJat25teHl5GcHBwcYjjzxiHD9+3KH9RYsWGddee63h6+trNGnSxOjatavDk77/8Y9/GFdffbXh7e1tWK1W47bbbjN27txpV2bkyJFG48aNnY5RkvHoo4863bZ3715j1KhRxmWXXWZ4eXkZLVq0MKKjo42//vWvdmXKjv/48eNGfHy8ERAQYDRq1Mi47rrrjK+//tq44YYbjBtuuMGujSVLlhgdOnQwvLy8DEnGCy+8YBiG49PLDcMwCgsLjenTpxtXXnml4eXlZfj7+xv333+/sX//frtyN9xwg9G5c2eH8YwcOdJo3bq107GWtmbNGkOS8e2339rWXXPNNUZAQICRm5tb7n6RkZGGv7+/XZm0tDRj5MiRRqtWrQxvb2+jcePGRteuXY3nn3/e7tgrr89l7dmzx5BkLFu2rNKyAAD3YDEMw6i9yA8AAFDzrr76avXq1avCS/xrw+TJk7Vo0SL99NNPatCACw4B4GJA6AYAAG5n1apVuuOOO5Senl7jD0I7XydOnNDll1+uOXPm6L777qvt7gAAXITQDQAA3NLcuXPVpUsX9e7du7a7Iknavn27Vq9erSeffJL7uQHgIkLoBgAAAADAJKa+MmzDhg0aMmSIQkJCZLFY9NFHH1W6z/r16xURESFfX19dfvnlmjdvnkOZZcuWqVOnTvLx8VGnTp20fPlyE3oPAAAAAMCFMTV0nz59Wl26dNHcuXOrVH7v3r26+eab1bt3b23fvl3PPPOMHnvsMS1btsxWJjU1VcOGDVNsbKx27Nih2NhYDR06VJs3bzZrGAAAAAAAnBeXXV5usVi0fPly3X777eWWeeqpp7RixQrt2rXLtm7s2LHasWOHUlNTJUnDhg1TTk6O3fs3b7rpJl166aVasmSJaf0HAAAAAKC66tS7KlJTUxUTE2O3buDAgUpKSlJ+fr68vLyUmpqqiRMnOpSZNWtWufXm5uYqNzfX9rmoqEi//fabmjdvzoNMAAAAAADVZhiGTp48qZCQEHl4lH8ReZ0K3VlZWQoMDLRbFxgYqIKCAh09elTBwcHllsnKyiq33sTERE2dOtWUPgMAAAAALl779++v8PWUdSp0S3KYeS65+r30emdlKpqxTkhI0KRJk2yfs7Oz1apVK+3fv19+fn410e0aM2XtFM3ePFtFRpHDNg+Lhx7v+bim3DjF9R0DAAAAANjk5OQoNDRUTZs2rbBcnQrdQUFBDjPWhw8fVoMGDdS8efMKy5Sd/S7Nx8dHPj4+Duv9/PzqXOh+5LpHNHvHbMnZnfYWaVzvcXWuzwAAAABwsarslmVTn15eXVFRUUpJSbFb9+WXX6p79+7y8vKqsEx0dLTL+mmmds3bKenWJHlYPCSjePG0eMrD4qGkW5N0RbMraruLAAAAAIAqMnWm+9SpU9qzZ4/t8969e5WWlqZmzZqpVatWSkhI0MGDB7Vo0SJJxU8qnzt3riZNmqQxY8YoNTVVSUlJdk8lf/zxx3X99ddr+vTpuu222/Txxx9r9erV+uabb8wcikvFXROniKBIXTd3sgosh/VIdKTGdh9D4AYAAACAesbUV4atW7dON954o8P6kSNHKjk5WXFxccrIyNC6dets29avX6+JEydq586dCgkJ0VNPPaWxY8fa7f/BBx/oueee088//6y2bdvqxRdf1J133lnlfuXk5MhqtSo7O7vOXqp9Jq9AnZ7/QpL0n2kD1ci7Tt0JAAAAAAAXtarmSpe9p7suIXQDAAAAAC5EVXNlnbqnGwAAAAAAd0LoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABM0qC2O4Dal34sXQu2L1BGdobaWNtoVNdRate8XW13CwAAAADqPUL3RW7h9oUa/cloWWSRIUMWWTRj4wwl3ZqkuGviart7AAAAAFCvcXn5RSz9WLpGfzJaRUaRCo1Cuz/jV8Rrz297aruLAAAAAFCvEbovYgu2L5BFFqfbLLIo6bskF/cIAAAAANyL6aH7zTffVFhYmHx9fRUREaGvv/663LJxcXGyWCwOS+fOnW1lkpOTnZY5d+6c2UNxOxnZGTJkON1myFBGdoZrOwQAAAAAbsbU0L106VJNmDBBzz77rLZv367evXtr0KBB2rdvn9Pys2fPVmZmpm3Zv3+/mjVrpnvuuceunJ+fn125zMxM+fr6mjkUt9TG2qbCme421jau7RAAAAAAuBlTQ/fMmTMVHx+v0aNHq2PHjpo1a5ZCQ0P11ltvOS1vtVoVFBRkW7Zu3arjx4/rwQcftCtnsVjsygUFBZk5DLc1quuoCme647vFu7hHAAAAAOBeTAvdeXl52rZtm2JiYuzWx8TEaOPGjVWqIykpSf3791fr1q3t1p86dUqtW7dWy5YtNXjwYG3fvr3CenJzc5WTk2O3QGrXvJ2Sbk2Sh8VDMooXT4unPCweSro1SVc0u6K2uwgAAAAA9Zppofvo0aMqLCxUYGCg3frAwEBlZWVVun9mZqY+//xzjR492m59hw4dlJycrBUrVmjJkiXy9fVVr169lJ6eXm5diYmJslqttiU0NPT8BuWG4q6JU9pDO+VXcKcaFV6nCZFPaPf43bwuDAAAAABqgOnv6bZY7O8ZNgzDYZ0zycnJuuSSS3T77bfbrY+MjFRkZKTtc69evdStWzfNmTNHr7/+utO6EhISNGnSJNvnnJwcgncpbZtdoUsL4iRJ0/oMVCNvXt8OAAAAADXBtHTl7+8vT09Ph1ntw4cPO8x+l2UYhhYsWKDY2Fh5e3tXWNbDw0PXXntthTPdPj4+8vHxqXrnAQAAAACoAaZdXu7t7a2IiAilpKTYrU9JSVF0dHSF+65fv1579uxRfHzlD/IyDENpaWkKDg6+oP4CAAAAAFDTTL2OeNKkSYqNjVX37t0VFRWl+fPna9++fRo7dqyk4su+Dx48qEWLFtntl5SUpJ49eyo8PNyhzqlTpyoyMlLt2rVTTk6OXn/9daWlpemNN94wcygAAAAAAFSbqaF72LBhOnbsmKZNm6bMzEyFh4dr5cqVtqeRZ2ZmOryzOzs7W8uWLdPs2bOd1nnixAk99NBDysrKktVqVdeuXbVhwwb16NHDzKEAAAAAAFBtFsMwnL+o2Y3l5OTIarUqOztbfn5+td0dp87kFajT819Ikv4zzdyHm7myLQAAAABwB1XNlabd0w0AAAAAwMWO0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmKRBbXcAF5/0Y+lasH2BMrIz1MbaRqO6jlK75u1qu1sAAAAAUOMI3XCphdsXavQno2WRRYYMWWTRjI0zlHRrkuKuiavt7gEAAABAjeLycrhM+rF0jf5ktIqMIhUahXZ/xq+I157f9tR2FwEAAACgRhG64TILti+QRRan2yyyKOm7JBf3CAAAAADMReiGy2RkZ8iQ4XSbIUMZ2Rmu7RAAAAAAmIzQDZdpY21T4Ux3G2sb13YIAAAAAExG6IbLjOo6qsKZ7vhu8S7uEQAAAACYi9ANl2nXvJ2Sbk2Sh8VDMooXT4unPCweSro1SVc0u6LG20w/lq6E1Qm6d9m9SlidoPRj6TXeBgAAAACUh1eGwaXirolTRFCkrps7WQWWw3okOlJju48xJXDzejIAAAAAtY3QDZdr2+wKXVoQJ0ma1megGnnX/GFY+vVkZcWviNd1ra6r8aCffixdC7YvUEZ2htpY22hU11Fq17xdjbZRW+2589gAAAAAMxG64Zaq8nqyxP6JNdaeq2fVXdmeO49NIuADAADAXIRuuCVXvp7M1bPqrmzPnccmEfABAABgPh6kBrfkyteTVWVWvSa5sj13HlvpgF9oFNr9Gb8iXnt+21NjbUnFAb/DGx30ysZX9O+d/9YrG19Rhzc6KDktuUbbAQAAQN1C6IZbcuXryVw5q+7q9tx5bO4c8AEAAFB3ELrhllz5ejJXzqq7uj13Hpu7BvzSeGUeAABA7SN0w23FXROntId2yq/gTjUqvE4TIp/Q7vG7a/xeXVfOqru6PXcem7sG/BKuvpzdlQHf1ScTOHkBAAAuBA9Sg1tzxevJSmbV41fEq+j35395ehQ/mKumZ9Vd3Z47j21U11GasXGG0231OeBL7v1AOp6mXz/bAgDgYkboBmpA3DVxigiK1HVzJ6vAcliPREdqbPcxNR5Ka6M9dx2buwZ8ybWvzONp+py8qCp3PaHAyQsAQGUI3UANccWsem21565jc8eAL9W9+9VrKuC7si1Xt+fOJy8k9z2hwMmL+tkWALgaoRvARc3dAr7kvverX+xP06+vJy/c9YQCJy/qZ1slCPkAXIkHqQGAi5QE/Bb5f9a0Pi+adom+uz6Qjqfp17+2JNc+vd9d25Jc++pBd22rhKsfNAkApofuN998U2FhYfL19VVERIS+/vrrcsuuW7dOFovFYfnvf/9rV27ZsmXq1KmTfHx81KlTJy1fvtzsYQBAveHKV+bxNP2a4c4nL9z1hAInL+pfW1LthHzUDN4kgfrM1NC9dOlSTZgwQc8++6y2b9+u3r17a9CgQdq3b1+F++3evVuZmZm2pV27Py73SU1N1bBhwxQbG6sdO3YoNjZWQ4cO1ebNm80cCgDUK656ZZ4rA74r23J1e+588sJdTyhw8qL+tSW5PuRL7h0WXTW22rg6wZ1/b3A9U+/pnjlzpuLj4zV69GhJ0qxZs/TFF1/orbfeUmJi+feLBQQE6JJLLnG6bdasWRowYIASEhIkSQkJCVq/fr1mzZqlJUuW1PgYAKC+csf71Xmafv1qS3Lt0/vdtS3JfU8ouPPJC8m971d31djc/fkJEs8YuBiYNtOdl5enbdu2KSYmxm59TEyMNm7cWOG+Xbt2VXBwsPr166e1a9fabUtNTXWoc+DAgZXWCQAwj6vuV3d1W65sz1VXJ7i6LXe9GsLVV16469UQ7nzlhTvfr+7Ksbn7LQg8Y+DiYFroPnr0qAoLCxUYGGi3PjAwUFlZWU73CQ4O1vz587Vs2TJ9+OGHat++vfr166cNGzbYymRlZVWrTknKzc1VTk6O3QIAQF3jricv3PWEAicv6ldbkmtDvjuHRVeOzZ1vQaiNEzNcNl87TH9lmMVif9AahuGwrkT79u3Vvn172+eoqCjt379fr776qq6//vrzqlOSEhMTNXXq1PPpPgAAqAGuut3Bndty11s5XNmWK2+vqIthsaZeB+jKsbnzLQiufoWjO9/uUNeZ9l8Gf39/eXp6OsxAHz582GGmuiKRkZH617/+ZfscFBRU7ToTEhI0adIk2+ecnByFhoZWuQ8AAAB1gbueUHDHkxfuHBZdOTZ3fn6CK39nF8O98XWZaZeXe3t7KyIiQikpKXbrU1JSFB0dXeV6tm/fruDgYNvnqKgohzq//PLLCuv08fGRn5+f3QIAAICLkytur3Dn+9VdOTZ3vgXBlb8zd77doT4w9ZVhkyZN0j/+8Q8tWLBAu3bt0sSJE7Vv3z6NHTtWUvEM9AMPPGArP2vWLH300UdKT0/Xzp07lZCQoGXLlmn8+PG2Mo8//ri+/PJLTZ8+Xf/97381ffp0rV69WhMmTDBzKAAAAECVuXNYdPXY3PX5Ca78ndXF2x0uJqbe0z1s2DAdO3ZM06ZNU2ZmpsLDw7Vy5Uq1bt1akpSZmWn3zu68vDw9+eSTOnjwoBo2bKjOnTvrs88+080332wrEx0drffee0/PPfecJk+erLZt22rp0qXq2bOnmUMBAAAAqsVd71eXXP8KR3e8BcGVvzN3vt2hPjD9QWrjxo3TuHHjnG5LTk62+/znP/9Zf/7znyut8+6779bdd99dE90DAAAATOOOYbGEK8fmaq4am6t+Z+58b3x9YOrl5QAAAABcx5WvA0TNcMXvzJ1vd6gPCN0AAAAA4Obc9d74+sB9rgEBAAAAAJTLnW93qMsI3QAAAACAGufO9/1XB5eXAwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGAS00P3m2++qbCwMPn6+ioiIkJff/11uWU//PBDDRgwQC1atJCfn5+ioqL0xRdf2JVJTk6WxWJxWM6dO2f2UAAAAAAAqBZTQ/fSpUs1YcIEPfvss9q+fbt69+6tQYMGad++fU7Lb9iwQQMGDNDKlSu1bds23XjjjRoyZIi2b99uV87Pz0+ZmZl2i6+vr5lDAQAAAACg2hqYWfnMmTMVHx+v0aNHS5JmzZqlL774Qm+99ZYSExMdys+aNcvu80svvaSPP/5Yn3zyibp27Wpbb7FYFBQUZGbXAQAAAAC4YKbNdOfl5Wnbtm2KiYmxWx8TE6ONGzdWqY6ioiKdPHlSzZo1s1t/6tQptW7dWi1bttTgwYMdZsLLys3NVU5Ojt0CAAAAAIDZTAvdR48eVWFhoQIDA+3WBwYGKisrq0p1vPbaazp9+rSGDh1qW9ehQwclJydrxYoVWrJkiXx9fdWrVy+lp6eXW09iYqKsVqttCQ0NPb9BAQAAAABQDaY/SM1isdh9NgzDYZ0zS5Ys0ZQpU7R06VIFBATY1kdGRur+++9Xly5d1Lt3b/373//WlVdeqTlz5pRbV0JCgrKzs23L/v37z39AAAAAAABUkWn3dPv7+8vT09NhVvvw4cMOs99lLV26VPHx8Xr//ffVv3//Cst6eHjo2muvrXCm28fHRz4+PlXvPAAAAAAANcC0mW5vb29FREQoJSXFbn1KSoqio6PL3W/JkiWKi4vTu+++q1tuuaXSdgzDUFpamoKDgy+4zwAAAAAA1CRTn14+adIkxcbGqnv37oqKitL8+fO1b98+jR07VlLxZd8HDx7UokWLJBUH7gceeECzZ89WZGSkbZa8YcOGslqtkqSpU6cqMjJS7dq1U05Ojl5//XWlpaXpjTfeMHMoAAAAAABUm6mhe9iwYTp27JimTZumzMxMhYeHa+XKlWrdurUkKTMz0+6d3X//+99VUFCgRx99VI8++qht/ciRI5WcnCxJOnHihB566CFlZWXJarWqa9eu2rBhg3r06GHmUAAAAAAAqDZTQ7ckjRs3TuPGjXO6rSRIl1i3bl2l9f3tb3/T3/72txroGQAAAAAA5jL96eUAAAAAAFysCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASRrUdgcAAAAAAPWfYRi//1n8ubDIsG0rKCxSQWGRDFvZ3/+U/T4lvDw95OlhMbO7LkPoBgAAAOB2DMOQYahUyCuOd8Xr7INe6QBoGNLpvAJbPTnn8pVf+EdFJWUqqle/by9br90+v384k1toa+uXo2fk6+1pV+8f/TNK1eek7jKfVWrfkprO5v3R1o79J+Tj5WlX7o/aZdeW/c/qj8rLbivrXP4f7W375YR8S7VXmQ5BTXVpY+8ql6/LCN0AAABAHVM6MJYNX+WFqnLDovR7CCw/LBYXMS44LNpmOm11/BHgnAXeisZTer+zpca1fd8J+Xp5lOmXs5B6/kqHxV2HTlYrLF5IW1k551zW1rn8IknuMZNc1xG6AQAA4FJlA2V+YZFtW25BoTwslt/L2Yc+u5DoJBQ6zDiWE/TOlJrtO/DbWfl6edoFP4e2HIKn/exiRSH4bKmQk7b/hHwaeNrVV3r2sPTn8+W+YfGPYySvoMh2jAD1AaEbAADARZzNXpYNbRUFzTO5f8z2HT+dr7N5hRWGTLs6KqhfkkPAPFMqUO3OOimfBp6V9tNZPbb+VBAqS4e3tH3Zpoa3su0dPHHWZcE0N79IFmYWgYsOoRsAALhcZeGzshnOimY3z5a65DUr+5x8vDwrDZ3lBsVyZjNtbeVVPotZUzOYkn2A+9+vrpvFPHEmX75eRRWUBgCUh9ANAEAdVFhk2J7yWtUwWp0gW/byWp9S90dWFEKLbG1UHGKLyuxbOpxu/vk3l4XFX46dYRYTAFCrCN0AgHqtJOBVFjKLysyU/vG5TGgtVUdRmct59x/7PZxWsl/pcKoy9ZUNtEXGH3WUvvdza8Zxl4VFsy+vlexfGwMAwMWE0A0AF6nSs6JlZy/LhsSiUpf0lg6ORb9XUHrW9NCJc388Vba80Fs6bMpQUZH9zGmRUf6saelgavaMqWQfTg9lmxtOa+LyYwAAULcQugGgBpUExJLQWPR7iioyDJ0uNWOafSZfuflF5QbekoBaVPTH/vbBteSzY2gtqat0EN6+77h8Gng6mWmtGaWD6f7fzL2ct6CQZAoAAOoPQjeAeqf05cSlA27JLKztc9ntJfuVlCsy7N4x+vPR0/Jt4Gk3i2t3D2vpMGwY9sHXNhtbvtLB9L9Z5j4AqWx7eQWGPCyEVQAAAFcjdAOoluJ3YxY6htyi4j+LnARW2+xqqc/OgnHJurN2M7Qn5OvlYQvJZs7QHsnJNT0IAwAA4OJC6AbqAWfB9Eye46XKpQNu2fL2YbfU9qKyAdmxDscQ7MoZ2iJ5WHgaMAAAAOonQjdQTUVFhl2ALfn7yXP5tjJHT+bJ16ug3OBbWGRUGoyL27F/AnJprr5UGQAAAED1EbrhVoqKDBUahgp/D8blBeFCW6h1DLkl+xol5X6fGS4sKj8AS/Yh+KcjpwjBAAAAAAjdqF2FRYZyCwpVVKQ/wvLvwbnkz4LC4uBbEoYLi1Tq74YKSv29bCAmCAMAAACoTYRuXJCCwiIVFP0Rfov/LCr+s/CPzwWlPp8q9dqkrRnHCcIAAAAA3Bah+yJXMtNc4sTpfJ3OLbQPzyVhuvCPAF1Y5HxmuSryCopqcAQAAAAAUHcRut1QXkGRjp/JKw7HhU7Cc5GhwqKi3y/btr8Ee/evPJALAAAAAGoKodsNnc0r1M9HTtd2NwAAAADgoudhdgNvvvmmwsLC5Ovrq4iICH399dcVll+/fr0iIiLk6+uryy+/XPPmzXMos2zZMnXq1Ek+Pj7q1KmTli9fblb3AQAAAAA4b6aG7qVLl2rChAl69tlntX37dvXu3VuDBg3Svn37nJbfu3evbr75ZvXu3Vvbt2/XM888o8cee0zLli2zlUlNTdWwYcMUGxurHTt2KDY2VkOHDtXmzZvNHAoAAAAAANVm6uXlM2fOVHx8vEaPHi1JmjVrlr744gu99dZbSkxMdCg/b948tWrVSrNmzZIkdezYUVu3btWrr76qu+66y1bHgAEDlJCQIElKSEjQ+vXrNWvWLC1ZsqRa/Tudd1qeeXXz/uUzeQUq0jlJxf00qvGrOp2Xr7MFVb+8/FxBoa2tswWnZVjM/Zm4sj13bcvV7TG2+teWq9tz17Zc3Z67tuXq9ty1LVe3565tubo9xlb/2nJ1e+7a1oW2dzrPQ95e+WZ1rUaczqta5rIYxvk8f7pyeXl5atSokd5//33dcccdtvWPP/640tLStH79eod9rr/+enXt2lWzZ8+2rVu+fLmGDh2qM2fOyMvLS61atdLEiRM1ceJEW5m//e1vmjVrln755RenfcnNzVVubq7tc05OjkJDQ6WnJfnWwGABAAAAABeXc5JelrKzs+Xn51duMdMuLz969KgKCwsVGBhotz4wMFBZWVlO98nKynJavqCgQEePHq2wTHl1SlJiYqKsVqttCQ0NPZ8hAQAAAABQLaY/vdxisdh9NgzDYV1l5cuur26dCQkJmjRpku1zyUz3oScOVXhGor7KPpOv//6aU9vdAAAAAIDzcmVAU13a2Lu2u1GhnJwchbwcUmk500K3v7+/PD09HWagDx8+7DBTXSIoKMhp+QYNGqh58+YVlimvTkny8fGRj4+Pw/rG3o3V2LtxlcZTnxQU5Kthg8LKCwIAAABAHVSc1ep26C70rlrmMu3ycm9vb0VERCglJcVufUpKiqKjo53uExUV5VD+yy+/VPfu3eXl5VVhmfLqBAAAAACgtph6efmkSZMUGxur7t27KyoqSvPnz9e+ffs0duxYScWXfR88eFCLFi2SJI0dO1Zz587VpEmTNGbMGKWmpiopKcnuqeSPP/64rr/+ek2fPl233XabPv74Y61evVrffPONmUMBAAAAAKDaTA3dw4YN07FjxzRt2jRlZmYqPDxcK1euVOvWrSVJmZmZdu/sDgsL08qVKzVx4kS98cYbCgkJ0euvv257XZgkRUdH67333tNzzz2nyZMnq23btlq6dKl69uxp5lDqFR8vD7W8tKEKigwVFhWpoMhQQaGhwiLj93XFCwAAAADAXKa9Mqwuy8nJkdVqrfTR7u7MMAxbGC8oKrIL5AVFhgrLW19UpIJCQ2R2AAAAAGbpEFQ/HqRWlVxp+tPLUTdZLBZ5eVrk5SlJVX9JfYniEF5UJqQbjuvtZtmLbOsuvlM9AAAAAC5GhG6cF08Pizw9qh/WSxQUFqnQMFRUJBUaf1zyXlhkqMhw/HuR8UeIL71PyXZCPAAAAIC6iNCNWtHA06NGDz6HwG4YKrIL8rKtM0r+/vvnIkN24b1km2EYKizS73+vwc4CAAAAuGgQuuEWimfeLabVbxh/hPeiksBu6Peg7uTvpQJ+6fKly5aEeWfbCfoAAACAeyB0A1VgsVjUwNO8UO9MUdEfYby8gF5yIsAwDBnSH+UrCPwl6/7YXlJ/STlCPwAAAFBTCN1AHeXhYZGHXBv0S6s8pDsvYzjZp/S+ZWfzy55QMEq3XcST8gEAAFC/EboBOGWxWORpkTxrMfiXKC+oGyq1vqjM51IB37a+yMl+Zcv9Xk/ZEwKlTwZwNQAAAACqitANoM6rSycAyioqKn1p/x+z/SXB/o+gbh/gi4oL2Z0UMAz7qwVKypWcGCj9uWxbZU8OGCV1G1wtAAAAUJsI3QBwATx+f4BfXTwhUFrZ0F/yd0lOZ/Pl7MSB7E8UlJ3x/+MKhNJh/491zk4UOD9pULxfyVUFht16AACA+oXQDQAXAYvFIotFtfqcgAtlOAn1JYFdcgz9hmS77cAh+P9+AsFwtl8lJwNsVxE4OXFg93eVPilRug1uTwAA4GJC6AYA1AslJw5+/1SbXakxpU8klD4hUOGJhN+vRLC7nUCyO5lQVCb8G0YV6qzkhIJU9ZMKXJ0AAMAfCN0AANSS0icS6votCufL7rkGqjzIV+fkQtn6yp5gKPt8hbInGBz2r07fONEAAKgiQjcAADBNyYMQ3eXqhKooeyvE+ZxsKG9bdU84VHbCwKHseZ54sJXl5AMAOCB0AwAA1CB3vBXifFT15INU/RMQKlVXVU9CVNhONU5EOGx30i9nV0IUr+WEBHAxInQDAACgxnHyoXylT0jYPqvUiQTJ7oRB6XWOJwzkcHKibJ3FRexPUJSsc9inghMVjvWW7VeZfcoZT9l6HU9KONbLiQvUZ4RuAAAAwIXsT0hInJSoPrsTBPrjZEDxtsqvTpDKnECowskA449CVT55UaW2S2pxcrWF7e9VPIFRuu4/ypT9WdmPTXZlYQZCNwAAAIB6hRMX5rEF8lJBvfR6+3Uln+33sa/PeZnK6m3k7XmeI6h7CN0AAAAAAEnFJzSK/3TY4vK+uAuP2u4AAAAAAADuitANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASUwN3cePH1dsbKysVqusVqtiY2N14sSJcsvn5+frqaee0lVXXaXGjRsrJCREDzzwgA4dOmRXrk+fPrJYLHbL8OHDzRwKAAAAAADVZmroHjFihNLS0rRq1SqtWrVKaWlpio2NLbf8mTNn9N1332ny5Mn67rvv9OGHH+p///ufbr31VoeyY8aMUWZmpm35+9//buZQAAAAAACotgZmVbxr1y6tWrVKmzZtUs+ePSVJb7/9tqKiorR79261b9/eYR+r1aqUlBS7dXPmzFGPHj20b98+tWrVyra+UaNGCgoKMqv7AAAAAABcMNNmulNTU2W1Wm2BW5IiIyNltVq1cePGKteTnZ0ti8WiSy65xG794sWL5e/vr86dO+vJJ5/UyZMna6rrAAAAAADUCNNmurOyshQQEOCwPiAgQFlZWVWq49y5c3r66ac1YsQI+fn52dbfd999CgsLU1BQkH788UclJCRox44dDrPkJXJzc5Wbm2v7nJOTU83RAAAAAABQfdWe6Z4yZYrDQ8zKLlu3bpUkWSwWh/0Nw3C6vqz8/HwNHz5cRUVFevPNN+22jRkzRv3791d4eLiGDx+uDz74QKtXr9Z3333ntK7ExETbw9ysVqtCQ0OrO2wAAAAAAKqt2jPd48ePr/RJ4W3atNH333+vX3/91WHbkSNHFBgYWOH++fn5Gjp0qPbu3auvvvrKbpbbmW7dusnLy0vp6enq1q2bw/aEhARNmjTJ9jknJ4fgDQAAAAAwXbVDt7+/v/z9/SstFxUVpezsbH377bfq0aOHJGnz5s3Kzs5WdHR0ufuVBO709HStXbtWzZs3r7StnTt3Kj8/X8HBwU63+/j4yMfHp9J6AAAAAACoSaY9SK1jx4666aabNGbMGG3atEmbNm3SmDFjNHjwYLsnl3fo0EHLly+XJBUUFOjuu+/W1q1btXjxYhUWFiorK0tZWVnKy8uTJP3000+aNm2atm7dqoyMDK1cuVL33HOPunbtql69epk1HAAAAAAAqs3U93QvXrxYV111lWJiYhQTE6Orr75a//znP+3K7N69W9nZ2ZKkAwcOaMWKFTpw4ICuueYaBQcH25aSJ557e3trzZo1GjhwoNq3b6/HHntMMTExWr16tTw9Pc0cDgAAAAAA1WIxDMOo7U64Wk5OjqxWq7Kzsyu9XxwAAAAAgLKqmitNnekGAAAAAOBiRugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMYmroPn78uGJjY2W1WmW1WhUbG6sTJ05UuE9cXJwsFovdEhkZaVcmNzdXf/rTn+Tv76/GjRvr1ltv1YEDB0wcCQAAAAAA1Wdq6B4xYoTS0tK0atUqrVq1SmlpaYqNja10v5tuukmZmZm2ZeXKlXbbJ0yYoOXLl+u9997TN998o1OnTmnw4MEqLCw0aygAAAAAAFRbA7Mq3rVrl1atWqVNmzapZ8+ekqS3335bUVFR2r17t9q3b1/uvj4+PgoKCnK6LTs7W0lJSfrnP/+p/v37S5L+9a9/KTQ0VKtXr9bAgQNrfjAAAAAAAJwH02a6U1NTZbVabYFbkiIjI2W1WrVx48YK9123bp0CAgJ05ZVXasyYMTp8+LBt27Zt25Sfn6+YmBjbupCQEIWHh5dbb25urnJycuwWAAAAAADMZlrozsrKUkBAgMP6gIAAZWVllbvfoEGDtHjxYn311Vd67bXXtGXLFvXt21e5ubm2er29vXXppZfa7RcYGFhuvYmJibb7yq1Wq0JDQy9gZAAAAAAAVE21Q/eUKVMcHnRWdtm6daskyWKxOOxvGIbT9SWGDRumW265ReHh4RoyZIg+//xz/e9//9Nnn31WYb8qqjchIUHZ2dm2Zf/+/dUYMQAAAAAA56fa93SPHz9ew4cPr7BMmzZt9P333+vXX3912HbkyBEFBgZWub3g4GC1bt1a6enpkqSgoCDl5eXp+PHjdrPdhw8fVnR0tNM6fHx85OPjU+U2AQAAAACoCdUO3f7+/vL396+0XFRUlLKzs/Xtt9+qR48ekqTNmzcrOzu73HDszLFjx7R//34FBwdLkiIiIuTl5aWUlBQNHTpUkpSZmakff/xRM2bMqO5wAAAAAAAwjWn3dHfs2FE33XSTxowZo02bNmnTpk0aM2aMBg8ebPfk8g4dOmj58uWSpFOnTunJJ59UamqqMjIytG7dOg0ZMkT+/v664447JElWq1Xx8fF64okntGbNGm3fvl3333+/rrrqKtvTzAEAAAAAqAtMe2WYJC1evFiPPfaY7Unjt956q+bOnWtXZvfu3crOzpYkeXp66ocfftCiRYt04sQJBQcH68Ybb9TSpUvVtGlT2z5/+9vf1KBBAw0dOlRnz55Vv379lJycLE9PTzOHAwAAAABAtVgMwzBquxOulpOTI6vVquzsbPn5+dV2dwAAAAAA9UxVc6Vpl5cDAAAAAHCxI3QDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmMTV0Hz9+XLGxsbJarbJarYqNjdWJEycq3MdisThdXnnlFVuZPn36OGwfPny4mUMBAAAAAKDaGphZ+YgRI3TgwAGtWrVKkvTQQw8pNjZWn3zySbn7ZGZm2n3+/PPPFR8fr7vuustu/ZgxYzRt2jTb54YNG9ZgzwEAAAAAuHCmhe5du3Zp1apV2rRpk3r27ClJevvttxUVFaXdu3erffv2TvcLCgqy+/zxxx/rxhtv1OWXX263vlGjRg5lAQAAAACoS0y7vDw1NVVWq9UWuCUpMjJSVqtVGzdurFIdv/76qz777DPFx8c7bFu8eLH8/f3VuXNnPfnkkzp58mS59eTm5ionJ8duAQAAAADAbKbNdGdlZSkgIMBhfUBAgLKysqpUxzvvvKOmTZvqzjvvtFt/3333KSwsTEFBQfrxxx+VkJCgHTt2KCUlxWk9iYmJmjp1avUHAQAAAADABaj2TPeUKVPKfdhZybJ161ZJxQ9FK8swDKfrnVmwYIHuu+8++fr62q0fM2aM+vfvr/DwcA0fPlwffPCBVq9ere+++85pPQkJCcrOzrYt+/fvr+aoAQAAAACovmrPdI8fP77SJ4W3adNG33//vX799VeHbUeOHFFgYGCl7Xz99dfavXu3li5dWmnZbt26ycvLS+np6erWrZvDdh8fH/n4+FRaDwAAAAAANanaodvf31/+/v6VlouKilJ2dra+/fZb9ejRQ5K0efNmZWdnKzo6utL9k5KSFBERoS5dulRadufOncrPz1dwcHDlAwAAAAAAwEVMe5Bax44dddNNN2nMmDHatGmTNm3apDFjxmjw4MF2Ty7v0KGDli9fbrdvTk6O3n//fY0ePdqh3p9++knTpk3T1q1blZGRoZUrV+qee+5R165d1atXL7OGAwAAAABAtZkWuqXiJ4xfddVViomJUUxMjK6++mr985//tCuze/duZWdn26177733ZBiG7r33Xoc6vb29tWbNGg0cOFDt27fXY489ppiYGK1evVqenp5mDgcAAAAAgGqxGIZh1HYnXC0nJ0dWq1XZ2dny8/Or7e4AAAAAAOqZquZKU2e6AQAAAAC4mBG6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMImpofvFF19UdHS0GjVqpEsuuaRK+xiGoSlTpigkJEQNGzZUnz59tHPnTrsyubm5+tOf/iR/f381btxYt956qw4cOGDCCAAAAAAAOH+mhu68vDzdc889euSRR6q8z4wZMzRz5kzNnTtXW7ZsUVBQkAYMGKCTJ0/aykyYMEHLly/Xe++9p2+++UanTp3S4MGDVVhYaMYwAAAAAAA4LxbDMAyzG0lOTtaECRN04sSJCssZhqGQkBBNmDBBTz31lKTiWe3AwEBNnz5dDz/8sLKzs9WiRQv985//1LBhwyRJhw4dUmhoqFauXKmBAwdW2p+cnBxZrVZlZ2fLz8/vgscHAAAAALi4VDVX1ql7uvfu3ausrCzFxMTY1vn4+OiGG27Qxo0bJUnbtm1Tfn6+XZmQkBCFh4fbygAAAAAAUBc0qO0OlJaVlSVJCgwMtFsfGBioX375xVbG29tbl156qUOZkv3Lys3NVW5uru1zdna2pOIzEwAAAAAAVFdJnqzs4vFqh+4pU6Zo6tSpFZbZsmWLunfvXt2qbSwWi91nwzAc1pVVUZnExESnfQ4NDT3vPgIAAAAAcPLkSVmt1nK3Vzt0jx8/XsOHD6+wTJs2bapbrSQpKChIUvFsdnBwsG394cOHbbPfQUFBysvL0/Hjx+1muw8fPqzo6Gin9SYkJGjSpEm2z0VFRfrtt9/UvHnzSsN8bcrJyVFoaKj279/PvedwimMEleEYQUU4PlAZjhFUhmMElXHnY8QwDJ08eVIhISEVlqt26Pb395e/v/95d6wiYWFhCgoKUkpKirp27Sqp+Ano69ev1/Tp0yVJERER8vLyUkpKioYOHSpJyszM1I8//qgZM2Y4rdfHx0c+Pj5266r6CrO6wM/Pz+0OUNQsjhFUhmMEFeH4QGU4RlAZjhFUxl2PkYpmuEuYek/3vn379Ntvv2nfvn0qLCxUWlqaJOmKK65QkyZNJEkdOnRQYmKi7rjjDlksFk2YMEEvvfSS2rVrp3bt2umll15So0aNNGLECEnFg4qPj9cTTzyh5s2bq1mzZnryySd11VVXqX///mYOBwAAAACAajE1dD///PN65513bJ9LZq/Xrl2rPn36SJJ2795te7CZJP35z3/W2bNnNW7cOB0/flw9e/bUl19+qaZNm9rK/O1vf1ODBg00dOhQnT17Vv369VNycrI8PT3NHA4AAAAAANViauhOTk5WcnJyhWXKPunNYrFoypQpmjJlSrn7+Pr6as6cOZozZ04N9LLu8vHx0QsvvOBwaTxQgmMEleEYQUU4PlAZjhFUhmMEleEYkSxGZc83BwAAAAAA58WjtjsAAAAAAIC7InQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCdx315ptvKiwsTL6+voqIiNDXX39d211CHTFlyhRZLBa7JSgoqLa7hVq0YcMGDRkyRCEhIbJYLProo4/sthuGoSlTpigkJEQNGzZUnz59tHPnztrpLGpFZcdIXFycw/dKZGRk7XQWLpeYmKhrr71WTZs2VUBAgG6//Xbt3r3brgzfIxe3qhwjfI9c3N566y1dffXV8vPzk5+fn6KiovT555/btl/s3yGE7jpo6dKlmjBhgp599llt375dvXv31qBBg7Rv377a7hrqiM6dOyszM9O2/PDDD7XdJdSi06dPq0uXLpo7d67T7TNmzNDMmTM1d+5cbdmyRUFBQRowYIBOnjzp4p6itlR2jEjSTTfdZPe9snLlShf2ELVp/fr1evTRR7Vp0yalpKSooKBAMTExOn36tK0M3yMXt6ocIxLfIxezli1b6uWXX9bWrVu1detW9e3bV7fddpstWF/03yEG6pwePXoYY8eOtVvXoUMH4+mnn66lHqEueeGFF4wuXbrUdjdQR0kyli9fbvtcVFRkBAUFGS+//LJt3blz5wyr1WrMmzevFnqI2lb2GDEMwxg5cqRx22231Up/UPccPnzYkGSsX7/eMAy+R+Co7DFiGHyPwNGll15q/OMf/+A7xDAMZrrrmLy8PG3btk0xMTF262NiYrRx48Za6hXqmvT0dIWEhCgsLEzDhw/Xzz//XNtdQh21d+9eZWVl2X2n+Pj46IYbbuA7BXbWrVungIAAXXnllRozZowOHz5c211CLcnOzpYkNWvWTBLfI3BU9hgpwfcIJKmwsFDvvfeeTp8+raioKL5DxOXldc7Ro0dVWFiowMBAu/WBgYHKysqqpV6hLunZs6cWLVqkL774Qm+//baysrIUHR2tY8eO1XbXUAeVfG/wnYKKDBo0SIsXL9ZXX32l1157TVu2bFHfvn2Vm5tb212DixmGoUmTJum6665TeHi4JL5HYM/ZMSLxPQLphx9+UJMmTeTj46OxY8dq+fLl6tSpE98hkhrUdgfgnMVisftsGIbDOlycBg0aZPv7VVddpaioKLVt21bvvPOOJk2aVIs9Q13GdwoqMmzYMNvfw8PD1b17d7Vu3VqfffaZ7rzzzlrsGVxt/Pjx+v777/XNN984bON7BFL5xwjfI2jfvr3S0tJ04sQJLVu2TCNHjtT69ett2y/m7xBmuusYf39/eXp6Opz1OXz4sMPZIUCSGjdurKuuukrp6em13RXUQSVPtuc7BdURHBys1q1b871ykfnTn/6kFStWaO3atWrZsqVtPd8jKFHeMeIM3yMXH29vb11xxRXq3r27EhMT1aVLF82ePZvvEBG66xxvb29FREQoJSXFbn1KSoqio6NrqVeoy3Jzc7Vr1y4FBwfXdldQB4WFhSkoKMjuOyUvL0/r16/nOwXlOnbsmPbv38/3ykXCMAyNHz9eH374ob766iuFhYXZbed7BJUdI87wPQLDMJSbm8t3iLi8vE6aNGmSYmNj1b17d0VFRWn+/Pnat2+fxo4dW9tdQx3w5JNPasiQIWrVqpUOHz6sv/71r8rJydHIkSNru2uoJadOndKePXtsn/fu3au0tDQ1a9ZMrVq10oQJE/TSSy+pXbt2ateunV566SU1atRII0aMqMVew5UqOkaaNWumKVOm6K677lJwcLAyMjL0zDPPyN/fX3fccUct9hqu8uijj+rdd9/Vxx9/rKZNm9pmo6xWqxo2bCiLxcL3yEWusmPk1KlTfI9c5J555hkNGjRIoaGhOnnypN577z2tW7dOq1at4jtE4pVhddUbb7xhtG7d2vD29ja6detm90oGXNyGDRtmBAcHG15eXkZISIhx5513Gjt37qztbqEWrV271pDksIwcOdIwjOLX/bzwwgtGUFCQ4ePjY1x//fXGDz/8ULudhktVdIycOXPGiImJMVq0aGF4eXkZrVq1MkaOHGns27evtrsNF3F2bEgyFi5caCvD98jFrbJjhO8RjBo1ypZdWrRoYfTr18/48ssvbdsv9u8Qi2EYhitDPgAAAAAAFwvu6QYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AQLUlJyfLYrHYlgYNGqhly5Z68MEHdfDgwRpt66WXXtJHH33ksH7dunWyWCxat25dtes8n31XrFghi8Wi5s2bKzc3t9ptlrZx40ZNmTJFJ06cuKB66guLxaIpU6ZUe78zZ85oypQpTn9PJcdgRkbGBffvfOTn56tDhw56+eWXHfpU1X8Xr7/+uiwWi8LDwyts6+eff9b48eN15ZVXqmHDhmrUqJE6d+6s5557zq7euLg4u/ZLL59++qkk6X//+5+8vb313Xff1dBPAgBQmQa13QEAQP21cOFCdejQQWfPntWGDRuUmJio9evX64cfflDjxo1rpI2XXnpJd999t26//Xa79d26dVNqaqo6depUI+1UJikpSZL022+/6aOPPtKwYcPOu66NGzdq6tSpiouL0yWXXFJDPXQ/Z86c0dSpUyVJffr0sdt2yy23KDU1VcHBwbXQM+nNN9/U8ePH9ac//clhW1X/XSxYsECStHPnTm3evFk9e/Z0qOvTTz/V8OHD5e/vr/Hjx6tr166yWCz64YcftGDBAn322Wfavn27rXzDhg311VdfOdTToUMHSdKVV16p++67TxMnTtT69esv+OcAAKgcoRsAcN7Cw8PVvXt3SdKNN96owsJC/eUvf9FHH32k++6774LqPnv2rBo2bFjudj8/P0VGRl5QG1WVlZWllStXqm/fvtq4caOSkpIuKHTXB2fOnFGjRo2cbqvsd+MKLVq0UIsWLWql7YKCAr3yyisaNWqU05NLVfl3sXXrVu3YsUO33HKLPvvsMyUlJTmE7r1792r48OG68sortXbtWlmtVtu2vn376rHHHtPy5cvt9vHw8Kj038X48ePVvXt3bdy4UdHR0ef1MwAAVB2XlwMAakzJ/+z/8ssvkqSpU6eqZ8+eatasmfz8/NStWzclJSXJMAy7/dq0aaPBgwfrww8/VNeuXeXr66upU6fKYrHo9OnTeuedd2yXyZbMeDq7RHzr1q0aPny42rRpo4YNG6pNmza69957bf05X++8844KCgo0ceJE3XnnnVqzZo1DnRkZGbJYLEpOTnbYv/Tl1VOmTNH/+3//T5IUFhZmG1fJOIqKijRjxgx16NBBPj4+CggI0AMPPKADBw441Ltq1Sr169dPVqtVjRo1UseOHZWYmGhXZsWKFYqKilKjRo3UtGlTDRgwQKmpqXZlpkyZIovFou+++0533323Lr30UrVt21ZS+b8bqfhkxMMPP6yWLVvK29tbYWFhmjp1qgoKCir8eR45ckTjxo1Tp06d1KRJEwUEBKhv3776+uuv7X6eJaG65FiwWCyKi4uTVP7l5QsWLFCXLl3k6+urZs2a6Y477tCuXbvsysTFxalJkybas2ePbr75ZjVp0kShoaF64oknqnTrwIoVK3Tw4EHFxsZWWlZy/Hch/XHlxMsvv6zo6Gi99957OnPmjN1+M2fO1OnTp/Xmm2/aBe4SFotFd955Z5X6UFpERIQ6duyoefPmVXtfAED1MdMNAKgxe/bskSRbWMrIyNDDDz+sVq1aSZI2bdqkP/3pTzp48KCef/55u32/++477dq1S88995zCwsLUuHFj3X777erbt69uvPFGTZ48WVLxDHd5MjIy1L59ew0fPlzNmjVTZmam3nrrLV177bX6z3/+I39///Ma14IFCxQcHKxBgwapYcOGevfdd5WcnKwXXnih2nWNHj1av/32m+bMmaMPP/zQdnl0yWXyjzzyiObPn6/x48dr8ODBysjI0OTJk7Vu3Tp99913tjEkJSVpzJgxuuGGGzRv3jwFBATof//7n3788UdbW++++67uu+8+xcTEaMmSJcrNzdWMGTPUp08frVmzRtddd51d3+68804NHz5cY8eO1enTp23rnf1usrKy1KNHD3l4eOj5559X27ZtlZqaqr/+9a/KyMjQwoULy/0Z/Pbbb5KkF154QUFBQTp16pSWL19u61efPn0UHBysVatW6aabblJ8fLxGjx4tSRXObicmJuqZZ57Rvffeq8TERB07dkxTpkxRVFSUtmzZonbt2tnK5ufn69Zbb1V8fLyeeOIJbdiwQX/5y19ktVodjs2yPvvsMwUEBFT51oay/y7Onj2rJUuW6Nprr1V4eLhGjRql0aNH6/3339fIkSNt+3355ZcKDAys9hUdZU96WCwWeXp62q3r06eP3n//fRmGIYvFUq36AQDVZAAAUE0LFy40JBmbNm0y8vPzjZMnTxqffvqp0aJFC6Np06ZGVlaWwz6FhYVGfn6+MW3aNKN58+ZGUVGRbVvr1q0NT09PY/fu3Q77NW7c2Bg5cqTD+rVr1xqSjLVr15bbz4KCAuPUqVNG48aNjdmzZ1dr3xIbNmwwJBlPP/20YRiGUVRUZISFhRmtW7e2G8PevXsNScbChQsd6pBkvPDCC7bPr7zyiiHJ2Lt3r125Xbt2GZKMcePG2a3fvHmzIcl45plnDMMwjJMnTxp+fn7GddddZ9eH0goLC42QkBDjqquuMgoLC23rT548aQQEBBjR0dG2dS+88IIhyXj++ecd6invd/Pwww8bTZo0MX755Re79a+++qohydi5c2e54y+roKDAyM/PN/r162fccccdtvVHjhwpd9+SY7DkZ3j8+HGjYcOGxs0332xXbt++fYaPj48xYsQI27qRI0cakox///vfdmVvvvlmo3379uX2s0THjh2Nm266qdw+VfbvYtGiRYYkY968eYZhFP9OmjRpYvTu3duuPl9fXyMyMrLS/pQdV9mlV69eDmXffvttQ5Kxa9euKtcPADg/XF4OADhvkZGR8vLyUtOmTTV48GAFBQXp888/V2BgoCTpq6++Uv/+/WW1WuXp6SkvLy89//zzOnbsmA4fPmxX19VXX60rr7zygvpz6tQpPfXUU7riiivUoEEDNWjQQE2aNNHp06cdLjGuqpLLgEeNGiVJtkucf/nlF61Zs+aC+lvW2rVrJcl2CXWJHj16qGPHjrb2Nm7cqJycHI0bN67cWcrdu3fr0KFDio2NlYfHH/+5b9Kkie666y5t2rTJ4XLmu+66y2ldzn43n376qW688UaFhISooKDAtgwaNEiSKn1I17x589StWzf5+vqqQYMG8vLy0po1a87795SamqqzZ886/OxCQ0PVt29fh9+VxWLRkCFDHMZZlVsRDh06pICAgHK3V/bvIikpSQ0bNtTw4cMlFf9O7rnnHn399ddKT0+vynDL1bBhQ23ZssVuKTmGSyvpf02/bQAA4IjQDQA4b4sWLdKWLVu0fft2HTp0SN9//7169eolSfr2228VExMjSXr77bf1f//3f9qyZYueffZZScWX2JZWE0+hHjFihObOnavRo0friy++0LfffqstW7aoRYsWDu1VxcmTJ/X++++rR48eatGihU6cOKETJ07ojjvukMVicRpmLsSxY8ckOf9ZhISE2LYfOXJEktSyZcvzrquoqEjHjx+3W1/e78DZ+l9//VWffPKJvLy87JbOnTtLko4ePVpu32bOnKlHHnlEPXv21LJly7Rp0yZt2bJFN91003n9nqSq/+xKNGrUSL6+vnbrfHx8dO7cuUrbOnv2rMO+pVX072LPnj3asGGDbrnlFhmGYTum7r77bkl/PNFcklq1aqW9e/dW2p/SPDw81L17d7ulffv2DuVK+n++P28AQNVxTzcA4Lx17NjR9pTmst577z15eXnp008/tQsozt65LemC7yvNzs7Wp59+qhdeeEFPP/20bX1ubq7tHuLqWrJkic6cOaNvv/1Wl156qcP25cuX6/jx47r00kttYyz7IK6yYa8izZs3lyRlZmY6BOpDhw7Z7ucuuTfY2cPVnNVV1qFDh+Th4eEwpvJ+B87W+/v76+qrr9aLL77odJ+QkJBy+/avf/1Lffr00VtvvWW3/uTJk+XuU5nKxnu+9/M74+/vX+ExVdG/iwULFsgwDH3wwQf64IMPHLa/8847+utf/ypPT08NHDhQc+bM0aZNm2r8Sf0l/a/JnwsAwDlmugEAprBYLGrQoIHdA5zOnj2rf/7zn9Wqx8fHp0qzcRaLRYZhyMfHx279P/7xDxUWFlarzRJJSUlq2rSp1qxZo7Vr19otr7zyinJzc7V48WJJUmBgoHx9ffX999/b1fHxxx87HZPkOMvYt29fScWhtLQtW7Zo165d6tevnyQpOjpaVqtV8+bNc3gSfIn27dvrsssu07vvvmtX5vTp01q2bJntiebna/Dgwfrxxx/Vtm1bh5nV7t27Vxi6LRaLw+/p+++/d3iqenk/J2eioqLUsGFDh5/dgQMH9NVXX9l+djWhQ4cO+umnn6q9X2Fhod555x21bdvW4Xhau3atnnjiCWVmZurzzz+XJE2cOFGNGzfWuHHjlJ2d7VCfYRgOrwyrqp9//lkeHh5OZ8EBADWLmW4AgCluueUWzZw5UyNGjNBDDz2kY8eO6dVXX3UIW5W56qqrtG7dOn3yyScKDg5W06ZNnQYFPz8/XX/99XrllVfk7++vNm3aaP369UpKStIll1xS7f7/+OOP+vbbb/XII4/YwnBpvXr10muvvaakpCSNHz9eFotF999/vxYsWKC2bduqS5cu+vbbb/Xuu+86HZMkzZ49WyNHjpSXl5fat2+v9u3b66GHHtKcOXPk4eGhQYMG2Z5eHhoaqokTJ0oqvgf4tdde0+jRo9W/f3+NGTNGgYGB2rNnj3bs2KG5c+fKw8NDM2bM0H333afBgwfr4YcfVm5url555RWdOHFCL7/8crV/JqVNmzZNKSkpio6O1mOPPab27dvr3LlzysjI0MqVKzVv3rxyL38fPHiw/vKXv+iFF17QDTfcoN27d2vatGkKCwuze/J206ZN1bp1a3388cfq16+fmjVrZvvdlnXJJZdo8uTJeuaZZ/TAAw/o3nvv1bFjxzR16lT5+vqe15Pmy9OnTx9NmzatwneZO/P555/r0KFDmj59uu3Vd6WFh4dr7ty5SkpK0uDBgxUWFqb33ntPw4YN0zXXXKPx48era9eukqT//Oc/tlnzO+64o9pj2LRpk6655hqnV3AAAGpYLT7EDQBQT5U8pXnLli0VlluwYIHRvn17w8fHx7j88suNxMREIykpyeHJ3a1btzZuueUWp3WkpaUZvXr1Mho1amRIMm644QbDMJw/gfzAgQPGXXfdZVx66aVG06ZNjZtuusn48ccfjdatW9s9Ab0qTy+fMGGCIclIS0srt8zTTz9tSDK2bdtmGIZhZGdnG6NHjzYCAwONxo0bG0OGDDEyMjKcPoE7ISHBCAkJMTw8POz6UlhYaEyfPt248sorDS8vL8Pf39+4//77jf379zu0v3LlSuOGG24wGjdubDRq1Mjo1KmTMX36dLsyH330kdGzZ0/D19fXaNy4sdGvXz/j//7v/+zKlDy9/MiRIw5tVPS7OXLkiPHYY48ZYWFhhpeXl9GsWTMjIiLCePbZZ41Tp07ZypUdf25urvHkk08al112meHr62t069bN+Oijj4yRI0carVu3tmtj9erVRteuXQ0fHx9Dku33WPbp5SX+8Y9/GFdffbXh7e1tWK1W47bbbrN7krphFD/lu3Hjxg7jKfk5VGbPnj2GxWJxePp5Zf8ubr/9dsPb29s4fPhwuXUPHz7caNCggd0bAH766Sdj3LhxxhVXXGH4+PgYDRs2NDp16mRMmjTJbvzljauskydPGo0aNTJee+21SssCAC6cxTDKuS4NAAAATg0ZMkQFBQW2S8Hrk6SkJD3++OPav38/M90A4AKEbgAAgGr68ccf1bVrV23cuFHXXnttbXenygoKCtSpUyeNHDnS9iYBAIC5eJAaAABANYWHh2vhwoXKysqq7a5Uy/79+3X//ffriSeeqO2uAMBFw9TQvWHDBg0ZMkQhISGyWCzlviamtPXr1ysiIkK+vr66/PLLNW/ePIcyy5YtU6dOneTj46NOnTqd95M7AQAAztf999+vIUOG1HY3qiUsLEzPP/98he8ZBwDULFND9+nTp9WlSxfNnTu3SuX37t2rm2++Wb1799b27dv1zDPP6LHHHtOyZctsZVJTUzVs2DDFxsZqx44dio2N1dChQ7V582azhgEAAAAAwHlx2T3dFotFy5cv1+23315umaeeekorVqzQrl27bOvGjh2rHTt22N7dOWzYMOXk5Ng9uOSmm27SpZdeqiVLlpjWfwAAAAAAqqtO3dOdmpqqmJgYu3UDBw7U1q1blZ+fX2GZjRs3uqyfAAAAAABURYPa7kBpWVlZCgwMtFsXGBiogoICHT16VMHBweWWqehBJrm5ucrNzbV9Lioq0m+//abmzZvLYrHU7CAAAAAAAG7PMAydPHlSISEh8vAofz67ToVuSQ4huOTq99LrnZWpKDwnJiZq6tSpNdhLAAAAAACK3wzRsmXLcrfXqdAdFBTkMGN9+PBhNWjQQM2bN6+wTNnZ79ISEhI0adIk2+fs7Gy1atVK+/fvl5+fXw2OoAZMmSLNni0VFTlu8/CQHn+8uAwAAAAAoNbk5OQoNDRUTZs2rbBcnQrdUVFR+uSTT+zWffnll+revbu8vLxsZVJSUjRx4kS7MtHR0eXW6+PjIx8fH4f1fn5+dS90P/KINHu2DElO5+7HjZPqWp8BAAAA4CJV2S3Lpj5I7dSpU0pLS1NaWpqk4leCpaWlad++fZKKZ6AfeOABW/mxY8fql19+0aRJk7Rr1y4tWLBASUlJevLJJ21lHn/8cX355ZeaPn26/vvf/2r69OlavXq1JkyYYOZQXKddOykpSfLwUIHFQ4UWDxmensWz3ElJ0hVX1HYPAQAAAABVZOorw9atW6cbb7zRYf3IkSOVnJysuLg4ZWRkaN26dbZt69ev18SJE7Vz506FhIToqaee0tixY+32/+CDD/Tcc8/p559/Vtu2bfXiiy/qzjvvrHK/cnJyZLValZ2dXfdmun939j//1cL4yWqZfViDBkfK66ExBG4AAAAAqCOqmitd9p7uuqQ+hO4zeQXq9PwXkqT/TBuoRt516k4AAAAAALioVTVX1qn3dAMAAAAA4E4I3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASRrUdgdQB6SnSwsWSBkZUps20qhRUrt2td0rAAAAAKj3CN0Xu4ULpdGjJYtFMoziP2fMkJKSpLi42u4dAAAAANRrXF5+MUtPLw7cRUVSYaH9n/Hx0p49td1DAAAAAKjXCN0XswULime2nbFYime7AQAAAADnzfTQ/eabbyosLEy+vr6KiIjQ119/XW7ZuLg4WSwWh6Vz5862MsnJyU7LnDt3zuyhuJ+MjOJLyp0xjOLtAAAAAIDzZmroXrp0qSZMmKBnn31W27dvV+/evTVo0CDt27fPafnZs2crMzPTtuzfv1/NmjXTPffcY1fOz8/PrlxmZqZ8fX3NHIp7atOm4pnuNm1c2RsAAAAAcDumhu6ZM2cqPj5eo0ePVseOHTVr1iyFhobqrbfeclrearUqKCjItmzdulXHjx/Xgw8+aFfOYrHYlQsKCjJzGO5r1CjJMOR0rtswiu/rBgAAAACcN9NCd15enrZt26aYmBi79TExMdq4cWOV6khKSlL//v3VunVru/WnTp1S69at1bJlSw0ePFjbt2+vsX5fVNq1K75v28NDBRYPFVo8ZHh6Sh4exeuvuKK2ewgAAAAA9Zpprww7evSoCgsLFRgYaLc+MDBQWVlZle6fmZmpzz//XO+++67d+g4dOig5OVlXXXWVcnJyNHv2bPXq1Us7duxQu3LeLZ2bm6vc3Fzb55ycnPMYkZuKi9O5HpFaGD9ZLbMPa9DgSHk9NIbADQAAAAA1wPT3dFvK3DNsGIbDOmeSk5N1ySWX6Pbbb7dbHxkZqcjISNvnXr16qVu3bpozZ45ef/11p3UlJiZq6tSp1e/8RcK44grNuCFOkvSfaQPl5c3r2wEAAACgJph2ebm/v788PT0dZrUPHz7sMPtdlmEYWrBggWJjY+Xt7V1hWQ8PD1177bVKT08vt0xCQoKys7Nty/79+6s+EAAAAAAAzpNpodvb21sRERFKSUmxW5+SkqLo6OgK912/fr327Nmj+Co8yMswDKWlpSk4OLjcMj4+PvLz87NbAAAAAAAwm6nXEU+aNEmxsbHq3r27oqKiNH/+fO3bt09jx46VVDwDffDgQS1atMhuv6SkJPXs2VPh4eEOdU6dOlWRkZFq166dcnJy9PrrrystLU1vvPGGmUMBAAAAAKDaTA3dw4YN07FjxzRt2jRlZmYqPDxcK1eutD2NPDMz0+Gd3dnZ2Vq2bJlmz57ttM4TJ07ooYceUlZWlqxWq7p27aoNGzaoR48eZg4FAAAAAIBqsxiG4fQ1ze4sJydHVqtV2dnZdfZS8zN5Ber0/BeSih9u1sjEh5u5si0AAAAAcAdVzZWm3dMNAAAAAMDFjtANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYxPTQ/eabbyosLEy+vr6KiIjQ119/XW7ZdevWyWKxOCz//e9/7cotW7ZMnTp1ko+Pjzp16qTly5ebPQwAAAAAAKrN1NC9dOlSTZgwQc8++6y2b9+u3r17a9CgQdq3b1+F++3evVuZmZm2pV27drZtqampGjZsmGJjY7Vjxw7FxsZq6NCh2rx5s5lDAQAAAACg2kwN3TNnzlR8fLxGjx6tjh07atasWQoNDdVbb71V4X4BAQEKCgqyLZ6enrZts2bN0oABA5SQkKAOHTooISFB/fr106xZs8wcCgAAAAAA1WZa6M7Ly9O2bdsUExNjtz4mJkYbN26scN+uXbsqODhY/fr109q1a+22paamOtQ5cODACuvMzc1VTk6O3QIAAAAAgNlMC91Hjx5VYWGhAgMD7dYHBgYqKyvL6T7BwcGaP3++li1bpg8//FDt27dXv379tGHDBluZrKysatUpSYmJibJarbYlNDT0AkYGAAAAAEDVNDC7AYvFYvfZMAyHdSXat2+v9u3b2z5HRUVp//79evXVV3X99defV52SlJCQoEmTJtk+5+TkELwBAAAAAKYzbabb399fnp6eDjPQhw8fdpiprkhkZKTS09Ntn4OCgqpdp4+Pj/z8/OwWAAAAAADMZlro9vb2VkREhFJSUuzWp6SkKDo6usr1bN++XcHBwbbPUVFRDnV++eWX1aoTAAAAAABXMPXy8kmTJik2Nlbdu3dXVFSU5s+fr3379mns2LGSii/7PnjwoBYtWiSp+Mnkbdq0UefOnZWXl6d//etfWrZsmZYtW2ar8/HHH9f111+v6dOn67bbbtPHH3+s1atX65tvvjFzKAAAAAAAVJupoXvYsGE6duyYpk2bpszMTIWHh2vlypVq3bq1JCkzM9Pund15eXl68skndfDgQTVs2FCdO3fWZ599pptvvtlWJjo6Wu+9956ee+45TZ48WW3bttXSpUvVs2dPM4cCAAAAAEC1WQzDMGq7E66Wk5Mjq9Wq7OzsOnt/95m8AnV6/gtJ0n+mDVQjb/POj7iyLQAAAABwB1XNlabd0w0AAAAAwMWO0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJTA/db775psLCwuTr66uIiAh9/fXX5Zb98MMPNWDAALVo0UJ+fn6KiorSF198YVcmOTlZFovFYTl37pzZQwEAAAAAoFpMDd1Lly7VhAkT9Oyzz2r79u3q3bu3Bg0apH379jktv2HDBg0YMEArV67Utm3bdOONN2rIkCHavn27XTk/Pz9lZmbaLb6+vmYOBQAAAACAamtgZuUzZ85UfHy8Ro8eLUmaNWuWvvjiC7311ltKTEx0KD9r1iy7zy+99JI+/vhjffLJJ+ratattvcViUVBQkJldBwAAAADggpk2052Xl6dt27YpJibGbn1MTIw2btxYpTqKiop08uRJNWvWzG79qVOn1Lp1a7Vs2VKDBw92mAkHAAAAAKAuMC10Hz16VIWFhQoMDLRbHxgYqKysrCrV8dprr+n06dMaOnSobV2HDh2UnJysFStWaMmSJfL19VWvXr2Unp5ebj25ubnKycmxWwAAAAAAMJupl5dLxZeCl2YYhsM6Z5YsWaIpU6bo448/VkBAgG19ZGSkIiMjbZ979eqlbt26ac6cOXr99ded1pWYmKipU6ee5wgAAAAAADg/ps10+/v7y9PT02FW+/Dhww6z32UtXbpU8fHx+ve//63+/ftXWNbDw0PXXntthTPdCQkJys7Oti379++v+kAAAAAAADhPpoVub29vRUREKCUlxW59SkqKoqOjy91vyZIliouL07vvvqtbbrml0nYMw1BaWpqCg4PLLePj4yM/Pz+7BQAAAAAAs5l6efmkSZMUGxur7t27KyoqSvPnz9e+ffs0duxYScUz0AcPHtSiRYskFQfuBx54QLNnz1ZkZKRtlrxhw4ayWq2SpKlTpyoyMlLt2rVTTk6OXn/9daWlpemNN94wcygAAAAAAFSbqaF72LBhOnbsmKZNm6bMzEyFh4dr5cqVat26tSQpMzPT7p3df//731VQUKBHH31Ujz76qG39yJEjlZycLEk6ceKEHnroIWVlZclqtapr167asGGDevToYeZQAAAAAACoNothGEZtd8LVcnJyZLValZ2dXWcvNT+TV6BOz38hSfrPtIFq5G3e+RFXtgUAAAAA7qCquZJ0BfeWni4tWCBlZEht2kijRknt2tV2rwAAAABcJAjdcF8LF0qjR0sWi2QYxX/OmCElJUlxcbXdOwAAAAAXAdOeXg7UqvT04sBdVCQVFtr/GR8v7dlT2z0EAAAAcBEgdMM9LVhQPLPtjMVSPNsNAAAAACYjdMM9ZWQUX1LujGEUbwcAAAAAkxG64Z7atKl4prtNG1f2BgAAAMBFitAN9zRqlGQYcjrXbRjF93XXtPR0KSFBuvfe4j/T02u+DQAAAAD1CqEb7qldu+L7tj08VGDxUKHFQ4anp+ThUbz+iitqtr2FC6UOHaRXXpH+/e/iPzt0kJKTa7YdAAAAAPUKoRvuKy5O537Yqfk979RnHa5TwaQnpN27a/51YTwpHQAAAEA5eE833JpxxRWacUOcJOk/0wbKy9uEQ74qT0pPTKz5dgEAAADUeYRu4ELV1pPS09OLA39GRvGD4UaNKr6sHgAAAECdQegGLlRtPCl94cLiS9otluJgb7FIM2YUz6rX9OXzAAAAAM4b93QDF8rVT0rnHnIAAACg3iB0AxfK1U9Kr8o95DWN16EBAAAA54XLy4GaEBencz0itTB+slpmH9agwZHyemhMzQduyfX3kNfGpezcrw4AAAA3QegGaohLnpQuufYe8tKXspcVHy9dd5057zznfnUAAAC4CS4vB+obV95D7upL2blfHQAAAG6G0A3UN668h9zVl7LXxv3qAAAAgIm4vByoj1x1D7mrX4dWW+88BwAAAExC6Ibr8ZCsGuGSe8hHjZJmzJAhySF6m/E6tNp45znHIwAAAExE6IZr8ZCs+qXkUvb4eBUYxcHbw8Mii2GY8zo0V4d8Vx+PBHwAAICLDvd0w3V4SFb9FBencz/s1Pyed+qzDtepYNIT0u7d5oRSV96v7urjceFCqUMH6ZVXpH//u/jPDh2k5OSabQcAAAB1CqEbrsNDsuqtkkvZH7v1z8r/64vmvH+8hKtCviuPR0441az0dCkhQbr33uI/09Nru0cAAADl4vJyuA4PyUIVueR+dVcej1UJ+ImJNdeeO6uNW1S4LQAAAFwAQjdcpzYekgWUx5XH48VwwskVwbT0FQNlxcdL111X81dhuPNzKDiZAACAS3B5OVxn1CjJMOQ0epjxkCygIq48Ht39hJOr7ld39S0q7nxbgLs/Y8CVtyC48+0O7jw2AHAhZrrhOq5+EjZQEVcej65+KnsJd5t9dvUVA7VxW4C7/c7KtuuKmXVXXp3gzldCuPPYUHO4YgaoEkI3XCsuTud6RGph/GS1zD6sQYMj5fXQGAI3aoerjsfaOOHkqv9hdmUwdfUVA64O+e74OyvhqrG58oRCbZ28cIXaGBvhrf7htZtAlXF5OVzOpU/CBirhsuPRla9ec+Vl0a4Mpq6+RcWVId9df2eSa8fmylsQ3PmNHK4em7vf7uCOeO0mUC2EbgBwEZcFfFf+D7Mrg6kr3+MuuTbku+vvTHLt2Fx5QqG2HpDoivusXTk2d352Qm1xxTHCazeBauHycjeV+tOxKpc9l19o+/vmn3+Tr5enGV2qlfbctS1Xt8fY6ldb7X7creaG4Xj/uCTDMHTsx91Kr8Z3REV8+9+ha2bMkGR/v7pR3JjS+t+pczXUliSp9xBZVm7Ud1NeVcvsw+pyXRf9NixW59pcLtVkO5Lk0UwtEmerbcLjdrcFyDD0U+JsHbFcWmNtuvPvzJVja2UNVIjF4rwti0WHrIHaVw/bKtHig3fV9pkJDpfz/pQ4W0fuurfG2nHpz/G1Nypu69W52vf/JtdIW6X5ZvykgPfflc/Bfcq9rJUO3zNC59q0rfF2XM1Vx4hL/11zjFy0oto2r+0u1BjTZ7rffPNNhYWFydfXVxEREfr6668rLL9+/XpFRETI19dXl19+uebNm+dQZtmyZerUqZN8fHzUqVMnLV++3KzuA0C9k3tZqwpnIHIva1VjbZ1r01Y/Jc52Ovv8U+Ls4jBcw862DrNdMfDzpOdMaaPEkbvu1eaVG223BewbNU5pX26q0f95ldz7d+bKsR2+Z4TTqxNKTigcvue+etmWVBwA2j4zQZaiIlkKC21/qqhIbRMel2/GzzXWlivH5nNwX4Wz6j4H99VYWyVafPCuromJUsg/5qr5yo8V8o+5uiYmSi2WLanxtlzJlceIK/9dXwzHiG/GT2r1yl/UbsIYtXrlL/LN+MmUdlB7TA3dS5cu1YQJE/Tss89q+/bt6t27twYNGqR9+5z/49i7d69uvvlm9e7dW9u3b9czzzyjxx57TMuWLbOVSU1N1bBhwxQbG6sdO3YoNjZWQ4cO1ebNm80cCgDUG64OA64KprXFFSHfnX9nrhybK08ouPrkRcD77zoNORZJslgU8P7iGmvLlWNzZXiTXBtMXc2Vx4gr/127+zHi7gGfEwrFTA3dM2fOVHx8vEaPHq2OHTtq1qxZCg0N1VtvveW0/Lx589SqVSvNmjVLHTt21OjRozVq1Ci9+uqrtjKzZs3SgAEDlJCQoA4dOighIUH9+vXTrFmzzBwKANQb7j777I7c+Xfm6rG58oSCK9ty9Wyfq8bm6hNOrgymJVwVOlx5jLjy37U7HyPuHvDd9aqS82HaPd15eXnatm2bnn76abv1MTEx2rhxo9N9UlNTFRMTY7du4MCBSkpKUn5+vry8vJSamqqJEyc6lDmv0H36tORp7r2p5y2vQA3zzhX//fRpKb96vyqPM6erXja/0NaWx5nT8jD5fl1Xtueubbm6PcZW/9o6NuhWHWvfWTtenKPLcg7rqqir9Nvd9yq3VZtqfT9Ulbv+HF3Znjv/zlw9tnMtAjQnargkad793eTr5WlKO65sKy8wuMLZvrzA4Bpv1xVjywsI0s9TZ+jyF/7s8OyEn6fOUF5AYI226fPL3oqD6S97a7Q9/4/+rcunPGV3j3XI23P089QZOnrbPTXWjuT6Y8RV/67d+RgJXPJOuQHfsFgUuCRZ+x9/qkba8vllry3gl2ZIapvwuE51vlq5rdrUSFs11t5p3xrrj2lOV+1YsBhGeUfVhTl06JAuu+wy/d///Z+io6Nt61966SW988472r17t8M+V155peLi4vTMM8/Y1m3cuFG9evXSoUOHFBwcLG9vbyUnJ2vEiBG2Mu+++64efPBB5ebmOu1Lbm6u3bacnByFhoYqW5JfDYwVAAAAAHBxyZFklZSdnS0/v/KTpekPUrOUOXtjGIbDusrKl11f3ToTExNltVptS2hoaJX7DwAAAADA+TLt8nJ/f395enoqKyvLbv3hw4cVGBjodJ+goCCn5Rs0aKDmzZtXWKa8OiUpISFBkyZNsn0umenWoUNSBWck6rPNP9fwq3MAAECt89mXoYDlS+V98IDyLmupw3cMq9FLQi8G/h+/r8tf+LP9a7V+v1S5Ji/5bvvnP6n5l586XF4rSYaHh47FDNZPM+bUWHslOEYunKuOEZ9f9qrLbX2loiLHVzh6eGjHirU19rsLnT1dwcl/L75nvAzD01OZcQ/X2KXsNdVez8vrwSvDcnKkkJBKi5kWur29vRUREaGUlBTdcccdtvUpKSm67bbbnO4TFRWlTz75xG7dl19+qe7du8vLy8tWJiUlxe6+7i+//NLuEvayfHx85OPj47ihcePixQ0VNTpX210AAAA17GyHzvolYVptd6NeO3xvnHKirlfA+4tLvYP5vpp/XV7rsIqfut06TEWNav7/QzlGLpyrjpGzHcP1U+JstU14XEaZgP9T4myd7dC5xtr69d6RCl44T4bkGPANQ7/eG1ejx2ONtFcfcpqTkwrOmHZPt1T8yrDY2FjNmzdPUVFRmj9/vt5++23t3LlTrVu3VkJCgg4ePKhFixZJKn5lWHh4uB5++GGNGTNGqampGjt2rJYsWaK77rpLUvE93tdff71efPFF3Xbbbfr444/13HPP6ZtvvlHPnj2r1K+cnBxZrdZKr72vz1J/YqYbAACgtvhm/KRrYqLKncVM+3ITb3qAJMk342fTA74ktVi2RG0THneYwf8pcbYpb1240Pai2tb9me6q5kpTQ7ckvfnmm5oxY4YyMzMVHh6uv/3tb7r++uslSXFxccrIyNC6dets5devX6+JEydq586dCgkJ0VNPPaWxY8fa1fnBBx/oueee088//6y2bdvqxRdf1J133lnlPhG6AQAAYDZXhxygMq4K+DXRHqG7nrsYQjcAAADqgD17pKQkKSNDatNGio+XrriitnsFoAZUNVeadk83AAAAcNG74gopMbG2ewGgFpn+yjAAAAAAAC5WhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMYmroPn78uGJjY2W1WmW1WhUbG6sTJ06UWz4/P19PPfWUrrrqKjVu3FghISF64IEHdOjQIbtyffr0kcVisVuGDx9u5lAAAAAAAKg2U0P3iBEjlJaWplWrVmnVqlVKS0tTbGxsueXPnDmj7777TpMnT9Z3332nDz/8UP/73/906623OpQdM2aMMjMzbcvf//53M4cCAAAAAEC1NTCr4l27dmnVqlXatGmTevbsKUl6++23FRUVpd27d6t9+/YO+1itVqWkpNitmzNnjnr06KF9+/apVatWtvWNGjVSUFCQWd0HAAAAAOCCmTbTnZqaKqvVagvckhQZGSmr1aqNGzdWuZ7s7GxZLBZdcskldusXL14sf39/de7cWU8++aROnjxZbh25ubnKycmxWwAAAAAAMJtpM91ZWVkKCAhwWB8QEKCsrKwq1XHu3Dk9/fTTGjFihPz8/Gzr77vvPoWFhSkoKEg//vijEhIStGPHDodZ8hKJiYmaOnXq+Q0EAAAAAIDzVO2Z7ilTpjg8xKzssnXrVkmSxWJx2N8wDKfry8rPz9fw4cNVVFSkN998027bmDFj1L9/f4WHh2v48OH64IMPtHr1an333XdO60pISFB2drZt2b9/f3WHDQAAAABAtVV7pnv8+PGVPim8TZs2+v777/Xrr786bDty5IgCAwMr3D8/P19Dhw7V3r179dVXX9nNcjvTrVs3eXl5KT09Xd26dXPY7uPjIx8fnwrrAAAAAACgplU7dPv7+8vf37/SclFRUcrOzta3336rHj16SJI2b96s7OxsRUdHl7tfSeBOT0/X2rVr1bx580rb2rlzp/Lz8xUcHFz1gQAAAAAAYDLTHqTWsWNH3XTTTRozZow2bdqkTZs2acyYMRo8eLDdk8s7dOig5cuXS5IKCgp09913a+vWrVq8eLEKCwuVlZWlrKws5eXlSZJ++uknTZs2TVu3blVGRoZWrlype+65R127dlWvXr3MGg4AAAAAANVm6nu6Fy9erKuuukoxMTGKiYnR1VdfrX/+8592ZXbv3q3s7GxJ0oEDB7RixQodOHBA11xzjYKDg21LyRPPvb29tWbNGg0cOFDt27fXY489ppiYGK1evVqenp5mDgcAAAAAgGqxGIZh1HYnXC0nJ0dWq1XZ2dmV3i8OAAAAAEBZVc2Vps50AwAAAABwMSN0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJTQ/fx48cVGxsrq9Uqq9Wq2NhYnThxosJ94uLiZLFY7JbIyEi7Mrm5ufrTn/4kf39/NW7cWLfeeqsOHDhg4kgAAAAAAKg+U0P3iBEjlJaWplWrVmnVqlVKS0tTbGxspfvddNNNyszMtC0rV6602z5hwgQtX75c7733nr755hudOnVKgwcPVmFhoVlDAQAAAACg2hqYVfGuXbu0atUqbdq0ST179pQkvf32/2/v7mOjqvI/jn/mV9oRtB3BoZ2ZWEpdEdRWIkWgdVcRcKARVDBAxSU1YhW1mqYSFY3SNStVjBoT3DWiK4gYiA9VNzysRaGrKVWKIg8xFRUsRoYqwkxBnCKe/YMw+Q1TOi3L6cza9yuZhHvuubffS06+yYcz3C5SYWGhmpqaNHjw4JNe63Q65fF42j0XDAb10ksvaenSpRo3bpwk6dVXX1V2drbWrl2r8ePHn/6HAQAAAADgFFjb6d6wYYNcLlckcEvSqFGj5HK5VF9f3+G169evV2Zmpi644AKVlZWppaUlcm7Tpk06cuSI/H5/ZMzn8ykvLy/ufQEAAAAA6E7WdroDgYAyMzNjxjMzMxUIBE56XXFxsaZOnaqcnBzt3LlTDz/8sMaMGaNNmzbJ6XQqEAgoLS1Nffv2jbouKyvrpPcNh8MKh8OR41AodIpPBQAAAABA53V5p7uqqirmRWcnfhobGyVJDocj5npjTLvjx02fPl3XXHON8vLyNGnSJK1evVpffvmlVq5c2WFdHd23uro68jI3l8ul7OzsLjwxAAAAAACnpss73eXl5SopKelwzsCBA7Vlyxbt3bs35twPP/ygrKysTv88r9ernJwc7dixQ5Lk8XjU1tam/fv3R+12t7S0qKioqN17zJ07V5WVlZHjUChE8AYAAAAAWNfl0O12u+V2u+POKywsVDAY1CeffKIRI0ZIkj7++GMFg8GThuP27Nu3T7t375bX65UkFRQUKDU1VbW1tZo2bZokac+ePdq2bZsWLFjQ7j2cTqecTmenfyYAAAAAAKeDtRepXXjhhZowYYLKysrU0NCghoYGlZWVaeLEiVFvLh8yZIhqamokSQcPHtScOXO0YcMG7dq1S+vXr9ekSZPkdrs1efJkSZLL5dKsWbN077336v3339dnn32mP//5z8rPz4+8zRwAAAAAgGRg7UVqkrRs2TLdc889kTeNX3vttVq4cGHUnKamJgWDQUlSSkqKtm7dqldeeUUHDhyQ1+vVVVddpRUrVig9PT1yzTPPPKNevXpp2rRpOnz4sMaOHavFixcrJSXF5uMAAAAAANAlDmOMSXQR3S0UCsnlcikYDCojIyPR5QAAAAAA/sd0Nlda+3o5AAAAAAA9HaEbAAAAAABLCN0AAAAAAFhC6AYAAAAAwBJCNwAAAAAAlhC6AQAAAACwhNANAAAAAIAlhG4AAAAAACwhdAMAAAAAYAmhGwAAAAAASwjdAAAAAABYQugGAAAAAMASQjcAAAAAAJYQugEAAAAAsITQDQAAAACAJYRuAAAAAAAsIXQDAAAAAGAJoRsAAAAAAEsI3QAAAAAAWELoBgAAAADAEkI3AAAAAACWELoBAAAAALCE0A0AAAAAgCWEbgAAAAAALCF0AwAAAABgCaEbAAAAAABLCN0AAAAAAFhC6AYAAAAAwBJCNwAAAAAAlhC6AQAAAACwhNANAAAAAIAlVkP3/v37NXPmTLlcLrlcLs2cOVMHDhzo8BqHw9Hu58knn4zMGT16dMz5kpISm48CAAAAAECX9bJ58xkzZui7777TmjVrJEm33XabZs6cqX/+858nvWbPnj1Rx6tXr9asWbN0ww03RI2XlZXp0UcfjRz37t37NFYOAAAAAMB/z1ro/uKLL7RmzRo1NDRo5MiRkqRFixapsLBQTU1NGjx4cLvXeTyeqON33nlHV111lc4777yo8T59+sTMBQAAAAAgmVj7evmGDRvkcrkigVuSRo0aJZfLpfr6+k7dY+/evVq5cqVmzZoVc27ZsmVyu926+OKLNWfOHLW2tp622gEAAAAAOB2s7XQHAgFlZmbGjGdmZioQCHTqHkuWLFF6erqmTJkSNX7TTTcpNzdXHo9H27Zt09y5c/X555+rtra23fuEw2GFw+HIcSgU6sKTAAAAAABwarq8011VVXXSl50d/zQ2Nko69lK0Exlj2h1vzz/+8Q/ddNNNOuOMM6LGy8rKNG7cOOXl5amkpERvvPGG1q5dq08//bTd+1RXV0de5uZyuZSdnd3FpwYAAAAAoOu6vNNdXl4e903hAwcO1JYtW7R3796Ycz/88IOysrLi/pwPP/xQTU1NWrFiRdy5w4YNU2pqqnbs2KFhw4bFnJ87d64qKysjx6FQiOANAAAAALCuy6Hb7XbL7XbHnVdYWKhgMKhPPvlEI0aMkCR9/PHHCgaDKioqinv9Sy+9pIKCAg0dOjTu3O3bt+vIkSPyer3tnnc6nXI6nXHvAwAAAADA6WTtRWoXXnihJkyYoLKyMjU0NKihoUFlZWWaOHFi1JvLhwwZopqamqhrQ6GQXn/9dd16660x9/3666/16KOPqrGxUbt27dKqVas0depUXXrppbr88sttPQ4AAAAAAF1mLXRLx94wnp+fL7/fL7/fr0suuURLly6NmtPU1KRgMBg1tnz5chljdOONN8bcMy0tTe+//77Gjx+vwYMH65577pHf79fatWuVkpJi83EAAAAAAOgShzHGJLqI7hYKheRyuRQMBpWRkZHocgAAAAAA/2M6myut7nQDAAAAANCTEboBAAAAALCE0A0AAAAAgCWEbgAAAAAALCF0AwAAAABgCaEbAAAAAABLCN0AAAAAAFhC6AYAAAAAwBJCNwAAAAAAlhC6AQAAAACwhNANAAAAAIAlhG4AAAAAACwhdAMAAAAAYAmhGwAAAAAASwjdAAAAAABYQugGAAAAAMASQjcAAAAAAJYQugEAAAAAsITQDQAAAACAJYRuAAAAAAAsIXQDAAAAAGAJoRsAAAAAAEsI3QAAAAAAWELoBgAAAADAEkI3AAAAAACWELoBAAAAALCE0A0AAAAAgCWEbgAAAAAALCF0AwAAAABgCaEbAAAAAABLCN0AAAAAAFhiNXQ/9thjKioqUp8+fXT22Wd36hpjjKqqquTz+dS7d2+NHj1a27dvj5oTDod19913y+1268wzz9S1116r7777zsITAAAAAABw6qyG7ra2Nk2dOlV33HFHp69ZsGCBnn76aS1cuFAbN26Ux+PR1VdfrdbW1siciooK1dTUaPny5froo4908OBBTZw4UUePHrXxGAAAAAAAnBKHMcbY/iGLFy9WRUWFDhw40OE8Y4x8Pp8qKip0//33Szq2q52VlaUnnnhCt99+u4LBoPr376+lS5dq+vTpkqTvv/9e2dnZWrVqlcaPHx+3nlAoJJfLpWAwqIyMjP/6+QAAAAAAPUtnc2Wvbqwprp07dyoQCMjv90fGnE6nrrzyStXX1+v222/Xpk2bdOTIkag5Pp9PeXl5qq+vbzd0h8NhhcPhyHEwGJR07C8JAAAAAICuOp4n4+1jJ1XoDgQCkqSsrKyo8aysLH377beROWlpaerbt2/MnOPXn6i6ulp/+ctfYsazs7NPR9kAAAAAgB6qtbVVLpfrpOe7HLqrqqraDbD/38aNGzV8+PCu3jrC4XBEHRtjYsZO1NGcuXPnqrKyMnL822+/6aefftI555wT976JFAqFlJ2drd27d/M1eLSLNYJ4WCPoCOsD8bBGEA9rBPH8nteIMUatra3y+Xwdzuty6C4vL1dJSUmHcwYOHNjV20qSPB6PpGO72V6vNzLe0tIS2f32eDxqa2vT/v37o3a7W1paVFRU1O59nU6nnE5n1Fhn36aeDDIyMn53CxSnF2sE8bBG0BHWB+JhjSAe1gji+b2ukY52uI/rcuh2u91yu92nVFA8ubm58ng8qq2t1aWXXirp2BvQ6+rq9MQTT0iSCgoKlJqaqtraWk2bNk2StGfPHm3btk0LFiywUhcAAAAAAKfC6v/pbm5u1k8//aTm5mYdPXpUmzdvliSdf/75OuussyRJQ4YMUXV1tSZPniyHw6GKigrNnz9fgwYN0qBBgzR//nz16dNHM2bMkHTsXxJmzZqle++9V+ecc4769eunOXPmKD8/X+PGjbP5OAAAAAAAdInV0P3II49oyZIlkePju9fr1q3T6NGjJUlNTU2Rt4lL0n333afDhw/rzjvv1P79+zVy5Ei99957Sk9Pj8x55pln1KtXL02bNk2HDx/W2LFjtXjxYqWkpNh8nG7ndDo1b968mK/GA8exRhAPawQdYX0gHtYI4mGNIB7WSDf9nm4AAAAAAHqi/0t0AQAAAAAA/F4RugEAAAAAsITQDQAAAACAJYRuAAAAAAAsIXQnqb/97W/Kzc3VGWecoYKCAn344YeJLglJoqqqSg6HI+rj8XgSXRYS6N///rcmTZokn88nh8Oht99+O+q8MUZVVVXy+Xzq3bu3Ro8ere3btyemWCREvDVy8803x/SVUaNGJaZYdLvq6mpddtllSk9PV2Zmpq6//no1NTVFzaGP9GydWSP0kZ7t73//uy655BJlZGQoIyNDhYWFWr16deR8T+8hhO4ktGLFClVUVOihhx7SZ599pj/96U8qLi5Wc3NzoktDkrj44ou1Z8+eyGfr1q2JLgkJdOjQIQ0dOlQLFy5s9/yCBQv09NNPa+HChdq4caM8Ho+uvvpqtba2dnOlSJR4a0SSJkyYENVXVq1a1Y0VIpHq6up01113qaGhQbW1tfr111/l9/t16NChyBz6SM/WmTUi0Ud6snPPPVePP/64Ghsb1djYqDFjxui6666LBOse30MMks6IESPM7Nmzo8aGDBliHnjggQRVhGQyb948M3To0ESXgSQlydTU1ESOf/vtN+PxeMzjjz8eGfvll1+My+Uyzz//fAIqRKKduEaMMaa0tNRcd911CakHyaelpcVIMnV1dcYY+ghinbhGjKGPIFbfvn3Niy++SA8xxrDTnWTa2tq0adMm+f3+qHG/36/6+voEVYVks2PHDvl8PuXm5qqkpETffPNNoktCktq5c6cCgUBUT3E6nbryyivpKYiyfv16ZWZm6oILLlBZWZlaWloSXRISJBgMSpL69esniT6CWCeukePoI5Cko0ePavny5Tp06JAKCwvpIeLr5Unnxx9/1NGjR5WVlRU1npWVpUAgkKCqkExGjhypV155Rf/617+0aNEiBQIBFRUVad++fYkuDUnoeN+gp6AjxcXFWrZsmT744AM99dRT2rhxo8aMGaNwOJzo0tDNjDGqrKzUH//4R+Xl5UmijyBae2tEoo9A2rp1q8466yw5nU7Nnj1bNTU1uuiii+ghknolugC0z+FwRB0bY2LG0DMVFxdH/pyfn6/CwkL94Q9/0JIlS1RZWZnAypDM6CnoyPTp0yN/zsvL0/Dhw5WTk6OVK1dqypQpCawM3a28vFxbtmzRRx99FHOOPgLp5GuEPoLBgwdr8+bNOnDggN58802Vlpaqrq4ucr4n9xB2upOM2+1WSkpKzL/6tLS0xPzrECBJZ555pvLz87Vjx45El4IkdPzN9vQUdIXX61VOTg59pYe5++679e6772rdunU699xzI+P0ERx3sjXSHvpIz5OWlqbzzz9fw4cPV3V1tYYOHapnn32WHiJCd9JJS0tTQUGBamtro8Zra2tVVFSUoKqQzMLhsL744gt5vd5El4IklJubK4/HE9VT2traVFdXR0/BSe3bt0+7d++mr/QQxhiVl5frrbfe0gcffKDc3Nyo8/QRxFsj7aGPwBijcDhMDxFfL09KlZWVmjlzpoYPH67CwkK98MILam5u1uzZsxNdGpLAnDlzNGnSJA0YMEAtLS3661//qlAopNLS0kSXhgQ5ePCgvvrqq8jxzp07tXnzZvXr108DBgxQRUWF5s+fr0GDBmnQoEGaP3+++vTpoxkzZiSwanSnjtZIv379VFVVpRtuuEFer1e7du3Sgw8+KLfbrcmTJyewanSXu+66S6+99preeecdpaenR3ajXC6XevfuLYfDQR/p4eKtkYMHD9JHergHH3xQxcXFys7OVmtrq5YvX67169drzZo19BCJXxmWrJ577jmTk5Nj0tLSzLBhw6J+JQN6tunTpxuv12tSU1ONz+czU6ZMMdu3b090WUigdevWGUkxn9LSUmPMsV/3M2/ePOPxeIzT6TRXXHGF2bp1a2KLRrfqaI38/PPPxu/3m/79+5vU1FQzYMAAU1paapqbmxNdNrpJe2tDknn55Zcjc+gjPVu8NUIfwS233BLJLv379zdjx4417733XuR8T+8hDmOM6c6QDwAAAABAT8H/6QYAAAAAwBJCNwAAAAAAlhC6AQAAAACwhNANAAAAAIAlhG4AAAAAACwhdAMAAAAAYAmhGwAAAAAASwjdAAAAAABYQugGAAAAAMASQjcAAAAAAJYQugEAAAAAsITQDQAAAACAJf8BKXAAFJcXyZgAAAAASUVORK5CYII=",
|
137
|
+
"text/plain": [
|
138
|
+
"<Figure size 1000x800 with 2 Axes>"
|
139
|
+
]
|
140
|
+
},
|
141
|
+
"metadata": {},
|
142
|
+
"output_type": "display_data"
|
143
|
+
}
|
144
|
+
],
|
145
|
+
"source": [
|
146
|
+
"fig, axs = plt.subplots(2, 1, figsize = (10,8))\n",
|
147
|
+
"plot_acf(df['Temp'], lags = 30, ax = axs[0], title = 'Autocorrelation (ACF)', color = 'green')\n",
|
148
|
+
"plot_pacf(df['Temp'], lags = 30, ax = axs[1], title = 'Partial Autocorrelation (PACF)', color = 'red')\n",
|
149
|
+
"plt.tight_layout()\n",
|
150
|
+
"plt.show()"
|
151
|
+
]
|
152
|
+
}
|
153
|
+
],
|
154
|
+
"metadata": {
|
155
|
+
"kernelspec": {
|
156
|
+
"display_name": "Python 3 (ipykernel)",
|
157
|
+
"language": "python",
|
158
|
+
"name": "python3"
|
159
|
+
},
|
160
|
+
"language_info": {
|
161
|
+
"codemirror_mode": {
|
162
|
+
"name": "ipython",
|
163
|
+
"version": 3
|
164
|
+
},
|
165
|
+
"file_extension": ".py",
|
166
|
+
"mimetype": "text/x-python",
|
167
|
+
"name": "python",
|
168
|
+
"nbconvert_exporter": "python",
|
169
|
+
"pygments_lexer": "ipython3",
|
170
|
+
"version": "3.11.7"
|
171
|
+
}
|
172
|
+
},
|
173
|
+
"nbformat": 4,
|
174
|
+
"nbformat_minor": 5
|
175
|
+
}
|