noshot 0.1.7__py3-none-any.whl → 0.1.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (239) hide show
  1. noshot/data/ML TS XAI/ML/1. PCA - EDA/PCA-EDA.ipynb +207 -0
  2. noshot/data/ML TS XAI/ML/1. PCA - EDA/balance-scale.csv +626 -0
  3. noshot/data/ML TS XAI/ML/1. PCA - EDA/input.txt +625 -0
  4. noshot/data/ML TS XAI/ML/2. KNN Classifier/KNN.ipynb +287 -0
  5. noshot/data/ML TS XAI/ML/2. KNN Classifier/balance-scale.csv +626 -0
  6. noshot/data/ML TS XAI/ML/2. KNN Classifier/input.txt +625 -0
  7. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/LDA.ipynb +83 -0
  8. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/balance-scale.csv +626 -0
  9. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/input.txt +625 -0
  10. noshot/data/ML TS XAI/ML/4. Linear Regression/Linear-Regression.ipynb +117 -0
  11. noshot/data/ML TS XAI/ML/4. Linear Regression/machine-data.csv +210 -0
  12. noshot/data/ML TS XAI/ML/5. Logistic Regression/Logistic-Regression.ipynb +137 -0
  13. noshot/data/ML TS XAI/ML/5. Logistic Regression/wine-dataset.csv +179 -0
  14. noshot/data/ML TS XAI/ML/6. Bayesian Classifier/Bayesian.ipynb +129 -0
  15. noshot/data/ML TS XAI/ML/6. Bayesian Classifier/wine-dataset.csv +179 -0
  16. noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/Handling TS Data.ipynb +784 -0
  17. noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/raw_sales.csv +29581 -0
  18. noshot/data/ML TS XAI/TS/2. Feature Engineering/Feature Engineering-.ipynb +1445 -0
  19. noshot/data/ML TS XAI/TS/3. Temporal Relationships/Exploring Temporal Relationships.ipynb +603 -0
  20. noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/Up-Down-Sampling.ipynb +721 -0
  21. noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/shampoo_sales.csv +37 -0
  22. noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/Stationarity-Trend-Seasonality.ipynb +392 -0
  23. noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-min-temperatures.csv +3651 -0
  24. noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-total-female-births.csv +366 -0
  25. noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/ACF-PACF.ipynb +175 -0
  26. noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/daily-min-temperatures.csv +3651 -0
  27. {noshot-0.1.7.dist-info → noshot-0.1.9.dist-info}/METADATA +2 -2
  28. noshot-0.1.9.dist-info/RECORD +35 -0
  29. noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(A) Breadth First Search.ipynb +0 -112
  30. noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(B) Depth First Search.ipynb +0 -111
  31. noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(C) Uniform Cost Search.ipynb +0 -134
  32. noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(D) Depth Limites Search.ipynb +0 -115
  33. noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(E) Iterative Deepening DFS.ipynb +0 -123
  34. noshot/data/ML TS XAI/AIDS/10. ANOVA/2_ANOVA.csv +0 -769
  35. noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA (Repeated Measure).ipynb +0 -126
  36. noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA.ipynb +0 -134
  37. noshot/data/ML TS XAI/AIDS/10. ANOVA/Sample 1 Way ANOVA Test.ipynb +0 -119
  38. noshot/data/ML TS XAI/AIDS/10. ANOVA/Two Way ANOVA.ipynb +0 -138
  39. noshot/data/ML TS XAI/AIDS/10. ANOVA/reaction_time.csv +0 -5
  40. noshot/data/ML TS XAI/AIDS/10. ANOVA/sample_data.csv +0 -16
  41. noshot/data/ML TS XAI/AIDS/10. ANOVA/sleep_deprivation.csv +0 -4
  42. noshot/data/ML TS XAI/AIDS/11. Linear Regression/3_Linear.csv +0 -4802
  43. noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression LAB.ipynb +0 -113
  44. noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression New- sklearn.ipynb +0 -118
  45. noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression.ipynb +0 -148
  46. noshot/data/ML TS XAI/AIDS/11. Linear Regression/house_rate.csv +0 -22
  47. noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression New- sklearn.ipynb +0 -128
  48. noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression.ipynb +0 -145
  49. noshot/data/ML TS XAI/AIDS/12. Logistic Regression/default.csv +0 -1001
  50. noshot/data/ML TS XAI/AIDS/12. Logistic Regression/hours_scores_records.csv +0 -101
  51. noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(A) Astar.ipynb +0 -256
  52. noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(B) IDAstar.ipynb +0 -157
  53. noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(C) SMAstar.ipynb +0 -178
  54. noshot/data/ML TS XAI/AIDS/3. Genetic Algorithm/Genetic.ipynb +0 -95
  55. noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Simulated Annealing.ipynb +0 -74
  56. noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Sudoku Simulated Annealing.ipynb +0 -103
  57. noshot/data/ML TS XAI/AIDS/5. Alpha Beta Pruning/AlphaBetaPruning.ipynb +0 -182
  58. noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(A) CSP House Allocation.ipynb +0 -120
  59. noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(B) CSP Map Coloring.ipynb +0 -125
  60. noshot/data/ML TS XAI/AIDS/7. Random Sampling/Random Sampling.ipynb +0 -73
  61. noshot/data/ML TS XAI/AIDS/7. Random Sampling/height_weight_bmi.csv +0 -8389
  62. noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test Hash Function.ipynb +0 -141
  63. noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test.ipynb +0 -151
  64. noshot/data/ML TS XAI/AIDS/8. Z Test/height_weight_bmi.csv +0 -8389
  65. noshot/data/ML TS XAI/AIDS/9. T Test/1_heart.csv +0 -304
  66. noshot/data/ML TS XAI/AIDS/9. T Test/Independent T Test.ipynb +0 -119
  67. noshot/data/ML TS XAI/AIDS/9. T Test/Paired T Test.ipynb +0 -118
  68. noshot/data/ML TS XAI/AIDS/9. T Test/T Test Hash Function.ipynb +0 -142
  69. noshot/data/ML TS XAI/AIDS/9. T Test/T Test.ipynb +0 -158
  70. noshot/data/ML TS XAI/AIDS/9. T Test/height_weight_bmi.csv +0 -8389
  71. noshot/data/ML TS XAI/AIDS/9. T Test/iq_test.csv +0 -0
  72. noshot/data/ML TS XAI/AIDS/Others (AllinOne)/All In One.ipynb +0 -4581
  73. noshot/data/ML TS XAI/CN/1. Chat Application/chat.java +0 -81
  74. noshot/data/ML TS XAI/CN/1. Chat Application/output.png +0 -0
  75. noshot/data/ML TS XAI/CN/1. Chat Application/procedure.png +0 -0
  76. noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/LAN.tcl +0 -65
  77. noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/analysis.awk +0 -44
  78. noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/output.png +0 -0
  79. noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/procedure.png +0 -0
  80. noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/complexdcf.tcl +0 -229
  81. noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/output.png +0 -0
  82. noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/procedure.png +0 -0
  83. noshot/data/ML TS XAI/CN/2. File Transfer/file_to_send.txt +0 -2
  84. noshot/data/ML TS XAI/CN/2. File Transfer/filetransfer.java +0 -119
  85. noshot/data/ML TS XAI/CN/2. File Transfer/output.png +0 -0
  86. noshot/data/ML TS XAI/CN/2. File Transfer/procedure.png +0 -0
  87. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Client.class +0 -0
  88. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerImpl.class +0 -0
  89. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerIntf.class +0 -0
  90. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Server.class +0 -0
  91. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/output.png +0 -0
  92. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/procedure.png +0 -0
  93. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/rmi.java +0 -56
  94. noshot/data/ML TS XAI/CN/4. Wired Network/output.png +0 -0
  95. noshot/data/ML TS XAI/CN/4. Wired Network/procedure.png +0 -0
  96. noshot/data/ML TS XAI/CN/4. Wired Network/wired.awk +0 -25
  97. noshot/data/ML TS XAI/CN/4. Wired Network/wired.tcl +0 -81
  98. noshot/data/ML TS XAI/CN/5. Wireless Network/output.png +0 -0
  99. noshot/data/ML TS XAI/CN/5. Wireless Network/procedure.png +0 -0
  100. noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.awk +0 -27
  101. noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.tcl +0 -153
  102. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/analysis.awk +0 -27
  103. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/output.png +0 -0
  104. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/sack.tcl +0 -86
  105. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/vegas.tcl +0 -86
  106. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/analysis.awk +0 -28
  107. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/output.png +0 -0
  108. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/reno.tcl +0 -78
  109. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/tahoe.tcl +0 -79
  110. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/analysis.awk +0 -27
  111. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/flow.tcl +0 -163
  112. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/output.png +0 -0
  113. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/procedure.png +0 -0
  114. noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/DV.tcl +0 -111
  115. noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/LS.tcl +0 -106
  116. noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/analysis.awk +0 -36
  117. noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/output.png +0 -0
  118. noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/procedure.png +0 -0
  119. noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/analysis.awk +0 -20
  120. noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/broadcast.tcl +0 -76
  121. noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/multicast.tcl +0 -103
  122. noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/output.png +0 -0
  123. noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/procedure.png +0 -0
  124. noshot/data/ML TS XAI/CN/9. DHCP/DHCP.java +0 -125
  125. noshot/data/ML TS XAI/CN/9. DHCP/output.png +0 -0
  126. noshot/data/ML TS XAI/CN/9. DHCP/procedure.png +0 -0
  127. noshot/data/ML TS XAI/NLP/NLP 1/1-Prereqs.py +0 -18
  128. noshot/data/ML TS XAI/NLP/NLP 1/2-Chi2test.py +0 -83
  129. noshot/data/ML TS XAI/NLP/NLP 1/2-T-test.py +0 -79
  130. noshot/data/ML TS XAI/NLP/NLP 1/3-WSD-nb.py +0 -53
  131. noshot/data/ML TS XAI/NLP/NLP 1/4-Hindle-Rooth.py +0 -53
  132. noshot/data/ML TS XAI/NLP/NLP 1/5-HMM-Trellis.py +0 -82
  133. noshot/data/ML TS XAI/NLP/NLP 1/6-HMM-Viterbi.py +0 -16
  134. noshot/data/ML TS XAI/NLP/NLP 1/7-PCFG-parsetree.py +0 -15
  135. noshot/data/ML TS XAI/NLP/NLP 1/Chi2test.ipynb +0 -285
  136. noshot/data/ML TS XAI/NLP/NLP 1/Hindle-Rooth.ipynb +0 -179
  137. noshot/data/ML TS XAI/NLP/NLP 1/Lab 10 - Text generator using LSTM.ipynb +0 -1461
  138. noshot/data/ML TS XAI/NLP/NLP 1/Lab 11 NMT.ipynb +0 -2307
  139. noshot/data/ML TS XAI/NLP/NLP 1/PCFG.ipynb +0 -134
  140. noshot/data/ML TS XAI/NLP/NLP 1/Prereqs.ipynb +0 -131
  141. noshot/data/ML TS XAI/NLP/NLP 1/T test.ipynb +0 -252
  142. noshot/data/ML TS XAI/NLP/NLP 1/TFIDF BOW.ipynb +0 -171
  143. noshot/data/ML TS XAI/NLP/NLP 1/Trellis.ipynb +0 -244
  144. noshot/data/ML TS XAI/NLP/NLP 1/WSD.ipynb +0 -645
  145. noshot/data/ML TS XAI/NLP/NLP 1/Word2Vec.ipynb +0 -93
  146. noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/tokenizer.ipynb +0 -370
  147. noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/training_tokenizer.txt +0 -6
  148. noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/exp0.ipynb +0 -274
  149. noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/lab2.ipynb +0 -905
  150. noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/test.txt +0 -1
  151. noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/tokenizing.ipynb +0 -272
  152. noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/collocation.ipynb +0 -332
  153. noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/lab3.ipynb +0 -549
  154. noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/nlp.txt +0 -1
  155. noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/Lab4-NLP-Exp-2.ipynb +0 -817
  156. noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/collocation.ipynb +0 -332
  157. noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/NLP-Lab-5-Exp3.ipynb +0 -231
  158. noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/word-sense-disambiguation.ipynb +0 -507
  159. noshot/data/ML TS XAI/NLP/NLP 2/Lab06(additional-exercise)/lab6.ipynb +0 -134
  160. noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP Exp 4.ipynb +0 -255
  161. noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP_Exp_5.ipynb +0 -159
  162. noshot/data/ML TS XAI/NLP/NLP 2/Lab08(PCFG)/PCFG.ipynb +0 -282
  163. noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/Lab 9 - MLP classifier.ipynb +0 -670
  164. noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/MLP-alternative-code.ipynb +0 -613
  165. noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/hindle-rooth-algorithm.ipynb +0 -74
  166. noshot/data/ML TS XAI/NLP/NLP 2/Lab10(LSTM)/Lab_10_Text_generator_using_LSTM.ipynb +0 -480
  167. noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Machine-translation.ipynb +0 -445
  168. noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Viterbi-PCFG.ipynb +0 -105
  169. noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/corpora_tools.py +0 -87
  170. noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/data_utils.py +0 -11
  171. noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/train_translator.py +0 -83
  172. noshot/data/ML TS XAI/NLP/NLP 2/Lab12(Information-Extraction)/Information_Extraction.ipynb +0 -201
  173. noshot/data/ML TS XAI/NLP/NLP 3/Backtrack-without-Verbitri.ipynb +0 -185
  174. noshot/data/ML TS XAI/NLP/NLP 3/Backward-Procedure.ipynb +0 -597
  175. noshot/data/ML TS XAI/NLP/NLP 3/Bag_of.ipynb +0 -1422
  176. noshot/data/ML TS XAI/NLP/NLP 3/CYK-algorithm.ipynb +0 -1067
  177. noshot/data/ML TS XAI/NLP/NLP 3/Forward-Procedure.ipynb +0 -477
  178. noshot/data/ML TS XAI/NLP/NLP 3/LSTM.ipynb +0 -1290
  179. noshot/data/ML TS XAI/NLP/NLP 3/Lab 10 - Text generator using LSTM.ipynb +0 -1461
  180. noshot/data/ML TS XAI/NLP/NLP 3/Lab 11 NMT.ipynb +0 -2307
  181. noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-4.ipynb +0 -216
  182. noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-5.ipynb +0 -216
  183. noshot/data/ML TS XAI/NLP/NLP 3/abc.txt +0 -6
  184. noshot/data/ML TS XAI/NLP/NLP 3/ex-1-nltk.ipynb +0 -711
  185. noshot/data/ML TS XAI/NLP/NLP 3/ex-2-nlp.ipynb +0 -267
  186. noshot/data/ML TS XAI/NLP/NLP 3/exp8&9.ipynb +0 -305
  187. noshot/data/ML TS XAI/NLP/NLP 3/hind.ipynb +0 -287
  188. noshot/data/ML TS XAI/NLP/NLP 3/lab66.ipynb +0 -752
  189. noshot/data/ML TS XAI/NLP/NLP 3/leb_3.ipynb +0 -612
  190. noshot/data/ML TS XAI/NLP/NLP 3/naive_bayes_classifier.pkl +0 -0
  191. noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_1.ipynb +0 -3008
  192. noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_2.ipynb +0 -3095
  193. noshot/data/ML TS XAI/NLP/NLP 3/nlplab-9.ipynb +0 -295
  194. noshot/data/ML TS XAI/NLP/NLP 3/nltk-ex-4.ipynb +0 -506
  195. noshot/data/ML TS XAI/NLP/NLP 3/text1.txt +0 -48
  196. noshot/data/ML TS XAI/NLP/NLP 3/text2.txt +0 -8
  197. noshot/data/ML TS XAI/NLP/NLP 3/text3.txt +0 -48
  198. noshot/data/ML TS XAI/NLP/NLP 3/translation-rnn.ipynb +0 -812
  199. noshot/data/ML TS XAI/NLP/NLP 3/word2vector.ipynb +0 -173
  200. noshot/data/ML TS XAI/NLP/NLP 4/Backward Procedure Algorithm.ipynb +0 -179
  201. noshot/data/ML TS XAI/NLP/NLP 4/Chi Square Collocation.ipynb +0 -208
  202. noshot/data/ML TS XAI/NLP/NLP 4/Collocation (T test).ipynb +0 -188
  203. noshot/data/ML TS XAI/NLP/NLP 4/Experiment 1.ipynb +0 -437
  204. noshot/data/ML TS XAI/NLP/NLP 4/Forward Procedure Algorithm.ipynb +0 -132
  205. noshot/data/ML TS XAI/NLP/NLP 4/Hindle Rooth.ipynb +0 -414
  206. noshot/data/ML TS XAI/NLP/NLP 4/MachineTranslation.ipynb +0 -368
  207. noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using MLPClassifier.ipynb +0 -86
  208. noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using Tensorflow.ipynb +0 -112
  209. noshot/data/ML TS XAI/NLP/NLP 4/PCFG Inside Probability.ipynb +0 -451
  210. noshot/data/ML TS XAI/NLP/NLP 4/Text Generation using LSTM.ipynb +0 -297
  211. noshot/data/ML TS XAI/NLP/NLP 4/Viterbi.ipynb +0 -310
  212. noshot/data/ML TS XAI/NLP/NLP 4/Word Sense Disambiguation.ipynb +0 -335
  213. noshot/data/ML TS XAI/NLP/NLP 5/10.Text Generation using LSTM.ipynb +0 -316
  214. noshot/data/ML TS XAI/NLP/NLP 5/11.Machine Translation.ipynb +0 -868
  215. noshot/data/ML TS XAI/NLP/NLP 5/2.T and Chi2 Test.ipynb +0 -204
  216. noshot/data/ML TS XAI/NLP/NLP 5/3.Word Sense Diambiguation.ipynb +0 -234
  217. noshot/data/ML TS XAI/NLP/NLP 5/4.Hinddle and Rooth.ipynb +0 -128
  218. noshot/data/ML TS XAI/NLP/NLP 5/5.Forward and Backward.ipynb +0 -149
  219. noshot/data/ML TS XAI/NLP/NLP 5/6.Viterbi.ipynb +0 -111
  220. noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG Parse Tree.ipynb +0 -134
  221. noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG using cyk.ipynb +0 -101
  222. noshot/data/ML TS XAI/NLP/NLP 5/8.Bag of words and TF-IDF.ipynb +0 -310
  223. noshot/data/ML TS XAI/NLP/NLP 5/9.Word2Vector.ipynb +0 -78
  224. noshot/data/ML TS XAI/NLP/NLP 5/NLP ALL In One.ipynb +0 -2619
  225. noshot/data/ML TS XAI/NLP/NLP 5/sample1.txt +0 -15
  226. noshot/data/ML TS XAI/NLP/NLP 5/sample2.txt +0 -4
  227. noshot/data/ML TS XAI/NLP/NLP 5/word2vec_model.bin +0 -0
  228. noshot/data/ML TS XAI/NLP/NLP 6/1. Tokenize, Tagging, NER, Parse Tree.ipynb +0 -312
  229. noshot/data/ML TS XAI/NLP/NLP 6/2. T Test and Chi2 Test.ipynb +0 -185
  230. noshot/data/ML TS XAI/NLP/NLP 6/3. Naive Bayes WSD.ipynb +0 -199
  231. noshot/data/ML TS XAI/NLP/NLP 6/4. Hinddle and Rooth.ipynb +0 -151
  232. noshot/data/ML TS XAI/NLP/NLP 6/5 and 6 FWD, BWD, Viterbi.ipynb +0 -164
  233. noshot/data/ML TS XAI/NLP/NLP 6/7. PCFG using CYK.ipynb +0 -383
  234. noshot/data/ML TS XAI/NLP/NLP 6/8. BOW and TF-IDF.ipynb +0 -252
  235. noshot/data/ML TS XAI/Ubuntu CN Lab.iso +0 -0
  236. noshot-0.1.7.dist-info/RECORD +0 -216
  237. {noshot-0.1.7.dist-info → noshot-0.1.9.dist-info}/LICENSE.txt +0 -0
  238. {noshot-0.1.7.dist-info → noshot-0.1.9.dist-info}/WHEEL +0 -0
  239. {noshot-0.1.7.dist-info → noshot-0.1.9.dist-info}/top_level.txt +0 -0
@@ -1,1461 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": 1,
6
- "id": "911ebe00",
7
- "metadata": {},
8
- "outputs": [
9
- {
10
- "name": "stdout",
11
- "output_type": "stream",
12
- "text": [
13
- "Requirement already satisfied: keras_preprocessing in c:\\users\\sastra\\anaconda3\\lib\\site-packages (1.1.2)\n",
14
- "Requirement already satisfied: numpy>=1.9.1 in c:\\users\\sastra\\anaconda3\\lib\\site-packages (from keras_preprocessing) (1.26.1)\n",
15
- "Requirement already satisfied: six>=1.9.0 in c:\\users\\sastra\\anaconda3\\lib\\site-packages (from keras_preprocessing) (1.16.0)\n"
16
- ]
17
- }
18
- ],
19
- "source": [
20
- "!pip install keras_preprocessing"
21
- ]
22
- },
23
- {
24
- "cell_type": "code",
25
- "execution_count": 2,
26
- "id": "44eb2006",
27
- "metadata": {},
28
- "outputs": [],
29
- "source": [
30
- "from keras_preprocessing.sequence import pad_sequences"
31
- ]
32
- },
33
- {
34
- "cell_type": "code",
35
- "execution_count": 3,
36
- "id": "9187f050",
37
- "metadata": {},
38
- "outputs": [
39
- {
40
- "name": "stdout",
41
- "output_type": "stream",
42
- "text": [
43
- "Requirement already satisfied: keras in c:\\users\\sastra\\anaconda3\\lib\\site-packages (2.14.0)\n"
44
- ]
45
- }
46
- ],
47
- "source": [
48
- "!pip install keras"
49
- ]
50
- },
51
- {
52
- "cell_type": "code",
53
- "execution_count": 8,
54
- "id": "6e367928",
55
- "metadata": {},
56
- "outputs": [],
57
- "source": [
58
- "from keras.layers import Embedding, LSTM, Dense, Dropout\n",
59
- "import numpy as np\n",
60
- "import pandas as pd"
61
- ]
62
- },
63
- {
64
- "cell_type": "code",
65
- "execution_count": 9,
66
- "id": "06b9ff08",
67
- "metadata": {},
68
- "outputs": [],
69
- "source": [
70
- "from keras.preprocessing.text import Tokenizer"
71
- ]
72
- },
73
- {
74
- "cell_type": "code",
75
- "execution_count": 10,
76
- "id": "542a20b6",
77
- "metadata": {},
78
- "outputs": [],
79
- "source": [
80
- "from keras.callbacks import EarlyStopping"
81
- ]
82
- },
83
- {
84
- "cell_type": "code",
85
- "execution_count": 11,
86
- "id": "ded6c2aa",
87
- "metadata": {},
88
- "outputs": [],
89
- "source": [
90
- "from keras.models import Sequential"
91
- ]
92
- },
93
- {
94
- "cell_type": "code",
95
- "execution_count": 12,
96
- "id": "e64678ef",
97
- "metadata": {},
98
- "outputs": [],
99
- "source": [
100
- "import keras.utils as ku"
101
- ]
102
- },
103
- {
104
- "cell_type": "code",
105
- "execution_count": 13,
106
- "id": "8f37faf8",
107
- "metadata": {},
108
- "outputs": [
109
- {
110
- "name": "stdout",
111
- "output_type": "stream",
112
- "text": [
113
- "Requirement already satisfied: tensorflow in c:\\users\\sastra\\anaconda3\\lib\\site-packages (2.14.0)\n",
114
- "Requirement already satisfied: tensorflow-intel==2.14.0 in c:\\users\\sastra\\anaconda3\\lib\\site-packages (from tensorflow) (2.14.0)\n",
115
- "Requirement already satisfied: opt-einsum>=2.3.2 in c:\\users\\sastra\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.14.0->tensorflow) (3.3.0)\n",
116
- "Requirement already satisfied: h5py>=2.9.0 in c:\\users\\sastra\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.14.0->tensorflow) (3.7.0)\n",
117
- "Requirement already satisfied: numpy>=1.23.5 in c:\\users\\sastra\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.14.0->tensorflow) (1.26.1)\n",
118
- "Requirement already satisfied: tensorboard<2.15,>=2.14 in c:\\users\\sastra\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.14.0->tensorflow) (2.14.1)\n",
119
- "Requirement already satisfied: tensorflow-estimator<2.15,>=2.14.0 in c:\\users\\sastra\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.14.0->tensorflow) (2.14.0)\n",
120
- "Requirement already satisfied: gast!=0.5.0,!=0.5.1,!=0.5.2,>=0.2.1 in c:\\users\\sastra\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.14.0->tensorflow) (0.5.4)\n",
121
- "Requirement already satisfied: grpcio<2.0,>=1.24.3 in c:\\users\\sastra\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.14.0->tensorflow) (1.59.2)\n",
122
- "Requirement already satisfied: protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.20.3 in c:\\users\\sastra\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.14.0->tensorflow) (4.25.0)\n",
123
- "Requirement already satisfied: absl-py>=1.0.0 in c:\\users\\sastra\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.14.0->tensorflow) (2.0.0)\n",
124
- "Requirement already satisfied: ml-dtypes==0.2.0 in c:\\users\\sastra\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.14.0->tensorflow) (0.2.0)\n",
125
- "Requirement already satisfied: astunparse>=1.6.0 in c:\\users\\sastra\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.14.0->tensorflow) (1.6.3)\n",
126
- "Requirement already satisfied: six>=1.12.0 in c:\\users\\sastra\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.14.0->tensorflow) (1.16.0)\n",
127
- "Requirement already satisfied: tensorflow-io-gcs-filesystem>=0.23.1 in c:\\users\\sastra\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.14.0->tensorflow) (0.31.0)\n",
128
- "Requirement already satisfied: google-pasta>=0.1.1 in c:\\users\\sastra\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.14.0->tensorflow) (0.2.0)\n",
129
- "Requirement already satisfied: flatbuffers>=23.5.26 in c:\\users\\sastra\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.14.0->tensorflow) (23.5.26)\n",
130
- "Requirement already satisfied: termcolor>=1.1.0 in c:\\users\\sastra\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.14.0->tensorflow) (2.3.0)\n",
131
- "Requirement already satisfied: wrapt<1.15,>=1.11.0 in c:\\users\\sastra\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.14.0->tensorflow) (1.14.1)\n",
132
- "Requirement already satisfied: keras<2.15,>=2.14.0 in c:\\users\\sastra\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.14.0->tensorflow) (2.14.0)\n",
133
- "Requirement already satisfied: libclang>=13.0.0 in c:\\users\\sastra\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.14.0->tensorflow) (16.0.6)\n",
134
- "Requirement already satisfied: packaging in c:\\users\\sastra\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.14.0->tensorflow) (21.3)\n",
135
- "Requirement already satisfied: setuptools in c:\\users\\sastra\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.14.0->tensorflow) (63.4.1)\n",
136
- "Requirement already satisfied: typing-extensions>=3.6.6 in c:\\users\\sastra\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.14.0->tensorflow) (4.3.0)\n",
137
- "Requirement already satisfied: wheel<1.0,>=0.23.0 in c:\\users\\sastra\\anaconda3\\lib\\site-packages (from astunparse>=1.6.0->tensorflow-intel==2.14.0->tensorflow) (0.37.1)\n",
138
- "Requirement already satisfied: requests<3,>=2.21.0 in c:\\users\\sastra\\anaconda3\\lib\\site-packages (from tensorboard<2.15,>=2.14->tensorflow-intel==2.14.0->tensorflow) (2.28.1)\n",
139
- "Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in c:\\users\\sastra\\anaconda3\\lib\\site-packages (from tensorboard<2.15,>=2.14->tensorflow-intel==2.14.0->tensorflow) (0.7.2)\n",
140
- "Requirement already satisfied: google-auth-oauthlib<1.1,>=0.5 in c:\\users\\sastra\\anaconda3\\lib\\site-packages (from tensorboard<2.15,>=2.14->tensorflow-intel==2.14.0->tensorflow) (1.0.0)\n",
141
- "Requirement already satisfied: google-auth<3,>=1.6.3 in c:\\users\\sastra\\anaconda3\\lib\\site-packages (from tensorboard<2.15,>=2.14->tensorflow-intel==2.14.0->tensorflow) (2.23.4)\n",
142
- "Requirement already satisfied: werkzeug>=1.0.1 in c:\\users\\sastra\\anaconda3\\lib\\site-packages (from tensorboard<2.15,>=2.14->tensorflow-intel==2.14.0->tensorflow) (2.0.3)\n",
143
- "Requirement already satisfied: markdown>=2.6.8 in c:\\users\\sastra\\anaconda3\\lib\\site-packages (from tensorboard<2.15,>=2.14->tensorflow-intel==2.14.0->tensorflow) (3.3.4)\n",
144
- "Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in c:\\users\\sastra\\anaconda3\\lib\\site-packages (from packaging->tensorflow-intel==2.14.0->tensorflow) (3.0.9)\n",
145
- "Requirement already satisfied: pyasn1-modules>=0.2.1 in c:\\users\\sastra\\anaconda3\\lib\\site-packages (from google-auth<3,>=1.6.3->tensorboard<2.15,>=2.14->tensorflow-intel==2.14.0->tensorflow) (0.2.8)\n",
146
- "Requirement already satisfied: rsa<5,>=3.1.4 in c:\\users\\sastra\\anaconda3\\lib\\site-packages (from google-auth<3,>=1.6.3->tensorboard<2.15,>=2.14->tensorflow-intel==2.14.0->tensorflow) (4.9)\n",
147
- "Requirement already satisfied: cachetools<6.0,>=2.0.0 in c:\\users\\sastra\\anaconda3\\lib\\site-packages (from google-auth<3,>=1.6.3->tensorboard<2.15,>=2.14->tensorflow-intel==2.14.0->tensorflow) (5.3.2)\n",
148
- "Requirement already satisfied: requests-oauthlib>=0.7.0 in c:\\users\\sastra\\anaconda3\\lib\\site-packages (from google-auth-oauthlib<1.1,>=0.5->tensorboard<2.15,>=2.14->tensorflow-intel==2.14.0->tensorflow) (1.3.1)\n",
149
- "Requirement already satisfied: urllib3<1.27,>=1.21.1 in c:\\users\\sastra\\anaconda3\\lib\\site-packages (from requests<3,>=2.21.0->tensorboard<2.15,>=2.14->tensorflow-intel==2.14.0->tensorflow) (1.26.11)\n",
150
- "Requirement already satisfied: idna<4,>=2.5 in c:\\users\\sastra\\anaconda3\\lib\\site-packages (from requests<3,>=2.21.0->tensorboard<2.15,>=2.14->tensorflow-intel==2.14.0->tensorflow) (3.3)\n",
151
- "Requirement already satisfied: charset-normalizer<3,>=2 in c:\\users\\sastra\\anaconda3\\lib\\site-packages (from requests<3,>=2.21.0->tensorboard<2.15,>=2.14->tensorflow-intel==2.14.0->tensorflow) (2.0.4)\n",
152
- "Requirement already satisfied: certifi>=2017.4.17 in c:\\users\\sastra\\anaconda3\\lib\\site-packages (from requests<3,>=2.21.0->tensorboard<2.15,>=2.14->tensorflow-intel==2.14.0->tensorflow) (2022.12.7)\n",
153
- "Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in c:\\users\\sastra\\anaconda3\\lib\\site-packages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard<2.15,>=2.14->tensorflow-intel==2.14.0->tensorflow) (0.4.8)\n",
154
- "Requirement already satisfied: oauthlib>=3.0.0 in c:\\users\\sastra\\anaconda3\\lib\\site-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<1.1,>=0.5->tensorboard<2.15,>=2.14->tensorflow-intel==2.14.0->tensorflow) (3.2.2)\n"
155
- ]
156
- }
157
- ],
158
- "source": [
159
- "!pip install tensorflow"
160
- ]
161
- },
162
- {
163
- "cell_type": "code",
164
- "execution_count": 14,
165
- "id": "cf95c2eb",
166
- "metadata": {},
167
- "outputs": [],
168
- "source": [
169
- "import tensorflow\n",
170
- "tensorflow.random.set_seed(2)"
171
- ]
172
- },
173
- {
174
- "cell_type": "code",
175
- "execution_count": 15,
176
- "id": "b5d3520d",
177
- "metadata": {},
178
- "outputs": [],
179
- "source": [
180
- "import string, os "
181
- ]
182
- },
183
- {
184
- "cell_type": "code",
185
- "execution_count": 16,
186
- "id": "6ff84983",
187
- "metadata": {},
188
- "outputs": [],
189
- "source": [
190
- "import warnings\n",
191
- "warnings.filterwarnings(\"ignore\")\n",
192
- "warnings.simplefilter(action='ignore', category=FutureWarning)"
193
- ]
194
- },
195
- {
196
- "cell_type": "code",
197
- "execution_count": 17,
198
- "id": "c1475d1b",
199
- "metadata": {},
200
- "outputs": [
201
- {
202
- "data": {
203
- "text/plain": [
204
- "831"
205
- ]
206
- },
207
- "execution_count": 17,
208
- "metadata": {},
209
- "output_type": "execute_result"
210
- }
211
- ],
212
- "source": [
213
- "\n",
214
- "all_headlines = []\n",
215
- "article_df = pd.read_csv('ArticlesApril2017.csv')\n",
216
- "all_headlines.extend(list(article_df.headline.values))\n",
217
- "all_headlines = [h for h in all_headlines if h != \"Unknown\"]\n",
218
- "len(all_headlines)\n"
219
- ]
220
- },
221
- {
222
- "cell_type": "code",
223
- "execution_count": 18,
224
- "id": "e3530543",
225
- "metadata": {},
226
- "outputs": [
227
- {
228
- "data": {
229
- "text/plain": [
230
- "['Finding an Expansive View of a Forgotten People in Niger',\n",
231
- " 'And Now, the Dreaded Trump Curse',\n",
232
- " 'Venezuela’s Descent Into Dictatorship',\n",
233
- " 'Stain Permeates Basketball Blue Blood',\n",
234
- " 'Taking Things for Granted',\n",
235
- " 'The Caged Beast Awakens',\n",
236
- " 'An Ever-Unfolding Story',\n",
237
- " 'O’Reilly Thrives as Settlements Add Up',\n",
238
- " 'Mouse Infestation',\n",
239
- " 'Divide in G.O.P. Now Threatens Trump Tax Plan',\n",
240
- " 'Variety Puzzle: Acrostic',\n",
241
- " 'They Can Hit a Ball 400 Feet. But Play Catch? That’s Tricky.',\n",
242
- " 'In Trump Country, Shock at Trump Budget Cuts',\n",
243
- " 'Why Is This Hate Different From All Other Hate?',\n",
244
- " 'Pick Your Favorite Ethical Offender',\n",
245
- " 'My Son’s Growing Black Pride',\n",
246
- " 'Jerks and the Start-Ups They Ruin',\n",
247
- " 'Trump Needs a Brain',\n",
248
- " 'Manhood in the Age of Trump',\n",
249
- " 'The Value of a Black College',\n",
250
- " 'Initial Description',\n",
251
- " 'Rough Estimates',\n",
252
- " 'El Pasatiempo Nacional',\n",
253
- " 'Cooling Off on a Hot Day at Yankee Stadium',\n",
254
- " 'Trump’s Staff Mixed Politics and Paydays',\n",
255
- " 'A Virtuoso Rebuilding Act Requires Everyone in Tune',\n",
256
- " '‘Homeland,’ Season 6, Episode 11: Is Quinn Just a Natural Killer?',\n",
257
- " '‘Big Little Lies’ and the Art of Empathy',\n",
258
- " 'Upending a Whodunit',\n",
259
- " '‘Feud: Bette and Joan’ Episode 5: Taking the Stage',\n",
260
- " '‘Billions’ Season 2, Episode 7: Greed Is Good. Except When It’s Not.',\n",
261
- " 'What’s Going On in This Picture? | April 3, 2017',\n",
262
- " 'Have You Ever Felt Pressured by Family or Others in Making an Important Decision About Your Future?',\n",
263
- " 'A Cornerstone of Peace at Risk',\n",
264
- " 'Trump Is Wimping Out on Trade',\n",
265
- " 'The Dwindling Odds of Coincidence',\n",
266
- " 'What Was Lenin Thinking?',\n",
267
- " 'Mitch McConnell’s Trigger Finger',\n",
268
- " 'Ad From North Korea Yields Nuclear Clues',\n",
269
- " 'Good News for Older Mothers',\n",
270
- " 'Does Birth Control Cause Depression?',\n",
271
- " 'Turning Negative Thinkers Into Positive Ones',\n",
272
- " 'New York Today: A Belated Budget',\n",
273
- " 'Middlebury, My Divided Campus',\n",
274
- " 'Democrats’ Vow to Bar Gorsuch Sets Up a Clash',\n",
275
- " 'H-1B Visa Applications Pour In by the Truckload',\n",
276
- " 'In Amplified World, Critics Take Aim at Referees',\n",
277
- " 'A Revered Milwaukee Restaurant, Karl Ratzsch, Says Goodbye',\n",
278
- " 'N.H.L. Says Its Players Will Skip 2018 Olympics',\n",
279
- " 'In the Company of a Classic Nasty Woman',\n",
280
- " '22 Ways to Teach and Learn About Poetry With The New York Times',\n",
281
- " 'In Search of King Solomon’s Pantry',\n",
282
- " 'Going Back to Move Forward',\n",
283
- " 'A Peek Into the White House Swamp',\n",
284
- " 'Disney Character',\n",
285
- " 'Living the Quirky Dream',\n",
286
- " 'Justice Dept. to Re-examine Police Accords',\n",
287
- " 'This Year, Their Year',\n",
288
- " 'Latest Health Proposal Weakens Coverage for Pre-existing Conditions',\n",
289
- " 'Losing Things',\n",
290
- " 'Let’s Go for a Win on Opioids',\n",
291
- " 'Florida’s Vengeful Governor',\n",
292
- " 'How to End the Politicization of the Courts',\n",
293
- " 'When Dr. King Came Out Against Vietnam',\n",
294
- " 'Britain’s trains don’t run on time. Blame capitalism.',\n",
295
- " 'Questions for: ‘No License Plates Here: Using Art to Transcend Prison Walls’',\n",
296
- " 'Dry Spell',\n",
297
- " 'Are There Subjects That Should Be Off-Limits to Artists, or to Certain Artists in Particular?',\n",
298
- " '‘That Is Great Television’',\n",
299
- " 'Thinking In Code',\n",
300
- " 'How Gorsuch’s Influence Could Be Greater Than His Vote',\n",
301
- " 'New York Today: How to Ease a Hangover',\n",
302
- " 'Trump’s gifts to China',\n",
303
- " 'At Penn Station, Rail Mishap Spurs Large and Lasting Headache',\n",
304
- " 'Chemical Attack on Syrians Ignites World’s Outrage',\n",
305
- " 'Adventure Is Still on Babbo’s Menu',\n",
306
- " 'Swimming in the Fast Lane',\n",
307
- " 'A National Civics Exam',\n",
308
- " 'Obama Adviser Is Back in the Political Cross Hairs',\n",
309
- " 'The Hippies Have Won',\n",
310
- " 'Check This Box if You’re a Good Person',\n",
311
- " 'With Couscous, a Chef’s Patience Pays Off',\n",
312
- " 'Three Peas and a Grain, Playing Well Together',\n",
313
- " 'How Is Fox News Like the Eagles?',\n",
314
- " 'Tired of All the ‘Hamilton’ Talk',\n",
315
- " 'The Supreme Court as Partisan Tool',\n",
316
- " '2 Picks for Education Dept. Raise Fears on Civil Rights',\n",
317
- " 'For Trump, a Focus on U.S. Interests and a Disdain for Moralizing',\n",
318
- " 'At the Center of the Universe',\n",
319
- " '‘The Americans’ Season 5, Episode 5 Recap: Whole Lotta Shakin’',\n",
320
- " 'The Badger and the Cow',\n",
321
- " 'Jared Kushner, Man of Steel',\n",
322
- " 'A How-to Book for Wielding Civic Power',\n",
323
- " 'In Search of a Good Emperor',\n",
324
- " 'Trump’s Real-World Syria Lesson',\n",
325
- " 'Questions for: ‘SpaceX Launches a Satellite With a Partly Used Rocket’',\n",
326
- " 'Ben Sasse Thinks Biden Would’ve Won',\n",
327
- " 'What Is Your Earliest Memory?',\n",
328
- " 'The Secularist',\n",
329
- " 'Is It O.K. That Our Friends Are Constantly Suing People?',\n",
330
- " 'The Diva Departs',\n",
331
- " 'It Takes a Suburb',\n",
332
- " 'Democratic Turnout, Low in Off-Year Races, Appears on the Rise',\n",
333
- " 'How to Be Mindful When You Are Angry',\n",
334
- " 'Lessons From Mellow Mice',\n",
335
- " 'Ask Well; Is Chewing Gum Good for Toddlers? Or Anyone?',\n",
336
- " 'New York Today: Another Thorny Commute',\n",
337
- " 'Our Eighth Annual Found Poem Student Contest',\n",
338
- " 'U.S. Women’s Soccer Team Wins More, Not Equal, Pay',\n",
339
- " 'Is There Really a Security Rationale for Banning Laptops on Planes?',\n",
340
- " 'Seeking the Truths Locked Inside a Child Soldier',\n",
341
- " 'Pepsi Drops Ad Accused of Trivializing Protesters',\n",
342
- " 'Eleven Madison Park Tops List of World’s 50 Best Restaurants',\n",
343
- " 'Bannon Removed From Committee on U.S. Security',\n",
344
- " 'The Hawk Can Soar',\n",
345
- " 'Trump Suggests Bigger U.S. Role in Syria Conflict',\n",
346
- " 'Trump Cuts Cast Doubt on Infrastructure',\n",
347
- " 'Groups Seek Court’s Aid in Banning a Pesticide',\n",
348
- " 'The Lobbying Was Fierce (and Tasty)',\n",
349
- " 'Passing Moe',\n",
350
- " 'Mr. Trump’s Most Important Meeting',\n",
351
- " 'As Latest Health Plan Dies, Republicans Can’t Agree on a Culprit',\n",
352
- " 'A Fine Romance? Yes, and a Gay History Tour',\n",
353
- " 'Playbook Symbols',\n",
354
- " 'Serving Ham on Soignée Silk',\n",
355
- " 'Fashion Has You Covered',\n",
356
- " 'It Only Takes a Small Army to Equal Arnie',\n",
357
- " 'The Role of Public Broadcasting',\n",
358
- " 'What Have You Learned From a Younger Person — and What Have You Taught An Older Person?',\n",
359
- " 'How I Angered My Readers, Again',\n",
360
- " 'Creeping Toward Crisis',\n",
361
- " 'The Great Mistake in the Great War',\n",
362
- " 'Trump Bets the House',\n",
363
- " 'The Messy State of U.S.-China Ties: What Trump Can Do',\n",
364
- " 'Questions for: ‘Haley Says U.S. May ‘Take Our Own Action’ on Syrian Chemical Attack’',\n",
365
- " 'In the Shadow of a Fairy Tale',\n",
366
- " 'Republicans Gut Filibuster Rule to Lift Gorsuch',\n",
367
- " 'Berliner Fernsehturm',\n",
368
- " 'Improving On the Original',\n",
369
- " 'Reader Stories',\n",
370
- " 'Independence Days',\n",
371
- " 'Is Snooping on Teenagers Ever O.K.?',\n",
372
- " 'New York Today: The City and the Great War',\n",
373
- " 'To Train a Donkey, Find a Zebra',\n",
374
- " 'Facing Scrutiny, House Intelligence Chief Leaves Russia Inquiry',\n",
375
- " 'Heart of the Amazon',\n",
376
- " 'When ‘Mrs.’ Became ‘Ms.’',\n",
377
- " 'Recruiting Assistants a Top Job for Ewing',\n",
378
- " 'Dieting: Yo-Yo Diets and Heart Risk',\n",
379
- " 'Heart: Race as a Heart Health Factor',\n",
380
- " 'Mixing Drinks and a Political Message',\n",
381
- " 'Simple Taiwanese Food From a Doting Mama',\n",
382
- " 'Don Rickles, Comedy’s Equal Opportunity Offender, Dies at 90',\n",
383
- " 'New Beaujolais, but Not Nouveau',\n",
384
- " 'U.S. Launches Missiles Into Syria',\n",
385
- " 'To Feel Really American, Try Some Velveeta',\n",
386
- " 'Fighting Eviction, a Gardener Turns to Organic Industry Giants for Help',\n",
387
- " 'Vaccines: Moms’ Shot Protects Newborns',\n",
388
- " 'Without Rikers Island, Learning to Love the Jail Next Door',\n",
389
- " 'Fingers Crossed Across Generations',\n",
390
- " 'What Do Donald Trump, Bill O’Reilly and Roger Ailes Have in Common?',\n",
391
- " 'Downsizing Mr. Bannon',\n",
392
- " 'Rock Music',\n",
393
- " 'Sing a Song of Face Creams',\n",
394
- " 'After the Missiles, We Need Smart Diplomacy on Syria',\n",
395
- " 'Youth, Crowds, Goals: Germany Aims to Keep It That Way',\n",
396
- " 'The Soul of a … Corporation',\n",
397
- " 'The Coming Incompetence Crisis',\n",
398
- " 'The Bad, the Worse and The Ugly',\n",
399
- " 'Optimists and Pessimists',\n",
400
- " 'Should More Student Journalists Have Independent Editorial Control?',\n",
401
- " 'The Ghost at the Bar',\n",
402
- " 'Making a Living on Airbnb',\n",
403
- " 'Borrowers Bewildered',\n",
404
- " 'Unemployment Falls, but Feeble Job Growth Tempers Optimism',\n",
405
- " 'Friday Mailbag: Senate Votes and Museum Drama',\n",
406
- " 'Teaching With: ‘Animated Life: Mary Leakey’',\n",
407
- " 'What a Muppet With Autism Means to My Family',\n",
408
- " 'Do Preschool Teachers Really Need to Be College Graduates?',\n",
409
- " 'No Longer Citi Field’s Alpha Dog, Harvey Still Has Bite',\n",
410
- " 'New Mexico Outlaws School ‘Lunch Shaming’',\n",
411
- " 'Top Economic Indicator? Why It Isn’t Job Growth',\n",
412
- " 'The Riddle of Trump’s Syria Attack',\n",
413
- " 'Strike by Trump on Syria Air Base Angers Russians',\n",
414
- " 'Court Nominee Is Confirmed After Bruising Yearlong Fight',\n",
415
- " 'A Disquieting Silence',\n",
416
- " 'Near-Zero Interest Rates: Get Used to Them',\n",
417
- " 'A Slice of Ambrosia (and That’s Just the Filling)',\n",
418
- " 'I Survived a Sarin Gas Attack',\n",
419
- " 'The First Televised War',\n",
420
- " 'After the Airstrikes, What’s Next?',\n",
421
- " 'Romance, Sarcasm, Math and Language',\n",
422
- " 'Who Can Put an End to Those Endless Tunes and Endless Fumes?',\n",
423
- " 'Share PTA Aid? Some Parents Would Rather Split Up District',\n",
424
- " 'Election Left Partisan Divide Over Economy',\n",
425
- " 'Variety Puzzle: Marching Bands',\n",
426
- " 'U.S. Strike on Syria Fuels Uncertainty on the Ground',\n",
427
- " 'Clinton, Free to Speak Her Mind',\n",
428
- " 'The Passion of Southern Christians',\n",
429
- " 'Up Against the Wall',\n",
430
- " 'What Happened to Who?',\n",
431
- " 'All the President’s Generals',\n",
432
- " 'The Myth of Main Street',\n",
433
- " 'Against Job Interviews',\n",
434
- " 'Offbeat Approach to Covering Sports ',\n",
435
- " 'Having Nothing On',\n",
436
- " 'Getting the Canary to Sing',\n",
437
- " 'Tillerson Halts Any Thawing of Russia Ties',\n",
438
- " 'Words of Self-Empowerment',\n",
439
- " 'Claiming an Odyssey’s Reward',\n",
440
- " 'Finding a Familiar Signature',\n",
441
- " 'Suits Say Lender Duped Students to Fuel Growth',\n",
442
- " 'Penn Station Tie-Ups Depend on a Knot of Agencies for Help',\n",
443
- " 'Same Old Sergio Delights Crowd With New Script',\n",
444
- " '‘Billions’ Season 2, Episode 8: New Money, Old Rules',\n",
445
- " '‘Feud: Bette and Joan’ Episode 6 Recap: Midnight Descending',\n",
446
- " 'A Spring Break for The Learning Network',\n",
447
- " '‘Homeland,’ Season 6, Episode 12: In the Finale, Carrie Deals With Death and Betrayal',\n",
448
- " 'Was Bo Diddley a Buddha?',\n",
449
- " 'The Gig Economy’s False Promise',\n",
450
- " 'Publicity Stunts Aren’t Policy',\n",
451
- " 'The Road to Trump’s War',\n",
452
- " 'War as Political Weapon',\n",
453
- " 'Alabama Governor Resigns and Pleads Guilty Amid a Sex Scandal',\n",
454
- " 'California Moves to Add Protections for Immigrants; Other States Follow',\n",
455
- " 'He Led the Yankees to 4 Titles. Now, Can He Revive Them?',\n",
456
- " 'Not Just Fox: Why Women Often Don’t Report Sexual Harassment at Work',\n",
457
- " 'Our Parents’ Heart Health Mistakes',\n",
458
- " 'Rude Doctors, Rude Nurses, Rude Patients',\n",
459
- " 'New York Today: Passover, and Our Everyday Plagues',\n",
460
- " 'How Many Pills Are Too Many?',\n",
461
- " 'The Greatest Family on Earth',\n",
462
- " 'Wells Fargo Says 2 Ex-Leaders Owe $75 Million More',\n",
463
- " 'Saved Patients, Furious Families',\n",
464
- " 'Learning Russian From ‘Boris Badenov’',\n",
465
- " 'High Drama About the High Court',\n",
466
- " 'In Highlight for President, Gorsuch Is Sworn In as Court’s 113th Justice',\n",
467
- " 'Deployment of U.S. Carrier Masks a Lack of Better Options on North Korea',\n",
468
- " 'Man Is Dragged From a Full Jet, Stirring a Furor',\n",
469
- " 'Times Wins 3 Pulitzers; Service Award Is Shared',\n",
470
- " 'U.S., Canada and Mexico Bid Jointly for ’26 World Cup',\n",
471
- " 'A Leaderboard With European Panache',\n",
472
- " 'A Better Dollar Coffee',\n",
473
- " '‘The Good Fight’ Season 1, Episode 9: Blinding Privilege',\n",
474
- " 'The Next Messi? A Young Argentine Turns Heads',\n",
475
- " 'The Dalai Lama’s Blessing',\n",
476
- " 'Not One Syria Policy but Many',\n",
477
- " 'Many Voices on Syria Policy, but One Is Silent',\n",
478
- " 'Cubs’ Crowning Moment, Delayed, of Course',\n",
479
- " 'Founded in 1945',\n",
480
- " '‘Better Call Saul’ Season 3 Premiere: Danglin’ Jimmy',\n",
481
- " 'Tackling Diabetes With Video Chats',\n",
482
- " 'New York’s Transit Apocalypse',\n",
483
- " 'This Age of Wonkery',\n",
484
- " 'Is Putin Testing Trump?',\n",
485
- " 'The Baby Boomer War',\n",
486
- " 'Guess Who’s for a Carbon Tax Now',\n",
487
- " 'From ‘Ballplayer,’ by Chipper Jones',\n",
488
- " 'Level Up',\n",
489
- " 'The Corrections',\n",
490
- " 'Six Trade-Offs in the Riddle of Tax Reform',\n",
491
- " 'New York Today: Taxpayer Questions, C.P.A. Answers',\n",
492
- " 'À La Française in Harlem',\n",
493
- " 'Mark Hawthorne, a Man of Few Words Except, ‘I Hate You’',\n",
494
- " 'Where a Chicken’s Parts Are Greater Than the Sum',\n",
495
- " 'White House Says Russia Is Engaged in Covering Up Syrians’ Chemical Attack',\n",
496
- " 'Simple, Hot and Abundant',\n",
497
- " 'Q&A: How Democrats Can Stop Being Perceived as the Abortion Party',\n",
498
- " 'A Crossword as a Second Chance Troubles Many Readers',\n",
499
- " 'Dragging of Passenger Sets Off a Crisis at United',\n",
500
- " 'New Recommendation Urges Older Men to Discuss Prostate Screens With Doctor',\n",
501
- " 'Gut Hack',\n",
502
- " 'Inaccurate Hitler Comment Leads Spicer to Apologize',\n",
503
- " 'Lamb, Gaining on Ham',\n",
504
- " 'Fear of Flying, for Good Reason',\n",
505
- " 'Hey, He Tried',\n",
506
- " 'Trump’s Shift on Russia Brings Geopolitical Whiplash',\n",
507
- " 'Go Dutch',\n",
508
- " '‘The Americans’ Season 5, Episode 6 Recap: ‘I’m Going Home’',\n",
509
- " 'Narrow Victory in Kansas Is a Bad Sign for Republicans Nationally',\n",
510
- " 'Seeing Outside the Disability Box',\n",
511
- " 'Don’t Politicize the Federal Reserve',\n",
512
- " 'David Souter Killed the Filibuster',\n",
513
- " 'Why Is Trump Fighting ISIS in Syria?',\n",
514
- " 'Robert Kennedy Down in the Delta',\n",
515
- " 'Fake Flowers',\n",
516
- " 'The Pop Prodigy Returns',\n",
517
- " 'Is It O.K. for a Man to Marry My Amnesiac Sister?',\n",
518
- " 'Partisanship as a Tribal Identity: Voting Against One’s Economic Interests',\n",
519
- " 'Runners Live Three Years Longer',\n",
520
- " 'How to Be Mindful When Filing Your Taxes',\n",
521
- " 'New York Today: Sharing a Block on Broadway',\n",
522
- " 'Dan Rather Thinks We Need Patriotism, Not Nationalism',\n",
523
- " 'Mind: Heart Risks and Brain Plaques',\n",
524
- " 'Eat: Trans Fat Bans Help Hearts',\n",
525
- " 'U.S. Takes Sharper Tone on Russia’s Role in Syria',\n",
526
- " 'Is Russell Westbrook’s Season the Best Ever? Some Apples and Oranges to Pick From',\n",
527
- " 'In the Air, an Increasing Sense of Us vs. Them',\n",
528
- " 'Sean Spicer’s Teeny Little Slip-Up',\n",
529
- " 'Family Values and Hot Rides',\n",
530
- " 'Wounded by ‘Fearless Girl,’ Creator of ‘Charging Bull’ Wants Her to Move',\n",
531
- " 'Looking for a Contact Lens in the Dark',\n",
532
- " 'Mr. Trump’s Fickle Diplomacy',\n",
533
- " 'Outed as Transgender on ‘Survivor’ — and in Real Life',\n",
534
- " 'Policy Shifts Hint at Who Has White House Sway',\n",
535
- " 'Why ‘Sorry’ Is Still the Hardest Word',\n",
536
- " 'Uncommon Period',\n",
537
- " 'More Than Abracadabra',\n",
538
- " 'A Far-Flung Fragment of War',\n",
539
- " 'Trump Versus the Love Gov',\n",
540
- " 'The Broken Supreme Court',\n",
541
- " 'The G.O.P. and Fear of Crowds',\n",
542
- " 'How to Stand Up to Trump and Win',\n",
543
- " 'Reaching Out to the Voters the Left Left Behind',\n",
544
- " 'Why Did This Man Lose His Memory, Words and Even His Ability to Walk?',\n",
545
- " 'The Bard of Suck',\n",
546
- " 'Back to Life',\n",
547
- " 'A Jewish Fixer on the Fringes of Power',\n",
548
- " 'Answer to Better Health Care: Behavioral Economics?',\n",
549
- " 'What to Eat?',\n",
550
- " 'Which Force is More Harmful to the Arts: Elitism or Populism?',\n",
551
- " 'At the End of Life, a Way to Go Gentle',\n",
552
- " 'New York Today: Free College, but With Caveats',\n",
553
- " 'A Transgender Learning Gap in the Emergency Room',\n",
554
- " 'Knicks Beat The 76ers. Both Teams Lose Anyway.',\n",
555
- " 'Chance To Rewrite Record Book',\n",
556
- " '‘Billions’ Season 2, Episode 10: Nonconformity',\n",
557
- " '‘Feud: Bette and Joan’ Season Finale: Two Seconds',\n",
558
- " 'Xi Asks Trump to Hold Off On Responding to Threats',\n",
559
- " 'Questions for: ‘Scientists, Feeling Under Siege, March Against Trump Policies’',\n",
560
- " 'Would You Consider Moving Overseas for a Job?',\n",
561
- " 'What ‘Snowflakes’ Get Right About Free Speech',\n",
562
- " 'Resilience Of the Resistance',\n",
563
- " 'Zombies Of Voodoo Economics',\n",
564
- " 'Asking for Trouble on Iran',\n",
565
- " 'How to Build Resilient Kids, Even After a Loss',\n",
566
- " 'America’s Dangerous Love for Special Ops',\n",
567
- " 'Amtrak, at a Crucial Junction, Faces Urgent Test',\n",
568
- " 'Defying Roadblocks, Silicon Valley Tests a Flying Car',\n",
569
- " 'What’s Going On in This Picture? | April 24, 2017',\n",
570
- " 'How a Dollar Spent On Drug Treatment Lowers Crime’s Costs',\n",
571
- " 'New Hip or Knee? No Place Like Home',\n",
572
- " 'An Antidote to Math Anxiety',\n",
573
- " 'New York Today: Our State Poet, Yusef Komunyakaa',\n",
574
- " 'Everything’s Up to Date (for 1958, That Is)',\n",
575
- " 'Ayn Rand’s Counter-Revolution',\n",
576
- " 'Work, Mr. Macron, Work',\n",
577
- " 'Hard-Liners on Immigration, Now in High Places',\n",
578
- " 'Safety: Heart Patients and Statins',\n",
579
- " 'Eat: Soda Is Tied to Brain Aging',\n",
580
- " 'Second Chance for Stale Bread: Beer',\n",
581
- " 'Rise of Centrist In French Voting Calms E.U. Nerves',\n",
582
- " 'Big Turnout for Ossoff Surpassed Recent Democratic Benchmarks',\n",
583
- " 'Arkansas Executes 2 Inmates, a First for Any State on One Day Since 2000',\n",
584
- " 'A Lost Baby Is Crying? The Sheep Will Help',\n",
585
- " 'The Spending Bill Was Supposed to Be Easy. Then Trump Intervened.',\n",
586
- " 'Money Talked Loudest at Inaugural',\n",
587
- " 'A Walk in the Park',\n",
588
- " 'No Place Like It',\n",
589
- " 'A Princess (Maybe) With an Identity Crisis',\n",
590
- " 'Yankees-Red Sox, a Grizzled Rivalry, Gets a Fresh-Faced Makeover',\n",
591
- " '‘Better Call Saul’ Season 3, Episode 3: A Better Solution',\n",
592
- " 'Friends, in Sickness and in Health',\n",
593
- " 'Icebergs',\n",
594
- " 'Say Goodbye to the Filet-O-Fish',\n",
595
- " 'The Jane Addams Model',\n",
596
- " 'Five Decades Ago in Vietnam, a Different Great, Great Wall',\n",
597
- " 'The Urgency Of Ethnic Nationalism',\n",
598
- " 'All I Know Is What I Read in the Fake News',\n",
599
- " 'From ‘Writing to Save a Life: The Louis Till File,’ by John Edgar Wideman',\n",
600
- " 'Could Legalized Gambling Save Us From the Insufferability of Fantasy Sports?',\n",
601
- " 'What Fantasy Invention Would You Want to Exist in Reality?',\n",
602
- " 'Social Insecurity',\n",
603
- " 'Out of Nowhere, Wine',\n",
604
- " 'Over the Edge',\n",
605
- " 'Uncorking Bouquets for Millennials',\n",
606
- " 'Homework Bans Don’t Work for All Homes, Parents Say',\n",
607
- " 'From Rates To Deficits, And Things In Between',\n",
608
- " 'In Search of New Memoirs That Go Light on Catastrophe',\n",
609
- " 'New York Today: An Ella Fitzgerald Centennial',\n",
610
- " 'Flynn May Have Broken Law With Russia Dealings, Lawmakers Say',\n",
611
- " 'Finding Their Voices',\n",
612
- " 'Returning With More Than a Dash of Déjà Vu',\n",
613
- " 'Live-Streaming Classes, China Puts Youths’ Every Move on View',\n",
614
- " 'The Next Big Brown Sip',\n",
615
- " 'Salt’s Singular Magic',\n",
616
- " 'Home Is Where The Court Is',\n",
617
- " 'How Wrestling Explains Alex Jones and Donald Trump',\n",
618
- " 'Intemperate Words, Temperate News Coverage',\n",
619
- " 'Jeter Said To Close In On Marlins With Bush',\n",
620
- " 'Commemorating the Dead With Humanity and Delicacy',\n",
621
- " 'Trump Can’t Withhold Funding To Sanctuary Cities, Judge Rules',\n",
622
- " 'Zoning Move Fuels Debate Over Home of New York’s Fashion Industry',\n",
623
- " 'Music in the Dentist’s Chair',\n",
624
- " 'Bucks’ Youth Portends Bright Future',\n",
625
- " 'Trump Will Sign Orders That Could Expand Access to Fossil Fuels',\n",
626
- " 'White House’s Tax Plan Puts Business at the Fore',\n",
627
- " 'Nascar’s Biggest Star Decides to Stop Driving',\n",
628
- " 'Genoa Isn’t Rome or Florence. That’s Part of Its Charm.',\n",
629
- " 'Like Some Humor or Spells',\n",
630
- " 'Young Con Man as Tragic Hero',\n",
631
- " '‘The Americans,’ Season 5, Episode 8: The Humanization of Elizabeth',\n",
632
- " 'Is There Any Benefit to Reading Books You Hate?',\n",
633
- " 'As Rising Seas Erode Shorelines, Tasmania Shows What Can Be Lost',\n",
634
- " 'Mr. Trump’s Shambles of a Trade Policy',\n",
635
- " 'It Could Be Worse',\n",
636
- " 'Lifting Kids To College',\n",
637
- " 'On a Par 5 in Dubai, Good Humor and a Respite From All Things Trump',\n",
638
- " 'Trump’s Republican History Lesson',\n",
639
- " 'Questions for: ‘Today’s Energy Jobs Are in Solar, Not Coal’',\n",
640
- " 'Haunted by Low Inflation',\n",
641
- " 'U.F.O.s',\n",
642
- " 'Carly Zakin And Danielle Weisberg Want You to Get The News',\n",
643
- " '5 Tips for Child Care on Your Next Vacation',\n",
644
- " 'It’s All in the Hands',\n",
645
- " 'The Ultimate Travel Amenity: A Nanny',\n",
646
- " 'Rei Kawakubo',\n",
647
- " 'The C.E.O. of H.I.V.',\n",
648
- " 'Is It Best To Get a Pet From a No-Kill Shelter? ',\n",
649
- " 'What to Eat Before a Workout?',\n",
650
- " 'Skipping the College Tour',\n",
651
- " 'How to Be Mindful While Gardening',\n",
652
- " 'Mayor Endorses Entrance Fee for the Metropolitan Museum',\n",
653
- " 'ESPN, Its Brand Lagging, Sheds Several Big Names',\n",
654
- " 'Some Boys Celebrated the War, Others Were Prisoners of It',\n",
655
- " 'Tax Overhaul Would Aid Wealthiest',\n",
656
- " 'Jonathan Demme, Oscar-Winning Director, Is Dead at 73',\n",
657
- " 'Eat: Diet Soda Tied to Stroke',\n",
658
- " '‘The Handmaid’s Tale’ Series Premiere Recap: Welcome to Gilead',\n",
659
- " 'F.C.C. Head Plots Course To Ease Rules On Internet',\n",
660
- " 'Heart: Beer and Arrhythmias',\n",
661
- " 'Trump Tells Foreign Leaders That Nafta Can Stay for Now',\n",
662
- " 'To Be or Not to Be? Oh, Who Cares, Anyway?',\n",
663
- " 'Who Wins, Who Loses In Details Of the Plan',\n",
664
- " 'This Isn’t Tax Policy; It’s a Heist',\n",
665
- " 'What Won Over Caucus of Hard-Liners',\n",
666
- " 'The Smile Didn’t Mean What He Thought',\n",
667
- " 'Mr. Trump’s Comic Tax Plan',\n",
668
- " 'Trump’s Plan Brings Moment of Truth for G.O.P. Deficit Hawks',\n",
669
- " 'Isn’t That Something',\n",
670
- " 'Singing and Dancing the Postwar Blues',\n",
671
- " '‘Fargo’ Season 3, Episode 2: ‘Unfathomable Pinhead-ery’',\n",
672
- " 'United Taking Further Steps To Move Past An Ugly Event',\n",
673
- " 'No Fear',\n",
674
- " 'The Roberts Court, 2017 Edition',\n",
675
- " 'Trump Should Save Obamacare',\n",
676
- " 'Sowing Climate Doubt Among Schoolteachers',\n",
677
- " 'Trump’s Can’t-Do Record',\n",
678
- " 'Questions for: ‘Living by the Girl Scout Law, Even Without a Home’',\n",
679
- " 'Black People Are Not All ‘Living in Hell’',\n",
680
- " '‘Pistol Pete’s Homework Basketball’',\n",
681
- " 'What Caused This College Student’s Stomach Pain and Vomiting?',\n",
682
- " 'Is Live-Streaming Classrooms a Good Idea?',\n",
683
- " 'Provence in a Bowl',\n",
684
- " 'The Other Side of Anne',\n",
685
- " '200 State Dept. Posts Stand Empty, and No Rush to Fill Them',\n",
686
- " 'Strands of Steel Soar Over Water',\n",
687
- " 'New York Today: Do April Showers Really Bring May Flowers?',\n",
688
- " 'Dealing With an Ostomy',\n",
689
- " 'The Executioner’s Shroud',\n",
690
- " 'Trump’s Day of Hardball And Confusion on Nafta',\n",
691
- " 'Health Law Repeal Will Miss Trump’s 100-Day Target Date',\n",
692
- " 'Repairs Will Shut Down Some Penn Station Tracks',\n",
693
- " 'A Record of the Newspaper of Record',\n",
694
- " 'Art of the Bluff: The Limits of Trump’s Negotiation Strategy',\n",
695
- " 'From the Start, Porzingis Made It Clear He Wouldn’t Be Timid',\n",
696
- " 'Bracing Burmese Food, Full of Contradictions',\n",
697
- " 'Smile When You Say Lambrusco',\n",
698
- " 'Prepare to Be Thrilled',\n",
699
- " 'Why Is Asian Salad Still on the Menu?',\n",
700
- " 'Click Here if You Think You’re Being Watched',\n",
701
- " 'Audition Call for a Murder',\n",
702
- " 'You’re No. 1 (2, 3, 4, 5, 6 ... )',\n",
703
- " 'Mind: Diabetes May Harm the Brain',\n",
704
- " 'Baby-Making Via Lottery',\n",
705
- " 'A Bulldog on Court Street',\n",
706
- " 'Fans Feel Robbed of O’Reilly, but They’re Sticking With Fox',\n",
707
- " 'Trump’s Plan Shifts Trillions To Wealthiest',\n",
708
- " 'Intermission Starter',\n",
709
- " 'Who’s That Knocking on the Door?',\n",
710
- " 'Kindergarten in a Stadium',\n",
711
- " 'Right and Left: Partisan Writing You Shouldn’t Miss',\n",
712
- " 'The New Party of ‘America First’',\n",
713
- " 'A Phony Fix for Net Neutrality',\n",
714
- " 'Trumpcare 2.0: It’s Even Worse',\n",
715
- " 'The Pond Skater Presidency',\n",
716
- " 'Living in the Trump Zone',\n",
717
- " 'White House of Grifters',\n",
718
- " 'Questions for: ‘Circling Back to Voters, 100 Days Into Trump Era’',\n",
719
- " 'The Importance of Bob Silvers: Honoring the Legacy of an Extraordinary Editor',\n",
720
- " 'You May Now Kiss the Roommate',\n",
721
- " 'People Who Train Robots (to Do Their Jobs)',\n",
722
- " 'Teaching With: ‘Brooklyn’s Rube Goldberg’',\n",
723
- " 'An Older Dad, Down for the Count',\n",
724
- " 'Chinese Offer To Help Eat A Fat Nuisance',\n",
725
- " 'America, from exceptionalism to nihilism',\n",
726
- " 'Economy Grows At Slowest Rate In 3 Years: 0.7%',\n",
727
- " 'Russia’s Hooligans Meet Their Match',\n",
728
- " 'Taking a Different Approach to Inequality',\n",
729
- " 'What Women Get From Work',\n",
730
- " 'Malvolio and Pals, for the Masses',\n",
731
- " '10 Ways to Teach With The New York Times Today',\n",
732
- " 'Fyre Festival, Billed as a Luxury Music Weekend in the Bahamas, Falls Apart',\n",
733
- " 'Los Angeles Riots 25 Years Later: Revisiting the Epicenter',\n",
734
- " 'Teams Change Logos at Own Risk',\n",
735
- " 'Tarragon, the Herb You Don’t Know',\n",
736
- " 'N.S.A. Curtails Email Spying Across Border',\n",
737
- " 'DeMint Said To Be Out At Heritage, In a ‘Coup’',\n",
738
- " 'Light Noodles, Deep Flavor',\n",
739
- " 'Would You Like to Be a Small Business?',\n",
740
- " 'Climate of Complete Certainty',\n",
741
- " 'Young Love, in 1,519 Winning Words',\n",
742
- " '(It’s Great to) Suck at Something',\n",
743
- " 'Misgivings Diminish a Behemoth’s Swagger',\n",
744
- " 'D.C. School Vouchers Are Found to Bring Lower Scores but Higher Safety',\n",
745
- " 'In Early Going, Yanks Steal Mets’ Thunder',\n",
746
- " 'A Place Called Manzanar',\n",
747
- " '100 Days of Noise',\n",
748
- " 'A Season in the Sun',\n",
749
- " 'Variety Puzzle: Acrostic',\n",
750
- " 'Remaking the Presidency, Trump Has Changed, Too',\n",
751
- " 'Lessons From 100 Days Of Trump',\n",
752
- " 'Is There a Case for Le Pen?',\n",
753
- " 'Trump’s One Awful Accomplishment',\n",
754
- " 'Learning to Hate Like the Right',\n",
755
- " 'Invoking Internet Freedom to Kill It',\n",
756
- " 'These Guys Really Like Trump',\n",
757
- " 'New England Chatter',\n",
758
- " 'Only Wenger Knows if His Road Is Near Its End',\n",
759
- " 'New York’s Free Tuition Adds Powerful Pull at Decision Deadline',\n",
760
- " 'Too Scared to Report Abuse, For Fear of Being Deported',\n",
761
- " 'Trump Invites Duterte to Visit White House',\n",
762
- " 'China’s Appetite Pushes Fish Stocks to Brink',\n",
763
- " 'Kuwaiti Sheikh Resigns From FIFA Post Amid a Bribery Investigation',\n",
764
- " 'Saves Bring Paydays, but Their Value Is Subject to Debate',\n",
765
- " 'France in Reflection',\n",
766
- " 'All Tests Met, Chelsea Lacks Only in Flash',\n",
767
- " 'Trump Officials Brace for Anger At Duterte Call',\n",
768
- " 'Who Will Fix Penn Station?',\n",
769
- " 'Literal Queen',\n",
770
- " 'Who’s Fueling Conspiracy Whisperers’ Falsehoods?',\n",
771
- " 'Rangers Embrace Second-Guessing, to Try to Avert an 0-3 Hole',\n",
772
- " 'April Fools’ With the Epitome of Cool',\n",
773
- " 'Shaming Children So Parents Will Pay the School Lunch Bill',\n",
774
- " '‘The Leftovers’ Season 3, Episode 3 Recap: Down Under',\n",
775
- " 'Deal Reached To Fund U.S. For 5 Months',\n",
776
- " '‘Billions’ Season 2, Episode 11 Recap: Even the Losers Get Plucky',\n",
777
- " 'My Beijing: The Sacred City',\n",
778
- " '6 Million Riders a Day, 1930s Technology',\n",
779
- " 'Seeking a Cross-Border Conference',\n",
780
- " 'Questions for: ‘Despite the “Yuck Factor,” Leeches Are Big in Russian Medicine’',\n",
781
- " 'Who Is a ‘Criminal’?',\n",
782
- " 'An Antidote to Europe’s Populism',\n",
783
- " 'The Cost of a Speech',\n",
784
- " 'Degradation of the Language',\n",
785
- " 'On the Power of Being Awful',\n",
786
- " 'Trump Garbles Pitch on a Revised Health Bill',\n",
787
- " 'What’s Going On in This Picture? | May 1, 2017',\n",
788
- " '18 Syrian Fighters Allied With U.S. Are Killed in Coalition Airstrike',\n",
789
- " ' Extraordinary State',\n",
790
- " 'Safety: Marathons and Heart Attacks',\n",
791
- " 'Canadian Leader Unveils a Bill to Legalize Recreational Marijuana',\n",
792
- " 'Voiding Obama Rule, Trump Signs Law Taking Aim at Planned Parenthood',\n",
793
- " 'The Smoky Allure of Wafa’s Express',\n",
794
- " 'When in Rome ... Yes, You Can Have Rice on Passover',\n",
795
- " 'Shifting Focus of Political Style',\n",
796
- " 'A Stranger in the Building on Official Business',\n",
797
- " 'Jeff Sessions, Unleashed at the Border',\n",
798
- " 'Health Subsidies Become a Pawn To Force Democrats to Bargain',\n",
799
- " 'Floor Support',\n",
800
- " 'Hello, P.L.O.? This Is Israel, via Oslo',\n",
801
- " 'Concern That Aides Have Nazi Leanings Clouds Le Pen in France',\n",
802
- " 'Siege Has Ended, but the Battle Over Public Lands Rages On',\n",
803
- " 'The I.R.S. Could Be Your Friend',\n",
804
- " 'Poisons Are Us',\n",
805
- " 'The Cuomo College Fiasco',\n",
806
- " 'Can Trump Take Health Care Hostage?',\n",
807
- " 'France in the End of Days',\n",
808
- " 'Explaining the Health Payments That Trump Is Threatening to End',\n",
809
- " 'How to Escape From a Car in Water',\n",
810
- " 'The Ramapoughs vs. the World',\n",
811
- " 'Friday Mailbag: When Governments Go ‘Rogue’',\n",
812
- " 'A Baby or Your Money Back',\n",
813
- " 'Razing the Hamptons',\n",
814
- " 'Looking Past Flip-Flops, and Finding Triumphs',\n",
815
- " 'The Hummingbird and the Pine Tree',\n",
816
- " 'In a Work About Loss, A Star Says a Farewell',\n",
817
- " 'Korea Tensions Could Overheat, China Declares',\n",
818
- " 'Managing a Vast and Eclectic Archive',\n",
819
- " 'Is This How a Woman Could Win?',\n",
820
- " 'Does a Uniform Keep Officers In Line? Baltimore Thinks So',\n",
821
- " 'How to Keep the Tender in Pork Tenderloin',\n",
822
- " 'Winemakers Find a Companion in Marijuana',\n",
823
- " 'For Jackson, Time Has Come for Anthony to Go',\n",
824
- " 'Ample India: An Inspiring Example',\n",
825
- " 'Robert Taylor, 85, Who Helped Create the Internet, Dies',\n",
826
- " 'Tebow’s Test of Faith',\n",
827
- " 'Why I Love Ugly Uniforms',\n",
828
- " 'The Wrong Way to Keep Kids Safe',\n",
829
- " '‘Fearless Girl’ Doesn’t Need Any Bull',\n",
830
- " 'Mr. Cuomo’s Free* College Plan',\n",
831
- " 'What’s in Your Microwave Oven?',\n",
832
- " 'Object of Envious Comparison',\n",
833
- " 'As Atrocities Mount in Syria, Justice Seems Out of Reach',\n",
834
- " 'How We Shop: Past, Present Future',\n",
835
- " 'Supply-Side Economics, but for Liberals',\n",
836
- " 'The Landlord Forgot to Mention an Icky Detail. What to Do?',\n",
837
- " 'Variety Puzzle: Acrostic',\n",
838
- " 'Growers Split As Pot Farms Go Industrial',\n",
839
- " 'Raft of Potential Conflicts In President’s Appointees',\n",
840
- " 'What Kind of Pet Should Donald Trump Get?',\n",
841
- " 'Steve Bannon Was Doomed',\n",
842
- " 'The Joy of Hate Reading',\n",
843
- " 'President Carter, Am I a Christian?',\n",
844
- " 'America’s Uncivil War Over Words',\n",
845
- " 'Mr. Trump’s 10-Second Convictions',\n",
846
- " 'The Quiet Power of Humility',\n",
847
- " 'Save the Mainline',\n",
848
- " 'What The Times Holds Back',\n",
849
- " 'Unscrambling the Easter Egg Roll',\n",
850
- " 'Saddle Up',\n",
851
- " 'Erdogan Tightens His Grip on Turkey After Close Vote',\n",
852
- " \"'The Good Fight’ Season 1 Finale Recap: Trojan Horses\",\n",
853
- " 'Anatomy of a lynching',\n",
854
- " 'New Datelines Won’t Feel Out of Place',\n",
855
- " 'Good Name',\n",
856
- " 'Rising in Polls, Left-Wing Politician Shakes Up France’s Presidential Race',\n",
857
- " 'Hotels Make Battle Plans as Airbnb Poses Threat',\n",
858
- " 'Memories of a Modest Jackpot',\n",
859
- " 'U.S. Faces ‘Cuban Missile Crisis in Slow Motion’',\n",
860
- " '‘The Leftovers’ Season 3 Premiere Recap: Revival',\n",
861
- " 'Lost and Found in a Magic Tale of Nomads',\n",
862
- " '‘Billions’ Season 2, Episode 9: Dollar Dollar Bill, Y’all',\n",
863
- " 'A Conventional Ending, and How It Came About',\n",
864
- " 'Fittingly, a Frank Finale for ‘Girls’',\n",
865
- " 'Why Don’t All Jobs Matter?',\n",
866
- " 'Mr. Trump’s Loose Talk on Korea',\n",
867
- " 'The Path to Victory in Georgia',\n",
868
- " 'Has Trump Stolen Philosophy’s Critical Tools?',\n",
869
- " 'Trump’s Big Telecom Giveaway',\n",
870
- " 'The love lives of Bolsheviks',\n",
871
- " '100 Days of Horror',\n",
872
- " 'What’s Going On in This Picture? | April 17, 2017',\n",
873
- " 'For Malpractice Reform, Focus on Medicine First (Not Law)',\n",
874
- " 'Too Clean for Our Children’s Good?',\n",
875
- " 'The Cost of Not Taking Your Medicine',\n",
876
- " 'New York Today: Easter Monday in Little Poland',\n",
877
- " 'Questions for: ‘The Real Reason Black Kids Benefit From Black Teachers’',\n",
878
- " 'What Would You Endure to Avoid Flying on United?',\n",
879
- " 'What Should Be the Fate of ‘Fearless Girl’ Versus ‘Charging Bull’?',\n",
880
- " 'Pence Talks Tough on North Korea, but U.S. Stops Short of Drawing Red Line',\n",
881
- " 'Indonesian Vote Tests Democratic Values',\n",
882
- " 'Christie Reflects as His Rocky Tenure Dims: ‘My Obit Will Be Fine’',\n",
883
- " 'Taxi Officials Call on Uber To Provide Tipping in Its App',\n",
884
- " 'Voters Cite Turkish Leader’s Record as He Claims a Slim Victory',\n",
885
- " 'Cooking Got Her Out, and Brought Her Back',\n",
886
- " 'Red, Ripe and Renegade',\n",
887
- " 'Prince Concealed His Addiction With Aspirin Bottles of Opiates at Home',\n",
888
- " 'Baseball’s Data Revolution Is Elevating Game’s Defensive Stars',\n",
889
- " 'A Bit of Razzle-Dazzle to Chase Away the Gloom',\n",
890
- " 'Critics See Signs Of Interference In French Vote',\n",
891
- " 'Ode to Mrs. Stahl’s',\n",
892
- " 'Trump’s Promise To Fix Tax Code Is Bogging Down',\n",
893
- " 'A Star Is Born (and Born and Born)',\n",
894
- " 'Next Project For Ballmer: Follow Money In Government',\n",
895
- " 'Democracy Loses in Turkey',\n",
896
- " 'Video of Killing Casts Facebook In Harsh Light',\n",
897
- " 'Practical Sort',\n",
898
- " '‘Better Call Saul’ Season 3, Episode 2: Playing Chicken',\n",
899
- " 'Trump Prepares Order on Foreign Workers',\n",
900
- " 'Why You’d Benefit From A ‘Shultz Hour’',\n",
901
- " 'Building A Thicker Community',\n",
902
- " 'When Women Legislate',\n",
903
- " 'When Veterans Protested the Vietnam War',\n",
904
- " 'Have These Been the Best Two Weeks of Trump’s First 100 Days?',\n",
905
- " 'Shoelaces',\n",
906
- " 'Panic Attack',\n",
907
- " '‘The Refreshed River Hissed.’',\n",
908
- " 'Pandora&apos;s Umbrella',\n",
909
- " 'The Bureau of Resistance',\n",
910
- " 'Under Water',\n",
911
- " 'What Does a President’s Choice of Pet — or Choice Not to Have a Pet at All — Say About Him?',\n",
912
- " 'An Op-Ed Author Omits His Crimes, and The Times Does Too',\n",
913
- " 'On Rio Grande, Patrolling The Border on Four Legs',\n",
914
- " 'Georgia Election: Expect the Early Vote Count to Be Misleading',\n",
915
- " 'Mom Seeks Novel for Family Book Club, No Kafka or Y.A. Allowed',\n",
916
- " 'Drugs: Risks of Brief Steroid Use',\n",
917
- " 'New York Today: A Holocaust Survivor’s Story, on Stage',\n",
918
- " 'British Leader Moves to Hold Early Elections',\n",
919
- " 'Richard Spencer’s Right to Speak at Auburn',\n",
920
- " 'Chinese Historian Bluntly Criticizes Beijing’s Policy on North Korea',\n",
921
- " 'Bare Market: What Happens if Places Have No Obamacare Insurers?',\n",
922
- " 'A Day in the Lunch Box',\n",
923
- " 'Girl Boxer',\n",
924
- " 'Aircraft Carrier Was Not Heading Where U.S. Said',\n",
925
- " 'Wings of a Different Feather',\n",
926
- " 'Move to Las Vegas Exposes N.F.L.’s Paradox on Betting',\n",
927
- " 'Classic Game, But the Focus Is on a Referee',\n",
928
- " 'New Interest in a New Land',\n",
929
- " 'Anger on an Icy Street',\n",
930
- " 'Triple Threat Suddenly Faces A Singular Task',\n",
931
- " 'Mr. Trump Plays by His Own Rules',\n",
932
- " 'O’Reilly’s Spot With Fox News Grows Shakier',\n",
933
- " 'Transylvania Twist',\n",
934
- " 'Too Shocking for Midtown in the 1920s',\n",
935
- " 'Girls Can Still Be Tomboys',\n",
936
- " '‘The Americans’ Season 5, Episode 7: Keep Paige Out of This',\n",
937
- " 'Coal Museum Sees Future; Trump Doesn’t',\n",
938
- " 'For Tax Reform, Just Keep It Simple',\n",
939
- " 'A Requiem for ‘Girls’',\n",
940
- " 'A Good Night’s Sleep',\n",
941
- " 'Rebecca Skloot\\xa0Feels Indebted To\\xa0Henrietta Lacks',\n",
942
- " 'Hot Zones',\n",
943
- " 'The Deluge',\n",
944
- " 'Does Confining Deplorable Remarks to Your Home Make Them All Right?',\n",
945
- " 'Voyages of the Heart',\n",
946
- " 'Six Degrees Forevermore',\n",
947
- " 'Copy and Conquer: Facebook Wins Again',\n",
948
- " 'Three Trips, Three Steps Closer to a Breakup',\n",
949
- " 'What Choices Do You Make About Money Every Day?',\n",
950
- " 'Running May Be Contagious',\n",
951
- " 'New York Today: When Will It Be Consistently Warm?',\n",
952
- " 'Georgia Didn’t Affirm Trump',\n",
953
- " 'Anticorruption Activist Who Sought Asylum in Taiwan Returns to China',\n",
954
- " 'Miners Lament Trump’s Silence On Health Plan',\n",
955
- " 'In Devastated Northern France, the French Flag Flies Again',\n",
956
- " 'A Working Mother Who Could Defy the Odds',\n",
957
- " 'How to Be Mindful While Cleaning the Bathroom',\n",
958
- " 'Fox News Ousts O’Reilly, A Host Central to Its Rise',\n",
959
- " 'Moved by Georgia, Democrats In Montana Say, It’s Our Turn',\n",
960
- " 'The End of a Quest, Not of an Era',\n",
961
- " 'Berkeley, a Free Speech Bastion, Cancels a Speech by Coulter Over Safety Concerns',\n",
962
- " 'The Sanitation Worker’s Plight',\n",
963
- " 'For Teams and Players, a Revolving Door of Discipline',\n",
964
- " 'The Plan to Sabotage Obamacare',\n",
965
- " 'Ex-Trump Aide’s Russia Trip Sent F.B.I. Digging',\n",
966
- " 'Anticipating the Afterlife',\n",
967
- " 'My, What Sharp Teeth',\n",
968
- " '‘Fargo’ Season 3 Premiere: Brothers, Who Art Thou?',\n",
969
- " 'Paging the Trump Armada',\n",
970
- " 'A Fake and a Fraud',\n",
971
- " 'The North Korea-Trump Nightmare',\n",
972
- " 'How to Stop Drug Price Gouging',\n",
973
- " 'Wristwatches',\n",
974
- " 'Michigan ',\n",
975
- " 'The Art of Uncooking',\n",
976
- " 'What Would You Write in a Letter to the Editor?',\n",
977
- " 'Air Sickness',\n",
978
- " 'Bold, Unpredictable Approach to Foreign Policy Lifts Trump, but Has Perils',\n",
979
- " 'Surf’s Up When The Sun Goes Down',\n",
980
- " 'Up and Out',\n",
981
- " 'How Good Child Care Helps Mothers, and the Men They Raise',\n",
982
- " 'When to Tell Daughters About a Genetic Breast Cancer Risk',\n",
983
- " 'Text to Text | Guy de Maupassant’s ‘The Necklace’ and ‘Guerrilla Fashion: The Story of Supreme’',\n",
984
- " 'Ossoff and a Different Democratic Plan for Every District',\n",
985
- " 'Rudyard Kipling on the Front Page: Battle Cries and an Elegy',\n",
986
- " 'Sometimes It’s Better Not to Know',\n",
987
- " 'The French Election: Why It Matters',\n",
988
- " 'A Nation Vibrant in Food and Drink',\n",
989
- " 'A Love Triangle, Near the Front Lines',\n",
990
- " 'Take Your Baby to Work',\n",
991
- " 'Busy Congress Is First Hurdle For Health Bill',\n",
992
- " 'Woman in Jeopardy vs. Woman on the Verge',\n",
993
- " 'The Prescience Of ‘Citizen Jane’',\n",
994
- " 'A New Republican Proposal That Evokes the Old Days',\n",
995
- " 'F.D.A. Strengthens Warnings for Use of Codeine and Another Drug in Children',\n",
996
- " 'Goodbye to the Listeners’ Row',\n",
997
- " 'Straddling the Divide',\n",
998
- " 'The French Disconnection',\n",
999
- " 'White House Roaring Again On Free Trade',\n",
1000
- " 'Heavens to Murgatroyd',\n",
1001
- " 'Bright, Brassy and All Bette',\n",
1002
- " 'To Stay Married, Embrace Change',\n",
1003
- " 'Remembering the World’s Oldest Person, a Model of Simplicity',\n",
1004
- " 'The Crisis of Western Civ',\n",
1005
- " 'The Balloon, The Box and Health Care',\n",
1006
- " 'Fearmongering at Homeland Security',\n",
1007
- " 'Questions for: ‘Trillions of Plastic Bits, Swept Up by Current, Are Littering Arctic Waters’',\n",
1008
- " 'What Work, Sport or Pastime Do You Like to Do at Night?',\n",
1009
- " 'My Sister Wants to Buy My Dad a Drone For Father’s Day',\n",
1010
- " 'Friday Mailbag: A Patriots Photo Lets Trump Score a Point',\n",
1011
- " '‘Pivotal Moment’ in Politics as Gerrymandering Heads for Judgment Day',\n",
1012
- " '‘I Didn’t Move Here to Avoid Chaos’',\n",
1013
- " 'Life, liberty and Ivanka',\n",
1014
- " 'Teaching With: ‘An Impossible Choice’',\n",
1015
- " 'Unmoored by a Psychotic Break',\n",
1016
- " 'Why Do Allergies Cause ‘Brain Fog’?',\n",
1017
- " 'Attack in Paris Casts a Shadow on French Vote',\n",
1018
- " 'Chechnya’s Anti-Gay Pogrom: ‘They Starve You. They Shock You.’',\n",
1019
- " 'For Obama, the Vacation Is Over, But He’s Not About to Pick a Fight',\n",
1020
- " 'The Planet Can’t Stand This Presidency',\n",
1021
- " 'Thyroid Drug Isn’t Helping Older Patients',\n",
1022
- " 'Should You Worry About Being the Next Henrietta Lacks?',\n",
1023
- " 'How Best to Tax Business',\n",
1024
- " 'Fast and Easy Fish That Can Even Be Fancy',\n",
1025
- " 'Smokeless Tobacco Is Tough to Vaporize',\n",
1026
- " 'Let a Fresh Spear Shine',\n",
1027
- " 'France Poses Biggest Test Yet for Trump’s Brand of Nationalism',\n",
1028
- " 'Chardonnays of Energy and Memories',\n",
1029
- " 'Immigration Inquiry at Queens Bakery Leads to ‘A Day Without Bread’',\n",
1030
- " 'Getaway Driver Denied Parole In Radicals’ 1981 Brink’s Heist',\n",
1031
- " 'Executions Need Doctors',\n",
1032
- " 'As Retail Goes, So Goes the Nation',\n",
1033
- " 'Don’t Try This at Home',\n",
1034
- " 'Food, Sex and Silence',\n",
1035
- " 'Smoothing Out the Turbulence',\n",
1036
- " 'In Trying to Avoid Politics, Comey Shaped an Election',\n",
1037
- " 'Sons Steer Murdoch Empire Away From Its Past',\n",
1038
- " 'Variety: Cryptic Crossword',\n",
1039
- " 'Only Sure Bet In French Vote Is Uncertainty',\n",
1040
- " 'I Love My Sublet and I Want to Buy It. How to Persuade My Landlord to Sell?',\n",
1041
- " 'They Call This Pro-Life?',\n",
1042
- " 'New Voices, but Will They Be Heard?',\n",
1043
- " 'Reclaiming ‘Jew’',\n",
1044
- " 'It’s Not Just the O’Reilly Problem',\n",
1045
- " 'The Amateur Abortionists',\n",
1046
- " 'Is It Time to Break Up Google?',\n",
1047
- " 'Crime and Different Punishments',\n",
1048
- " 'Your Whole Family Will Love These Political Books',\n",
1049
- " 'A Century of Song',\n",
1050
- " 'DNA Tests, and Sometimes Surprising Results',\n",
1051
- " 'North Korea Said to Hold U.S. Citizen, Its Third',\n",
1052
- " 'Uber Tallies the Costs of Its Leader’s Drive to Win at Any Price',\n",
1053
- " 'Voters Embrace Outsiders In Election to Lead France',\n",
1054
- " 'My Cup Runneth Over',\n",
1055
- " 'Cab Ride to Boston',\n",
1056
- " 'Reporting on Gays Who ‘Don’t Exist’',\n",
1057
- " 'The Fights That Could Lead to a Government Shutdown This Week',\n",
1058
- " '‘The Leftovers’ Season 3, Episode 2: Swedish Physicists',\n",
1059
- " 'Thinking Out Loud, But Why?',\n",
1060
- " 'Some Sugar. Could Use More Spice.']"
1061
- ]
1062
- },
1063
- "execution_count": 18,
1064
- "metadata": {},
1065
- "output_type": "execute_result"
1066
- }
1067
- ],
1068
- "source": [
1069
- "all_headlines"
1070
- ]
1071
- },
1072
- {
1073
- "cell_type": "code",
1074
- "execution_count": 19,
1075
- "id": "d272dc69",
1076
- "metadata": {},
1077
- "outputs": [
1078
- {
1079
- "data": {
1080
- "text/plain": [
1081
- "['finding an expansive view of a forgotten people in niger',\n",
1082
- " 'and now the dreaded trump curse',\n",
1083
- " 'venezuelas descent into dictatorship',\n",
1084
- " 'stain permeates basketball blue blood',\n",
1085
- " 'taking things for granted',\n",
1086
- " 'the caged beast awakens',\n",
1087
- " 'an everunfolding story',\n",
1088
- " 'oreilly thrives as settlements add up',\n",
1089
- " 'mouse infestation',\n",
1090
- " 'divide in gop now threatens trump tax plan']"
1091
- ]
1092
- },
1093
- "execution_count": 19,
1094
- "metadata": {},
1095
- "output_type": "execute_result"
1096
- }
1097
- ],
1098
- "source": [
1099
- "def clean_text(txt):\n",
1100
- " txt = \"\".join(v for v in txt if v not in string.punctuation).lower()\n",
1101
- " txt = txt.encode(\"utf8\").decode(\"ascii\",'ignore')\n",
1102
- " return txt \n",
1103
- "\n",
1104
- "corpus = [clean_text(x) for x in all_headlines]\n",
1105
- "corpus[:10]\n"
1106
- ]
1107
- },
1108
- {
1109
- "cell_type": "code",
1110
- "execution_count": 20,
1111
- "id": "d5f40739",
1112
- "metadata": {},
1113
- "outputs": [
1114
- {
1115
- "data": {
1116
- "text/plain": [
1117
- "[[169, 17],\n",
1118
- " [169, 17, 665],\n",
1119
- " [169, 17, 665, 367],\n",
1120
- " [169, 17, 665, 367, 4],\n",
1121
- " [169, 17, 665, 367, 4, 2],\n",
1122
- " [169, 17, 665, 367, 4, 2, 666],\n",
1123
- " [169, 17, 665, 367, 4, 2, 666, 170],\n",
1124
- " [169, 17, 665, 367, 4, 2, 666, 170, 5],\n",
1125
- " [169, 17, 665, 367, 4, 2, 666, 170, 5, 667],\n",
1126
- " [6, 80]]"
1127
- ]
1128
- },
1129
- "execution_count": 20,
1130
- "metadata": {},
1131
- "output_type": "execute_result"
1132
- }
1133
- ],
1134
- "source": [
1135
- "tokenizer = Tokenizer()\n",
1136
- "\n",
1137
- "def get_sequence_of_tokens(corpus):\n",
1138
- " ## tokenization\n",
1139
- " tokenizer.fit_on_texts(corpus)\n",
1140
- " total_words = len(tokenizer.word_index) + 1\n",
1141
- " \n",
1142
- " ## convert data to sequence of tokens \n",
1143
- " input_sequences = []\n",
1144
- " for line in corpus:\n",
1145
- " token_list = tokenizer.texts_to_sequences([line])[0]\n",
1146
- " for i in range(1, len(token_list)):\n",
1147
- " n_gram_sequence = token_list[:i+1]\n",
1148
- " input_sequences.append(n_gram_sequence)\n",
1149
- " return input_sequences, total_words\n",
1150
- "\n",
1151
- "inp_sequences, total_words = get_sequence_of_tokens(corpus)\n",
1152
- "inp_sequences[:10]\n"
1153
- ]
1154
- },
1155
- {
1156
- "cell_type": "code",
1157
- "execution_count": 21,
1158
- "id": "c4c05b1d",
1159
- "metadata": {},
1160
- "outputs": [],
1161
- "source": [
1162
- "def generate_padded_sequences(input_sequences):\n",
1163
- " max_sequence_len = max([len(x) for x in input_sequences])\n",
1164
- " input_sequences = np.array(pad_sequences(input_sequences, maxlen=max_sequence_len, padding='pre'))\n",
1165
- " \n",
1166
- " predictors, label = input_sequences[:,:-1],input_sequences[:,-1]\n",
1167
- " label = ku.to_categorical(label, num_classes=total_words)\n",
1168
- " return predictors, label, max_sequence_len\n",
1169
- "\n",
1170
- "predictors, label, max_sequence_len = generate_padded_sequences(inp_sequences)\n"
1171
- ]
1172
- },
1173
- {
1174
- "cell_type": "code",
1175
- "execution_count": 24,
1176
- "id": "f8ad0539",
1177
- "metadata": {},
1178
- "outputs": [
1179
- {
1180
- "name": "stdout",
1181
- "output_type": "stream",
1182
- "text": [
1183
- "Model: \"sequential_2\"\n",
1184
- "_________________________________________________________________\n",
1185
- " Layer (type) Output Shape Param # \n",
1186
- "=================================================================\n",
1187
- " embedding_2 (Embedding) (None, 18, 10) 24220 \n",
1188
- " \n",
1189
- " lstm_4 (LSTM) (None, 100) 44400 \n",
1190
- " \n",
1191
- " dropout_2 (Dropout) (None, 100) 0 \n",
1192
- " \n",
1193
- " dense (Dense) (None, 2422) 244622 \n",
1194
- " \n",
1195
- "=================================================================\n",
1196
- "Total params: 313242 (1.19 MB)\n",
1197
- "Trainable params: 313242 (1.19 MB)\n",
1198
- "Non-trainable params: 0 (0.00 Byte)\n",
1199
- "_________________________________________________________________\n"
1200
- ]
1201
- }
1202
- ],
1203
- "source": [
1204
- "def create_model(max_sequence_len, total_words):\n",
1205
- " input_len = max_sequence_len - 1\n",
1206
- " model = Sequential()\n",
1207
- " \n",
1208
- " # Add Input Embedding Layer\n",
1209
- " model.add(Embedding(total_words, 10, input_length=input_len))\n",
1210
- " \n",
1211
- " # Add Hidden Layer 1 - LSTM Layer\n",
1212
- " model.add(LSTM(100))\n",
1213
- " model.add(Dropout(0.2))\n",
1214
- " \n",
1215
- " # Add Output Layer\n",
1216
- " model.add(Dense(total_words, activation='softmax'))\n",
1217
- "\n",
1218
- " model.compile(loss='categorical_crossentropy', optimizer='adam')\n",
1219
- " \n",
1220
- " return model\n",
1221
- "\n",
1222
- "model = create_model(max_sequence_len, total_words)\n",
1223
- "model.summary()\n"
1224
- ]
1225
- },
1226
- {
1227
- "cell_type": "code",
1228
- "execution_count": 30,
1229
- "id": "a1fe10c4",
1230
- "metadata": {},
1231
- "outputs": [
1232
- {
1233
- "name": "stdout",
1234
- "output_type": "stream",
1235
- "text": [
1236
- "Epoch 1/100\n",
1237
- "Epoch 2/100\n",
1238
- "Epoch 3/100\n",
1239
- "Epoch 4/100\n",
1240
- "Epoch 5/100\n",
1241
- "Epoch 6/100\n",
1242
- "Epoch 7/100\n",
1243
- "Epoch 8/100\n",
1244
- "Epoch 9/100\n",
1245
- "Epoch 10/100\n",
1246
- "Epoch 11/100\n",
1247
- "Epoch 12/100\n",
1248
- "Epoch 13/100\n",
1249
- "Epoch 14/100\n",
1250
- "Epoch 15/100\n",
1251
- "Epoch 16/100\n",
1252
- "Epoch 17/100\n",
1253
- "Epoch 18/100\n",
1254
- "Epoch 19/100\n",
1255
- "Epoch 20/100\n",
1256
- "Epoch 21/100\n",
1257
- "Epoch 22/100\n",
1258
- "Epoch 23/100\n",
1259
- "Epoch 24/100\n",
1260
- "Epoch 25/100\n",
1261
- "Epoch 26/100\n",
1262
- "Epoch 27/100\n",
1263
- "Epoch 28/100\n",
1264
- "Epoch 29/100\n",
1265
- "Epoch 30/100\n",
1266
- "Epoch 31/100\n",
1267
- "Epoch 32/100\n",
1268
- "Epoch 33/100\n",
1269
- "Epoch 34/100\n",
1270
- "Epoch 35/100\n",
1271
- "Epoch 36/100\n",
1272
- "Epoch 37/100\n",
1273
- "Epoch 38/100\n",
1274
- "Epoch 39/100\n",
1275
- "Epoch 40/100\n",
1276
- "Epoch 41/100\n",
1277
- "Epoch 42/100\n",
1278
- "Epoch 43/100\n",
1279
- "Epoch 44/100\n",
1280
- "Epoch 45/100\n",
1281
- "Epoch 46/100\n",
1282
- "Epoch 47/100\n",
1283
- "Epoch 48/100\n",
1284
- "Epoch 49/100\n",
1285
- "Epoch 50/100\n",
1286
- "Epoch 51/100\n",
1287
- "Epoch 52/100\n",
1288
- "Epoch 53/100\n",
1289
- "Epoch 54/100\n",
1290
- "Epoch 55/100\n",
1291
- "Epoch 56/100\n",
1292
- "Epoch 57/100\n",
1293
- "Epoch 58/100\n",
1294
- "Epoch 59/100\n",
1295
- "Epoch 60/100\n",
1296
- "Epoch 61/100\n",
1297
- "Epoch 62/100\n",
1298
- "Epoch 63/100\n",
1299
- "Epoch 64/100\n",
1300
- "Epoch 65/100\n",
1301
- "Epoch 66/100\n",
1302
- "Epoch 67/100\n",
1303
- "Epoch 68/100\n",
1304
- "Epoch 69/100\n",
1305
- "Epoch 70/100\n",
1306
- "Epoch 71/100\n",
1307
- "Epoch 72/100\n",
1308
- "Epoch 73/100\n",
1309
- "Epoch 74/100\n",
1310
- "Epoch 75/100\n",
1311
- "Epoch 76/100\n",
1312
- "Epoch 77/100\n",
1313
- "Epoch 78/100\n",
1314
- "Epoch 79/100\n",
1315
- "Epoch 80/100\n",
1316
- "Epoch 81/100\n",
1317
- "Epoch 82/100\n",
1318
- "Epoch 83/100\n",
1319
- "Epoch 84/100\n",
1320
- "Epoch 85/100\n",
1321
- "Epoch 86/100\n",
1322
- "Epoch 87/100\n",
1323
- "Epoch 88/100\n",
1324
- "Epoch 89/100\n",
1325
- "Epoch 90/100\n",
1326
- "Epoch 91/100\n",
1327
- "Epoch 92/100\n",
1328
- "Epoch 93/100\n",
1329
- "Epoch 94/100\n",
1330
- "Epoch 95/100\n",
1331
- "Epoch 96/100\n",
1332
- "Epoch 97/100\n",
1333
- "Epoch 98/100\n",
1334
- "Epoch 99/100\n",
1335
- "Epoch 100/100\n"
1336
- ]
1337
- },
1338
- {
1339
- "data": {
1340
- "text/plain": [
1341
- "<keras.src.callbacks.History at 0x2bff383ae50>"
1342
- ]
1343
- },
1344
- "execution_count": 30,
1345
- "metadata": {},
1346
- "output_type": "execute_result"
1347
- }
1348
- ],
1349
- "source": [
1350
- "model.fit(predictors, label, epochs=100, verbose=5, batch_size=16)"
1351
- ]
1352
- },
1353
- {
1354
- "cell_type": "code",
1355
- "execution_count": 26,
1356
- "id": "a76a078d",
1357
- "metadata": {},
1358
- "outputs": [],
1359
- "source": [
1360
- "def generate_text(seed_text, next_words, model, max_sequence_len):\n",
1361
- " for _ in range(next_words):\n",
1362
- " token_list = tokenizer.texts_to_sequences([seed_text])[0]\n",
1363
- " token_list = pad_sequences([token_list], maxlen=max_sequence_len-1, padding='pre')\n",
1364
- "#predicted = model.predict_classes(token_list, verbose=0)\n",
1365
- " predict_x=model.predict(token_list) \n",
1366
- " classes_x=np.argmax(predict_x,axis=1)\n",
1367
- "\n",
1368
- " output_word = \"\"\n",
1369
- " for word,index in tokenizer.word_index.items():\n",
1370
- " if index == classes_x:\n",
1371
- " output_word = word\n",
1372
- " break\n",
1373
- " seed_text += \" \"+output_word\n",
1374
- " return seed_text.title()\n"
1375
- ]
1376
- },
1377
- {
1378
- "cell_type": "code",
1379
- "execution_count": 29,
1380
- "id": "d1c3679e",
1381
- "metadata": {},
1382
- "outputs": [
1383
- {
1384
- "name": "stdout",
1385
- "output_type": "stream",
1386
- "text": [
1387
- "1/1 [==============================] - 0s 27ms/step\n",
1388
- "1/1 [==============================] - 0s 29ms/step\n",
1389
- "1/1 [==============================] - 0s 17ms/step\n",
1390
- "1/1 [==============================] - 0s 25ms/step\n",
1391
- "1/1 [==============================] - 0s 12ms/step\n",
1392
- "United States Ousts Oreilly A Host Central\n",
1393
- "1/1 [==============================] - 0s 43ms/step\n",
1394
- "1/1 [==============================] - 0s 43ms/step\n",
1395
- "1/1 [==============================] - 0s 32ms/step\n",
1396
- "1/1 [==============================] - 0s 39ms/step\n",
1397
- "President Trump Stolen Philosophys Critical Tools\n",
1398
- "1/1 [==============================] - 0s 31ms/step\n",
1399
- "1/1 [==============================] - 0s 44ms/step\n",
1400
- "1/1 [==============================] - 0s 26ms/step\n",
1401
- "1/1 [==============================] - 0s 25ms/step\n",
1402
- "Donald Trump A Magic Choice Of\n",
1403
- "1/1 [==============================] - 0s 34ms/step\n",
1404
- "1/1 [==============================] - 0s 41ms/step\n",
1405
- "1/1 [==============================] - 0s 47ms/step\n",
1406
- "1/1 [==============================] - 0s 37ms/step\n",
1407
- "India And China Learned From A Younger\n",
1408
- "1/1 [==============================] - 0s 50ms/step\n",
1409
- "1/1 [==============================] - 0s 39ms/step\n",
1410
- "1/1 [==============================] - 0s 16ms/step\n",
1411
- "1/1 [==============================] - 0s 34ms/step\n",
1412
- "New York Today A Holocaust Survivors\n",
1413
- "1/1 [==============================] - 0s 26ms/step\n",
1414
- "1/1 [==============================] - 0s 38ms/step\n",
1415
- "1/1 [==============================] - 0s 17ms/step\n",
1416
- "1/1 [==============================] - 0s 31ms/step\n",
1417
- "1/1 [==============================] - 0s 44ms/step\n",
1418
- "Science And Technology Knocking On The Door Of\n"
1419
- ]
1420
- }
1421
- ],
1422
- "source": [
1423
- "print (generate_text(\"united states\", 5, model, max_sequence_len))\n",
1424
- "print (generate_text(\"president trump\", 4, model, max_sequence_len))\n",
1425
- "print (generate_text(\"donald trump\", 4, model, max_sequence_len))\n",
1426
- "print (generate_text(\"india and china\", 4, model, max_sequence_len))\n",
1427
- "print (generate_text(\"new york\", 4, model, max_sequence_len))\n",
1428
- "print (generate_text(\"science and technology\", 5, model, max_sequence_len))"
1429
- ]
1430
- },
1431
- {
1432
- "cell_type": "code",
1433
- "execution_count": null,
1434
- "id": "80cd924f",
1435
- "metadata": {},
1436
- "outputs": [],
1437
- "source": []
1438
- }
1439
- ],
1440
- "metadata": {
1441
- "kernelspec": {
1442
- "display_name": "Python 3 (ipykernel)",
1443
- "language": "python",
1444
- "name": "python3"
1445
- },
1446
- "language_info": {
1447
- "codemirror_mode": {
1448
- "name": "ipython",
1449
- "version": 3
1450
- },
1451
- "file_extension": ".py",
1452
- "mimetype": "text/x-python",
1453
- "name": "python",
1454
- "nbconvert_exporter": "python",
1455
- "pygments_lexer": "ipython3",
1456
- "version": "3.11.7"
1457
- }
1458
- },
1459
- "nbformat": 4,
1460
- "nbformat_minor": 5
1461
- }