noshot 0.1.7__py3-none-any.whl → 0.1.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/ML TS XAI/ML/1. PCA - EDA/PCA-EDA.ipynb +207 -0
- noshot/data/ML TS XAI/ML/1. PCA - EDA/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/1. PCA - EDA/input.txt +625 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/KNN.ipynb +287 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/input.txt +625 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/LDA.ipynb +83 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/input.txt +625 -0
- noshot/data/ML TS XAI/ML/4. Linear Regression/Linear-Regression.ipynb +117 -0
- noshot/data/ML TS XAI/ML/4. Linear Regression/machine-data.csv +210 -0
- noshot/data/ML TS XAI/ML/5. Logistic Regression/Logistic-Regression.ipynb +137 -0
- noshot/data/ML TS XAI/ML/5. Logistic Regression/wine-dataset.csv +179 -0
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier/Bayesian.ipynb +129 -0
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier/wine-dataset.csv +179 -0
- noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/Handling TS Data.ipynb +784 -0
- noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/raw_sales.csv +29581 -0
- noshot/data/ML TS XAI/TS/2. Feature Engineering/Feature Engineering-.ipynb +1445 -0
- noshot/data/ML TS XAI/TS/3. Temporal Relationships/Exploring Temporal Relationships.ipynb +603 -0
- noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/Up-Down-Sampling.ipynb +721 -0
- noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/shampoo_sales.csv +37 -0
- noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/Stationarity-Trend-Seasonality.ipynb +392 -0
- noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-min-temperatures.csv +3651 -0
- noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-total-female-births.csv +366 -0
- noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/ACF-PACF.ipynb +175 -0
- noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/daily-min-temperatures.csv +3651 -0
- {noshot-0.1.7.dist-info → noshot-0.1.9.dist-info}/METADATA +2 -2
- noshot-0.1.9.dist-info/RECORD +35 -0
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(A) Breadth First Search.ipynb +0 -112
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(B) Depth First Search.ipynb +0 -111
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(C) Uniform Cost Search.ipynb +0 -134
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(D) Depth Limites Search.ipynb +0 -115
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(E) Iterative Deepening DFS.ipynb +0 -123
- noshot/data/ML TS XAI/AIDS/10. ANOVA/2_ANOVA.csv +0 -769
- noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA (Repeated Measure).ipynb +0 -126
- noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA.ipynb +0 -134
- noshot/data/ML TS XAI/AIDS/10. ANOVA/Sample 1 Way ANOVA Test.ipynb +0 -119
- noshot/data/ML TS XAI/AIDS/10. ANOVA/Two Way ANOVA.ipynb +0 -138
- noshot/data/ML TS XAI/AIDS/10. ANOVA/reaction_time.csv +0 -5
- noshot/data/ML TS XAI/AIDS/10. ANOVA/sample_data.csv +0 -16
- noshot/data/ML TS XAI/AIDS/10. ANOVA/sleep_deprivation.csv +0 -4
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/3_Linear.csv +0 -4802
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression LAB.ipynb +0 -113
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression New- sklearn.ipynb +0 -118
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression.ipynb +0 -148
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/house_rate.csv +0 -22
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression New- sklearn.ipynb +0 -128
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression.ipynb +0 -145
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/default.csv +0 -1001
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/hours_scores_records.csv +0 -101
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(A) Astar.ipynb +0 -256
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(B) IDAstar.ipynb +0 -157
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(C) SMAstar.ipynb +0 -178
- noshot/data/ML TS XAI/AIDS/3. Genetic Algorithm/Genetic.ipynb +0 -95
- noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Simulated Annealing.ipynb +0 -74
- noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Sudoku Simulated Annealing.ipynb +0 -103
- noshot/data/ML TS XAI/AIDS/5. Alpha Beta Pruning/AlphaBetaPruning.ipynb +0 -182
- noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(A) CSP House Allocation.ipynb +0 -120
- noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(B) CSP Map Coloring.ipynb +0 -125
- noshot/data/ML TS XAI/AIDS/7. Random Sampling/Random Sampling.ipynb +0 -73
- noshot/data/ML TS XAI/AIDS/7. Random Sampling/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test Hash Function.ipynb +0 -141
- noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test.ipynb +0 -151
- noshot/data/ML TS XAI/AIDS/8. Z Test/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/9. T Test/1_heart.csv +0 -304
- noshot/data/ML TS XAI/AIDS/9. T Test/Independent T Test.ipynb +0 -119
- noshot/data/ML TS XAI/AIDS/9. T Test/Paired T Test.ipynb +0 -118
- noshot/data/ML TS XAI/AIDS/9. T Test/T Test Hash Function.ipynb +0 -142
- noshot/data/ML TS XAI/AIDS/9. T Test/T Test.ipynb +0 -158
- noshot/data/ML TS XAI/AIDS/9. T Test/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/9. T Test/iq_test.csv +0 -0
- noshot/data/ML TS XAI/AIDS/Others (AllinOne)/All In One.ipynb +0 -4581
- noshot/data/ML TS XAI/CN/1. Chat Application/chat.java +0 -81
- noshot/data/ML TS XAI/CN/1. Chat Application/output.png +0 -0
- noshot/data/ML TS XAI/CN/1. Chat Application/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/LAN.tcl +0 -65
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/analysis.awk +0 -44
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/output.png +0 -0
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/complexdcf.tcl +0 -229
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/output.png +0 -0
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/2. File Transfer/file_to_send.txt +0 -2
- noshot/data/ML TS XAI/CN/2. File Transfer/filetransfer.java +0 -119
- noshot/data/ML TS XAI/CN/2. File Transfer/output.png +0 -0
- noshot/data/ML TS XAI/CN/2. File Transfer/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Client.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerImpl.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerIntf.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Server.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/output.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/rmi.java +0 -56
- noshot/data/ML TS XAI/CN/4. Wired Network/output.png +0 -0
- noshot/data/ML TS XAI/CN/4. Wired Network/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/4. Wired Network/wired.awk +0 -25
- noshot/data/ML TS XAI/CN/4. Wired Network/wired.tcl +0 -81
- noshot/data/ML TS XAI/CN/5. Wireless Network/output.png +0 -0
- noshot/data/ML TS XAI/CN/5. Wireless Network/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.awk +0 -27
- noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.tcl +0 -153
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/analysis.awk +0 -27
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/sack.tcl +0 -86
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/vegas.tcl +0 -86
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/analysis.awk +0 -28
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/reno.tcl +0 -78
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/tahoe.tcl +0 -79
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/analysis.awk +0 -27
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/flow.tcl +0 -163
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/DV.tcl +0 -111
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/LS.tcl +0 -106
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/analysis.awk +0 -36
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/output.png +0 -0
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/analysis.awk +0 -20
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/broadcast.tcl +0 -76
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/multicast.tcl +0 -103
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/output.png +0 -0
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/9. DHCP/DHCP.java +0 -125
- noshot/data/ML TS XAI/CN/9. DHCP/output.png +0 -0
- noshot/data/ML TS XAI/CN/9. DHCP/procedure.png +0 -0
- noshot/data/ML TS XAI/NLP/NLP 1/1-Prereqs.py +0 -18
- noshot/data/ML TS XAI/NLP/NLP 1/2-Chi2test.py +0 -83
- noshot/data/ML TS XAI/NLP/NLP 1/2-T-test.py +0 -79
- noshot/data/ML TS XAI/NLP/NLP 1/3-WSD-nb.py +0 -53
- noshot/data/ML TS XAI/NLP/NLP 1/4-Hindle-Rooth.py +0 -53
- noshot/data/ML TS XAI/NLP/NLP 1/5-HMM-Trellis.py +0 -82
- noshot/data/ML TS XAI/NLP/NLP 1/6-HMM-Viterbi.py +0 -16
- noshot/data/ML TS XAI/NLP/NLP 1/7-PCFG-parsetree.py +0 -15
- noshot/data/ML TS XAI/NLP/NLP 1/Chi2test.ipynb +0 -285
- noshot/data/ML TS XAI/NLP/NLP 1/Hindle-Rooth.ipynb +0 -179
- noshot/data/ML TS XAI/NLP/NLP 1/Lab 10 - Text generator using LSTM.ipynb +0 -1461
- noshot/data/ML TS XAI/NLP/NLP 1/Lab 11 NMT.ipynb +0 -2307
- noshot/data/ML TS XAI/NLP/NLP 1/PCFG.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 1/Prereqs.ipynb +0 -131
- noshot/data/ML TS XAI/NLP/NLP 1/T test.ipynb +0 -252
- noshot/data/ML TS XAI/NLP/NLP 1/TFIDF BOW.ipynb +0 -171
- noshot/data/ML TS XAI/NLP/NLP 1/Trellis.ipynb +0 -244
- noshot/data/ML TS XAI/NLP/NLP 1/WSD.ipynb +0 -645
- noshot/data/ML TS XAI/NLP/NLP 1/Word2Vec.ipynb +0 -93
- noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/tokenizer.ipynb +0 -370
- noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/training_tokenizer.txt +0 -6
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/exp0.ipynb +0 -274
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/lab2.ipynb +0 -905
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/test.txt +0 -1
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/tokenizing.ipynb +0 -272
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/collocation.ipynb +0 -332
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/lab3.ipynb +0 -549
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/nlp.txt +0 -1
- noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/Lab4-NLP-Exp-2.ipynb +0 -817
- noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/collocation.ipynb +0 -332
- noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/NLP-Lab-5-Exp3.ipynb +0 -231
- noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/word-sense-disambiguation.ipynb +0 -507
- noshot/data/ML TS XAI/NLP/NLP 2/Lab06(additional-exercise)/lab6.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP Exp 4.ipynb +0 -255
- noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP_Exp_5.ipynb +0 -159
- noshot/data/ML TS XAI/NLP/NLP 2/Lab08(PCFG)/PCFG.ipynb +0 -282
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/Lab 9 - MLP classifier.ipynb +0 -670
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/MLP-alternative-code.ipynb +0 -613
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/hindle-rooth-algorithm.ipynb +0 -74
- noshot/data/ML TS XAI/NLP/NLP 2/Lab10(LSTM)/Lab_10_Text_generator_using_LSTM.ipynb +0 -480
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Machine-translation.ipynb +0 -445
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Viterbi-PCFG.ipynb +0 -105
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/corpora_tools.py +0 -87
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/data_utils.py +0 -11
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/train_translator.py +0 -83
- noshot/data/ML TS XAI/NLP/NLP 2/Lab12(Information-Extraction)/Information_Extraction.ipynb +0 -201
- noshot/data/ML TS XAI/NLP/NLP 3/Backtrack-without-Verbitri.ipynb +0 -185
- noshot/data/ML TS XAI/NLP/NLP 3/Backward-Procedure.ipynb +0 -597
- noshot/data/ML TS XAI/NLP/NLP 3/Bag_of.ipynb +0 -1422
- noshot/data/ML TS XAI/NLP/NLP 3/CYK-algorithm.ipynb +0 -1067
- noshot/data/ML TS XAI/NLP/NLP 3/Forward-Procedure.ipynb +0 -477
- noshot/data/ML TS XAI/NLP/NLP 3/LSTM.ipynb +0 -1290
- noshot/data/ML TS XAI/NLP/NLP 3/Lab 10 - Text generator using LSTM.ipynb +0 -1461
- noshot/data/ML TS XAI/NLP/NLP 3/Lab 11 NMT.ipynb +0 -2307
- noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-4.ipynb +0 -216
- noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-5.ipynb +0 -216
- noshot/data/ML TS XAI/NLP/NLP 3/abc.txt +0 -6
- noshot/data/ML TS XAI/NLP/NLP 3/ex-1-nltk.ipynb +0 -711
- noshot/data/ML TS XAI/NLP/NLP 3/ex-2-nlp.ipynb +0 -267
- noshot/data/ML TS XAI/NLP/NLP 3/exp8&9.ipynb +0 -305
- noshot/data/ML TS XAI/NLP/NLP 3/hind.ipynb +0 -287
- noshot/data/ML TS XAI/NLP/NLP 3/lab66.ipynb +0 -752
- noshot/data/ML TS XAI/NLP/NLP 3/leb_3.ipynb +0 -612
- noshot/data/ML TS XAI/NLP/NLP 3/naive_bayes_classifier.pkl +0 -0
- noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_1.ipynb +0 -3008
- noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_2.ipynb +0 -3095
- noshot/data/ML TS XAI/NLP/NLP 3/nlplab-9.ipynb +0 -295
- noshot/data/ML TS XAI/NLP/NLP 3/nltk-ex-4.ipynb +0 -506
- noshot/data/ML TS XAI/NLP/NLP 3/text1.txt +0 -48
- noshot/data/ML TS XAI/NLP/NLP 3/text2.txt +0 -8
- noshot/data/ML TS XAI/NLP/NLP 3/text3.txt +0 -48
- noshot/data/ML TS XAI/NLP/NLP 3/translation-rnn.ipynb +0 -812
- noshot/data/ML TS XAI/NLP/NLP 3/word2vector.ipynb +0 -173
- noshot/data/ML TS XAI/NLP/NLP 4/Backward Procedure Algorithm.ipynb +0 -179
- noshot/data/ML TS XAI/NLP/NLP 4/Chi Square Collocation.ipynb +0 -208
- noshot/data/ML TS XAI/NLP/NLP 4/Collocation (T test).ipynb +0 -188
- noshot/data/ML TS XAI/NLP/NLP 4/Experiment 1.ipynb +0 -437
- noshot/data/ML TS XAI/NLP/NLP 4/Forward Procedure Algorithm.ipynb +0 -132
- noshot/data/ML TS XAI/NLP/NLP 4/Hindle Rooth.ipynb +0 -414
- noshot/data/ML TS XAI/NLP/NLP 4/MachineTranslation.ipynb +0 -368
- noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using MLPClassifier.ipynb +0 -86
- noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using Tensorflow.ipynb +0 -112
- noshot/data/ML TS XAI/NLP/NLP 4/PCFG Inside Probability.ipynb +0 -451
- noshot/data/ML TS XAI/NLP/NLP 4/Text Generation using LSTM.ipynb +0 -297
- noshot/data/ML TS XAI/NLP/NLP 4/Viterbi.ipynb +0 -310
- noshot/data/ML TS XAI/NLP/NLP 4/Word Sense Disambiguation.ipynb +0 -335
- noshot/data/ML TS XAI/NLP/NLP 5/10.Text Generation using LSTM.ipynb +0 -316
- noshot/data/ML TS XAI/NLP/NLP 5/11.Machine Translation.ipynb +0 -868
- noshot/data/ML TS XAI/NLP/NLP 5/2.T and Chi2 Test.ipynb +0 -204
- noshot/data/ML TS XAI/NLP/NLP 5/3.Word Sense Diambiguation.ipynb +0 -234
- noshot/data/ML TS XAI/NLP/NLP 5/4.Hinddle and Rooth.ipynb +0 -128
- noshot/data/ML TS XAI/NLP/NLP 5/5.Forward and Backward.ipynb +0 -149
- noshot/data/ML TS XAI/NLP/NLP 5/6.Viterbi.ipynb +0 -111
- noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG Parse Tree.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG using cyk.ipynb +0 -101
- noshot/data/ML TS XAI/NLP/NLP 5/8.Bag of words and TF-IDF.ipynb +0 -310
- noshot/data/ML TS XAI/NLP/NLP 5/9.Word2Vector.ipynb +0 -78
- noshot/data/ML TS XAI/NLP/NLP 5/NLP ALL In One.ipynb +0 -2619
- noshot/data/ML TS XAI/NLP/NLP 5/sample1.txt +0 -15
- noshot/data/ML TS XAI/NLP/NLP 5/sample2.txt +0 -4
- noshot/data/ML TS XAI/NLP/NLP 5/word2vec_model.bin +0 -0
- noshot/data/ML TS XAI/NLP/NLP 6/1. Tokenize, Tagging, NER, Parse Tree.ipynb +0 -312
- noshot/data/ML TS XAI/NLP/NLP 6/2. T Test and Chi2 Test.ipynb +0 -185
- noshot/data/ML TS XAI/NLP/NLP 6/3. Naive Bayes WSD.ipynb +0 -199
- noshot/data/ML TS XAI/NLP/NLP 6/4. Hinddle and Rooth.ipynb +0 -151
- noshot/data/ML TS XAI/NLP/NLP 6/5 and 6 FWD, BWD, Viterbi.ipynb +0 -164
- noshot/data/ML TS XAI/NLP/NLP 6/7. PCFG using CYK.ipynb +0 -383
- noshot/data/ML TS XAI/NLP/NLP 6/8. BOW and TF-IDF.ipynb +0 -252
- noshot/data/ML TS XAI/Ubuntu CN Lab.iso +0 -0
- noshot-0.1.7.dist-info/RECORD +0 -216
- {noshot-0.1.7.dist-info → noshot-0.1.9.dist-info}/LICENSE.txt +0 -0
- {noshot-0.1.7.dist-info → noshot-0.1.9.dist-info}/WHEEL +0 -0
- {noshot-0.1.7.dist-info → noshot-0.1.9.dist-info}/top_level.txt +0 -0
@@ -1,274 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": 3,
|
6
|
-
"id": "2ae9052e-082b-46b8-b342-c1af8b144ceb",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [
|
9
|
-
{
|
10
|
-
"name": "stdout",
|
11
|
-
"output_type": "stream",
|
12
|
-
"text": [
|
13
|
-
"Total number of unique words: 80\n",
|
14
|
-
"\n",
|
15
|
-
"Word frequencies:\n",
|
16
|
-
"India 3\n",
|
17
|
-
", 11\n",
|
18
|
-
"a 5\n",
|
19
|
-
"land 1\n",
|
20
|
-
"of 4\n",
|
21
|
-
"diverse 2\n",
|
22
|
-
"cultures 1\n",
|
23
|
-
"and 4\n",
|
24
|
-
"rich 1\n",
|
25
|
-
"heritage 1\n",
|
26
|
-
"captivates 1\n",
|
27
|
-
"with 3\n",
|
28
|
-
"its 3\n",
|
29
|
-
"vibrant 1\n",
|
30
|
-
"tapestry. 1\n",
|
31
|
-
"From 1\n",
|
32
|
-
"the 2\n",
|
33
|
-
"majestic 1\n",
|
34
|
-
"Himalayas 1\n",
|
35
|
-
"to 2\n",
|
36
|
-
"serene 1\n",
|
37
|
-
"backwaters 1\n",
|
38
|
-
"Kerala 1\n",
|
39
|
-
"landscapes 1\n",
|
40
|
-
"are 1\n",
|
41
|
-
"testament 1\n",
|
42
|
-
"nature 1\n",
|
43
|
-
"'s 3\n",
|
44
|
-
"grandeur. 1\n",
|
45
|
-
"Bustling 1\n",
|
46
|
-
"bazaars 1\n",
|
47
|
-
"exude 1\n",
|
48
|
-
"sensory 1\n",
|
49
|
-
"symphony 1\n",
|
50
|
-
"while 1\n",
|
51
|
-
"ancient 1\n",
|
52
|
-
"temples 1\n",
|
53
|
-
"modern 1\n",
|
54
|
-
"skyscrapers 1\n",
|
55
|
-
"stand 1\n",
|
56
|
-
"in 2\n",
|
57
|
-
"harmony. 1\n",
|
58
|
-
"The 1\n",
|
59
|
-
"nation 1\n",
|
60
|
-
"history 1\n",
|
61
|
-
"woven 1\n",
|
62
|
-
"tales 1\n",
|
63
|
-
"maharajas 1\n",
|
64
|
-
"independence 1\n",
|
65
|
-
"heroes 1\n",
|
66
|
-
"echoes 1\n",
|
67
|
-
"every 1\n",
|
68
|
-
"corner. 1\n",
|
69
|
-
"With 1\n",
|
70
|
-
"population 1\n",
|
71
|
-
"as 2\n",
|
72
|
-
"geography 1\n",
|
73
|
-
"celebrates 1\n",
|
74
|
-
"festivals 1\n",
|
75
|
-
"exuberance 1\n",
|
76
|
-
"uniting 1\n",
|
77
|
-
"people 1\n",
|
78
|
-
"various 1\n",
|
79
|
-
"faiths. 1\n",
|
80
|
-
"Spicy 1\n",
|
81
|
-
"cuisine 1\n",
|
82
|
-
"intricate 1\n",
|
83
|
-
"art 1\n",
|
84
|
-
"forms 1\n",
|
85
|
-
"Bollywood 1\n",
|
86
|
-
"magic 1\n",
|
87
|
-
"complete 1\n",
|
88
|
-
"this 1\n",
|
89
|
-
"colorful 1\n",
|
90
|
-
"mosaic 1\n",
|
91
|
-
"making 1\n",
|
92
|
-
"truly 1\n",
|
93
|
-
"extraordinary 1\n",
|
94
|
-
"destination 1\n",
|
95
|
-
". 1\n",
|
96
|
-
"\n",
|
97
|
-
"Total number of unique pairs: 112\n",
|
98
|
-
"Joint probabilities:\n",
|
99
|
-
"India , 1\n",
|
100
|
-
", a 1\n",
|
101
|
-
"a land 1\n",
|
102
|
-
"land of 1\n",
|
103
|
-
"of diverse 1\n",
|
104
|
-
"diverse cultures 1\n",
|
105
|
-
"cultures and 1\n",
|
106
|
-
"and rich 1\n",
|
107
|
-
"rich heritage 1\n",
|
108
|
-
"heritage , 1\n",
|
109
|
-
", captivates 1\n",
|
110
|
-
"captivates with 1\n",
|
111
|
-
"with its 1\n",
|
112
|
-
"its vibrant 1\n",
|
113
|
-
"vibrant tapestry. 1\n",
|
114
|
-
"tapestry. From 1\n",
|
115
|
-
"From the 1\n",
|
116
|
-
"the majestic 1\n",
|
117
|
-
"majestic Himalayas 1\n",
|
118
|
-
"Himalayas to 1\n",
|
119
|
-
"to the 1\n",
|
120
|
-
"the serene 1\n",
|
121
|
-
"serene backwaters 1\n",
|
122
|
-
"backwaters of 1\n",
|
123
|
-
"of Kerala 1\n",
|
124
|
-
"Kerala , 1\n",
|
125
|
-
", its 1\n",
|
126
|
-
"its landscapes 1\n",
|
127
|
-
"landscapes are 1\n",
|
128
|
-
"are a 1\n",
|
129
|
-
"a testament 1\n",
|
130
|
-
"testament to 1\n",
|
131
|
-
"to nature 1\n",
|
132
|
-
"nature 's 1\n",
|
133
|
-
"'s grandeur. 1\n",
|
134
|
-
"grandeur. Bustling 1\n",
|
135
|
-
"Bustling bazaars 1\n",
|
136
|
-
"bazaars exude 1\n",
|
137
|
-
"exude a 1\n",
|
138
|
-
"a sensory 1\n",
|
139
|
-
"sensory symphony 1\n",
|
140
|
-
"symphony , 1\n",
|
141
|
-
", while 1\n",
|
142
|
-
"while ancient 1\n",
|
143
|
-
"ancient temples 1\n",
|
144
|
-
"temples and 1\n",
|
145
|
-
"and modern 1\n",
|
146
|
-
"modern skyscrapers 1\n",
|
147
|
-
"skyscrapers stand 1\n",
|
148
|
-
"stand in 1\n",
|
149
|
-
"in harmony. 1\n",
|
150
|
-
"harmony. The 1\n",
|
151
|
-
"The nation 1\n",
|
152
|
-
"nation 's 1\n",
|
153
|
-
"'s history 1\n",
|
154
|
-
"history , 1\n",
|
155
|
-
", woven 1\n",
|
156
|
-
"woven with 1\n",
|
157
|
-
"with tales 1\n",
|
158
|
-
"tales of 1\n",
|
159
|
-
"of maharajas 1\n",
|
160
|
-
"maharajas and 1\n",
|
161
|
-
"and independence 1\n",
|
162
|
-
"independence heroes 1\n",
|
163
|
-
"heroes , 1\n",
|
164
|
-
", echoes 1\n",
|
165
|
-
"echoes in 1\n",
|
166
|
-
"in every 1\n",
|
167
|
-
"every corner. 1\n",
|
168
|
-
"corner. With 1\n",
|
169
|
-
"With a 1\n",
|
170
|
-
"a population 1\n",
|
171
|
-
"population as 1\n",
|
172
|
-
"as diverse 1\n",
|
173
|
-
"diverse as 1\n",
|
174
|
-
"as its 1\n",
|
175
|
-
"its geography 1\n",
|
176
|
-
"geography , 1\n",
|
177
|
-
", India 1\n",
|
178
|
-
"India celebrates 1\n",
|
179
|
-
"celebrates festivals 1\n",
|
180
|
-
"festivals with 1\n",
|
181
|
-
"with exuberance 1\n",
|
182
|
-
"exuberance , 1\n",
|
183
|
-
", uniting 1\n",
|
184
|
-
"uniting people 1\n",
|
185
|
-
"people of 1\n",
|
186
|
-
"of various 1\n",
|
187
|
-
"various faiths. 1\n",
|
188
|
-
"faiths. Spicy 1\n",
|
189
|
-
"Spicy cuisine 1\n",
|
190
|
-
"cuisine , 1\n",
|
191
|
-
", intricate 1\n",
|
192
|
-
"intricate art 1\n",
|
193
|
-
"art forms 1\n",
|
194
|
-
"forms , 1\n",
|
195
|
-
", and 1\n",
|
196
|
-
"and Bollywood 1\n",
|
197
|
-
"Bollywood 's 1\n",
|
198
|
-
"'s magic 1\n",
|
199
|
-
"magic complete 1\n",
|
200
|
-
"complete this 1\n",
|
201
|
-
"this colorful 1\n",
|
202
|
-
"colorful mosaic 1\n",
|
203
|
-
"mosaic , 1\n",
|
204
|
-
", making 1\n",
|
205
|
-
"making India 1\n",
|
206
|
-
"India a 1\n",
|
207
|
-
"a truly 1\n",
|
208
|
-
"truly extraordinary 1\n",
|
209
|
-
"extraordinary destination 1\n",
|
210
|
-
"destination . 1\n",
|
211
|
-
"\n",
|
212
|
-
"The pair with the max frequency: India ,\n"
|
213
|
-
]
|
214
|
-
}
|
215
|
-
],
|
216
|
-
"source": [
|
217
|
-
"from collections import Counter\n",
|
218
|
-
"from nltk.tokenize import TreebankWordTokenizer\n",
|
219
|
-
"\n",
|
220
|
-
"# Read the text file\n",
|
221
|
-
"with open(\"test.txt\") as f:\n",
|
222
|
-
" text = f.read()\n",
|
223
|
-
"\n",
|
224
|
-
"# Tokenize the text\n",
|
225
|
-
"tokenizer = TreebankWordTokenizer()\n",
|
226
|
-
"tokens = tokenizer.tokenize(text)\n",
|
227
|
-
"\n",
|
228
|
-
"# Task 1: Display total number of unique words\n",
|
229
|
-
"unique_words = set(tokens)\n",
|
230
|
-
"total_unique_words = len(unique_words)\n",
|
231
|
-
"print(\"Total number of unique words:\", total_unique_words)\n",
|
232
|
-
"\n",
|
233
|
-
"# Task 2: Frequency of each word without duplicate entries\n",
|
234
|
-
"word_frequency = Counter(tokens)\n",
|
235
|
-
"print(\"\\nWord frequencies:\")\n",
|
236
|
-
"for word, freq in word_frequency.items():\n",
|
237
|
-
" print(word, freq)\n",
|
238
|
-
"\n",
|
239
|
-
"# Task 3: Joint probability of each word\n",
|
240
|
-
"joint_probabilities = Counter(zip(tokens, tokens[1:]))\n",
|
241
|
-
"total_pairs = len(joint_probabilities)\n",
|
242
|
-
"print(\"\\nTotal number of unique pairs:\", total_pairs)\n",
|
243
|
-
"print(\"Joint probabilities:\")\n",
|
244
|
-
"for pair, freq in joint_probabilities.items():\n",
|
245
|
-
" print(\" \".join(pair), freq)\n",
|
246
|
-
"\n",
|
247
|
-
"# The pair with the maximum frequency\n",
|
248
|
-
"max_freq_pair = max(joint_probabilities, key=joint_probabilities.get)\n",
|
249
|
-
"print(\"\\nThe pair with the max frequency:\", \" \".join(max_freq_pair))\n"
|
250
|
-
]
|
251
|
-
}
|
252
|
-
],
|
253
|
-
"metadata": {
|
254
|
-
"kernelspec": {
|
255
|
-
"display_name": "Python 3 (ipykernel)",
|
256
|
-
"language": "python",
|
257
|
-
"name": "python3"
|
258
|
-
},
|
259
|
-
"language_info": {
|
260
|
-
"codemirror_mode": {
|
261
|
-
"name": "ipython",
|
262
|
-
"version": 3
|
263
|
-
},
|
264
|
-
"file_extension": ".py",
|
265
|
-
"mimetype": "text/x-python",
|
266
|
-
"name": "python",
|
267
|
-
"nbconvert_exporter": "python",
|
268
|
-
"pygments_lexer": "ipython3",
|
269
|
-
"version": "3.11.4"
|
270
|
-
}
|
271
|
-
},
|
272
|
-
"nbformat": 4,
|
273
|
-
"nbformat_minor": 5
|
274
|
-
}
|