noshot 0.1.7__py3-none-any.whl → 0.1.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (239) hide show
  1. noshot/data/ML TS XAI/ML/1. PCA - EDA/PCA-EDA.ipynb +207 -0
  2. noshot/data/ML TS XAI/ML/1. PCA - EDA/balance-scale.csv +626 -0
  3. noshot/data/ML TS XAI/ML/1. PCA - EDA/input.txt +625 -0
  4. noshot/data/ML TS XAI/ML/2. KNN Classifier/KNN.ipynb +287 -0
  5. noshot/data/ML TS XAI/ML/2. KNN Classifier/balance-scale.csv +626 -0
  6. noshot/data/ML TS XAI/ML/2. KNN Classifier/input.txt +625 -0
  7. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/LDA.ipynb +83 -0
  8. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/balance-scale.csv +626 -0
  9. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/input.txt +625 -0
  10. noshot/data/ML TS XAI/ML/4. Linear Regression/Linear-Regression.ipynb +117 -0
  11. noshot/data/ML TS XAI/ML/4. Linear Regression/machine-data.csv +210 -0
  12. noshot/data/ML TS XAI/ML/5. Logistic Regression/Logistic-Regression.ipynb +137 -0
  13. noshot/data/ML TS XAI/ML/5. Logistic Regression/wine-dataset.csv +179 -0
  14. noshot/data/ML TS XAI/ML/6. Bayesian Classifier/Bayesian.ipynb +129 -0
  15. noshot/data/ML TS XAI/ML/6. Bayesian Classifier/wine-dataset.csv +179 -0
  16. noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/Handling TS Data.ipynb +784 -0
  17. noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/raw_sales.csv +29581 -0
  18. noshot/data/ML TS XAI/TS/2. Feature Engineering/Feature Engineering-.ipynb +1445 -0
  19. noshot/data/ML TS XAI/TS/3. Temporal Relationships/Exploring Temporal Relationships.ipynb +603 -0
  20. noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/Up-Down-Sampling.ipynb +721 -0
  21. noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/shampoo_sales.csv +37 -0
  22. noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/Stationarity-Trend-Seasonality.ipynb +392 -0
  23. noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-min-temperatures.csv +3651 -0
  24. noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-total-female-births.csv +366 -0
  25. noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/ACF-PACF.ipynb +175 -0
  26. noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/daily-min-temperatures.csv +3651 -0
  27. {noshot-0.1.7.dist-info → noshot-0.1.9.dist-info}/METADATA +2 -2
  28. noshot-0.1.9.dist-info/RECORD +35 -0
  29. noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(A) Breadth First Search.ipynb +0 -112
  30. noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(B) Depth First Search.ipynb +0 -111
  31. noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(C) Uniform Cost Search.ipynb +0 -134
  32. noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(D) Depth Limites Search.ipynb +0 -115
  33. noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(E) Iterative Deepening DFS.ipynb +0 -123
  34. noshot/data/ML TS XAI/AIDS/10. ANOVA/2_ANOVA.csv +0 -769
  35. noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA (Repeated Measure).ipynb +0 -126
  36. noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA.ipynb +0 -134
  37. noshot/data/ML TS XAI/AIDS/10. ANOVA/Sample 1 Way ANOVA Test.ipynb +0 -119
  38. noshot/data/ML TS XAI/AIDS/10. ANOVA/Two Way ANOVA.ipynb +0 -138
  39. noshot/data/ML TS XAI/AIDS/10. ANOVA/reaction_time.csv +0 -5
  40. noshot/data/ML TS XAI/AIDS/10. ANOVA/sample_data.csv +0 -16
  41. noshot/data/ML TS XAI/AIDS/10. ANOVA/sleep_deprivation.csv +0 -4
  42. noshot/data/ML TS XAI/AIDS/11. Linear Regression/3_Linear.csv +0 -4802
  43. noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression LAB.ipynb +0 -113
  44. noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression New- sklearn.ipynb +0 -118
  45. noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression.ipynb +0 -148
  46. noshot/data/ML TS XAI/AIDS/11. Linear Regression/house_rate.csv +0 -22
  47. noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression New- sklearn.ipynb +0 -128
  48. noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression.ipynb +0 -145
  49. noshot/data/ML TS XAI/AIDS/12. Logistic Regression/default.csv +0 -1001
  50. noshot/data/ML TS XAI/AIDS/12. Logistic Regression/hours_scores_records.csv +0 -101
  51. noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(A) Astar.ipynb +0 -256
  52. noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(B) IDAstar.ipynb +0 -157
  53. noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(C) SMAstar.ipynb +0 -178
  54. noshot/data/ML TS XAI/AIDS/3. Genetic Algorithm/Genetic.ipynb +0 -95
  55. noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Simulated Annealing.ipynb +0 -74
  56. noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Sudoku Simulated Annealing.ipynb +0 -103
  57. noshot/data/ML TS XAI/AIDS/5. Alpha Beta Pruning/AlphaBetaPruning.ipynb +0 -182
  58. noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(A) CSP House Allocation.ipynb +0 -120
  59. noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(B) CSP Map Coloring.ipynb +0 -125
  60. noshot/data/ML TS XAI/AIDS/7. Random Sampling/Random Sampling.ipynb +0 -73
  61. noshot/data/ML TS XAI/AIDS/7. Random Sampling/height_weight_bmi.csv +0 -8389
  62. noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test Hash Function.ipynb +0 -141
  63. noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test.ipynb +0 -151
  64. noshot/data/ML TS XAI/AIDS/8. Z Test/height_weight_bmi.csv +0 -8389
  65. noshot/data/ML TS XAI/AIDS/9. T Test/1_heart.csv +0 -304
  66. noshot/data/ML TS XAI/AIDS/9. T Test/Independent T Test.ipynb +0 -119
  67. noshot/data/ML TS XAI/AIDS/9. T Test/Paired T Test.ipynb +0 -118
  68. noshot/data/ML TS XAI/AIDS/9. T Test/T Test Hash Function.ipynb +0 -142
  69. noshot/data/ML TS XAI/AIDS/9. T Test/T Test.ipynb +0 -158
  70. noshot/data/ML TS XAI/AIDS/9. T Test/height_weight_bmi.csv +0 -8389
  71. noshot/data/ML TS XAI/AIDS/9. T Test/iq_test.csv +0 -0
  72. noshot/data/ML TS XAI/AIDS/Others (AllinOne)/All In One.ipynb +0 -4581
  73. noshot/data/ML TS XAI/CN/1. Chat Application/chat.java +0 -81
  74. noshot/data/ML TS XAI/CN/1. Chat Application/output.png +0 -0
  75. noshot/data/ML TS XAI/CN/1. Chat Application/procedure.png +0 -0
  76. noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/LAN.tcl +0 -65
  77. noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/analysis.awk +0 -44
  78. noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/output.png +0 -0
  79. noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/procedure.png +0 -0
  80. noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/complexdcf.tcl +0 -229
  81. noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/output.png +0 -0
  82. noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/procedure.png +0 -0
  83. noshot/data/ML TS XAI/CN/2. File Transfer/file_to_send.txt +0 -2
  84. noshot/data/ML TS XAI/CN/2. File Transfer/filetransfer.java +0 -119
  85. noshot/data/ML TS XAI/CN/2. File Transfer/output.png +0 -0
  86. noshot/data/ML TS XAI/CN/2. File Transfer/procedure.png +0 -0
  87. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Client.class +0 -0
  88. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerImpl.class +0 -0
  89. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerIntf.class +0 -0
  90. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Server.class +0 -0
  91. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/output.png +0 -0
  92. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/procedure.png +0 -0
  93. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/rmi.java +0 -56
  94. noshot/data/ML TS XAI/CN/4. Wired Network/output.png +0 -0
  95. noshot/data/ML TS XAI/CN/4. Wired Network/procedure.png +0 -0
  96. noshot/data/ML TS XAI/CN/4. Wired Network/wired.awk +0 -25
  97. noshot/data/ML TS XAI/CN/4. Wired Network/wired.tcl +0 -81
  98. noshot/data/ML TS XAI/CN/5. Wireless Network/output.png +0 -0
  99. noshot/data/ML TS XAI/CN/5. Wireless Network/procedure.png +0 -0
  100. noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.awk +0 -27
  101. noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.tcl +0 -153
  102. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/analysis.awk +0 -27
  103. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/output.png +0 -0
  104. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/sack.tcl +0 -86
  105. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/vegas.tcl +0 -86
  106. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/analysis.awk +0 -28
  107. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/output.png +0 -0
  108. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/reno.tcl +0 -78
  109. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/tahoe.tcl +0 -79
  110. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/analysis.awk +0 -27
  111. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/flow.tcl +0 -163
  112. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/output.png +0 -0
  113. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/procedure.png +0 -0
  114. noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/DV.tcl +0 -111
  115. noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/LS.tcl +0 -106
  116. noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/analysis.awk +0 -36
  117. noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/output.png +0 -0
  118. noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/procedure.png +0 -0
  119. noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/analysis.awk +0 -20
  120. noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/broadcast.tcl +0 -76
  121. noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/multicast.tcl +0 -103
  122. noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/output.png +0 -0
  123. noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/procedure.png +0 -0
  124. noshot/data/ML TS XAI/CN/9. DHCP/DHCP.java +0 -125
  125. noshot/data/ML TS XAI/CN/9. DHCP/output.png +0 -0
  126. noshot/data/ML TS XAI/CN/9. DHCP/procedure.png +0 -0
  127. noshot/data/ML TS XAI/NLP/NLP 1/1-Prereqs.py +0 -18
  128. noshot/data/ML TS XAI/NLP/NLP 1/2-Chi2test.py +0 -83
  129. noshot/data/ML TS XAI/NLP/NLP 1/2-T-test.py +0 -79
  130. noshot/data/ML TS XAI/NLP/NLP 1/3-WSD-nb.py +0 -53
  131. noshot/data/ML TS XAI/NLP/NLP 1/4-Hindle-Rooth.py +0 -53
  132. noshot/data/ML TS XAI/NLP/NLP 1/5-HMM-Trellis.py +0 -82
  133. noshot/data/ML TS XAI/NLP/NLP 1/6-HMM-Viterbi.py +0 -16
  134. noshot/data/ML TS XAI/NLP/NLP 1/7-PCFG-parsetree.py +0 -15
  135. noshot/data/ML TS XAI/NLP/NLP 1/Chi2test.ipynb +0 -285
  136. noshot/data/ML TS XAI/NLP/NLP 1/Hindle-Rooth.ipynb +0 -179
  137. noshot/data/ML TS XAI/NLP/NLP 1/Lab 10 - Text generator using LSTM.ipynb +0 -1461
  138. noshot/data/ML TS XAI/NLP/NLP 1/Lab 11 NMT.ipynb +0 -2307
  139. noshot/data/ML TS XAI/NLP/NLP 1/PCFG.ipynb +0 -134
  140. noshot/data/ML TS XAI/NLP/NLP 1/Prereqs.ipynb +0 -131
  141. noshot/data/ML TS XAI/NLP/NLP 1/T test.ipynb +0 -252
  142. noshot/data/ML TS XAI/NLP/NLP 1/TFIDF BOW.ipynb +0 -171
  143. noshot/data/ML TS XAI/NLP/NLP 1/Trellis.ipynb +0 -244
  144. noshot/data/ML TS XAI/NLP/NLP 1/WSD.ipynb +0 -645
  145. noshot/data/ML TS XAI/NLP/NLP 1/Word2Vec.ipynb +0 -93
  146. noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/tokenizer.ipynb +0 -370
  147. noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/training_tokenizer.txt +0 -6
  148. noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/exp0.ipynb +0 -274
  149. noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/lab2.ipynb +0 -905
  150. noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/test.txt +0 -1
  151. noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/tokenizing.ipynb +0 -272
  152. noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/collocation.ipynb +0 -332
  153. noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/lab3.ipynb +0 -549
  154. noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/nlp.txt +0 -1
  155. noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/Lab4-NLP-Exp-2.ipynb +0 -817
  156. noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/collocation.ipynb +0 -332
  157. noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/NLP-Lab-5-Exp3.ipynb +0 -231
  158. noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/word-sense-disambiguation.ipynb +0 -507
  159. noshot/data/ML TS XAI/NLP/NLP 2/Lab06(additional-exercise)/lab6.ipynb +0 -134
  160. noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP Exp 4.ipynb +0 -255
  161. noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP_Exp_5.ipynb +0 -159
  162. noshot/data/ML TS XAI/NLP/NLP 2/Lab08(PCFG)/PCFG.ipynb +0 -282
  163. noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/Lab 9 - MLP classifier.ipynb +0 -670
  164. noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/MLP-alternative-code.ipynb +0 -613
  165. noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/hindle-rooth-algorithm.ipynb +0 -74
  166. noshot/data/ML TS XAI/NLP/NLP 2/Lab10(LSTM)/Lab_10_Text_generator_using_LSTM.ipynb +0 -480
  167. noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Machine-translation.ipynb +0 -445
  168. noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Viterbi-PCFG.ipynb +0 -105
  169. noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/corpora_tools.py +0 -87
  170. noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/data_utils.py +0 -11
  171. noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/train_translator.py +0 -83
  172. noshot/data/ML TS XAI/NLP/NLP 2/Lab12(Information-Extraction)/Information_Extraction.ipynb +0 -201
  173. noshot/data/ML TS XAI/NLP/NLP 3/Backtrack-without-Verbitri.ipynb +0 -185
  174. noshot/data/ML TS XAI/NLP/NLP 3/Backward-Procedure.ipynb +0 -597
  175. noshot/data/ML TS XAI/NLP/NLP 3/Bag_of.ipynb +0 -1422
  176. noshot/data/ML TS XAI/NLP/NLP 3/CYK-algorithm.ipynb +0 -1067
  177. noshot/data/ML TS XAI/NLP/NLP 3/Forward-Procedure.ipynb +0 -477
  178. noshot/data/ML TS XAI/NLP/NLP 3/LSTM.ipynb +0 -1290
  179. noshot/data/ML TS XAI/NLP/NLP 3/Lab 10 - Text generator using LSTM.ipynb +0 -1461
  180. noshot/data/ML TS XAI/NLP/NLP 3/Lab 11 NMT.ipynb +0 -2307
  181. noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-4.ipynb +0 -216
  182. noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-5.ipynb +0 -216
  183. noshot/data/ML TS XAI/NLP/NLP 3/abc.txt +0 -6
  184. noshot/data/ML TS XAI/NLP/NLP 3/ex-1-nltk.ipynb +0 -711
  185. noshot/data/ML TS XAI/NLP/NLP 3/ex-2-nlp.ipynb +0 -267
  186. noshot/data/ML TS XAI/NLP/NLP 3/exp8&9.ipynb +0 -305
  187. noshot/data/ML TS XAI/NLP/NLP 3/hind.ipynb +0 -287
  188. noshot/data/ML TS XAI/NLP/NLP 3/lab66.ipynb +0 -752
  189. noshot/data/ML TS XAI/NLP/NLP 3/leb_3.ipynb +0 -612
  190. noshot/data/ML TS XAI/NLP/NLP 3/naive_bayes_classifier.pkl +0 -0
  191. noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_1.ipynb +0 -3008
  192. noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_2.ipynb +0 -3095
  193. noshot/data/ML TS XAI/NLP/NLP 3/nlplab-9.ipynb +0 -295
  194. noshot/data/ML TS XAI/NLP/NLP 3/nltk-ex-4.ipynb +0 -506
  195. noshot/data/ML TS XAI/NLP/NLP 3/text1.txt +0 -48
  196. noshot/data/ML TS XAI/NLP/NLP 3/text2.txt +0 -8
  197. noshot/data/ML TS XAI/NLP/NLP 3/text3.txt +0 -48
  198. noshot/data/ML TS XAI/NLP/NLP 3/translation-rnn.ipynb +0 -812
  199. noshot/data/ML TS XAI/NLP/NLP 3/word2vector.ipynb +0 -173
  200. noshot/data/ML TS XAI/NLP/NLP 4/Backward Procedure Algorithm.ipynb +0 -179
  201. noshot/data/ML TS XAI/NLP/NLP 4/Chi Square Collocation.ipynb +0 -208
  202. noshot/data/ML TS XAI/NLP/NLP 4/Collocation (T test).ipynb +0 -188
  203. noshot/data/ML TS XAI/NLP/NLP 4/Experiment 1.ipynb +0 -437
  204. noshot/data/ML TS XAI/NLP/NLP 4/Forward Procedure Algorithm.ipynb +0 -132
  205. noshot/data/ML TS XAI/NLP/NLP 4/Hindle Rooth.ipynb +0 -414
  206. noshot/data/ML TS XAI/NLP/NLP 4/MachineTranslation.ipynb +0 -368
  207. noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using MLPClassifier.ipynb +0 -86
  208. noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using Tensorflow.ipynb +0 -112
  209. noshot/data/ML TS XAI/NLP/NLP 4/PCFG Inside Probability.ipynb +0 -451
  210. noshot/data/ML TS XAI/NLP/NLP 4/Text Generation using LSTM.ipynb +0 -297
  211. noshot/data/ML TS XAI/NLP/NLP 4/Viterbi.ipynb +0 -310
  212. noshot/data/ML TS XAI/NLP/NLP 4/Word Sense Disambiguation.ipynb +0 -335
  213. noshot/data/ML TS XAI/NLP/NLP 5/10.Text Generation using LSTM.ipynb +0 -316
  214. noshot/data/ML TS XAI/NLP/NLP 5/11.Machine Translation.ipynb +0 -868
  215. noshot/data/ML TS XAI/NLP/NLP 5/2.T and Chi2 Test.ipynb +0 -204
  216. noshot/data/ML TS XAI/NLP/NLP 5/3.Word Sense Diambiguation.ipynb +0 -234
  217. noshot/data/ML TS XAI/NLP/NLP 5/4.Hinddle and Rooth.ipynb +0 -128
  218. noshot/data/ML TS XAI/NLP/NLP 5/5.Forward and Backward.ipynb +0 -149
  219. noshot/data/ML TS XAI/NLP/NLP 5/6.Viterbi.ipynb +0 -111
  220. noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG Parse Tree.ipynb +0 -134
  221. noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG using cyk.ipynb +0 -101
  222. noshot/data/ML TS XAI/NLP/NLP 5/8.Bag of words and TF-IDF.ipynb +0 -310
  223. noshot/data/ML TS XAI/NLP/NLP 5/9.Word2Vector.ipynb +0 -78
  224. noshot/data/ML TS XAI/NLP/NLP 5/NLP ALL In One.ipynb +0 -2619
  225. noshot/data/ML TS XAI/NLP/NLP 5/sample1.txt +0 -15
  226. noshot/data/ML TS XAI/NLP/NLP 5/sample2.txt +0 -4
  227. noshot/data/ML TS XAI/NLP/NLP 5/word2vec_model.bin +0 -0
  228. noshot/data/ML TS XAI/NLP/NLP 6/1. Tokenize, Tagging, NER, Parse Tree.ipynb +0 -312
  229. noshot/data/ML TS XAI/NLP/NLP 6/2. T Test and Chi2 Test.ipynb +0 -185
  230. noshot/data/ML TS XAI/NLP/NLP 6/3. Naive Bayes WSD.ipynb +0 -199
  231. noshot/data/ML TS XAI/NLP/NLP 6/4. Hinddle and Rooth.ipynb +0 -151
  232. noshot/data/ML TS XAI/NLP/NLP 6/5 and 6 FWD, BWD, Viterbi.ipynb +0 -164
  233. noshot/data/ML TS XAI/NLP/NLP 6/7. PCFG using CYK.ipynb +0 -383
  234. noshot/data/ML TS XAI/NLP/NLP 6/8. BOW and TF-IDF.ipynb +0 -252
  235. noshot/data/ML TS XAI/Ubuntu CN Lab.iso +0 -0
  236. noshot-0.1.7.dist-info/RECORD +0 -216
  237. {noshot-0.1.7.dist-info → noshot-0.1.9.dist-info}/LICENSE.txt +0 -0
  238. {noshot-0.1.7.dist-info → noshot-0.1.9.dist-info}/WHEEL +0 -0
  239. {noshot-0.1.7.dist-info → noshot-0.1.9.dist-info}/top_level.txt +0 -0
@@ -1,3095 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": 55,
6
- "id": "82296d9f-6bd1-4f6e-b9b7-3fa6bf7609aa",
7
- "metadata": {},
8
- "outputs": [
9
- {
10
- "name": "stdout",
11
- "output_type": "stream",
12
- "text": [
13
- "Loaded Text:\n",
14
- "In the bustling city of San Francisco, tech enthusiasts from all over the world gathered for the annual Tech Innovators Conference. The event was a melting pot of ideas, innovations, and collaborations. Among the attendees was Emily Chen, a renowned AI researcher from MIT, who was eager to present her latest findings on machine learning algorithms. Emily's colleague, Dr. Michael Thompson, who is also a well-respected figure in the field of artificial intelligence, accompanied her. The duo had been working on a groundbreaking project that aimed to revolutionize the way neural networks process information.\n",
15
- "\n",
16
- "As the conference commenced, Emily and Michael were greeted by a host of familiar faces. Jennifer Lee, a data scientist from Google, was there to showcase her team's advancements in quantum computing. She was joined by her mentor, Dr. Robert Lang, who had been a pioneer in the field of computational neuroscience. Jennifer introduced Emily and Michael to her friend, Carlos Mendez, a software engineer at Facebook who specialized in developing algorithms for social media analytics.\n",
17
- "\n",
18
- "The keynote speaker for the event was none other than Dr. Elizabeth Warren, a distinguished professor at Stanford University. Dr. Warren's speech focused on the ethical implications of AI and the importance of developing technologies that benefit humanity as a whole. Her insights sparked a lively discussion among the attendees, including Sarah Johnson, a policy advisor from the United Nations, and Ahmed Khan, a cybersecurity expert from Microsoft.\n",
19
- "\n",
20
- "During the breaks between sessions, the attendees mingled and exchanged ideas. Emily caught up with her former classmate, David Kim, who now works as a data analyst at Amazon. David introduced her to his colleague, Jessica Brown, a machine learning engineer with a knack for developing innovative solutions to complex problems. Emily was particularly interested in Jessica's work on natural language processing and invited her to collaborate on a future project.\n",
21
- "\n",
22
- "In another corner of the room, Michael was deep in conversation with Raj Patel, a roboticist from Carnegie Mellon University. Raj had recently developed a new type of robotic arm that could perform delicate surgical procedures with unprecedented precision. He was accompanied by his research assistant, Maria Gonzalez, who had been instrumental in the project's success. Michael was fascinated by their work and proposed a partnership to integrate their technology with his AI algorithms.\n",
23
- "\n",
24
- "As the day progressed, the conference attendees were treated to a series of insightful presentations. Dr. James Clark from Harvard University shared his research on deep learning and its applications in healthcare. He was followed by Lisa Robinson, a computer vision expert from Nvidia, who demonstrated the latest advancements in image recognition technology. The audience was particularly impressed by the presentation from Dr. Ananya Singh, an AI ethicist from Oxford University, who discussed the societal impacts of AI and the importance of responsible innovation.\n",
25
- "\n",
26
- "In the evening, the attendees gathered for a gala dinner at the Grand Hyatt Hotel. The event was a perfect opportunity for networking and fostering new collaborations. Emily found herself seated next to Henry Zhang, a venture capitalist from Sequoia Capital, who was keen to invest in promising AI startups. They were joined by Priya Sharma, a legal expert from the Electronic Frontier Foundation, who provided valuable insights into the regulatory landscape of emerging technologies.\n",
27
- "\n",
28
- "At the same table, Michael struck up a conversation with Laura Martinez, a bioinformatics researcher from the University of California, Berkeley. Laura had been working on a project to use AI for predicting genetic disorders and was interested in Michael's expertise in neural networks. They exchanged contact information and planned to meet after the conference to discuss potential collaborations.\n",
29
- "\n",
30
- "Meanwhile, Jennifer and Carlos were deep in discussion with Ethan Liu, a blockchain developer from IBM, about the potential of combining AI with blockchain technology to enhance data security. Ethan's colleague, Dr. Olivia Parker, joined the conversation, bringing her expertise in cryptography to the table. The group brainstormed various applications and decided to form a working group to explore these ideas further.\n",
31
- "\n",
32
- "The next morning, the conference resumed with a panel discussion featuring several industry leaders. Among them were Dr. William Harris, the CEO of AI Inc., and Dr. Katherine Adams, a senior researcher at OpenAI. They discussed the future of AI and its potential to transform industries ranging from healthcare to finance. The panel also included Dr. Mei Ling, a professor at the University of Tokyo, who highlighted the advancements in AI research in Asia.\n",
33
- "\n",
34
- "In the audience, Emily and Michael sat with their new acquaintances, eager to absorb the wealth of knowledge being shared. They were particularly inspired by the talk from Dr. Samuel Green, a cognitive scientist from Yale University, who discussed the intersection of AI and human cognition. His research on how AI can augment human decision-making resonated deeply with the audience.\n",
35
- "\n",
36
- "As the conference drew to a close, the attendees reflected on the valuable connections they had made and the new knowledge they had gained. Emily and Michael felt energized and excited about the future of their research. They had formed new collaborations with Jessica, Raj, and Laura, and were eager to start working on their joint projects.\n",
37
- "\n",
38
- "Before leaving, they took a moment to thank the conference organizers, including Dr. Karen Wilson, the director of the Tech Innovators Network, and her team. The event had been a resounding success, bringing together some of the brightest minds in the field of AI and fostering a spirit of innovation and collaboration.\n",
39
- "\n",
40
- "As they boarded their flight back to Boston, Emily and Michael couldn't help but feel optimistic about the future. They knew that the connections they had made at the conference would lead to exciting new opportunities and advancements in their research. They were more determined than ever to push the boundaries of what AI could achieve and to ensure that their work would have a positive impact on the world.\n",
41
- "\n",
42
- "In the weeks that followed, Emily and Michael stayed in touch with their new collaborators. They began working on joint projects, sharing ideas and resources to push the boundaries of AI research. Emily collaborated with Jessica on a project to enhance natural language processing algorithms, while Michael worked with Raj and Maria to integrate their robotic technology with his neural networks. Laura and Emily started a project on using AI to predict genetic disorders, combining their expertise to tackle complex biological problems.\n",
43
- "\n",
44
- "The conference had not only expanded their professional networks but also enriched their understanding of the diverse applications of AI. They were grateful for the opportunity to connect with so many talented individuals and looked forward to the future with renewed enthusiasm and a sense of purpose. The Tech Innovators Conference had been a transformative experience, setting the stage for new discoveries and groundbreaking advancements in the field of artificial intelligence.\n"
45
- ]
46
- }
47
- ],
48
- "source": [
49
- "# Load the text file\n",
50
- "file_path = 'E:/126156048/leb_2/name_essay.txt' # Replace with the path to your text file\n",
51
- "with open(file_path, 'r') as file:\n",
52
- " text = file.read()\n",
53
- "\n",
54
- "print(\"Loaded Text:\")\n",
55
- "print(text)"
56
- ]
57
- },
58
- {
59
- "cell_type": "code",
60
- "execution_count": 81,
61
- "id": "069a035a-428f-49ba-8215-75053e901f05",
62
- "metadata": {},
63
- "outputs": [
64
- {
65
- "name": "stderr",
66
- "output_type": "stream",
67
- "text": [
68
- "[nltk_data] Downloading package stopwords to\n",
69
- "[nltk_data] C:\\Users\\admin\\AppData\\Roaming\\nltk_data...\n",
70
- "[nltk_data] Package stopwords is already up-to-date!\n"
71
- ]
72
- }
73
- ],
74
- "source": [
75
- "from nltk.corpus import stopwords\n",
76
- "# Download stop words if not already downloaded\n",
77
- "nltk.download('stopwords')\n",
78
- "\n",
79
- "# Load the stop words\n",
80
- "stop_words = set(stopwords.words('english'))\n",
81
- "\n",
82
- "# Remove stop words from tokens\n",
83
- "filteredd_tokens = [word for word in tokens if word.lower() not in stop_words]\n",
84
- "\n",
85
- "list_stop = [\",\" , \".\" , \"'\", \"'s\"] \n",
86
- "filtered_tokens = [word for word in filteredd_tokens if word not in list_stop]"
87
- ]
88
- },
89
- {
90
- "cell_type": "code",
91
- "execution_count": 82,
92
- "id": "68cf8b0b-52b7-486d-a5eb-8cec56e14712",
93
- "metadata": {},
94
- "outputs": [],
95
- "source": [
96
- "# Initialize stemmer and lemmatizer\n",
97
- "stemmer = PorterStemmer()\n",
98
- "lemmatizer = WordNetLemmatizer()"
99
- ]
100
- },
101
- {
102
- "cell_type": "code",
103
- "execution_count": 83,
104
- "id": "64f4ffcb-f57a-42be-abbc-b83cf8538fac",
105
- "metadata": {},
106
- "outputs": [],
107
- "source": [
108
- "# Define a function to get the part of speech for lemmatization\n",
109
- "def get_wordnet_pos(treebank_tag):\n",
110
- " if treebank_tag.startswith('J'):\n",
111
- " return wordnet.ADJ\n",
112
- " elif treebank_tag.startswith('V'):\n",
113
- " return wordnet.VERB\n",
114
- " elif treebank_tag.startswith('N'):\n",
115
- " return wordnet.NOUN\n",
116
- " elif treebank_tag.startswith('R'):\n",
117
- " return wordnet.ADV\n",
118
- " else:\n",
119
- " return wordnet.NOUN"
120
- ]
121
- },
122
- {
123
- "cell_type": "code",
124
- "execution_count": 84,
125
- "id": "56c7583e-b9a3-4de2-95a7-de4e5dd1d390",
126
- "metadata": {},
127
- "outputs": [],
128
- "source": [
129
- "# Perform stemming\n",
130
- "stems = [stemmer.stem(word) for word in filtered_tokens]\n",
131
- "\n",
132
- "# Perform lemmatization\n",
133
- "tagged_tokens = nltk.pos_tag(filtered_tokens)\n",
134
- "lemmas = [lemmatizer.lemmatize(word, get_wordnet_pos(tag)) for word, tag in tagged_tokens]"
135
- ]
136
- },
137
- {
138
- "cell_type": "code",
139
- "execution_count": 85,
140
- "id": "24efe7bd-0ed5-4582-af18-504b6fbdfe7b",
141
- "metadata": {},
142
- "outputs": [
143
- {
144
- "name": "stdout",
145
- "output_type": "stream",
146
- "text": [
147
- "\n",
148
- "Stems : \n",
149
- "['bustl', 'citi', 'san', 'francisco', 'tech', 'enthusiast', 'world', 'gather', 'annual', 'tech', 'innov', 'confer', 'event', 'melt', 'pot', 'idea', 'innov', 'collabor', 'among', 'attende', 'emili', 'chen', 'renown', 'ai', 'research', 'mit', 'eager', 'present', 'latest', 'find', 'machin', 'learn', 'algorithm', 'emili', 'colleagu', 'dr.', 'michael', 'thompson', 'also', 'well-respect', 'figur', 'field', 'artifici', 'intellig', 'accompani', 'duo', 'work', 'groundbreak', 'project', 'aim', 'revolution', 'way', 'neural', 'network', 'process', 'inform', 'confer', 'commenc', 'emili', 'michael', 'greet', 'host', 'familiar', 'face', 'jennif', 'lee', 'data', 'scientist', 'googl', 'showcas', 'team', 'advanc', 'quantum', 'comput', 'join', 'mentor', 'dr.', 'robert', 'lang', 'pioneer', 'field', 'comput', 'neurosci', 'jennif', 'introduc', 'emili', 'michael', 'friend', 'carlo', 'mendez', 'softwar', 'engin', 'facebook', 'special', 'develop', 'algorithm', 'social', 'media', 'analyt', 'keynot', 'speaker', 'event', 'none', 'dr.', 'elizabeth', 'warren', 'distinguish', 'professor', 'stanford', 'univers', 'dr.', 'warren', 'speech', 'focus', 'ethic', 'implic', 'ai', 'import', 'develop', 'technolog', 'benefit', 'human', 'whole', 'insight', 'spark', 'live', 'discuss', 'among', 'attende', 'includ', 'sarah', 'johnson', 'polici', 'advisor', 'unit', 'nation', 'ahm', 'khan', 'cybersecur', 'expert', 'microsoft', 'break', 'session', 'attende', 'mingl', 'exchang', 'idea', 'emili', 'caught', 'former', 'classmat', 'david', 'kim', 'work', 'data', 'analyst', 'amazon', 'david', 'introduc', 'colleagu', 'jessica', 'brown', 'machin', 'learn', 'engin', 'knack', 'develop', 'innov', 'solut', 'complex', 'problem', 'emili', 'particularli', 'interest', 'jessica', 'work', 'natur', 'languag', 'process', 'invit', 'collabor', 'futur', 'project', 'anoth', 'corner', 'room', 'michael', 'deep', 'convers', 'raj', 'patel', 'roboticist', 'carnegi', 'mellon', 'univers', 'raj', 'recent', 'develop', 'new', 'type', 'robot', 'arm', 'could', 'perform', 'delic', 'surgic', 'procedur', 'unpreced', 'precis', 'accompani', 'research', 'assist', 'maria', 'gonzalez', 'instrument', 'project', 'success', 'michael', 'fascin', 'work', 'propos', 'partnership', 'integr', 'technolog', 'ai', 'algorithm', 'day', 'progress', 'confer', 'attende', 'treat', 'seri', 'insight', 'present', 'dr.', 'jame', 'clark', 'harvard', 'univers', 'share', 'research', 'deep', 'learn', 'applic', 'healthcar', 'follow', 'lisa', 'robinson', 'comput', 'vision', 'expert', 'nvidia', 'demonstr', 'latest', 'advanc', 'imag', 'recognit', 'technolog', 'audienc', 'particularli', 'impress', 'present', 'dr.', 'ananya', 'singh', 'ai', 'ethicist', 'oxford', 'univers', 'discuss', 'societ', 'impact', 'ai', 'import', 'respons', 'innov', 'even', 'attende', 'gather', 'gala', 'dinner', 'grand', 'hyatt', 'hotel', 'event', 'perfect', 'opportun', 'network', 'foster', 'new', 'collabor', 'emili', 'found', 'seat', 'next', 'henri', 'zhang', 'ventur', 'capitalist', 'sequoia', 'capit', 'keen', 'invest', 'promis', 'ai', 'startup', 'join', 'priya', 'sharma', 'legal', 'expert', 'electron', 'frontier', 'foundat', 'provid', 'valuabl', 'insight', 'regulatori', 'landscap', 'emerg', 'technolog', 'tabl', 'michael', 'struck', 'convers', 'laura', 'martinez', 'bioinformat', 'research', 'univers', 'california', 'berkeley', 'laura', 'work', 'project', 'use', 'ai', 'predict', 'genet', 'disord', 'interest', 'michael', 'expertis', 'neural', 'network', 'exchang', 'contact', 'inform', 'plan', 'meet', 'confer', 'discuss', 'potenti', 'collabor', 'meanwhil', 'jennif', 'carlo', 'deep', 'discuss', 'ethan', 'liu', 'blockchain', 'develop', 'ibm', 'potenti', 'combin', 'ai', 'blockchain', 'technolog', 'enhanc', 'data', 'secur', 'ethan', 'colleagu', 'dr.', 'olivia', 'parker', 'join', 'convers', 'bring', 'expertis', 'cryptographi', 'tabl', 'group', 'brainstorm', 'variou', 'applic', 'decid', 'form', 'work', 'group', 'explor', 'idea', 'next', 'morn', 'confer', 'resum', 'panel', 'discuss', 'featur', 'sever', 'industri', 'leader', 'among', 'dr.', 'william', 'harri', 'ceo', 'ai', 'inc.', 'dr.', 'katherin', 'adam', 'senior', 'research', 'openai', 'discuss', 'futur', 'ai', 'potenti', 'transform', 'industri', 'rang', 'healthcar', 'financ', 'panel', 'also', 'includ', 'dr.', 'mei', 'ling', 'professor', 'univers', 'tokyo', 'highlight', 'advanc', 'ai', 'research', 'asia', 'audienc', 'emili', 'michael', 'sat', 'new', 'acquaint', 'eager', 'absorb', 'wealth', 'knowledg', 'share', 'particularli', 'inspir', 'talk', 'dr.', 'samuel', 'green', 'cognit', 'scientist', 'yale', 'univers', 'discuss', 'intersect', 'ai', 'human', 'cognit', 'research', 'ai', 'augment', 'human', 'decision-mak', 'reson', 'deepli', 'audienc', 'confer', 'drew', 'close', 'attende', 'reflect', 'valuabl', 'connect', 'made', 'new', 'knowledg', 'gain', 'emili', 'michael', 'felt', 'energ', 'excit', 'futur', 'research', 'form', 'new', 'collabor', 'jessica', 'raj', 'laura', 'eager', 'start', 'work', 'joint', 'project', 'leav', 'took', 'moment', 'thank', 'confer', 'organ', 'includ', 'dr.', 'karen', 'wilson', 'director', 'tech', 'innov', 'network', 'team', 'event', 'resound', 'success', 'bring', 'togeth', 'brightest', 'mind', 'field', 'ai', 'foster', 'spirit', 'innov', 'collabor', 'board', 'flight', 'back', 'boston', 'emili', 'michael', 'could', \"n't\", 'help', 'feel', 'optimist', 'futur', 'knew', 'connect', 'made', 'confer', 'would', 'lead', 'excit', 'new', 'opportun', 'advanc', 'research', 'determin', 'ever', 'push', 'boundari', 'ai', 'could', 'achiev', 'ensur', 'work', 'would', 'posit', 'impact', 'world', 'week', 'follow', 'emili', 'michael', 'stay', 'touch', 'new', 'collabor', 'began', 'work', 'joint', 'project', 'share', 'idea', 'resourc', 'push', 'boundari', 'ai', 'research', 'emili', 'collabor', 'jessica', 'project', 'enhanc', 'natur', 'languag', 'process', 'algorithm', 'michael', 'work', 'raj', 'maria', 'integr', 'robot', 'technolog', 'neural', 'network', 'laura', 'emili', 'start', 'project', 'use', 'ai', 'predict', 'genet', 'disord', 'combin', 'expertis', 'tackl', 'complex', 'biolog', 'problem', 'confer', 'expand', 'profession', 'network', 'also', 'enrich', 'understand', 'divers', 'applic', 'ai', 'grate', 'opportun', 'connect', 'mani', 'talent', 'individu', 'look', 'forward', 'futur', 'renew', 'enthusiasm', 'sens', 'purpos', 'tech', 'innov', 'confer', 'transform', 'experi', 'set', 'stage', 'new', 'discoveri', 'groundbreak', 'advanc', 'field', 'artifici', 'intellig']\n",
150
- "\n",
151
- "Tagged Tokens : \n",
152
- "[('bustling', 'VBG'), ('city', 'NN'), ('San', 'NNP'), ('Francisco', 'NNP'), ('tech', 'NN'), ('enthusiasts', 'VBZ'), ('world', 'NN'), ('gathered', 'VBD'), ('annual', 'JJ'), ('Tech', 'NNP'), ('Innovators', 'NNP'), ('Conference', 'NNP'), ('event', 'NN'), ('melting', 'VBG'), ('pot', 'NN'), ('ideas', 'NNS'), ('innovations', 'NNS'), ('collaborations', 'NNS'), ('Among', 'IN'), ('attendees', 'NNS'), ('Emily', 'RB'), ('Chen', 'NNP'), ('renowned', 'VBD'), ('AI', 'NNP'), ('researcher', 'NN'), ('MIT', 'NNP'), ('eager', 'JJ'), ('present', 'JJ'), ('latest', 'JJS'), ('findings', 'NNS'), ('machine', 'NN'), ('learning', 'VBG'), ('algorithms', 'JJ'), ('Emily', 'NNP'), ('colleague', 'NN'), ('Dr.', 'NNP'), ('Michael', 'NNP'), ('Thompson', 'NNP'), ('also', 'RB'), ('well-respected', 'JJ'), ('figure', 'NN'), ('field', 'NN'), ('artificial', 'JJ'), ('intelligence', 'NN'), ('accompanied', 'VBN'), ('duo', 'NN'), ('working', 'VBG'), ('groundbreaking', 'VBG'), ('project', 'NN'), ('aimed', 'VBN'), ('revolutionize', 'VB'), ('way', 'NN'), ('neural', 'JJ'), ('networks', 'NNS'), ('process', 'NN'), ('information', 'NN'), ('conference', 'NN'), ('commenced', 'VBD'), ('Emily', 'RB'), ('Michael', 'NNP'), ('greeted', 'VBD'), ('host', 'NN'), ('familiar', 'JJ'), ('faces', 'VBZ'), ('Jennifer', 'NNP'), ('Lee', 'NNP'), ('data', 'NNS'), ('scientist', 'NN'), ('Google', 'NNP'), ('showcase', 'NN'), ('team', 'NN'), ('advancements', 'NNS'), ('quantum', 'VBP'), ('computing', 'VBG'), ('joined', 'VBD'), ('mentor', 'NN'), ('Dr.', 'NNP'), ('Robert', 'NNP'), ('Lang', 'NNP'), ('pioneer', 'VBD'), ('field', 'NN'), ('computational', 'JJ'), ('neuroscience', 'NN'), ('Jennifer', 'NNP'), ('introduced', 'VBD'), ('Emily', 'RB'), ('Michael', 'NNP'), ('friend', 'VBP'), ('Carlos', 'NNP'), ('Mendez', 'NNP'), ('software', 'NN'), ('engineer', 'NN'), ('Facebook', 'NNP'), ('specialized', 'VBD'), ('developing', 'VBG'), ('algorithms', 'JJ'), ('social', 'JJ'), ('media', 'NNS'), ('analytics', 'NNS'), ('keynote', 'VBP'), ('speaker', 'NN'), ('event', 'NN'), ('none', 'NN'), ('Dr.', 'NNP'), ('Elizabeth', 'NNP'), ('Warren', 'NNP'), ('distinguished', 'VBD'), ('professor', 'NN'), ('Stanford', 'NNP'), ('University', 'NNP'), ('Dr.', 'NNP'), ('Warren', 'NNP'), ('speech', 'NN'), ('focused', 'VBD'), ('ethical', 'JJ'), ('implications', 'NNS'), ('AI', 'VBP'), ('importance', 'NN'), ('developing', 'VBG'), ('technologies', 'NNS'), ('benefit', 'VBP'), ('humanity', 'NN'), ('whole', 'JJ'), ('insights', 'NNS'), ('sparked', 'VBD'), ('lively', 'JJ'), ('discussion', 'NN'), ('among', 'IN'), ('attendees', 'NNS'), ('including', 'VBG'), ('Sarah', 'NNP'), ('Johnson', 'NNP'), ('policy', 'NN'), ('advisor', 'NN'), ('United', 'NNP'), ('Nations', 'NNP'), ('Ahmed', 'NNP'), ('Khan', 'NNP'), ('cybersecurity', 'NN'), ('expert', 'NN'), ('Microsoft', 'NNP'), ('breaks', 'NNS'), ('sessions', 'NNS'), ('attendees', 'NNS'), ('mingled', 'VBD'), ('exchanged', 'VBN'), ('ideas', 'NNS'), ('Emily', 'RB'), ('caught', 'VBD'), ('former', 'JJ'), ('classmate', 'NN'), ('David', 'NNP'), ('Kim', 'NNP'), ('works', 'VBZ'), ('data', 'NNS'), ('analyst', 'NN'), ('Amazon', 'NNP'), ('David', 'NNP'), ('introduced', 'VBD'), ('colleague', 'NN'), ('Jessica', 'NNP'), ('Brown', 'NNP'), ('machine', 'NN'), ('learning', 'VBG'), ('engineer', 'JJ'), ('knack', 'NN'), ('developing', 'VBG'), ('innovative', 'JJ'), ('solutions', 'NNS'), ('complex', 'JJ'), ('problems', 'NNS'), ('Emily', 'RB'), ('particularly', 'RB'), ('interested', 'JJ'), ('Jessica', 'NNP'), ('work', 'NN'), ('natural', 'JJ'), ('language', 'NN'), ('processing', 'NN'), ('invited', 'JJ'), ('collaborate', 'NN'), ('future', 'NN'), ('project', 'NN'), ('another', 'DT'), ('corner', 'NN'), ('room', 'NN'), ('Michael', 'NNP'), ('deep', 'JJ'), ('conversation', 'NN'), ('Raj', 'NNP'), ('Patel', 'NNP'), ('roboticist', 'NN'), ('Carnegie', 'NNP'), ('Mellon', 'NNP'), ('University', 'NNP'), ('Raj', 'NNP'), ('recently', 'RB'), ('developed', 'VBD'), ('new', 'JJ'), ('type', 'NN'), ('robotic', 'JJ'), ('arm', 'NN'), ('could', 'MD'), ('perform', 'VB'), ('delicate', 'JJ'), ('surgical', 'JJ'), ('procedures', 'NNS'), ('unprecedented', 'JJ'), ('precision', 'NN'), ('accompanied', 'VBN'), ('research', 'NN'), ('assistant', 'NN'), ('Maria', 'NNP'), ('Gonzalez', 'NNP'), ('instrumental', 'JJ'), ('project', 'NN'), ('success', 'NN'), ('Michael', 'NNP'), ('fascinated', 'VBD'), ('work', 'NN'), ('proposed', 'VBN'), ('partnership', 'NN'), ('integrate', 'NN'), ('technology', 'NN'), ('AI', 'NNP'), ('algorithms', 'VBD'), ('day', 'NN'), ('progressed', 'VBD'), ('conference', 'NN'), ('attendees', 'NNS'), ('treated', 'VBD'), ('series', 'NN'), ('insightful', 'JJ'), ('presentations', 'NNS'), ('Dr.', 'NNP'), ('James', 'NNP'), ('Clark', 'NNP'), ('Harvard', 'NNP'), ('University', 'NNP'), ('shared', 'VBD'), ('research', 'NN'), ('deep', 'NN'), ('learning', 'NN'), ('applications', 'NNS'), ('healthcare', 'VBP'), ('followed', 'VBN'), ('Lisa', 'NNP'), ('Robinson', 'NNP'), ('computer', 'NN'), ('vision', 'NN'), ('expert', 'JJ'), ('Nvidia', 'NNP'), ('demonstrated', 'VBD'), ('latest', 'JJS'), ('advancements', 'NNS'), ('image', 'NN'), ('recognition', 'NN'), ('technology', 'NN'), ('audience', 'NN'), ('particularly', 'RB'), ('impressed', 'JJ'), ('presentation', 'NN'), ('Dr.', 'NNP'), ('Ananya', 'NNP'), ('Singh', 'NNP'), ('AI', 'NNP'), ('ethicist', 'NN'), ('Oxford', 'NNP'), ('University', 'NNP'), ('discussed', 'VBD'), ('societal', 'JJ'), ('impacts', 'NNS'), ('AI', 'NNP'), ('importance', 'NN'), ('responsible', 'JJ'), ('innovation', 'NN'), ('evening', 'VBG'), ('attendees', 'NNS'), ('gathered', 'VBN'), ('gala', 'NN'), ('dinner', 'NN'), ('Grand', 'NNP'), ('Hyatt', 'NNP'), ('Hotel', 'NNP'), ('event', 'NN'), ('perfect', 'JJ'), ('opportunity', 'NN'), ('networking', 'VBG'), ('fostering', 'VBG'), ('new', 'JJ'), ('collaborations', 'NNS'), ('Emily', 'RB'), ('found', 'VBD'), ('seated', 'VBN'), ('next', 'JJ'), ('Henry', 'NNP'), ('Zhang', 'NNP'), ('venture', 'NN'), ('capitalist', 'NN'), ('Sequoia', 'NNP'), ('Capital', 'NNP'), ('keen', 'JJ'), ('invest', 'JJS'), ('promising', 'VBG'), ('AI', 'NNP'), ('startups', 'NNS'), ('joined', 'VBD'), ('Priya', 'NNP'), ('Sharma', 'NNP'), ('legal', 'JJ'), ('expert', 'NN'), ('Electronic', 'NNP'), ('Frontier', 'NNP'), ('Foundation', 'NNP'), ('provided', 'VBD'), ('valuable', 'JJ'), ('insights', 'NNS'), ('regulatory', 'JJ'), ('landscape', 'NN'), ('emerging', 'VBG'), ('technologies', 'NNS'), ('table', 'JJ'), ('Michael', 'NNP'), ('struck', 'VBD'), ('conversation', 'NN'), ('Laura', 'NNP'), ('Martinez', 'NNP'), ('bioinformatics', 'NNS'), ('researcher', 'VBP'), ('University', 'NNP'), ('California', 'NNP'), ('Berkeley', 'NNP'), ('Laura', 'NNP'), ('working', 'VBG'), ('project', 'NN'), ('use', 'NN'), ('AI', 'NNP'), ('predicting', 'VBG'), ('genetic', 'JJ'), ('disorders', 'NNS'), ('interested', 'JJ'), ('Michael', 'NNP'), ('expertise', 'NN'), ('neural', 'JJ'), ('networks', 'NNS'), ('exchanged', 'VBD'), ('contact', 'JJ'), ('information', 'NN'), ('planned', 'VBN'), ('meet', 'NN'), ('conference', 'NN'), ('discuss', 'VBP'), ('potential', 'JJ'), ('collaborations', 'NNS'), ('Meanwhile', 'RB'), ('Jennifer', 'NNP'), ('Carlos', 'NNP'), ('deep', 'JJ'), ('discussion', 'NN'), ('Ethan', 'NNP'), ('Liu', 'NNP'), ('blockchain', 'VBP'), ('developer', 'NN'), ('IBM', 'NNP'), ('potential', 'JJ'), ('combining', 'NN'), ('AI', 'NNP'), ('blockchain', 'NN'), ('technology', 'NN'), ('enhance', 'NN'), ('data', 'NNS'), ('security', 'NN'), ('Ethan', 'NNP'), ('colleague', 'NN'), ('Dr.', 'NNP'), ('Olivia', 'NNP'), ('Parker', 'NNP'), ('joined', 'VBD'), ('conversation', 'NN'), ('bringing', 'VBG'), ('expertise', 'NN'), ('cryptography', 'NN'), ('table', 'NN'), ('group', 'NN'), ('brainstormed', 'VBD'), ('various', 'JJ'), ('applications', 'NNS'), ('decided', 'VBD'), ('form', 'NN'), ('working', 'VBG'), ('group', 'NN'), ('explore', 'VBD'), ('ideas', 'NNS'), ('next', 'IN'), ('morning', 'NN'), ('conference', 'NN'), ('resumed', 'VBD'), ('panel', 'NN'), ('discussion', 'NN'), ('featuring', 'VBG'), ('several', 'JJ'), ('industry', 'NN'), ('leaders', 'NNS'), ('Among', 'IN'), ('Dr.', 'NNP'), ('William', 'NNP'), ('Harris', 'NNP'), ('CEO', 'NNP'), ('AI', 'NNP'), ('Inc.', 'NNP'), ('Dr.', 'NNP'), ('Katherine', 'NNP'), ('Adams', 'NNP'), ('senior', 'JJ'), ('researcher', 'NN'), ('OpenAI', 'NNP'), ('discussed', 'VBD'), ('future', 'JJ'), ('AI', 'NNP'), ('potential', 'JJ'), ('transform', 'NN'), ('industries', 'NNS'), ('ranging', 'VBG'), ('healthcare', 'NN'), ('finance', 'NN'), ('panel', 'NN'), ('also', 'RB'), ('included', 'VBD'), ('Dr.', 'NNP'), ('Mei', 'NNP'), ('Ling', 'NNP'), ('professor', 'NN'), ('University', 'NNP'), ('Tokyo', 'NNP'), ('highlighted', 'VBD'), ('advancements', 'NNS'), ('AI', 'NNP'), ('research', 'NN'), ('Asia', 'NNP'), ('audience', 'NN'), ('Emily', 'RB'), ('Michael', 'NNP'), ('sat', 'VBD'), ('new', 'JJ'), ('acquaintances', 'NNS'), ('eager', 'JJ'), ('absorb', 'JJ'), ('wealth', 'NN'), ('knowledge', 'NN'), ('shared', 'VBD'), ('particularly', 'RB'), ('inspired', 'JJ'), ('talk', 'NN'), ('Dr.', 'NNP'), ('Samuel', 'NNP'), ('Green', 'NNP'), ('cognitive', 'JJ'), ('scientist', 'NN'), ('Yale', 'NNP'), ('University', 'NNP'), ('discussed', 'VBD'), ('intersection', 'NN'), ('AI', 'NNP'), ('human', 'JJ'), ('cognition', 'NN'), ('research', 'NN'), ('AI', 'NNP'), ('augment', 'JJ'), ('human', 'JJ'), ('decision-making', 'NN'), ('resonated', 'VBD'), ('deeply', 'RB'), ('audience', 'NN'), ('conference', 'NN'), ('drew', 'VBD'), ('close', 'JJ'), ('attendees', 'NNS'), ('reflected', 'VBD'), ('valuable', 'JJ'), ('connections', 'NNS'), ('made', 'VBD'), ('new', 'JJ'), ('knowledge', 'NN'), ('gained', 'VBN'), ('Emily', 'RB'), ('Michael', 'NNP'), ('felt', 'VBD'), ('energized', 'VBN'), ('excited', 'JJ'), ('future', 'JJ'), ('research', 'NN'), ('formed', 'VBD'), ('new', 'JJ'), ('collaborations', 'NNS'), ('Jessica', 'NNP'), ('Raj', 'NNP'), ('Laura', 'NNP'), ('eager', 'JJ'), ('start', 'VBP'), ('working', 'VBG'), ('joint', 'JJ'), ('projects', 'NNS'), ('leaving', 'VBG'), ('took', 'VBD'), ('moment', 'NN'), ('thank', 'NN'), ('conference', 'NN'), ('organizers', 'NNS'), ('including', 'VBG'), ('Dr.', 'NNP'), ('Karen', 'NNP'), ('Wilson', 'NNP'), ('director', 'NN'), ('Tech', 'NNP'), ('Innovators', 'NNP'), ('Network', 'NNP'), ('team', 'NN'), ('event', 'NN'), ('resounding', 'VBG'), ('success', 'NN'), ('bringing', 'VBG'), ('together', 'RB'), ('brightest', 'JJS'), ('minds', 'NNS'), ('field', 'NN'), ('AI', 'NNP'), ('fostering', 'VBG'), ('spirit', 'JJ'), ('innovation', 'NN'), ('collaboration', 'NN'), ('boarded', 'VBD'), ('flight', 'NN'), ('back', 'RB'), ('Boston', 'NNP'), ('Emily', 'NNP'), ('Michael', 'NNP'), ('could', 'MD'), (\"n't\", 'RB'), ('help', 'VB'), ('feel', 'VB'), ('optimistic', 'JJ'), ('future', 'NN'), ('knew', 'VBD'), ('connections', 'NNS'), ('made', 'VBN'), ('conference', 'NN'), ('would', 'MD'), ('lead', 'VB'), ('exciting', 'VBG'), ('new', 'JJ'), ('opportunities', 'NNS'), ('advancements', 'NNS'), ('research', 'NN'), ('determined', 'VBD'), ('ever', 'RB'), ('push', 'JJ'), ('boundaries', 'NNS'), ('AI', 'NNP'), ('could', 'MD'), ('achieve', 'VB'), ('ensure', 'VB'), ('work', 'NN'), ('would', 'MD'), ('positive', 'JJ'), ('impact', 'NN'), ('world', 'NN'), ('weeks', 'NNS'), ('followed', 'VBD'), ('Emily', 'RB'), ('Michael', 'NNP'), ('stayed', 'VBD'), ('touch', 'JJ'), ('new', 'JJ'), ('collaborators', 'NNS'), ('began', 'VBD'), ('working', 'VBG'), ('joint', 'JJ'), ('projects', 'NNS'), ('sharing', 'VBG'), ('ideas', 'JJ'), ('resources', 'NNS'), ('push', 'NN'), ('boundaries', 'NNS'), ('AI', 'NNP'), ('research', 'NN'), ('Emily', 'NNP'), ('collaborated', 'VBD'), ('Jessica', 'NNP'), ('project', 'NN'), ('enhance', 'NN'), ('natural', 'JJ'), ('language', 'NN'), ('processing', 'NN'), ('algorithms', 'NN'), ('Michael', 'NNP'), ('worked', 'VBD'), ('Raj', 'NNP'), ('Maria', 'NNP'), ('integrate', 'VBP'), ('robotic', 'JJ'), ('technology', 'NN'), ('neural', 'JJ'), ('networks', 'NNS'), ('Laura', 'NNP'), ('Emily', 'NNP'), ('started', 'VBD'), ('project', 'NN'), ('using', 'VBG'), ('AI', 'NNP'), ('predict', 'JJ'), ('genetic', 'JJ'), ('disorders', 'NNS'), ('combining', 'VBG'), ('expertise', 'NN'), ('tackle', 'NN'), ('complex', 'JJ'), ('biological', 'JJ'), ('problems', 'NNS'), ('conference', 'NN'), ('expanded', 'VBD'), ('professional', 'JJ'), ('networks', 'NNS'), ('also', 'RB'), ('enriched', 'VBD'), ('understanding', 'JJ'), ('diverse', 'JJ'), ('applications', 'NNS'), ('AI', 'VBP'), ('grateful', 'JJ'), ('opportunity', 'NN'), ('connect', 'VBP'), ('many', 'JJ'), ('talented', 'JJ'), ('individuals', 'NNS'), ('looked', 'VBD'), ('forward', 'RB'), ('future', 'JJ'), ('renewed', 'VBN'), ('enthusiasm', 'NN'), ('sense', 'NN'), ('purpose', 'NN'), ('Tech', 'NNP'), ('Innovators', 'NNP'), ('Conference', 'NNP'), ('transformative', 'JJ'), ('experience', 'NN'), ('setting', 'VBG'), ('stage', 'NN'), ('new', 'JJ'), ('discoveries', 'NNS'), ('groundbreaking', 'VBG'), ('advancements', 'NNS'), ('field', 'NN'), ('artificial', 'JJ'), ('intelligence', 'NN')]\n",
153
- "\n",
154
- "Lemma : \n",
155
- "['bustle', 'city', 'San', 'Francisco', 'tech', 'enthusiasts', 'world', 'gather', 'annual', 'Tech', 'Innovators', 'Conference', 'event', 'melt', 'pot', 'idea', 'innovation', 'collaboration', 'Among', 'attendee', 'Emily', 'Chen', 'renowned', 'AI', 'researcher', 'MIT', 'eager', 'present', 'late', 'finding', 'machine', 'learn', 'algorithms', 'Emily', 'colleague', 'Dr.', 'Michael', 'Thompson', 'also', 'well-respected', 'figure', 'field', 'artificial', 'intelligence', 'accompany', 'duo', 'work', 'groundbreaking', 'project', 'aim', 'revolutionize', 'way', 'neural', 'network', 'process', 'information', 'conference', 'commence', 'Emily', 'Michael', 'greet', 'host', 'familiar', 'face', 'Jennifer', 'Lee', 'data', 'scientist', 'Google', 'showcase', 'team', 'advancement', 'quantum', 'compute', 'join', 'mentor', 'Dr.', 'Robert', 'Lang', 'pioneer', 'field', 'computational', 'neuroscience', 'Jennifer', 'introduce', 'Emily', 'Michael', 'friend', 'Carlos', 'Mendez', 'software', 'engineer', 'Facebook', 'specialize', 'develop', 'algorithms', 'social', 'medium', 'analytics', 'keynote', 'speaker', 'event', 'none', 'Dr.', 'Elizabeth', 'Warren', 'distinguish', 'professor', 'Stanford', 'University', 'Dr.', 'Warren', 'speech', 'focus', 'ethical', 'implication', 'AI', 'importance', 'develop', 'technology', 'benefit', 'humanity', 'whole', 'insight', 'spark', 'lively', 'discussion', 'among', 'attendee', 'include', 'Sarah', 'Johnson', 'policy', 'advisor', 'United', 'Nations', 'Ahmed', 'Khan', 'cybersecurity', 'expert', 'Microsoft', 'break', 'session', 'attendee', 'mingle', 'exchange', 'idea', 'Emily', 'catch', 'former', 'classmate', 'David', 'Kim', 'work', 'data', 'analyst', 'Amazon', 'David', 'introduce', 'colleague', 'Jessica', 'Brown', 'machine', 'learn', 'engineer', 'knack', 'develop', 'innovative', 'solution', 'complex', 'problem', 'Emily', 'particularly', 'interested', 'Jessica', 'work', 'natural', 'language', 'processing', 'invited', 'collaborate', 'future', 'project', 'another', 'corner', 'room', 'Michael', 'deep', 'conversation', 'Raj', 'Patel', 'roboticist', 'Carnegie', 'Mellon', 'University', 'Raj', 'recently', 'develop', 'new', 'type', 'robotic', 'arm', 'could', 'perform', 'delicate', 'surgical', 'procedure', 'unprecedented', 'precision', 'accompany', 'research', 'assistant', 'Maria', 'Gonzalez', 'instrumental', 'project', 'success', 'Michael', 'fascinate', 'work', 'propose', 'partnership', 'integrate', 'technology', 'AI', 'algorithms', 'day', 'progress', 'conference', 'attendee', 'treat', 'series', 'insightful', 'presentation', 'Dr.', 'James', 'Clark', 'Harvard', 'University', 'share', 'research', 'deep', 'learning', 'application', 'healthcare', 'follow', 'Lisa', 'Robinson', 'computer', 'vision', 'expert', 'Nvidia', 'demonstrate', 'late', 'advancement', 'image', 'recognition', 'technology', 'audience', 'particularly', 'impressed', 'presentation', 'Dr.', 'Ananya', 'Singh', 'AI', 'ethicist', 'Oxford', 'University', 'discuss', 'societal', 'impact', 'AI', 'importance', 'responsible', 'innovation', 'even', 'attendee', 'gather', 'gala', 'dinner', 'Grand', 'Hyatt', 'Hotel', 'event', 'perfect', 'opportunity', 'network', 'foster', 'new', 'collaboration', 'Emily', 'find', 'seat', 'next', 'Henry', 'Zhang', 'venture', 'capitalist', 'Sequoia', 'Capital', 'keen', 'invest', 'promise', 'AI', 'startup', 'join', 'Priya', 'Sharma', 'legal', 'expert', 'Electronic', 'Frontier', 'Foundation', 'provide', 'valuable', 'insight', 'regulatory', 'landscape', 'emerge', 'technology', 'table', 'Michael', 'strike', 'conversation', 'Laura', 'Martinez', 'bioinformatics', 'researcher', 'University', 'California', 'Berkeley', 'Laura', 'work', 'project', 'use', 'AI', 'predict', 'genetic', 'disorder', 'interested', 'Michael', 'expertise', 'neural', 'network', 'exchange', 'contact', 'information', 'plan', 'meet', 'conference', 'discuss', 'potential', 'collaboration', 'Meanwhile', 'Jennifer', 'Carlos', 'deep', 'discussion', 'Ethan', 'Liu', 'blockchain', 'developer', 'IBM', 'potential', 'combining', 'AI', 'blockchain', 'technology', 'enhance', 'data', 'security', 'Ethan', 'colleague', 'Dr.', 'Olivia', 'Parker', 'join', 'conversation', 'bring', 'expertise', 'cryptography', 'table', 'group', 'brainstorm', 'various', 'application', 'decide', 'form', 'work', 'group', 'explore', 'idea', 'next', 'morning', 'conference', 'resume', 'panel', 'discussion', 'feature', 'several', 'industry', 'leader', 'Among', 'Dr.', 'William', 'Harris', 'CEO', 'AI', 'Inc.', 'Dr.', 'Katherine', 'Adams', 'senior', 'researcher', 'OpenAI', 'discuss', 'future', 'AI', 'potential', 'transform', 'industry', 'range', 'healthcare', 'finance', 'panel', 'also', 'include', 'Dr.', 'Mei', 'Ling', 'professor', 'University', 'Tokyo', 'highlight', 'advancement', 'AI', 'research', 'Asia', 'audience', 'Emily', 'Michael', 'sit', 'new', 'acquaintance', 'eager', 'absorb', 'wealth', 'knowledge', 'share', 'particularly', 'inspired', 'talk', 'Dr.', 'Samuel', 'Green', 'cognitive', 'scientist', 'Yale', 'University', 'discuss', 'intersection', 'AI', 'human', 'cognition', 'research', 'AI', 'augment', 'human', 'decision-making', 'resonate', 'deeply', 'audience', 'conference', 'draw', 'close', 'attendee', 'reflect', 'valuable', 'connection', 'make', 'new', 'knowledge', 'gain', 'Emily', 'Michael', 'felt', 'energize', 'excited', 'future', 'research', 'form', 'new', 'collaboration', 'Jessica', 'Raj', 'Laura', 'eager', 'start', 'work', 'joint', 'project', 'leave', 'take', 'moment', 'thank', 'conference', 'organizer', 'include', 'Dr.', 'Karen', 'Wilson', 'director', 'Tech', 'Innovators', 'Network', 'team', 'event', 'resound', 'success', 'bring', 'together', 'bright', 'mind', 'field', 'AI', 'foster', 'spirit', 'innovation', 'collaboration', 'board', 'flight', 'back', 'Boston', 'Emily', 'Michael', 'could', \"n't\", 'help', 'feel', 'optimistic', 'future', 'know', 'connection', 'make', 'conference', 'would', 'lead', 'excite', 'new', 'opportunity', 'advancement', 'research', 'determine', 'ever', 'push', 'boundary', 'AI', 'could', 'achieve', 'ensure', 'work', 'would', 'positive', 'impact', 'world', 'week', 'follow', 'Emily', 'Michael', 'stay', 'touch', 'new', 'collaborator', 'begin', 'work', 'joint', 'project', 'share', 'ideas', 'resource', 'push', 'boundary', 'AI', 'research', 'Emily', 'collaborate', 'Jessica', 'project', 'enhance', 'natural', 'language', 'processing', 'algorithm', 'Michael', 'work', 'Raj', 'Maria', 'integrate', 'robotic', 'technology', 'neural', 'network', 'Laura', 'Emily', 'start', 'project', 'use', 'AI', 'predict', 'genetic', 'disorder', 'combine', 'expertise', 'tackle', 'complex', 'biological', 'problem', 'conference', 'expand', 'professional', 'network', 'also', 'enrich', 'understanding', 'diverse', 'application', 'AI', 'grateful', 'opportunity', 'connect', 'many', 'talented', 'individual', 'look', 'forward', 'future', 'renew', 'enthusiasm', 'sense', 'purpose', 'Tech', 'Innovators', 'Conference', 'transformative', 'experience', 'set', 'stage', 'new', 'discovery', 'groundbreaking', 'advancement', 'field', 'artificial', 'intelligence']\n"
156
- ]
157
- }
158
- ],
159
- "source": [
160
- "print(\"\\nStems : \")\n",
161
- "print(stems)\n",
162
- "\n",
163
- "print(\"\\nTagged Tokens : \")\n",
164
- "print(tagged_tokens)\n",
165
- "\n",
166
- "print(\"\\nLemma : \")\n",
167
- "print(lemmas)"
168
- ]
169
- },
170
- {
171
- "cell_type": "code",
172
- "execution_count": 86,
173
- "id": "4b233e82-55b7-4b76-a5d5-0d57ad2a1b2c",
174
- "metadata": {},
175
- "outputs": [],
176
- "source": [
177
- "# Calculate frequency distribution\n",
178
- "freq_dist = FreqDist(filtered_tokens)\n",
179
- "\n",
180
- "# Calculate probability distribution\n",
181
- "total_tokens = len(filtered_tokens)\n",
182
- "prob_dist = {word: freq / total_tokens for word, freq in freq_dist.items()}"
183
- ]
184
- },
185
- {
186
- "cell_type": "code",
187
- "execution_count": 87,
188
- "id": "a0a4b92b-fdd3-4373-8d71-6f1dd31673cd",
189
- "metadata": {},
190
- "outputs": [
191
- {
192
- "name": "stdout",
193
- "output_type": "stream",
194
- "text": [
195
- "\n",
196
- "Original Tokens:\n",
197
- "['bustling', 'city', 'San', 'Francisco', 'tech', 'enthusiasts', 'world', 'gathered', 'annual', 'Tech', 'Innovators', 'Conference', 'event', 'melting', 'pot', 'ideas', 'innovations', 'collaborations', 'Among', 'attendees', 'Emily', 'Chen', 'renowned', 'AI', 'researcher', 'MIT', 'eager', 'present', 'latest', 'findings', 'machine', 'learning', 'algorithms', 'Emily', 'colleague', 'Dr.', 'Michael', 'Thompson', 'also', 'well-respected', 'figure', 'field', 'artificial', 'intelligence', 'accompanied', 'duo', 'working', 'groundbreaking', 'project', 'aimed', 'revolutionize', 'way', 'neural', 'networks', 'process', 'information', 'conference', 'commenced', 'Emily', 'Michael', 'greeted', 'host', 'familiar', 'faces', 'Jennifer', 'Lee', 'data', 'scientist', 'Google', 'showcase', 'team', 'advancements', 'quantum', 'computing', 'joined', 'mentor', 'Dr.', 'Robert', 'Lang', 'pioneer', 'field', 'computational', 'neuroscience', 'Jennifer', 'introduced', 'Emily', 'Michael', 'friend', 'Carlos', 'Mendez', 'software', 'engineer', 'Facebook', 'specialized', 'developing', 'algorithms', 'social', 'media', 'analytics', 'keynote', 'speaker', 'event', 'none', 'Dr.', 'Elizabeth', 'Warren', 'distinguished', 'professor', 'Stanford', 'University', 'Dr.', 'Warren', 'speech', 'focused', 'ethical', 'implications', 'AI', 'importance', 'developing', 'technologies', 'benefit', 'humanity', 'whole', 'insights', 'sparked', 'lively', 'discussion', 'among', 'attendees', 'including', 'Sarah', 'Johnson', 'policy', 'advisor', 'United', 'Nations', 'Ahmed', 'Khan', 'cybersecurity', 'expert', 'Microsoft', 'breaks', 'sessions', 'attendees', 'mingled', 'exchanged', 'ideas', 'Emily', 'caught', 'former', 'classmate', 'David', 'Kim', 'works', 'data', 'analyst', 'Amazon', 'David', 'introduced', 'colleague', 'Jessica', 'Brown', 'machine', 'learning', 'engineer', 'knack', 'developing', 'innovative', 'solutions', 'complex', 'problems', 'Emily', 'particularly', 'interested', 'Jessica', 'work', 'natural', 'language', 'processing', 'invited', 'collaborate', 'future', 'project', 'another', 'corner', 'room', 'Michael', 'deep', 'conversation', 'Raj', 'Patel', 'roboticist', 'Carnegie', 'Mellon', 'University', 'Raj', 'recently', 'developed', 'new', 'type', 'robotic', 'arm', 'could', 'perform', 'delicate', 'surgical', 'procedures', 'unprecedented', 'precision', 'accompanied', 'research', 'assistant', 'Maria', 'Gonzalez', 'instrumental', 'project', 'success', 'Michael', 'fascinated', 'work', 'proposed', 'partnership', 'integrate', 'technology', 'AI', 'algorithms', 'day', 'progressed', 'conference', 'attendees', 'treated', 'series', 'insightful', 'presentations', 'Dr.', 'James', 'Clark', 'Harvard', 'University', 'shared', 'research', 'deep', 'learning', 'applications', 'healthcare', 'followed', 'Lisa', 'Robinson', 'computer', 'vision', 'expert', 'Nvidia', 'demonstrated', 'latest', 'advancements', 'image', 'recognition', 'technology', 'audience', 'particularly', 'impressed', 'presentation', 'Dr.', 'Ananya', 'Singh', 'AI', 'ethicist', 'Oxford', 'University', 'discussed', 'societal', 'impacts', 'AI', 'importance', 'responsible', 'innovation', 'evening', 'attendees', 'gathered', 'gala', 'dinner', 'Grand', 'Hyatt', 'Hotel', 'event', 'perfect', 'opportunity', 'networking', 'fostering', 'new', 'collaborations', 'Emily', 'found', 'seated', 'next', 'Henry', 'Zhang', 'venture', 'capitalist', 'Sequoia', 'Capital', 'keen', 'invest', 'promising', 'AI', 'startups', 'joined', 'Priya', 'Sharma', 'legal', 'expert', 'Electronic', 'Frontier', 'Foundation', 'provided', 'valuable', 'insights', 'regulatory', 'landscape', 'emerging', 'technologies', 'table', 'Michael', 'struck', 'conversation', 'Laura', 'Martinez', 'bioinformatics', 'researcher', 'University', 'California', 'Berkeley', 'Laura', 'working', 'project', 'use', 'AI', 'predicting', 'genetic', 'disorders', 'interested', 'Michael', 'expertise', 'neural', 'networks', 'exchanged', 'contact', 'information', 'planned', 'meet', 'conference', 'discuss', 'potential', 'collaborations', 'Meanwhile', 'Jennifer', 'Carlos', 'deep', 'discussion', 'Ethan', 'Liu', 'blockchain', 'developer', 'IBM', 'potential', 'combining', 'AI', 'blockchain', 'technology', 'enhance', 'data', 'security', 'Ethan', 'colleague', 'Dr.', 'Olivia', 'Parker', 'joined', 'conversation', 'bringing', 'expertise', 'cryptography', 'table', 'group', 'brainstormed', 'various', 'applications', 'decided', 'form', 'working', 'group', 'explore', 'ideas', 'next', 'morning', 'conference', 'resumed', 'panel', 'discussion', 'featuring', 'several', 'industry', 'leaders', 'Among', 'Dr.', 'William', 'Harris', 'CEO', 'AI', 'Inc.', 'Dr.', 'Katherine', 'Adams', 'senior', 'researcher', 'OpenAI', 'discussed', 'future', 'AI', 'potential', 'transform', 'industries', 'ranging', 'healthcare', 'finance', 'panel', 'also', 'included', 'Dr.', 'Mei', 'Ling', 'professor', 'University', 'Tokyo', 'highlighted', 'advancements', 'AI', 'research', 'Asia', 'audience', 'Emily', 'Michael', 'sat', 'new', 'acquaintances', 'eager', 'absorb', 'wealth', 'knowledge', 'shared', 'particularly', 'inspired', 'talk', 'Dr.', 'Samuel', 'Green', 'cognitive', 'scientist', 'Yale', 'University', 'discussed', 'intersection', 'AI', 'human', 'cognition', 'research', 'AI', 'augment', 'human', 'decision-making', 'resonated', 'deeply', 'audience', 'conference', 'drew', 'close', 'attendees', 'reflected', 'valuable', 'connections', 'made', 'new', 'knowledge', 'gained', 'Emily', 'Michael', 'felt', 'energized', 'excited', 'future', 'research', 'formed', 'new', 'collaborations', 'Jessica', 'Raj', 'Laura', 'eager', 'start', 'working', 'joint', 'projects', 'leaving', 'took', 'moment', 'thank', 'conference', 'organizers', 'including', 'Dr.', 'Karen', 'Wilson', 'director', 'Tech', 'Innovators', 'Network', 'team', 'event', 'resounding', 'success', 'bringing', 'together', 'brightest', 'minds', 'field', 'AI', 'fostering', 'spirit', 'innovation', 'collaboration', 'boarded', 'flight', 'back', 'Boston', 'Emily', 'Michael', 'could', \"n't\", 'help', 'feel', 'optimistic', 'future', 'knew', 'connections', 'made', 'conference', 'would', 'lead', 'exciting', 'new', 'opportunities', 'advancements', 'research', 'determined', 'ever', 'push', 'boundaries', 'AI', 'could', 'achieve', 'ensure', 'work', 'would', 'positive', 'impact', 'world', 'weeks', 'followed', 'Emily', 'Michael', 'stayed', 'touch', 'new', 'collaborators', 'began', 'working', 'joint', 'projects', 'sharing', 'ideas', 'resources', 'push', 'boundaries', 'AI', 'research', 'Emily', 'collaborated', 'Jessica', 'project', 'enhance', 'natural', 'language', 'processing', 'algorithms', 'Michael', 'worked', 'Raj', 'Maria', 'integrate', 'robotic', 'technology', 'neural', 'networks', 'Laura', 'Emily', 'started', 'project', 'using', 'AI', 'predict', 'genetic', 'disorders', 'combining', 'expertise', 'tackle', 'complex', 'biological', 'problems', 'conference', 'expanded', 'professional', 'networks', 'also', 'enriched', 'understanding', 'diverse', 'applications', 'AI', 'grateful', 'opportunity', 'connect', 'many', 'talented', 'individuals', 'looked', 'forward', 'future', 'renewed', 'enthusiasm', 'sense', 'purpose', 'Tech', 'Innovators', 'Conference', 'transformative', 'experience', 'setting', 'stage', 'new', 'discoveries', 'groundbreaking', 'advancements', 'field', 'artificial', 'intelligence']\n",
198
- "\n",
199
- "Stems:\n",
200
- "['bustl', 'citi', 'san', 'francisco', 'tech', 'enthusiast', 'world', 'gather', 'annual', 'tech', 'innov', 'confer', 'event', 'melt', 'pot', 'idea', 'innov', 'collabor', 'among', 'attende', 'emili', 'chen', 'renown', 'ai', 'research', 'mit', 'eager', 'present', 'latest', 'find', 'machin', 'learn', 'algorithm', 'emili', 'colleagu', 'dr.', 'michael', 'thompson', 'also', 'well-respect', 'figur', 'field', 'artifici', 'intellig', 'accompani', 'duo', 'work', 'groundbreak', 'project', 'aim', 'revolution', 'way', 'neural', 'network', 'process', 'inform', 'confer', 'commenc', 'emili', 'michael', 'greet', 'host', 'familiar', 'face', 'jennif', 'lee', 'data', 'scientist', 'googl', 'showcas', 'team', 'advanc', 'quantum', 'comput', 'join', 'mentor', 'dr.', 'robert', 'lang', 'pioneer', 'field', 'comput', 'neurosci', 'jennif', 'introduc', 'emili', 'michael', 'friend', 'carlo', 'mendez', 'softwar', 'engin', 'facebook', 'special', 'develop', 'algorithm', 'social', 'media', 'analyt', 'keynot', 'speaker', 'event', 'none', 'dr.', 'elizabeth', 'warren', 'distinguish', 'professor', 'stanford', 'univers', 'dr.', 'warren', 'speech', 'focus', 'ethic', 'implic', 'ai', 'import', 'develop', 'technolog', 'benefit', 'human', 'whole', 'insight', 'spark', 'live', 'discuss', 'among', 'attende', 'includ', 'sarah', 'johnson', 'polici', 'advisor', 'unit', 'nation', 'ahm', 'khan', 'cybersecur', 'expert', 'microsoft', 'break', 'session', 'attende', 'mingl', 'exchang', 'idea', 'emili', 'caught', 'former', 'classmat', 'david', 'kim', 'work', 'data', 'analyst', 'amazon', 'david', 'introduc', 'colleagu', 'jessica', 'brown', 'machin', 'learn', 'engin', 'knack', 'develop', 'innov', 'solut', 'complex', 'problem', 'emili', 'particularli', 'interest', 'jessica', 'work', 'natur', 'languag', 'process', 'invit', 'collabor', 'futur', 'project', 'anoth', 'corner', 'room', 'michael', 'deep', 'convers', 'raj', 'patel', 'roboticist', 'carnegi', 'mellon', 'univers', 'raj', 'recent', 'develop', 'new', 'type', 'robot', 'arm', 'could', 'perform', 'delic', 'surgic', 'procedur', 'unpreced', 'precis', 'accompani', 'research', 'assist', 'maria', 'gonzalez', 'instrument', 'project', 'success', 'michael', 'fascin', 'work', 'propos', 'partnership', 'integr', 'technolog', 'ai', 'algorithm', 'day', 'progress', 'confer', 'attende', 'treat', 'seri', 'insight', 'present', 'dr.', 'jame', 'clark', 'harvard', 'univers', 'share', 'research', 'deep', 'learn', 'applic', 'healthcar', 'follow', 'lisa', 'robinson', 'comput', 'vision', 'expert', 'nvidia', 'demonstr', 'latest', 'advanc', 'imag', 'recognit', 'technolog', 'audienc', 'particularli', 'impress', 'present', 'dr.', 'ananya', 'singh', 'ai', 'ethicist', 'oxford', 'univers', 'discuss', 'societ', 'impact', 'ai', 'import', 'respons', 'innov', 'even', 'attende', 'gather', 'gala', 'dinner', 'grand', 'hyatt', 'hotel', 'event', 'perfect', 'opportun', 'network', 'foster', 'new', 'collabor', 'emili', 'found', 'seat', 'next', 'henri', 'zhang', 'ventur', 'capitalist', 'sequoia', 'capit', 'keen', 'invest', 'promis', 'ai', 'startup', 'join', 'priya', 'sharma', 'legal', 'expert', 'electron', 'frontier', 'foundat', 'provid', 'valuabl', 'insight', 'regulatori', 'landscap', 'emerg', 'technolog', 'tabl', 'michael', 'struck', 'convers', 'laura', 'martinez', 'bioinformat', 'research', 'univers', 'california', 'berkeley', 'laura', 'work', 'project', 'use', 'ai', 'predict', 'genet', 'disord', 'interest', 'michael', 'expertis', 'neural', 'network', 'exchang', 'contact', 'inform', 'plan', 'meet', 'confer', 'discuss', 'potenti', 'collabor', 'meanwhil', 'jennif', 'carlo', 'deep', 'discuss', 'ethan', 'liu', 'blockchain', 'develop', 'ibm', 'potenti', 'combin', 'ai', 'blockchain', 'technolog', 'enhanc', 'data', 'secur', 'ethan', 'colleagu', 'dr.', 'olivia', 'parker', 'join', 'convers', 'bring', 'expertis', 'cryptographi', 'tabl', 'group', 'brainstorm', 'variou', 'applic', 'decid', 'form', 'work', 'group', 'explor', 'idea', 'next', 'morn', 'confer', 'resum', 'panel', 'discuss', 'featur', 'sever', 'industri', 'leader', 'among', 'dr.', 'william', 'harri', 'ceo', 'ai', 'inc.', 'dr.', 'katherin', 'adam', 'senior', 'research', 'openai', 'discuss', 'futur', 'ai', 'potenti', 'transform', 'industri', 'rang', 'healthcar', 'financ', 'panel', 'also', 'includ', 'dr.', 'mei', 'ling', 'professor', 'univers', 'tokyo', 'highlight', 'advanc', 'ai', 'research', 'asia', 'audienc', 'emili', 'michael', 'sat', 'new', 'acquaint', 'eager', 'absorb', 'wealth', 'knowledg', 'share', 'particularli', 'inspir', 'talk', 'dr.', 'samuel', 'green', 'cognit', 'scientist', 'yale', 'univers', 'discuss', 'intersect', 'ai', 'human', 'cognit', 'research', 'ai', 'augment', 'human', 'decision-mak', 'reson', 'deepli', 'audienc', 'confer', 'drew', 'close', 'attende', 'reflect', 'valuabl', 'connect', 'made', 'new', 'knowledg', 'gain', 'emili', 'michael', 'felt', 'energ', 'excit', 'futur', 'research', 'form', 'new', 'collabor', 'jessica', 'raj', 'laura', 'eager', 'start', 'work', 'joint', 'project', 'leav', 'took', 'moment', 'thank', 'confer', 'organ', 'includ', 'dr.', 'karen', 'wilson', 'director', 'tech', 'innov', 'network', 'team', 'event', 'resound', 'success', 'bring', 'togeth', 'brightest', 'mind', 'field', 'ai', 'foster', 'spirit', 'innov', 'collabor', 'board', 'flight', 'back', 'boston', 'emili', 'michael', 'could', \"n't\", 'help', 'feel', 'optimist', 'futur', 'knew', 'connect', 'made', 'confer', 'would', 'lead', 'excit', 'new', 'opportun', 'advanc', 'research', 'determin', 'ever', 'push', 'boundari', 'ai', 'could', 'achiev', 'ensur', 'work', 'would', 'posit', 'impact', 'world', 'week', 'follow', 'emili', 'michael', 'stay', 'touch', 'new', 'collabor', 'began', 'work', 'joint', 'project', 'share', 'idea', 'resourc', 'push', 'boundari', 'ai', 'research', 'emili', 'collabor', 'jessica', 'project', 'enhanc', 'natur', 'languag', 'process', 'algorithm', 'michael', 'work', 'raj', 'maria', 'integr', 'robot', 'technolog', 'neural', 'network', 'laura', 'emili', 'start', 'project', 'use', 'ai', 'predict', 'genet', 'disord', 'combin', 'expertis', 'tackl', 'complex', 'biolog', 'problem', 'confer', 'expand', 'profession', 'network', 'also', 'enrich', 'understand', 'divers', 'applic', 'ai', 'grate', 'opportun', 'connect', 'mani', 'talent', 'individu', 'look', 'forward', 'futur', 'renew', 'enthusiasm', 'sens', 'purpos', 'tech', 'innov', 'confer', 'transform', 'experi', 'set', 'stage', 'new', 'discoveri', 'groundbreak', 'advanc', 'field', 'artifici', 'intellig']\n",
201
- "\n",
202
- "Lemmas:\n",
203
- "['bustle', 'city', 'San', 'Francisco', 'tech', 'enthusiasts', 'world', 'gather', 'annual', 'Tech', 'Innovators', 'Conference', 'event', 'melt', 'pot', 'idea', 'innovation', 'collaboration', 'Among', 'attendee', 'Emily', 'Chen', 'renowned', 'AI', 'researcher', 'MIT', 'eager', 'present', 'late', 'finding', 'machine', 'learn', 'algorithms', 'Emily', 'colleague', 'Dr.', 'Michael', 'Thompson', 'also', 'well-respected', 'figure', 'field', 'artificial', 'intelligence', 'accompany', 'duo', 'work', 'groundbreaking', 'project', 'aim', 'revolutionize', 'way', 'neural', 'network', 'process', 'information', 'conference', 'commence', 'Emily', 'Michael', 'greet', 'host', 'familiar', 'face', 'Jennifer', 'Lee', 'data', 'scientist', 'Google', 'showcase', 'team', 'advancement', 'quantum', 'compute', 'join', 'mentor', 'Dr.', 'Robert', 'Lang', 'pioneer', 'field', 'computational', 'neuroscience', 'Jennifer', 'introduce', 'Emily', 'Michael', 'friend', 'Carlos', 'Mendez', 'software', 'engineer', 'Facebook', 'specialize', 'develop', 'algorithms', 'social', 'medium', 'analytics', 'keynote', 'speaker', 'event', 'none', 'Dr.', 'Elizabeth', 'Warren', 'distinguish', 'professor', 'Stanford', 'University', 'Dr.', 'Warren', 'speech', 'focus', 'ethical', 'implication', 'AI', 'importance', 'develop', 'technology', 'benefit', 'humanity', 'whole', 'insight', 'spark', 'lively', 'discussion', 'among', 'attendee', 'include', 'Sarah', 'Johnson', 'policy', 'advisor', 'United', 'Nations', 'Ahmed', 'Khan', 'cybersecurity', 'expert', 'Microsoft', 'break', 'session', 'attendee', 'mingle', 'exchange', 'idea', 'Emily', 'catch', 'former', 'classmate', 'David', 'Kim', 'work', 'data', 'analyst', 'Amazon', 'David', 'introduce', 'colleague', 'Jessica', 'Brown', 'machine', 'learn', 'engineer', 'knack', 'develop', 'innovative', 'solution', 'complex', 'problem', 'Emily', 'particularly', 'interested', 'Jessica', 'work', 'natural', 'language', 'processing', 'invited', 'collaborate', 'future', 'project', 'another', 'corner', 'room', 'Michael', 'deep', 'conversation', 'Raj', 'Patel', 'roboticist', 'Carnegie', 'Mellon', 'University', 'Raj', 'recently', 'develop', 'new', 'type', 'robotic', 'arm', 'could', 'perform', 'delicate', 'surgical', 'procedure', 'unprecedented', 'precision', 'accompany', 'research', 'assistant', 'Maria', 'Gonzalez', 'instrumental', 'project', 'success', 'Michael', 'fascinate', 'work', 'propose', 'partnership', 'integrate', 'technology', 'AI', 'algorithms', 'day', 'progress', 'conference', 'attendee', 'treat', 'series', 'insightful', 'presentation', 'Dr.', 'James', 'Clark', 'Harvard', 'University', 'share', 'research', 'deep', 'learning', 'application', 'healthcare', 'follow', 'Lisa', 'Robinson', 'computer', 'vision', 'expert', 'Nvidia', 'demonstrate', 'late', 'advancement', 'image', 'recognition', 'technology', 'audience', 'particularly', 'impressed', 'presentation', 'Dr.', 'Ananya', 'Singh', 'AI', 'ethicist', 'Oxford', 'University', 'discuss', 'societal', 'impact', 'AI', 'importance', 'responsible', 'innovation', 'even', 'attendee', 'gather', 'gala', 'dinner', 'Grand', 'Hyatt', 'Hotel', 'event', 'perfect', 'opportunity', 'network', 'foster', 'new', 'collaboration', 'Emily', 'find', 'seat', 'next', 'Henry', 'Zhang', 'venture', 'capitalist', 'Sequoia', 'Capital', 'keen', 'invest', 'promise', 'AI', 'startup', 'join', 'Priya', 'Sharma', 'legal', 'expert', 'Electronic', 'Frontier', 'Foundation', 'provide', 'valuable', 'insight', 'regulatory', 'landscape', 'emerge', 'technology', 'table', 'Michael', 'strike', 'conversation', 'Laura', 'Martinez', 'bioinformatics', 'researcher', 'University', 'California', 'Berkeley', 'Laura', 'work', 'project', 'use', 'AI', 'predict', 'genetic', 'disorder', 'interested', 'Michael', 'expertise', 'neural', 'network', 'exchange', 'contact', 'information', 'plan', 'meet', 'conference', 'discuss', 'potential', 'collaboration', 'Meanwhile', 'Jennifer', 'Carlos', 'deep', 'discussion', 'Ethan', 'Liu', 'blockchain', 'developer', 'IBM', 'potential', 'combining', 'AI', 'blockchain', 'technology', 'enhance', 'data', 'security', 'Ethan', 'colleague', 'Dr.', 'Olivia', 'Parker', 'join', 'conversation', 'bring', 'expertise', 'cryptography', 'table', 'group', 'brainstorm', 'various', 'application', 'decide', 'form', 'work', 'group', 'explore', 'idea', 'next', 'morning', 'conference', 'resume', 'panel', 'discussion', 'feature', 'several', 'industry', 'leader', 'Among', 'Dr.', 'William', 'Harris', 'CEO', 'AI', 'Inc.', 'Dr.', 'Katherine', 'Adams', 'senior', 'researcher', 'OpenAI', 'discuss', 'future', 'AI', 'potential', 'transform', 'industry', 'range', 'healthcare', 'finance', 'panel', 'also', 'include', 'Dr.', 'Mei', 'Ling', 'professor', 'University', 'Tokyo', 'highlight', 'advancement', 'AI', 'research', 'Asia', 'audience', 'Emily', 'Michael', 'sit', 'new', 'acquaintance', 'eager', 'absorb', 'wealth', 'knowledge', 'share', 'particularly', 'inspired', 'talk', 'Dr.', 'Samuel', 'Green', 'cognitive', 'scientist', 'Yale', 'University', 'discuss', 'intersection', 'AI', 'human', 'cognition', 'research', 'AI', 'augment', 'human', 'decision-making', 'resonate', 'deeply', 'audience', 'conference', 'draw', 'close', 'attendee', 'reflect', 'valuable', 'connection', 'make', 'new', 'knowledge', 'gain', 'Emily', 'Michael', 'felt', 'energize', 'excited', 'future', 'research', 'form', 'new', 'collaboration', 'Jessica', 'Raj', 'Laura', 'eager', 'start', 'work', 'joint', 'project', 'leave', 'take', 'moment', 'thank', 'conference', 'organizer', 'include', 'Dr.', 'Karen', 'Wilson', 'director', 'Tech', 'Innovators', 'Network', 'team', 'event', 'resound', 'success', 'bring', 'together', 'bright', 'mind', 'field', 'AI', 'foster', 'spirit', 'innovation', 'collaboration', 'board', 'flight', 'back', 'Boston', 'Emily', 'Michael', 'could', \"n't\", 'help', 'feel', 'optimistic', 'future', 'know', 'connection', 'make', 'conference', 'would', 'lead', 'excite', 'new', 'opportunity', 'advancement', 'research', 'determine', 'ever', 'push', 'boundary', 'AI', 'could', 'achieve', 'ensure', 'work', 'would', 'positive', 'impact', 'world', 'week', 'follow', 'Emily', 'Michael', 'stay', 'touch', 'new', 'collaborator', 'begin', 'work', 'joint', 'project', 'share', 'ideas', 'resource', 'push', 'boundary', 'AI', 'research', 'Emily', 'collaborate', 'Jessica', 'project', 'enhance', 'natural', 'language', 'processing', 'algorithm', 'Michael', 'work', 'Raj', 'Maria', 'integrate', 'robotic', 'technology', 'neural', 'network', 'Laura', 'Emily', 'start', 'project', 'use', 'AI', 'predict', 'genetic', 'disorder', 'combine', 'expertise', 'tackle', 'complex', 'biological', 'problem', 'conference', 'expand', 'professional', 'network', 'also', 'enrich', 'understanding', 'diverse', 'application', 'AI', 'grateful', 'opportunity', 'connect', 'many', 'talented', 'individual', 'look', 'forward', 'future', 'renew', 'enthusiasm', 'sense', 'purpose', 'Tech', 'Innovators', 'Conference', 'transformative', 'experience', 'set', 'stage', 'new', 'discovery', 'groundbreaking', 'advancement', 'field', 'artificial', 'intelligence']\n",
204
- "\n",
205
- "Frequency Distribution:\n",
206
- "bustling: 1\n",
207
- "city: 1\n",
208
- "San: 1\n",
209
- "Francisco: 1\n",
210
- "tech: 1\n",
211
- "enthusiasts: 1\n",
212
- "world: 2\n",
213
- "gathered: 2\n",
214
- "annual: 1\n",
215
- "Tech: 3\n",
216
- "Innovators: 3\n",
217
- "Conference: 2\n",
218
- "event: 4\n",
219
- "melting: 1\n",
220
- "pot: 1\n",
221
- "ideas: 4\n",
222
- "innovations: 1\n",
223
- "collaborations: 4\n",
224
- "Among: 2\n",
225
- "attendees: 6\n",
226
- "Emily: 13\n",
227
- "Chen: 1\n",
228
- "renowned: 1\n",
229
- "AI: 18\n",
230
- "researcher: 3\n",
231
- "MIT: 1\n",
232
- "eager: 3\n",
233
- "present: 1\n",
234
- "latest: 2\n",
235
- "findings: 1\n",
236
- "machine: 2\n",
237
- "learning: 3\n",
238
- "algorithms: 4\n",
239
- "colleague: 3\n",
240
- "Dr.: 12\n",
241
- "Michael: 12\n",
242
- "Thompson: 1\n",
243
- "also: 3\n",
244
- "well-respected: 1\n",
245
- "figure: 1\n",
246
- "field: 4\n",
247
- "artificial: 2\n",
248
- "intelligence: 2\n",
249
- "accompanied: 2\n",
250
- "duo: 1\n",
251
- "working: 5\n",
252
- "groundbreaking: 2\n",
253
- "project: 6\n",
254
- "aimed: 1\n",
255
- "revolutionize: 1\n",
256
- "way: 1\n",
257
- "neural: 3\n",
258
- "networks: 4\n",
259
- "process: 1\n",
260
- "information: 2\n",
261
- "conference: 8\n",
262
- "commenced: 1\n",
263
- "greeted: 1\n",
264
- "host: 1\n",
265
- "familiar: 1\n",
266
- "faces: 1\n",
267
- "Jennifer: 3\n",
268
- "Lee: 1\n",
269
- "data: 3\n",
270
- "scientist: 2\n",
271
- "Google: 1\n",
272
- "showcase: 1\n",
273
- "team: 2\n",
274
- "advancements: 5\n",
275
- "quantum: 1\n",
276
- "computing: 1\n",
277
- "joined: 3\n",
278
- "mentor: 1\n",
279
- "Robert: 1\n",
280
- "Lang: 1\n",
281
- "pioneer: 1\n",
282
- "computational: 1\n",
283
- "neuroscience: 1\n",
284
- "introduced: 2\n",
285
- "friend: 1\n",
286
- "Carlos: 2\n",
287
- "Mendez: 1\n",
288
- "software: 1\n",
289
- "engineer: 2\n",
290
- "Facebook: 1\n",
291
- "specialized: 1\n",
292
- "developing: 3\n",
293
- "social: 1\n",
294
- "media: 1\n",
295
- "analytics: 1\n",
296
- "keynote: 1\n",
297
- "speaker: 1\n",
298
- "none: 1\n",
299
- "Elizabeth: 1\n",
300
- "Warren: 2\n",
301
- "distinguished: 1\n",
302
- "professor: 2\n",
303
- "Stanford: 1\n",
304
- "University: 7\n",
305
- "speech: 1\n",
306
- "focused: 1\n",
307
- "ethical: 1\n",
308
- "implications: 1\n",
309
- "importance: 2\n",
310
- "technologies: 2\n",
311
- "benefit: 1\n",
312
- "humanity: 1\n",
313
- "whole: 1\n",
314
- "insights: 2\n",
315
- "sparked: 1\n",
316
- "lively: 1\n",
317
- "discussion: 3\n",
318
- "among: 1\n",
319
- "including: 2\n",
320
- "Sarah: 1\n",
321
- "Johnson: 1\n",
322
- "policy: 1\n",
323
- "advisor: 1\n",
324
- "United: 1\n",
325
- "Nations: 1\n",
326
- "Ahmed: 1\n",
327
- "Khan: 1\n",
328
- "cybersecurity: 1\n",
329
- "expert: 3\n",
330
- "Microsoft: 1\n",
331
- "breaks: 1\n",
332
- "sessions: 1\n",
333
- "mingled: 1\n",
334
- "exchanged: 2\n",
335
- "caught: 1\n",
336
- "former: 1\n",
337
- "classmate: 1\n",
338
- "David: 2\n",
339
- "Kim: 1\n",
340
- "works: 1\n",
341
- "analyst: 1\n",
342
- "Amazon: 1\n",
343
- "Jessica: 4\n",
344
- "Brown: 1\n",
345
- "knack: 1\n",
346
- "innovative: 1\n",
347
- "solutions: 1\n",
348
- "complex: 2\n",
349
- "problems: 2\n",
350
- "particularly: 3\n",
351
- "interested: 2\n",
352
- "work: 3\n",
353
- "natural: 2\n",
354
- "language: 2\n",
355
- "processing: 2\n",
356
- "invited: 1\n",
357
- "collaborate: 1\n",
358
- "future: 5\n",
359
- "another: 1\n",
360
- "corner: 1\n",
361
- "room: 1\n",
362
- "deep: 3\n",
363
- "conversation: 3\n",
364
- "Raj: 4\n",
365
- "Patel: 1\n",
366
- "roboticist: 1\n",
367
- "Carnegie: 1\n",
368
- "Mellon: 1\n",
369
- "recently: 1\n",
370
- "developed: 1\n",
371
- "new: 8\n",
372
- "type: 1\n",
373
- "robotic: 2\n",
374
- "arm: 1\n",
375
- "could: 3\n",
376
- "perform: 1\n",
377
- "delicate: 1\n",
378
- "surgical: 1\n",
379
- "procedures: 1\n",
380
- "unprecedented: 1\n",
381
- "precision: 1\n",
382
- "research: 7\n",
383
- "assistant: 1\n",
384
- "Maria: 2\n",
385
- "Gonzalez: 1\n",
386
- "instrumental: 1\n",
387
- "success: 2\n",
388
- "fascinated: 1\n",
389
- "proposed: 1\n",
390
- "partnership: 1\n",
391
- "integrate: 2\n",
392
- "technology: 4\n",
393
- "day: 1\n",
394
- "progressed: 1\n",
395
- "treated: 1\n",
396
- "series: 1\n",
397
- "insightful: 1\n",
398
- "presentations: 1\n",
399
- "James: 1\n",
400
- "Clark: 1\n",
401
- "Harvard: 1\n",
402
- "shared: 2\n",
403
- "applications: 3\n",
404
- "healthcare: 2\n",
405
- "followed: 2\n",
406
- "Lisa: 1\n",
407
- "Robinson: 1\n",
408
- "computer: 1\n",
409
- "vision: 1\n",
410
- "Nvidia: 1\n",
411
- "demonstrated: 1\n",
412
- "image: 1\n",
413
- "recognition: 1\n",
414
- "audience: 3\n",
415
- "impressed: 1\n",
416
- "presentation: 1\n",
417
- "Ananya: 1\n",
418
- "Singh: 1\n",
419
- "ethicist: 1\n",
420
- "Oxford: 1\n",
421
- "discussed: 3\n",
422
- "societal: 1\n",
423
- "impacts: 1\n",
424
- "responsible: 1\n",
425
- "innovation: 2\n",
426
- "evening: 1\n",
427
- "gala: 1\n",
428
- "dinner: 1\n",
429
- "Grand: 1\n",
430
- "Hyatt: 1\n",
431
- "Hotel: 1\n",
432
- "perfect: 1\n",
433
- "opportunity: 2\n",
434
- "networking: 1\n",
435
- "fostering: 2\n",
436
- "found: 1\n",
437
- "seated: 1\n",
438
- "next: 2\n",
439
- "Henry: 1\n",
440
- "Zhang: 1\n",
441
- "venture: 1\n",
442
- "capitalist: 1\n",
443
- "Sequoia: 1\n",
444
- "Capital: 1\n",
445
- "keen: 1\n",
446
- "invest: 1\n",
447
- "promising: 1\n",
448
- "startups: 1\n",
449
- "Priya: 1\n",
450
- "Sharma: 1\n",
451
- "legal: 1\n",
452
- "Electronic: 1\n",
453
- "Frontier: 1\n",
454
- "Foundation: 1\n",
455
- "provided: 1\n",
456
- "valuable: 2\n",
457
- "regulatory: 1\n",
458
- "landscape: 1\n",
459
- "emerging: 1\n",
460
- "table: 2\n",
461
- "struck: 1\n",
462
- "Laura: 4\n",
463
- "Martinez: 1\n",
464
- "bioinformatics: 1\n",
465
- "California: 1\n",
466
- "Berkeley: 1\n",
467
- "use: 1\n",
468
- "predicting: 1\n",
469
- "genetic: 2\n",
470
- "disorders: 2\n",
471
- "expertise: 3\n",
472
- "contact: 1\n",
473
- "planned: 1\n",
474
- "meet: 1\n",
475
- "discuss: 1\n",
476
- "potential: 3\n",
477
- "Meanwhile: 1\n",
478
- "Ethan: 2\n",
479
- "Liu: 1\n",
480
- "blockchain: 2\n",
481
- "developer: 1\n",
482
- "IBM: 1\n",
483
- "combining: 2\n",
484
- "enhance: 2\n",
485
- "security: 1\n",
486
- "Olivia: 1\n",
487
- "Parker: 1\n",
488
- "bringing: 2\n",
489
- "cryptography: 1\n",
490
- "group: 2\n",
491
- "brainstormed: 1\n",
492
- "various: 1\n",
493
- "decided: 1\n",
494
- "form: 1\n",
495
- "explore: 1\n",
496
- "morning: 1\n",
497
- "resumed: 1\n",
498
- "panel: 2\n",
499
- "featuring: 1\n",
500
- "several: 1\n",
501
- "industry: 1\n",
502
- "leaders: 1\n",
503
- "William: 1\n",
504
- "Harris: 1\n",
505
- "CEO: 1\n",
506
- "Inc.: 1\n",
507
- "Katherine: 1\n",
508
- "Adams: 1\n",
509
- "senior: 1\n",
510
- "OpenAI: 1\n",
511
- "transform: 1\n",
512
- "industries: 1\n",
513
- "ranging: 1\n",
514
- "finance: 1\n",
515
- "included: 1\n",
516
- "Mei: 1\n",
517
- "Ling: 1\n",
518
- "Tokyo: 1\n",
519
- "highlighted: 1\n",
520
- "Asia: 1\n",
521
- "sat: 1\n",
522
- "acquaintances: 1\n",
523
- "absorb: 1\n",
524
- "wealth: 1\n",
525
- "knowledge: 2\n",
526
- "inspired: 1\n",
527
- "talk: 1\n",
528
- "Samuel: 1\n",
529
- "Green: 1\n",
530
- "cognitive: 1\n",
531
- "Yale: 1\n",
532
- "intersection: 1\n",
533
- "human: 2\n",
534
- "cognition: 1\n",
535
- "augment: 1\n",
536
- "decision-making: 1\n",
537
- "resonated: 1\n",
538
- "deeply: 1\n",
539
- "drew: 1\n",
540
- "close: 1\n",
541
- "reflected: 1\n",
542
- "connections: 2\n",
543
- "made: 2\n",
544
- "gained: 1\n",
545
- "felt: 1\n",
546
- "energized: 1\n",
547
- "excited: 1\n",
548
- "formed: 1\n",
549
- "start: 1\n",
550
- "joint: 2\n",
551
- "projects: 2\n",
552
- "leaving: 1\n",
553
- "took: 1\n",
554
- "moment: 1\n",
555
- "thank: 1\n",
556
- "organizers: 1\n",
557
- "Karen: 1\n",
558
- "Wilson: 1\n",
559
- "director: 1\n",
560
- "Network: 1\n",
561
- "resounding: 1\n",
562
- "together: 1\n",
563
- "brightest: 1\n",
564
- "minds: 1\n",
565
- "spirit: 1\n",
566
- "collaboration: 1\n",
567
- "boarded: 1\n",
568
- "flight: 1\n",
569
- "back: 1\n",
570
- "Boston: 1\n",
571
- "n't: 1\n",
572
- "help: 1\n",
573
- "feel: 1\n",
574
- "optimistic: 1\n",
575
- "knew: 1\n",
576
- "would: 2\n",
577
- "lead: 1\n",
578
- "exciting: 1\n",
579
- "opportunities: 1\n",
580
- "determined: 1\n",
581
- "ever: 1\n",
582
- "push: 2\n",
583
- "boundaries: 2\n",
584
- "achieve: 1\n",
585
- "ensure: 1\n",
586
- "positive: 1\n",
587
- "impact: 1\n",
588
- "weeks: 1\n",
589
- "stayed: 1\n",
590
- "touch: 1\n",
591
- "collaborators: 1\n",
592
- "began: 1\n",
593
- "sharing: 1\n",
594
- "resources: 1\n",
595
- "collaborated: 1\n",
596
- "worked: 1\n",
597
- "started: 1\n",
598
- "using: 1\n",
599
- "predict: 1\n",
600
- "tackle: 1\n",
601
- "biological: 1\n",
602
- "expanded: 1\n",
603
- "professional: 1\n",
604
- "enriched: 1\n",
605
- "understanding: 1\n",
606
- "diverse: 1\n",
607
- "grateful: 1\n",
608
- "connect: 1\n",
609
- "many: 1\n",
610
- "talented: 1\n",
611
- "individuals: 1\n",
612
- "looked: 1\n",
613
- "forward: 1\n",
614
- "renewed: 1\n",
615
- "enthusiasm: 1\n",
616
- "sense: 1\n",
617
- "purpose: 1\n",
618
- "transformative: 1\n",
619
- "experience: 1\n",
620
- "setting: 1\n",
621
- "stage: 1\n",
622
- "discoveries: 1\n",
623
- "\n",
624
- "Probability Distribution:\n",
625
- "bustling: 0.0015\n",
626
- "city: 0.0015\n",
627
- "San: 0.0015\n",
628
- "Francisco: 0.0015\n",
629
- "tech: 0.0015\n",
630
- "enthusiasts: 0.0015\n",
631
- "world: 0.0031\n",
632
- "gathered: 0.0031\n",
633
- "annual: 0.0015\n",
634
- "Tech: 0.0046\n",
635
- "Innovators: 0.0046\n",
636
- "Conference: 0.0031\n",
637
- "event: 0.0061\n",
638
- "melting: 0.0015\n",
639
- "pot: 0.0015\n",
640
- "ideas: 0.0061\n",
641
- "innovations: 0.0015\n",
642
- "collaborations: 0.0061\n",
643
- "Among: 0.0031\n",
644
- "attendees: 0.0092\n",
645
- "Emily: 0.0198\n",
646
- "Chen: 0.0015\n",
647
- "renowned: 0.0015\n",
648
- "AI: 0.0275\n",
649
- "researcher: 0.0046\n",
650
- "MIT: 0.0015\n",
651
- "eager: 0.0046\n",
652
- "present: 0.0015\n",
653
- "latest: 0.0031\n",
654
- "findings: 0.0015\n",
655
- "machine: 0.0031\n",
656
- "learning: 0.0046\n",
657
- "algorithms: 0.0061\n",
658
- "colleague: 0.0046\n",
659
- "Dr.: 0.0183\n",
660
- "Michael: 0.0183\n",
661
- "Thompson: 0.0015\n",
662
- "also: 0.0046\n",
663
- "well-respected: 0.0015\n",
664
- "figure: 0.0015\n",
665
- "field: 0.0061\n",
666
- "artificial: 0.0031\n",
667
- "intelligence: 0.0031\n",
668
- "accompanied: 0.0031\n",
669
- "duo: 0.0015\n",
670
- "working: 0.0076\n",
671
- "groundbreaking: 0.0031\n",
672
- "project: 0.0092\n",
673
- "aimed: 0.0015\n",
674
- "revolutionize: 0.0015\n",
675
- "way: 0.0015\n",
676
- "neural: 0.0046\n",
677
- "networks: 0.0061\n",
678
- "process: 0.0015\n",
679
- "information: 0.0031\n",
680
- "conference: 0.0122\n",
681
- "commenced: 0.0015\n",
682
- "greeted: 0.0015\n",
683
- "host: 0.0015\n",
684
- "familiar: 0.0015\n",
685
- "faces: 0.0015\n",
686
- "Jennifer: 0.0046\n",
687
- "Lee: 0.0015\n",
688
- "data: 0.0046\n",
689
- "scientist: 0.0031\n",
690
- "Google: 0.0015\n",
691
- "showcase: 0.0015\n",
692
- "team: 0.0031\n",
693
- "advancements: 0.0076\n",
694
- "quantum: 0.0015\n",
695
- "computing: 0.0015\n",
696
- "joined: 0.0046\n",
697
- "mentor: 0.0015\n",
698
- "Robert: 0.0015\n",
699
- "Lang: 0.0015\n",
700
- "pioneer: 0.0015\n",
701
- "computational: 0.0015\n",
702
- "neuroscience: 0.0015\n",
703
- "introduced: 0.0031\n",
704
- "friend: 0.0015\n",
705
- "Carlos: 0.0031\n",
706
- "Mendez: 0.0015\n",
707
- "software: 0.0015\n",
708
- "engineer: 0.0031\n",
709
- "Facebook: 0.0015\n",
710
- "specialized: 0.0015\n",
711
- "developing: 0.0046\n",
712
- "social: 0.0015\n",
713
- "media: 0.0015\n",
714
- "analytics: 0.0015\n",
715
- "keynote: 0.0015\n",
716
- "speaker: 0.0015\n",
717
- "none: 0.0015\n",
718
- "Elizabeth: 0.0015\n",
719
- "Warren: 0.0031\n",
720
- "distinguished: 0.0015\n",
721
- "professor: 0.0031\n",
722
- "Stanford: 0.0015\n",
723
- "University: 0.0107\n",
724
- "speech: 0.0015\n",
725
- "focused: 0.0015\n",
726
- "ethical: 0.0015\n",
727
- "implications: 0.0015\n",
728
- "importance: 0.0031\n",
729
- "technologies: 0.0031\n",
730
- "benefit: 0.0015\n",
731
- "humanity: 0.0015\n",
732
- "whole: 0.0015\n",
733
- "insights: 0.0031\n",
734
- "sparked: 0.0015\n",
735
- "lively: 0.0015\n",
736
- "discussion: 0.0046\n",
737
- "among: 0.0015\n",
738
- "including: 0.0031\n",
739
- "Sarah: 0.0015\n",
740
- "Johnson: 0.0015\n",
741
- "policy: 0.0015\n",
742
- "advisor: 0.0015\n",
743
- "United: 0.0015\n",
744
- "Nations: 0.0015\n",
745
- "Ahmed: 0.0015\n",
746
- "Khan: 0.0015\n",
747
- "cybersecurity: 0.0015\n",
748
- "expert: 0.0046\n",
749
- "Microsoft: 0.0015\n",
750
- "breaks: 0.0015\n",
751
- "sessions: 0.0015\n",
752
- "mingled: 0.0015\n",
753
- "exchanged: 0.0031\n",
754
- "caught: 0.0015\n",
755
- "former: 0.0015\n",
756
- "classmate: 0.0015\n",
757
- "David: 0.0031\n",
758
- "Kim: 0.0015\n",
759
- "works: 0.0015\n",
760
- "analyst: 0.0015\n",
761
- "Amazon: 0.0015\n",
762
- "Jessica: 0.0061\n",
763
- "Brown: 0.0015\n",
764
- "knack: 0.0015\n",
765
- "innovative: 0.0015\n",
766
- "solutions: 0.0015\n",
767
- "complex: 0.0031\n",
768
- "problems: 0.0031\n",
769
- "particularly: 0.0046\n",
770
- "interested: 0.0031\n",
771
- "work: 0.0046\n",
772
- "natural: 0.0031\n",
773
- "language: 0.0031\n",
774
- "processing: 0.0031\n",
775
- "invited: 0.0015\n",
776
- "collaborate: 0.0015\n",
777
- "future: 0.0076\n",
778
- "another: 0.0015\n",
779
- "corner: 0.0015\n",
780
- "room: 0.0015\n",
781
- "deep: 0.0046\n",
782
- "conversation: 0.0046\n",
783
- "Raj: 0.0061\n",
784
- "Patel: 0.0015\n",
785
- "roboticist: 0.0015\n",
786
- "Carnegie: 0.0015\n",
787
- "Mellon: 0.0015\n",
788
- "recently: 0.0015\n",
789
- "developed: 0.0015\n",
790
- "new: 0.0122\n",
791
- "type: 0.0015\n",
792
- "robotic: 0.0031\n",
793
- "arm: 0.0015\n",
794
- "could: 0.0046\n",
795
- "perform: 0.0015\n",
796
- "delicate: 0.0015\n",
797
- "surgical: 0.0015\n",
798
- "procedures: 0.0015\n",
799
- "unprecedented: 0.0015\n",
800
- "precision: 0.0015\n",
801
- "research: 0.0107\n",
802
- "assistant: 0.0015\n",
803
- "Maria: 0.0031\n",
804
- "Gonzalez: 0.0015\n",
805
- "instrumental: 0.0015\n",
806
- "success: 0.0031\n",
807
- "fascinated: 0.0015\n",
808
- "proposed: 0.0015\n",
809
- "partnership: 0.0015\n",
810
- "integrate: 0.0031\n",
811
- "technology: 0.0061\n",
812
- "day: 0.0015\n",
813
- "progressed: 0.0015\n",
814
- "treated: 0.0015\n",
815
- "series: 0.0015\n",
816
- "insightful: 0.0015\n",
817
- "presentations: 0.0015\n",
818
- "James: 0.0015\n",
819
- "Clark: 0.0015\n",
820
- "Harvard: 0.0015\n",
821
- "shared: 0.0031\n",
822
- "applications: 0.0046\n",
823
- "healthcare: 0.0031\n",
824
- "followed: 0.0031\n",
825
- "Lisa: 0.0015\n",
826
- "Robinson: 0.0015\n",
827
- "computer: 0.0015\n",
828
- "vision: 0.0015\n",
829
- "Nvidia: 0.0015\n",
830
- "demonstrated: 0.0015\n",
831
- "image: 0.0015\n",
832
- "recognition: 0.0015\n",
833
- "audience: 0.0046\n",
834
- "impressed: 0.0015\n",
835
- "presentation: 0.0015\n",
836
- "Ananya: 0.0015\n",
837
- "Singh: 0.0015\n",
838
- "ethicist: 0.0015\n",
839
- "Oxford: 0.0015\n",
840
- "discussed: 0.0046\n",
841
- "societal: 0.0015\n",
842
- "impacts: 0.0015\n",
843
- "responsible: 0.0015\n",
844
- "innovation: 0.0031\n",
845
- "evening: 0.0015\n",
846
- "gala: 0.0015\n",
847
- "dinner: 0.0015\n",
848
- "Grand: 0.0015\n",
849
- "Hyatt: 0.0015\n",
850
- "Hotel: 0.0015\n",
851
- "perfect: 0.0015\n",
852
- "opportunity: 0.0031\n",
853
- "networking: 0.0015\n",
854
- "fostering: 0.0031\n",
855
- "found: 0.0015\n",
856
- "seated: 0.0015\n",
857
- "next: 0.0031\n",
858
- "Henry: 0.0015\n",
859
- "Zhang: 0.0015\n",
860
- "venture: 0.0015\n",
861
- "capitalist: 0.0015\n",
862
- "Sequoia: 0.0015\n",
863
- "Capital: 0.0015\n",
864
- "keen: 0.0015\n",
865
- "invest: 0.0015\n",
866
- "promising: 0.0015\n",
867
- "startups: 0.0015\n",
868
- "Priya: 0.0015\n",
869
- "Sharma: 0.0015\n",
870
- "legal: 0.0015\n",
871
- "Electronic: 0.0015\n",
872
- "Frontier: 0.0015\n",
873
- "Foundation: 0.0015\n",
874
- "provided: 0.0015\n",
875
- "valuable: 0.0031\n",
876
- "regulatory: 0.0015\n",
877
- "landscape: 0.0015\n",
878
- "emerging: 0.0015\n",
879
- "table: 0.0031\n",
880
- "struck: 0.0015\n",
881
- "Laura: 0.0061\n",
882
- "Martinez: 0.0015\n",
883
- "bioinformatics: 0.0015\n",
884
- "California: 0.0015\n",
885
- "Berkeley: 0.0015\n",
886
- "use: 0.0015\n",
887
- "predicting: 0.0015\n",
888
- "genetic: 0.0031\n",
889
- "disorders: 0.0031\n",
890
- "expertise: 0.0046\n",
891
- "contact: 0.0015\n",
892
- "planned: 0.0015\n",
893
- "meet: 0.0015\n",
894
- "discuss: 0.0015\n",
895
- "potential: 0.0046\n",
896
- "Meanwhile: 0.0015\n",
897
- "Ethan: 0.0031\n",
898
- "Liu: 0.0015\n",
899
- "blockchain: 0.0031\n",
900
- "developer: 0.0015\n",
901
- "IBM: 0.0015\n",
902
- "combining: 0.0031\n",
903
- "enhance: 0.0031\n",
904
- "security: 0.0015\n",
905
- "Olivia: 0.0015\n",
906
- "Parker: 0.0015\n",
907
- "bringing: 0.0031\n",
908
- "cryptography: 0.0015\n",
909
- "group: 0.0031\n",
910
- "brainstormed: 0.0015\n",
911
- "various: 0.0015\n",
912
- "decided: 0.0015\n",
913
- "form: 0.0015\n",
914
- "explore: 0.0015\n",
915
- "morning: 0.0015\n",
916
- "resumed: 0.0015\n",
917
- "panel: 0.0031\n",
918
- "featuring: 0.0015\n",
919
- "several: 0.0015\n",
920
- "industry: 0.0015\n",
921
- "leaders: 0.0015\n",
922
- "William: 0.0015\n",
923
- "Harris: 0.0015\n",
924
- "CEO: 0.0015\n",
925
- "Inc.: 0.0015\n",
926
- "Katherine: 0.0015\n",
927
- "Adams: 0.0015\n",
928
- "senior: 0.0015\n",
929
- "OpenAI: 0.0015\n",
930
- "transform: 0.0015\n",
931
- "industries: 0.0015\n",
932
- "ranging: 0.0015\n",
933
- "finance: 0.0015\n",
934
- "included: 0.0015\n",
935
- "Mei: 0.0015\n",
936
- "Ling: 0.0015\n",
937
- "Tokyo: 0.0015\n",
938
- "highlighted: 0.0015\n",
939
- "Asia: 0.0015\n",
940
- "sat: 0.0015\n",
941
- "acquaintances: 0.0015\n",
942
- "absorb: 0.0015\n",
943
- "wealth: 0.0015\n",
944
- "knowledge: 0.0031\n",
945
- "inspired: 0.0015\n",
946
- "talk: 0.0015\n",
947
- "Samuel: 0.0015\n",
948
- "Green: 0.0015\n",
949
- "cognitive: 0.0015\n",
950
- "Yale: 0.0015\n",
951
- "intersection: 0.0015\n",
952
- "human: 0.0031\n",
953
- "cognition: 0.0015\n",
954
- "augment: 0.0015\n",
955
- "decision-making: 0.0015\n",
956
- "resonated: 0.0015\n",
957
- "deeply: 0.0015\n",
958
- "drew: 0.0015\n",
959
- "close: 0.0015\n",
960
- "reflected: 0.0015\n",
961
- "connections: 0.0031\n",
962
- "made: 0.0031\n",
963
- "gained: 0.0015\n",
964
- "felt: 0.0015\n",
965
- "energized: 0.0015\n",
966
- "excited: 0.0015\n",
967
- "formed: 0.0015\n",
968
- "start: 0.0015\n",
969
- "joint: 0.0031\n",
970
- "projects: 0.0031\n",
971
- "leaving: 0.0015\n",
972
- "took: 0.0015\n",
973
- "moment: 0.0015\n",
974
- "thank: 0.0015\n",
975
- "organizers: 0.0015\n",
976
- "Karen: 0.0015\n",
977
- "Wilson: 0.0015\n",
978
- "director: 0.0015\n",
979
- "Network: 0.0015\n",
980
- "resounding: 0.0015\n",
981
- "together: 0.0015\n",
982
- "brightest: 0.0015\n",
983
- "minds: 0.0015\n",
984
- "spirit: 0.0015\n",
985
- "collaboration: 0.0015\n",
986
- "boarded: 0.0015\n",
987
- "flight: 0.0015\n",
988
- "back: 0.0015\n",
989
- "Boston: 0.0015\n",
990
- "n't: 0.0015\n",
991
- "help: 0.0015\n",
992
- "feel: 0.0015\n",
993
- "optimistic: 0.0015\n",
994
- "knew: 0.0015\n",
995
- "would: 0.0031\n",
996
- "lead: 0.0015\n",
997
- "exciting: 0.0015\n",
998
- "opportunities: 0.0015\n",
999
- "determined: 0.0015\n",
1000
- "ever: 0.0015\n",
1001
- "push: 0.0031\n",
1002
- "boundaries: 0.0031\n",
1003
- "achieve: 0.0015\n",
1004
- "ensure: 0.0015\n",
1005
- "positive: 0.0015\n",
1006
- "impact: 0.0015\n",
1007
- "weeks: 0.0015\n",
1008
- "stayed: 0.0015\n",
1009
- "touch: 0.0015\n",
1010
- "collaborators: 0.0015\n",
1011
- "began: 0.0015\n",
1012
- "sharing: 0.0015\n",
1013
- "resources: 0.0015\n",
1014
- "collaborated: 0.0015\n",
1015
- "worked: 0.0015\n",
1016
- "started: 0.0015\n",
1017
- "using: 0.0015\n",
1018
- "predict: 0.0015\n",
1019
- "tackle: 0.0015\n",
1020
- "biological: 0.0015\n",
1021
- "expanded: 0.0015\n",
1022
- "professional: 0.0015\n",
1023
- "enriched: 0.0015\n",
1024
- "understanding: 0.0015\n",
1025
- "diverse: 0.0015\n",
1026
- "grateful: 0.0015\n",
1027
- "connect: 0.0015\n",
1028
- "many: 0.0015\n",
1029
- "talented: 0.0015\n",
1030
- "individuals: 0.0015\n",
1031
- "looked: 0.0015\n",
1032
- "forward: 0.0015\n",
1033
- "renewed: 0.0015\n",
1034
- "enthusiasm: 0.0015\n",
1035
- "sense: 0.0015\n",
1036
- "purpose: 0.0015\n",
1037
- "transformative: 0.0015\n",
1038
- "experience: 0.0015\n",
1039
- "setting: 0.0015\n",
1040
- "stage: 0.0015\n",
1041
- "discoveries: 0.0015\n"
1042
- ]
1043
- }
1044
- ],
1045
- "source": [
1046
- "# Display results\n",
1047
- "print(\"\\nOriginal Tokens:\")\n",
1048
- "print(filtered_tokens)\n",
1049
- "\n",
1050
- "print(\"\\nStems:\")\n",
1051
- "print(stems)\n",
1052
- "\n",
1053
- "print(\"\\nLemmas:\")\n",
1054
- "print(lemmas)\n",
1055
- "\n",
1056
- "print(\"\\nFrequency Distribution:\")\n",
1057
- "for word, freq in freq_dist.items():\n",
1058
- " print(f\"{word}: {freq}\")\n",
1059
- "\n",
1060
- "print(\"\\nProbability Distribution:\")\n",
1061
- "for word, prob in prob_dist.items():\n",
1062
- " print(f\"{word}: {prob:.4f}\")"
1063
- ]
1064
- },
1065
- {
1066
- "cell_type": "code",
1067
- "execution_count": 88,
1068
- "id": "42192a7f-f0fc-4152-abcd-6b0264ebc368",
1069
- "metadata": {},
1070
- "outputs": [
1071
- {
1072
- "name": "stdout",
1073
- "output_type": "stream",
1074
- "text": [
1075
- "Original Tokens:\n",
1076
- " ['In', 'the', 'bustling', 'city', 'of', 'San', 'Francisco', ',', 'tech', 'enthusiasts', 'from', 'all', 'over', 'the', 'world', 'gathered', 'for', 'the', 'annual', 'Tech', 'Innovators', 'Conference', '.', 'The', 'event', 'was', 'a', 'melting', 'pot', 'of', 'ideas', ',', 'innovations', ',', 'and', 'collaborations', '.', 'Among', 'the', 'attendees', 'was', 'Emily', 'Chen', ',', 'a', 'renowned', 'AI', 'researcher', 'from', 'MIT', ',', 'who', 'was', 'eager', 'to', 'present', 'her', 'latest', 'findings', 'on', 'machine', 'learning', 'algorithms', '.', 'Emily', \"'s\", 'colleague', ',', 'Dr.', 'Michael', 'Thompson', ',', 'who', 'is', 'also', 'a', 'well-respected', 'figure', 'in', 'the', 'field', 'of', 'artificial', 'intelligence', ',', 'accompanied', 'her', '.', 'The', 'duo', 'had', 'been', 'working', 'on', 'a', 'groundbreaking', 'project', 'that', 'aimed', 'to', 'revolutionize', 'the', 'way', 'neural', 'networks', 'process', 'information', '.', 'As', 'the', 'conference', 'commenced', ',', 'Emily', 'and', 'Michael', 'were', 'greeted', 'by', 'a', 'host', 'of', 'familiar', 'faces', '.', 'Jennifer', 'Lee', ',', 'a', 'data', 'scientist', 'from', 'Google', ',', 'was', 'there', 'to', 'showcase', 'her', 'team', \"'s\", 'advancements', 'in', 'quantum', 'computing', '.', 'She', 'was', 'joined', 'by', 'her', 'mentor', ',', 'Dr.', 'Robert', 'Lang', ',', 'who', 'had', 'been', 'a', 'pioneer', 'in', 'the', 'field', 'of', 'computational', 'neuroscience', '.', 'Jennifer', 'introduced', 'Emily', 'and', 'Michael', 'to', 'her', 'friend', ',', 'Carlos', 'Mendez', ',', 'a', 'software', 'engineer', 'at', 'Facebook', 'who', 'specialized', 'in', 'developing', 'algorithms', 'for', 'social', 'media', 'analytics', '.', 'The', 'keynote', 'speaker', 'for', 'the', 'event', 'was', 'none', 'other', 'than', 'Dr.', 'Elizabeth', 'Warren', ',', 'a', 'distinguished', 'professor', 'at', 'Stanford', 'University', '.', 'Dr.', 'Warren', \"'s\", 'speech', 'focused', 'on', 'the', 'ethical', 'implications', 'of', 'AI', 'and', 'the', 'importance', 'of', 'developing', 'technologies', 'that', 'benefit', 'humanity', 'as', 'a', 'whole', '.', 'Her', 'insights', 'sparked', 'a', 'lively', 'discussion', 'among', 'the', 'attendees', ',', 'including', 'Sarah', 'Johnson', ',', 'a', 'policy', 'advisor', 'from', 'the', 'United', 'Nations', ',', 'and', 'Ahmed', 'Khan', ',', 'a', 'cybersecurity', 'expert', 'from', 'Microsoft', '.', 'During', 'the', 'breaks', 'between', 'sessions', ',', 'the', 'attendees', 'mingled', 'and', 'exchanged', 'ideas', '.', 'Emily', 'caught', 'up', 'with', 'her', 'former', 'classmate', ',', 'David', 'Kim', ',', 'who', 'now', 'works', 'as', 'a', 'data', 'analyst', 'at', 'Amazon', '.', 'David', 'introduced', 'her', 'to', 'his', 'colleague', ',', 'Jessica', 'Brown', ',', 'a', 'machine', 'learning', 'engineer', 'with', 'a', 'knack', 'for', 'developing', 'innovative', 'solutions', 'to', 'complex', 'problems', '.', 'Emily', 'was', 'particularly', 'interested', 'in', 'Jessica', \"'s\", 'work', 'on', 'natural', 'language', 'processing', 'and', 'invited', 'her', 'to', 'collaborate', 'on', 'a', 'future', 'project', '.', 'In', 'another', 'corner', 'of', 'the', 'room', ',', 'Michael', 'was', 'deep', 'in', 'conversation', 'with', 'Raj', 'Patel', ',', 'a', 'roboticist', 'from', 'Carnegie', 'Mellon', 'University', '.', 'Raj', 'had', 'recently', 'developed', 'a', 'new', 'type', 'of', 'robotic', 'arm', 'that', 'could', 'perform', 'delicate', 'surgical', 'procedures', 'with', 'unprecedented', 'precision', '.', 'He', 'was', 'accompanied', 'by', 'his', 'research', 'assistant', ',', 'Maria', 'Gonzalez', ',', 'who', 'had', 'been', 'instrumental', 'in', 'the', 'project', \"'s\", 'success', '.', 'Michael', 'was', 'fascinated', 'by', 'their', 'work', 'and', 'proposed', 'a', 'partnership', 'to', 'integrate', 'their', 'technology', 'with', 'his', 'AI', 'algorithms', '.', 'As', 'the', 'day', 'progressed', ',', 'the', 'conference', 'attendees', 'were', 'treated', 'to', 'a', 'series', 'of', 'insightful', 'presentations', '.', 'Dr.', 'James', 'Clark', 'from', 'Harvard', 'University', 'shared', 'his', 'research', 'on', 'deep', 'learning', 'and', 'its', 'applications', 'in', 'healthcare', '.', 'He', 'was', 'followed', 'by', 'Lisa', 'Robinson', ',', 'a', 'computer', 'vision', 'expert', 'from', 'Nvidia', ',', 'who', 'demonstrated', 'the', 'latest', 'advancements', 'in', 'image', 'recognition', 'technology', '.', 'The', 'audience', 'was', 'particularly', 'impressed', 'by', 'the', 'presentation', 'from', 'Dr.', 'Ananya', 'Singh', ',', 'an', 'AI', 'ethicist', 'from', 'Oxford', 'University', ',', 'who', 'discussed', 'the', 'societal', 'impacts', 'of', 'AI', 'and', 'the', 'importance', 'of', 'responsible', 'innovation', '.', 'In', 'the', 'evening', ',', 'the', 'attendees', 'gathered', 'for', 'a', 'gala', 'dinner', 'at', 'the', 'Grand', 'Hyatt', 'Hotel', '.', 'The', 'event', 'was', 'a', 'perfect', 'opportunity', 'for', 'networking', 'and', 'fostering', 'new', 'collaborations', '.', 'Emily', 'found', 'herself', 'seated', 'next', 'to', 'Henry', 'Zhang', ',', 'a', 'venture', 'capitalist', 'from', 'Sequoia', 'Capital', ',', 'who', 'was', 'keen', 'to', 'invest', 'in', 'promising', 'AI', 'startups', '.', 'They', 'were', 'joined', 'by', 'Priya', 'Sharma', ',', 'a', 'legal', 'expert', 'from', 'the', 'Electronic', 'Frontier', 'Foundation', ',', 'who', 'provided', 'valuable', 'insights', 'into', 'the', 'regulatory', 'landscape', 'of', 'emerging', 'technologies', '.', 'At', 'the', 'same', 'table', ',', 'Michael', 'struck', 'up', 'a', 'conversation', 'with', 'Laura', 'Martinez', ',', 'a', 'bioinformatics', 'researcher', 'from', 'the', 'University', 'of', 'California', ',', 'Berkeley', '.', 'Laura', 'had', 'been', 'working', 'on', 'a', 'project', 'to', 'use', 'AI', 'for', 'predicting', 'genetic', 'disorders', 'and', 'was', 'interested', 'in', 'Michael', \"'s\", 'expertise', 'in', 'neural', 'networks', '.', 'They', 'exchanged', 'contact', 'information', 'and', 'planned', 'to', 'meet', 'after', 'the', 'conference', 'to', 'discuss', 'potential', 'collaborations', '.', 'Meanwhile', ',', 'Jennifer', 'and', 'Carlos', 'were', 'deep', 'in', 'discussion', 'with', 'Ethan', 'Liu', ',', 'a', 'blockchain', 'developer', 'from', 'IBM', ',', 'about', 'the', 'potential', 'of', 'combining', 'AI', 'with', 'blockchain', 'technology', 'to', 'enhance', 'data', 'security', '.', 'Ethan', \"'s\", 'colleague', ',', 'Dr.', 'Olivia', 'Parker', ',', 'joined', 'the', 'conversation', ',', 'bringing', 'her', 'expertise', 'in', 'cryptography', 'to', 'the', 'table', '.', 'The', 'group', 'brainstormed', 'various', 'applications', 'and', 'decided', 'to', 'form', 'a', 'working', 'group', 'to', 'explore', 'these', 'ideas', 'further', '.', 'The', 'next', 'morning', ',', 'the', 'conference', 'resumed', 'with', 'a', 'panel', 'discussion', 'featuring', 'several', 'industry', 'leaders', '.', 'Among', 'them', 'were', 'Dr.', 'William', 'Harris', ',', 'the', 'CEO', 'of', 'AI', 'Inc.', ',', 'and', 'Dr.', 'Katherine', 'Adams', ',', 'a', 'senior', 'researcher', 'at', 'OpenAI', '.', 'They', 'discussed', 'the', 'future', 'of', 'AI', 'and', 'its', 'potential', 'to', 'transform', 'industries', 'ranging', 'from', 'healthcare', 'to', 'finance', '.', 'The', 'panel', 'also', 'included', 'Dr.', 'Mei', 'Ling', ',', 'a', 'professor', 'at', 'the', 'University', 'of', 'Tokyo', ',', 'who', 'highlighted', 'the', 'advancements', 'in', 'AI', 'research', 'in', 'Asia', '.', 'In', 'the', 'audience', ',', 'Emily', 'and', 'Michael', 'sat', 'with', 'their', 'new', 'acquaintances', ',', 'eager', 'to', 'absorb', 'the', 'wealth', 'of', 'knowledge', 'being', 'shared', '.', 'They', 'were', 'particularly', 'inspired', 'by', 'the', 'talk', 'from', 'Dr.', 'Samuel', 'Green', ',', 'a', 'cognitive', 'scientist', 'from', 'Yale', 'University', ',', 'who', 'discussed', 'the', 'intersection', 'of', 'AI', 'and', 'human', 'cognition', '.', 'His', 'research', 'on', 'how', 'AI', 'can', 'augment', 'human', 'decision-making', 'resonated', 'deeply', 'with', 'the', 'audience', '.', 'As', 'the', 'conference', 'drew', 'to', 'a', 'close', ',', 'the', 'attendees', 'reflected', 'on', 'the', 'valuable', 'connections', 'they', 'had', 'made', 'and', 'the', 'new', 'knowledge', 'they', 'had', 'gained', '.', 'Emily', 'and', 'Michael', 'felt', 'energized', 'and', 'excited', 'about', 'the', 'future', 'of', 'their', 'research', '.', 'They', 'had', 'formed', 'new', 'collaborations', 'with', 'Jessica', ',', 'Raj', ',', 'and', 'Laura', ',', 'and', 'were', 'eager', 'to', 'start', 'working', 'on', 'their', 'joint', 'projects', '.', 'Before', 'leaving', ',', 'they', 'took', 'a', 'moment', 'to', 'thank', 'the', 'conference', 'organizers', ',', 'including', 'Dr.', 'Karen', 'Wilson', ',', 'the', 'director', 'of', 'the', 'Tech', 'Innovators', 'Network', ',', 'and', 'her', 'team', '.', 'The', 'event', 'had', 'been', 'a', 'resounding', 'success', ',', 'bringing', 'together', 'some', 'of', 'the', 'brightest', 'minds', 'in', 'the', 'field', 'of', 'AI', 'and', 'fostering', 'a', 'spirit', 'of', 'innovation', 'and', 'collaboration', '.', 'As', 'they', 'boarded', 'their', 'flight', 'back', 'to', 'Boston', ',', 'Emily', 'and', 'Michael', 'could', \"n't\", 'help', 'but', 'feel', 'optimistic', 'about', 'the', 'future', '.', 'They', 'knew', 'that', 'the', 'connections', 'they', 'had', 'made', 'at', 'the', 'conference', 'would', 'lead', 'to', 'exciting', 'new', 'opportunities', 'and', 'advancements', 'in', 'their', 'research', '.', 'They', 'were', 'more', 'determined', 'than', 'ever', 'to', 'push', 'the', 'boundaries', 'of', 'what', 'AI', 'could', 'achieve', 'and', 'to', 'ensure', 'that', 'their', 'work', 'would', 'have', 'a', 'positive', 'impact', 'on', 'the', 'world', '.', 'In', 'the', 'weeks', 'that', 'followed', ',', 'Emily', 'and', 'Michael', 'stayed', 'in', 'touch', 'with', 'their', 'new', 'collaborators', '.', 'They', 'began', 'working', 'on', 'joint', 'projects', ',', 'sharing', 'ideas', 'and', 'resources', 'to', 'push', 'the', 'boundaries', 'of', 'AI', 'research', '.', 'Emily', 'collaborated', 'with', 'Jessica', 'on', 'a', 'project', 'to', 'enhance', 'natural', 'language', 'processing', 'algorithms', ',', 'while', 'Michael', 'worked', 'with', 'Raj', 'and', 'Maria', 'to', 'integrate', 'their', 'robotic', 'technology', 'with', 'his', 'neural', 'networks', '.', 'Laura', 'and', 'Emily', 'started', 'a', 'project', 'on', 'using', 'AI', 'to', 'predict', 'genetic', 'disorders', ',', 'combining', 'their', 'expertise', 'to', 'tackle', 'complex', 'biological', 'problems', '.', 'The', 'conference', 'had', 'not', 'only', 'expanded', 'their', 'professional', 'networks', 'but', 'also', 'enriched', 'their', 'understanding', 'of', 'the', 'diverse', 'applications', 'of', 'AI', '.', 'They', 'were', 'grateful', 'for', 'the', 'opportunity', 'to', 'connect', 'with', 'so', 'many', 'talented', 'individuals', 'and', 'looked', 'forward', 'to', 'the', 'future', 'with', 'renewed', 'enthusiasm', 'and', 'a', 'sense', 'of', 'purpose', '.', 'The', 'Tech', 'Innovators', 'Conference', 'had', 'been', 'a', 'transformative', 'experience', ',', 'setting', 'the', 'stage', 'for', 'new', 'discoveries', 'and', 'groundbreaking', 'advancements', 'in', 'the', 'field', 'of', 'artificial', 'intelligence', '.']\n",
1077
- "\n",
1078
- "Stemmed Tokens:\n",
1079
- " ['bustl', 'citi', 'san', 'francisco', 'tech', 'enthusiast', 'world', 'gather', 'annual', 'tech', 'innov', 'confer', 'event', 'melt', 'pot', 'idea', 'innov', 'collabor', 'among', 'attende', 'emili', 'chen', 'renown', 'ai', 'research', 'mit', 'eager', 'present', 'latest', 'find', 'machin', 'learn', 'algorithm', 'emili', 'colleagu', 'dr.', 'michael', 'thompson', 'also', 'well-respect', 'figur', 'field', 'artifici', 'intellig', 'accompani', 'duo', 'work', 'groundbreak', 'project', 'aim', 'revolution', 'way', 'neural', 'network', 'process', 'inform', 'confer', 'commenc', 'emili', 'michael', 'greet', 'host', 'familiar', 'face', 'jennif', 'lee', 'data', 'scientist', 'googl', 'showcas', 'team', 'advanc', 'quantum', 'comput', 'join', 'mentor', 'dr.', 'robert', 'lang', 'pioneer', 'field', 'comput', 'neurosci', 'jennif', 'introduc', 'emili', 'michael', 'friend', 'carlo', 'mendez', 'softwar', 'engin', 'facebook', 'special', 'develop', 'algorithm', 'social', 'media', 'analyt', 'keynot', 'speaker', 'event', 'none', 'dr.', 'elizabeth', 'warren', 'distinguish', 'professor', 'stanford', 'univers', 'dr.', 'warren', 'speech', 'focus', 'ethic', 'implic', 'ai', 'import', 'develop', 'technolog', 'benefit', 'human', 'whole', 'insight', 'spark', 'live', 'discuss', 'among', 'attende', 'includ', 'sarah', 'johnson', 'polici', 'advisor', 'unit', 'nation', 'ahm', 'khan', 'cybersecur', 'expert', 'microsoft', 'break', 'session', 'attende', 'mingl', 'exchang', 'idea', 'emili', 'caught', 'former', 'classmat', 'david', 'kim', 'work', 'data', 'analyst', 'amazon', 'david', 'introduc', 'colleagu', 'jessica', 'brown', 'machin', 'learn', 'engin', 'knack', 'develop', 'innov', 'solut', 'complex', 'problem', 'emili', 'particularli', 'interest', 'jessica', 'work', 'natur', 'languag', 'process', 'invit', 'collabor', 'futur', 'project', 'anoth', 'corner', 'room', 'michael', 'deep', 'convers', 'raj', 'patel', 'roboticist', 'carnegi', 'mellon', 'univers', 'raj', 'recent', 'develop', 'new', 'type', 'robot', 'arm', 'could', 'perform', 'delic', 'surgic', 'procedur', 'unpreced', 'precis', 'accompani', 'research', 'assist', 'maria', 'gonzalez', 'instrument', 'project', 'success', 'michael', 'fascin', 'work', 'propos', 'partnership', 'integr', 'technolog', 'ai', 'algorithm', 'day', 'progress', 'confer', 'attende', 'treat', 'seri', 'insight', 'present', 'dr.', 'jame', 'clark', 'harvard', 'univers', 'share', 'research', 'deep', 'learn', 'applic', 'healthcar', 'follow', 'lisa', 'robinson', 'comput', 'vision', 'expert', 'nvidia', 'demonstr', 'latest', 'advanc', 'imag', 'recognit', 'technolog', 'audienc', 'particularli', 'impress', 'present', 'dr.', 'ananya', 'singh', 'ai', 'ethicist', 'oxford', 'univers', 'discuss', 'societ', 'impact', 'ai', 'import', 'respons', 'innov', 'even', 'attende', 'gather', 'gala', 'dinner', 'grand', 'hyatt', 'hotel', 'event', 'perfect', 'opportun', 'network', 'foster', 'new', 'collabor', 'emili', 'found', 'seat', 'next', 'henri', 'zhang', 'ventur', 'capitalist', 'sequoia', 'capit', 'keen', 'invest', 'promis', 'ai', 'startup', 'join', 'priya', 'sharma', 'legal', 'expert', 'electron', 'frontier', 'foundat', 'provid', 'valuabl', 'insight', 'regulatori', 'landscap', 'emerg', 'technolog', 'tabl', 'michael', 'struck', 'convers', 'laura', 'martinez', 'bioinformat', 'research', 'univers', 'california', 'berkeley', 'laura', 'work', 'project', 'use', 'ai', 'predict', 'genet', 'disord', 'interest', 'michael', 'expertis', 'neural', 'network', 'exchang', 'contact', 'inform', 'plan', 'meet', 'confer', 'discuss', 'potenti', 'collabor', 'meanwhil', 'jennif', 'carlo', 'deep', 'discuss', 'ethan', 'liu', 'blockchain', 'develop', 'ibm', 'potenti', 'combin', 'ai', 'blockchain', 'technolog', 'enhanc', 'data', 'secur', 'ethan', 'colleagu', 'dr.', 'olivia', 'parker', 'join', 'convers', 'bring', 'expertis', 'cryptographi', 'tabl', 'group', 'brainstorm', 'variou', 'applic', 'decid', 'form', 'work', 'group', 'explor', 'idea', 'next', 'morn', 'confer', 'resum', 'panel', 'discuss', 'featur', 'sever', 'industri', 'leader', 'among', 'dr.', 'william', 'harri', 'ceo', 'ai', 'inc.', 'dr.', 'katherin', 'adam', 'senior', 'research', 'openai', 'discuss', 'futur', 'ai', 'potenti', 'transform', 'industri', 'rang', 'healthcar', 'financ', 'panel', 'also', 'includ', 'dr.', 'mei', 'ling', 'professor', 'univers', 'tokyo', 'highlight', 'advanc', 'ai', 'research', 'asia', 'audienc', 'emili', 'michael', 'sat', 'new', 'acquaint', 'eager', 'absorb', 'wealth', 'knowledg', 'share', 'particularli', 'inspir', 'talk', 'dr.', 'samuel', 'green', 'cognit', 'scientist', 'yale', 'univers', 'discuss', 'intersect', 'ai', 'human', 'cognit', 'research', 'ai', 'augment', 'human', 'decision-mak', 'reson', 'deepli', 'audienc', 'confer', 'drew', 'close', 'attende', 'reflect', 'valuabl', 'connect', 'made', 'new', 'knowledg', 'gain', 'emili', 'michael', 'felt', 'energ', 'excit', 'futur', 'research', 'form', 'new', 'collabor', 'jessica', 'raj', 'laura', 'eager', 'start', 'work', 'joint', 'project', 'leav', 'took', 'moment', 'thank', 'confer', 'organ', 'includ', 'dr.', 'karen', 'wilson', 'director', 'tech', 'innov', 'network', 'team', 'event', 'resound', 'success', 'bring', 'togeth', 'brightest', 'mind', 'field', 'ai', 'foster', 'spirit', 'innov', 'collabor', 'board', 'flight', 'back', 'boston', 'emili', 'michael', 'could', \"n't\", 'help', 'feel', 'optimist', 'futur', 'knew', 'connect', 'made', 'confer', 'would', 'lead', 'excit', 'new', 'opportun', 'advanc', 'research', 'determin', 'ever', 'push', 'boundari', 'ai', 'could', 'achiev', 'ensur', 'work', 'would', 'posit', 'impact', 'world', 'week', 'follow', 'emili', 'michael', 'stay', 'touch', 'new', 'collabor', 'began', 'work', 'joint', 'project', 'share', 'idea', 'resourc', 'push', 'boundari', 'ai', 'research', 'emili', 'collabor', 'jessica', 'project', 'enhanc', 'natur', 'languag', 'process', 'algorithm', 'michael', 'work', 'raj', 'maria', 'integr', 'robot', 'technolog', 'neural', 'network', 'laura', 'emili', 'start', 'project', 'use', 'ai', 'predict', 'genet', 'disord', 'combin', 'expertis', 'tackl', 'complex', 'biolog', 'problem', 'confer', 'expand', 'profession', 'network', 'also', 'enrich', 'understand', 'divers', 'applic', 'ai', 'grate', 'opportun', 'connect', 'mani', 'talent', 'individu', 'look', 'forward', 'futur', 'renew', 'enthusiasm', 'sens', 'purpos', 'tech', 'innov', 'confer', 'transform', 'experi', 'set', 'stage', 'new', 'discoveri', 'groundbreak', 'advanc', 'field', 'artifici', 'intellig']\n",
1080
- "\n",
1081
- "Lemmatized Tokens:\n",
1082
- " ['bustling', 'city', 'San', 'Francisco', 'tech', 'enthusiast', 'world', 'gather', 'annual', 'Tech', 'Innovators', 'Conference', 'event', 'melt', 'pot', 'idea', 'innovation', 'collaboration', 'Among', 'attendee', 'Emily', 'Chen', 'renowned', 'AI', 'researcher', 'MIT', 'eager', 'present', 'late', 'finding', 'machine', 'learn', 'algorithm', 'Emily', 'colleague', 'Dr.', 'Michael', 'Thompson', 'also', 'well-respected', 'figure', 'field', 'artificial', 'intelligence', 'accompany', 'duo', 'work', 'groundbreaking', 'project', 'aim', 'revolutionize', 'way', 'neural', 'network', 'process', 'information', 'conference', 'commenced', 'Emily', 'Michael', 'greet', 'host', 'familiar', 'face', 'Jennifer', 'Lee', 'data', 'scientist', 'Google', 'showcase', 'team', 'advancement', 'quantum', 'compute', 'join', 'mentor', 'Dr.', 'Robert', 'Lang', 'pioneer', 'field', 'computational', 'neuroscience', 'Jennifer', 'introduce', 'Emily', 'Michael', 'friend', 'Carlos', 'Mendez', 'software', 'engineer', 'Facebook', 'specialized', 'develop', 'algorithm', 'social', 'medium', 'analytics', 'keynote', 'speaker', 'event', 'none', 'Dr.', 'Elizabeth', 'Warren', 'distinguish', 'professor', 'Stanford', 'University', 'Dr.', 'Warren', 'speech', 'focus', 'ethical', 'implication', 'AI', 'importance', 'develop', 'technology', 'benefit', 'humanity', 'whole', 'insight', 'spark', 'lively', 'discussion', 'among', 'attendee', 'include', 'Sarah', 'Johnson', 'policy', 'advisor', 'United', 'Nations', 'Ahmed', 'Khan', 'cybersecurity', 'expert', 'Microsoft', 'break', 'session', 'attendee', 'mingle', 'exchange', 'idea', 'Emily', 'caught', 'former', 'classmate', 'David', 'Kim', 'work', 'data', 'analyst', 'Amazon', 'David', 'introduce', 'colleague', 'Jessica', 'Brown', 'machine', 'learn', 'engineer', 'knack', 'develop', 'innovative', 'solution', 'complex', 'problem', 'Emily', 'particularly', 'interested', 'Jessica', 'work', 'natural', 'language', 'processing', 'invite', 'collaborate', 'future', 'project', 'another', 'corner', 'room', 'Michael', 'deep', 'conversation', 'Raj', 'Patel', 'roboticist', 'Carnegie', 'Mellon', 'University', 'Raj', 'recently', 'developed', 'new', 'type', 'robotic', 'arm', 'could', 'perform', 'delicate', 'surgical', 'procedure', 'unprecedented', 'precision', 'accompany', 'research', 'assistant', 'Maria', 'Gonzalez', 'instrumental', 'project', 'success', 'Michael', 'fascinate', 'work', 'propose', 'partnership', 'integrate', 'technology', 'AI', 'algorithm', 'day', 'progress', 'conference', 'attendee', 'treat', 'series', 'insightful', 'presentation', 'Dr.', 'James', 'Clark', 'Harvard', 'University', 'share', 'research', 'deep', 'learn', 'application', 'healthcare', 'follow', 'Lisa', 'Robinson', 'computer', 'vision', 'expert', 'Nvidia', 'demonstrate', 'late', 'advancement', 'image', 'recognition', 'technology', 'audience', 'particularly', 'impressed', 'presentation', 'Dr.', 'Ananya', 'Singh', 'AI', 'ethicist', 'Oxford', 'University', 'discuss', 'societal', 'impact', 'AI', 'importance', 'responsible', 'innovation', 'even', 'attendee', 'gather', 'gala', 'dinner', 'Grand', 'Hyatt', 'Hotel', 'event', 'perfect', 'opportunity', 'networking', 'foster', 'new', 'collaboration', 'Emily', 'found', 'seat', 'next', 'Henry', 'Zhang', 'venture', 'capitalist', 'Sequoia', 'Capital', 'keen', 'invest', 'promising', 'AI', 'startup', 'join', 'Priya', 'Sharma', 'legal', 'expert', 'Electronic', 'Frontier', 'Foundation', 'provide', 'valuable', 'insight', 'regulatory', 'landscape', 'emerge', 'technology', 'table', 'Michael', 'struck', 'conversation', 'Laura', 'Martinez', 'bioinformatics', 'researcher', 'University', 'California', 'Berkeley', 'Laura', 'work', 'project', 'use', 'AI', 'predict', 'genetic', 'disorder', 'interested', 'Michael', 'expertise', 'neural', 'network', 'exchange', 'contact', 'information', 'plan', 'meet', 'conference', 'discus', 'potential', 'collaboration', 'Meanwhile', 'Jennifer', 'Carlos', 'deep', 'discussion', 'Ethan', 'Liu', 'blockchain', 'developer', 'IBM', 'potential', 'combine', 'AI', 'blockchain', 'technology', 'enhance', 'data', 'security', 'Ethan', 'colleague', 'Dr.', 'Olivia', 'Parker', 'join', 'conversation', 'bring', 'expertise', 'cryptography', 'table', 'group', 'brainstorm', 'various', 'application', 'decide', 'form', 'work', 'group', 'explore', 'idea', 'next', 'morning', 'conference', 'resume', 'panel', 'discussion', 'feature', 'several', 'industry', 'leader', 'Among', 'Dr.', 'William', 'Harris', 'CEO', 'AI', 'Inc.', 'Dr.', 'Katherine', 'Adams', 'senior', 'researcher', 'OpenAI', 'discuss', 'future', 'AI', 'potential', 'transform', 'industry', 'range', 'healthcare', 'finance', 'panel', 'also', 'include', 'Dr.', 'Mei', 'Ling', 'professor', 'University', 'Tokyo', 'highlight', 'advancement', 'AI', 'research', 'Asia', 'audience', 'Emily', 'Michael', 'sat', 'new', 'acquaintance', 'eager', 'absorb', 'wealth', 'knowledge', 'share', 'particularly', 'inspire', 'talk', 'Dr.', 'Samuel', 'Green', 'cognitive', 'scientist', 'Yale', 'University', 'discuss', 'intersection', 'AI', 'human', 'cognition', 'research', 'AI', 'augment', 'human', 'decision-making', 'resonate', 'deeply', 'audience', 'conference', 'drew', 'close', 'attendee', 'reflect', 'valuable', 'connection', 'make', 'new', 'knowledge', 'gain', 'Emily', 'Michael', 'felt', 'energize', 'excite', 'future', 'research', 'form', 'new', 'collaboration', 'Jessica', 'Raj', 'Laura', 'eager', 'start', 'work', 'joint', 'project', 'leave', 'take', 'moment', 'thank', 'conference', 'organizer', 'include', 'Dr.', 'Karen', 'Wilson', 'director', 'Tech', 'Innovators', 'Network', 'team', 'event', 'resound', 'success', 'bring', 'together', 'brightest', 'mind', 'field', 'AI', 'foster', 'spirit', 'innovation', 'collaboration', 'board', 'flight', 'back', 'Boston', 'Emily', 'Michael', 'could', \"n't\", 'help', 'feel', 'optimistic', 'future', 'knew', 'connection', 'make', 'conference', 'would', 'lead', 'excite', 'new', 'opportunity', 'advancement', 'research', 'determine', 'ever', 'push', 'boundary', 'AI', 'could', 'achieve', 'ensure', 'work', 'would', 'positive', 'impact', 'world', 'week', 'follow', 'Emily', 'Michael', 'stayed', 'touch', 'new', 'collaborator', 'begin', 'work', 'joint', 'project', 'share', 'idea', 'resource', 'push', 'boundary', 'AI', 'research', 'Emily', 'collaborate', 'Jessica', 'project', 'enhance', 'natural', 'language', 'processing', 'algorithm', 'Michael', 'work', 'Raj', 'Maria', 'integrate', 'robotic', 'technology', 'neural', 'network', 'Laura', 'Emily', 'start', 'project', 'use', 'AI', 'predict', 'genetic', 'disorder', 'combine', 'expertise', 'tackle', 'complex', 'biological', 'problem', 'conference', 'expand', 'professional', 'network', 'also', 'enrich', 'understand', 'diverse', 'application', 'AI', 'grateful', 'opportunity', 'connect', 'many', 'talented', 'individual', 'look', 'forward', 'future', 'renew', 'enthusiasm', 'sense', 'purpose', 'Tech', 'Innovators', 'Conference', 'transformative', 'experience', 'set', 'stage', 'new', 'discovery', 'groundbreaking', 'advancement', 'field', 'artificial', 'intelligence']\n",
1083
- "\n",
1084
- "Frequency Distribution of Original Tokens:\n",
1085
- "Token Frequency Probability \n",
1086
- "------------------------------------------\n",
1087
- "AI 18 0.0275\n",
1088
- "Emily 13 0.0198\n",
1089
- "Dr. 12 0.0183\n",
1090
- "Michael 12 0.0183\n",
1091
- "conference 8 0.0122\n",
1092
- "new 8 0.0122\n",
1093
- "University 7 0.0107\n",
1094
- "research 7 0.0107\n",
1095
- "attendees 6 0.0092\n",
1096
- "project 6 0.0092\n",
1097
- "working 5 0.0076\n",
1098
- "advancements 5 0.0076\n",
1099
- "future 5 0.0076\n",
1100
- "event 4 0.0061\n",
1101
- "ideas 4 0.0061\n",
1102
- "collaborations 4 0.0061\n",
1103
- "algorithms 4 0.0061\n",
1104
- "field 4 0.0061\n",
1105
- "networks 4 0.0061\n",
1106
- "Jessica 4 0.0061\n",
1107
- "Raj 4 0.0061\n",
1108
- "technology 4 0.0061\n",
1109
- "Laura 4 0.0061\n",
1110
- "Tech 3 0.0046\n",
1111
- "Innovators 3 0.0046\n",
1112
- "researcher 3 0.0046\n",
1113
- "eager 3 0.0046\n",
1114
- "learning 3 0.0046\n",
1115
- "colleague 3 0.0046\n",
1116
- "also 3 0.0046\n",
1117
- "neural 3 0.0046\n",
1118
- "Jennifer 3 0.0046\n",
1119
- "data 3 0.0046\n",
1120
- "joined 3 0.0046\n",
1121
- "developing 3 0.0046\n",
1122
- "discussion 3 0.0046\n",
1123
- "expert 3 0.0046\n",
1124
- "particularly 3 0.0046\n",
1125
- "work 3 0.0046\n",
1126
- "deep 3 0.0046\n",
1127
- "conversation 3 0.0046\n",
1128
- "could 3 0.0046\n",
1129
- "applications 3 0.0046\n",
1130
- "audience 3 0.0046\n",
1131
- "discussed 3 0.0046\n",
1132
- "expertise 3 0.0046\n",
1133
- "potential 3 0.0046\n",
1134
- "world 2 0.0031\n",
1135
- "gathered 2 0.0031\n",
1136
- "Conference 2 0.0031\n",
1137
- "Among 2 0.0031\n",
1138
- "latest 2 0.0031\n",
1139
- "machine 2 0.0031\n",
1140
- "artificial 2 0.0031\n",
1141
- "intelligence 2 0.0031\n",
1142
- "accompanied 2 0.0031\n",
1143
- "groundbreaking 2 0.0031\n",
1144
- "information 2 0.0031\n",
1145
- "scientist 2 0.0031\n",
1146
- "team 2 0.0031\n",
1147
- "introduced 2 0.0031\n",
1148
- "Carlos 2 0.0031\n",
1149
- "engineer 2 0.0031\n",
1150
- "Warren 2 0.0031\n",
1151
- "professor 2 0.0031\n",
1152
- "importance 2 0.0031\n",
1153
- "technologies 2 0.0031\n",
1154
- "insights 2 0.0031\n",
1155
- "including 2 0.0031\n",
1156
- "exchanged 2 0.0031\n",
1157
- "David 2 0.0031\n",
1158
- "complex 2 0.0031\n",
1159
- "problems 2 0.0031\n",
1160
- "interested 2 0.0031\n",
1161
- "natural 2 0.0031\n",
1162
- "language 2 0.0031\n",
1163
- "processing 2 0.0031\n",
1164
- "robotic 2 0.0031\n",
1165
- "Maria 2 0.0031\n",
1166
- "success 2 0.0031\n",
1167
- "integrate 2 0.0031\n",
1168
- "shared 2 0.0031\n",
1169
- "healthcare 2 0.0031\n",
1170
- "followed 2 0.0031\n",
1171
- "innovation 2 0.0031\n",
1172
- "opportunity 2 0.0031\n",
1173
- "fostering 2 0.0031\n",
1174
- "next 2 0.0031\n",
1175
- "valuable 2 0.0031\n",
1176
- "table 2 0.0031\n",
1177
- "genetic 2 0.0031\n",
1178
- "disorders 2 0.0031\n",
1179
- "Ethan 2 0.0031\n",
1180
- "blockchain 2 0.0031\n",
1181
- "combining 2 0.0031\n",
1182
- "enhance 2 0.0031\n",
1183
- "bringing 2 0.0031\n",
1184
- "group 2 0.0031\n",
1185
- "panel 2 0.0031\n",
1186
- "knowledge 2 0.0031\n",
1187
- "human 2 0.0031\n",
1188
- "connections 2 0.0031\n",
1189
- "made 2 0.0031\n",
1190
- "joint 2 0.0031\n",
1191
- "projects 2 0.0031\n",
1192
- "would 2 0.0031\n",
1193
- "push 2 0.0031\n",
1194
- "boundaries 2 0.0031\n",
1195
- "bustling 1 0.0015\n",
1196
- "city 1 0.0015\n",
1197
- "San 1 0.0015\n",
1198
- "Francisco 1 0.0015\n",
1199
- "tech 1 0.0015\n",
1200
- "enthusiasts 1 0.0015\n",
1201
- "annual 1 0.0015\n",
1202
- "melting 1 0.0015\n",
1203
- "pot 1 0.0015\n",
1204
- "innovations 1 0.0015\n",
1205
- "Chen 1 0.0015\n",
1206
- "renowned 1 0.0015\n",
1207
- "MIT 1 0.0015\n",
1208
- "present 1 0.0015\n",
1209
- "findings 1 0.0015\n",
1210
- "Thompson 1 0.0015\n",
1211
- "well-respected 1 0.0015\n",
1212
- "figure 1 0.0015\n",
1213
- "duo 1 0.0015\n",
1214
- "aimed 1 0.0015\n",
1215
- "revolutionize 1 0.0015\n",
1216
- "way 1 0.0015\n",
1217
- "process 1 0.0015\n",
1218
- "commenced 1 0.0015\n",
1219
- "greeted 1 0.0015\n",
1220
- "host 1 0.0015\n",
1221
- "familiar 1 0.0015\n",
1222
- "faces 1 0.0015\n",
1223
- "Lee 1 0.0015\n",
1224
- "Google 1 0.0015\n",
1225
- "showcase 1 0.0015\n",
1226
- "quantum 1 0.0015\n",
1227
- "computing 1 0.0015\n",
1228
- "mentor 1 0.0015\n",
1229
- "Robert 1 0.0015\n",
1230
- "Lang 1 0.0015\n",
1231
- "pioneer 1 0.0015\n",
1232
- "computational 1 0.0015\n",
1233
- "neuroscience 1 0.0015\n",
1234
- "friend 1 0.0015\n",
1235
- "Mendez 1 0.0015\n",
1236
- "software 1 0.0015\n",
1237
- "Facebook 1 0.0015\n",
1238
- "specialized 1 0.0015\n",
1239
- "social 1 0.0015\n",
1240
- "media 1 0.0015\n",
1241
- "analytics 1 0.0015\n",
1242
- "keynote 1 0.0015\n",
1243
- "speaker 1 0.0015\n",
1244
- "none 1 0.0015\n",
1245
- "Elizabeth 1 0.0015\n",
1246
- "distinguished 1 0.0015\n",
1247
- "Stanford 1 0.0015\n",
1248
- "speech 1 0.0015\n",
1249
- "focused 1 0.0015\n",
1250
- "ethical 1 0.0015\n",
1251
- "implications 1 0.0015\n",
1252
- "benefit 1 0.0015\n",
1253
- "humanity 1 0.0015\n",
1254
- "whole 1 0.0015\n",
1255
- "sparked 1 0.0015\n",
1256
- "lively 1 0.0015\n",
1257
- "among 1 0.0015\n",
1258
- "Sarah 1 0.0015\n",
1259
- "Johnson 1 0.0015\n",
1260
- "policy 1 0.0015\n",
1261
- "advisor 1 0.0015\n",
1262
- "United 1 0.0015\n",
1263
- "Nations 1 0.0015\n",
1264
- "Ahmed 1 0.0015\n",
1265
- "Khan 1 0.0015\n",
1266
- "cybersecurity 1 0.0015\n",
1267
- "Microsoft 1 0.0015\n",
1268
- "breaks 1 0.0015\n",
1269
- "sessions 1 0.0015\n",
1270
- "mingled 1 0.0015\n",
1271
- "caught 1 0.0015\n",
1272
- "former 1 0.0015\n",
1273
- "classmate 1 0.0015\n",
1274
- "Kim 1 0.0015\n",
1275
- "works 1 0.0015\n",
1276
- "analyst 1 0.0015\n",
1277
- "Amazon 1 0.0015\n",
1278
- "Brown 1 0.0015\n",
1279
- "knack 1 0.0015\n",
1280
- "innovative 1 0.0015\n",
1281
- "solutions 1 0.0015\n",
1282
- "invited 1 0.0015\n",
1283
- "collaborate 1 0.0015\n",
1284
- "another 1 0.0015\n",
1285
- "corner 1 0.0015\n",
1286
- "room 1 0.0015\n",
1287
- "Patel 1 0.0015\n",
1288
- "roboticist 1 0.0015\n",
1289
- "Carnegie 1 0.0015\n",
1290
- "Mellon 1 0.0015\n",
1291
- "recently 1 0.0015\n",
1292
- "developed 1 0.0015\n",
1293
- "type 1 0.0015\n",
1294
- "arm 1 0.0015\n",
1295
- "perform 1 0.0015\n",
1296
- "delicate 1 0.0015\n",
1297
- "surgical 1 0.0015\n",
1298
- "procedures 1 0.0015\n",
1299
- "unprecedented 1 0.0015\n",
1300
- "precision 1 0.0015\n",
1301
- "assistant 1 0.0015\n",
1302
- "Gonzalez 1 0.0015\n",
1303
- "instrumental 1 0.0015\n",
1304
- "fascinated 1 0.0015\n",
1305
- "proposed 1 0.0015\n",
1306
- "partnership 1 0.0015\n",
1307
- "day 1 0.0015\n",
1308
- "progressed 1 0.0015\n",
1309
- "treated 1 0.0015\n",
1310
- "series 1 0.0015\n",
1311
- "insightful 1 0.0015\n",
1312
- "presentations 1 0.0015\n",
1313
- "James 1 0.0015\n",
1314
- "Clark 1 0.0015\n",
1315
- "Harvard 1 0.0015\n",
1316
- "Lisa 1 0.0015\n",
1317
- "Robinson 1 0.0015\n",
1318
- "computer 1 0.0015\n",
1319
- "vision 1 0.0015\n",
1320
- "Nvidia 1 0.0015\n",
1321
- "demonstrated 1 0.0015\n",
1322
- "image 1 0.0015\n",
1323
- "recognition 1 0.0015\n",
1324
- "impressed 1 0.0015\n",
1325
- "presentation 1 0.0015\n",
1326
- "Ananya 1 0.0015\n",
1327
- "Singh 1 0.0015\n",
1328
- "ethicist 1 0.0015\n",
1329
- "Oxford 1 0.0015\n",
1330
- "societal 1 0.0015\n",
1331
- "impacts 1 0.0015\n",
1332
- "responsible 1 0.0015\n",
1333
- "evening 1 0.0015\n",
1334
- "gala 1 0.0015\n",
1335
- "dinner 1 0.0015\n",
1336
- "Grand 1 0.0015\n",
1337
- "Hyatt 1 0.0015\n",
1338
- "Hotel 1 0.0015\n",
1339
- "perfect 1 0.0015\n",
1340
- "networking 1 0.0015\n",
1341
- "found 1 0.0015\n",
1342
- "seated 1 0.0015\n",
1343
- "Henry 1 0.0015\n",
1344
- "Zhang 1 0.0015\n",
1345
- "venture 1 0.0015\n",
1346
- "capitalist 1 0.0015\n",
1347
- "Sequoia 1 0.0015\n",
1348
- "Capital 1 0.0015\n",
1349
- "keen 1 0.0015\n",
1350
- "invest 1 0.0015\n",
1351
- "promising 1 0.0015\n",
1352
- "startups 1 0.0015\n",
1353
- "Priya 1 0.0015\n",
1354
- "Sharma 1 0.0015\n",
1355
- "legal 1 0.0015\n",
1356
- "Electronic 1 0.0015\n",
1357
- "Frontier 1 0.0015\n",
1358
- "Foundation 1 0.0015\n",
1359
- "provided 1 0.0015\n",
1360
- "regulatory 1 0.0015\n",
1361
- "landscape 1 0.0015\n",
1362
- "emerging 1 0.0015\n",
1363
- "struck 1 0.0015\n",
1364
- "Martinez 1 0.0015\n",
1365
- "bioinformatics 1 0.0015\n",
1366
- "California 1 0.0015\n",
1367
- "Berkeley 1 0.0015\n",
1368
- "use 1 0.0015\n",
1369
- "predicting 1 0.0015\n",
1370
- "contact 1 0.0015\n",
1371
- "planned 1 0.0015\n",
1372
- "meet 1 0.0015\n",
1373
- "discuss 1 0.0015\n",
1374
- "Meanwhile 1 0.0015\n",
1375
- "Liu 1 0.0015\n",
1376
- "developer 1 0.0015\n",
1377
- "IBM 1 0.0015\n",
1378
- "security 1 0.0015\n",
1379
- "Olivia 1 0.0015\n",
1380
- "Parker 1 0.0015\n",
1381
- "cryptography 1 0.0015\n",
1382
- "brainstormed 1 0.0015\n",
1383
- "various 1 0.0015\n",
1384
- "decided 1 0.0015\n",
1385
- "form 1 0.0015\n",
1386
- "explore 1 0.0015\n",
1387
- "morning 1 0.0015\n",
1388
- "resumed 1 0.0015\n",
1389
- "featuring 1 0.0015\n",
1390
- "several 1 0.0015\n",
1391
- "industry 1 0.0015\n",
1392
- "leaders 1 0.0015\n",
1393
- "William 1 0.0015\n",
1394
- "Harris 1 0.0015\n",
1395
- "CEO 1 0.0015\n",
1396
- "Inc. 1 0.0015\n",
1397
- "Katherine 1 0.0015\n",
1398
- "Adams 1 0.0015\n",
1399
- "senior 1 0.0015\n",
1400
- "OpenAI 1 0.0015\n",
1401
- "transform 1 0.0015\n",
1402
- "industries 1 0.0015\n",
1403
- "ranging 1 0.0015\n",
1404
- "finance 1 0.0015\n",
1405
- "included 1 0.0015\n",
1406
- "Mei 1 0.0015\n",
1407
- "Ling 1 0.0015\n",
1408
- "Tokyo 1 0.0015\n",
1409
- "highlighted 1 0.0015\n",
1410
- "Asia 1 0.0015\n",
1411
- "sat 1 0.0015\n",
1412
- "acquaintances 1 0.0015\n",
1413
- "absorb 1 0.0015\n",
1414
- "wealth 1 0.0015\n",
1415
- "inspired 1 0.0015\n",
1416
- "talk 1 0.0015\n",
1417
- "Samuel 1 0.0015\n",
1418
- "Green 1 0.0015\n",
1419
- "cognitive 1 0.0015\n",
1420
- "Yale 1 0.0015\n",
1421
- "intersection 1 0.0015\n",
1422
- "cognition 1 0.0015\n",
1423
- "augment 1 0.0015\n",
1424
- "decision-making 1 0.0015\n",
1425
- "resonated 1 0.0015\n",
1426
- "deeply 1 0.0015\n",
1427
- "drew 1 0.0015\n",
1428
- "close 1 0.0015\n",
1429
- "reflected 1 0.0015\n",
1430
- "gained 1 0.0015\n",
1431
- "felt 1 0.0015\n",
1432
- "energized 1 0.0015\n",
1433
- "excited 1 0.0015\n",
1434
- "formed 1 0.0015\n",
1435
- "start 1 0.0015\n",
1436
- "leaving 1 0.0015\n",
1437
- "took 1 0.0015\n",
1438
- "moment 1 0.0015\n",
1439
- "thank 1 0.0015\n",
1440
- "organizers 1 0.0015\n",
1441
- "Karen 1 0.0015\n",
1442
- "Wilson 1 0.0015\n",
1443
- "director 1 0.0015\n",
1444
- "Network 1 0.0015\n",
1445
- "resounding 1 0.0015\n",
1446
- "together 1 0.0015\n",
1447
- "brightest 1 0.0015\n",
1448
- "minds 1 0.0015\n",
1449
- "spirit 1 0.0015\n",
1450
- "collaboration 1 0.0015\n",
1451
- "boarded 1 0.0015\n",
1452
- "flight 1 0.0015\n",
1453
- "back 1 0.0015\n",
1454
- "Boston 1 0.0015\n",
1455
- "n't 1 0.0015\n",
1456
- "help 1 0.0015\n",
1457
- "feel 1 0.0015\n",
1458
- "optimistic 1 0.0015\n",
1459
- "knew 1 0.0015\n",
1460
- "lead 1 0.0015\n",
1461
- "exciting 1 0.0015\n",
1462
- "opportunities 1 0.0015\n",
1463
- "determined 1 0.0015\n",
1464
- "ever 1 0.0015\n",
1465
- "achieve 1 0.0015\n",
1466
- "ensure 1 0.0015\n",
1467
- "positive 1 0.0015\n",
1468
- "impact 1 0.0015\n",
1469
- "weeks 1 0.0015\n",
1470
- "stayed 1 0.0015\n",
1471
- "touch 1 0.0015\n",
1472
- "collaborators 1 0.0015\n",
1473
- "began 1 0.0015\n",
1474
- "sharing 1 0.0015\n",
1475
- "resources 1 0.0015\n",
1476
- "collaborated 1 0.0015\n",
1477
- "worked 1 0.0015\n",
1478
- "started 1 0.0015\n",
1479
- "using 1 0.0015\n",
1480
- "predict 1 0.0015\n",
1481
- "tackle 1 0.0015\n",
1482
- "biological 1 0.0015\n",
1483
- "expanded 1 0.0015\n",
1484
- "professional 1 0.0015\n",
1485
- "enriched 1 0.0015\n",
1486
- "understanding 1 0.0015\n",
1487
- "diverse 1 0.0015\n",
1488
- "grateful 1 0.0015\n",
1489
- "connect 1 0.0015\n",
1490
- "many 1 0.0015\n",
1491
- "talented 1 0.0015\n",
1492
- "individuals 1 0.0015\n",
1493
- "looked 1 0.0015\n",
1494
- "forward 1 0.0015\n",
1495
- "renewed 1 0.0015\n",
1496
- "enthusiasm 1 0.0015\n",
1497
- "sense 1 0.0015\n",
1498
- "purpose 1 0.0015\n",
1499
- "transformative 1 0.0015\n",
1500
- "experience 1 0.0015\n",
1501
- "setting 1 0.0015\n",
1502
- "stage 1 0.0015\n",
1503
- "discoveries 1 0.0015\n",
1504
- "\n",
1505
- "Frequency Distribution of Stemmed Tokens:\n",
1506
- "Token Frequency Probability \n",
1507
- "------------------------------------------\n",
1508
- "ai 18 0.0275\n",
1509
- "emili 13 0.0198\n",
1510
- "dr. 12 0.0183\n",
1511
- "michael 12 0.0183\n",
1512
- "confer 10 0.0153\n",
1513
- "research 10 0.0153\n",
1514
- "work 10 0.0153\n",
1515
- "collabor 8 0.0122\n",
1516
- "project 8 0.0122\n",
1517
- "new 8 0.0122\n",
1518
- "innov 7 0.0107\n",
1519
- "univers 7 0.0107\n",
1520
- "discuss 7 0.0107\n",
1521
- "attende 6 0.0092\n",
1522
- "network 6 0.0092\n",
1523
- "technolog 6 0.0092\n",
1524
- "advanc 5 0.0076\n",
1525
- "develop 5 0.0076\n",
1526
- "futur 5 0.0076\n",
1527
- "tech 4 0.0061\n",
1528
- "event 4 0.0061\n",
1529
- "idea 4 0.0061\n",
1530
- "algorithm 4 0.0061\n",
1531
- "field 4 0.0061\n",
1532
- "jessica 4 0.0061\n",
1533
- "raj 4 0.0061\n",
1534
- "laura 4 0.0061\n",
1535
- "among 3 0.0046\n",
1536
- "eager 3 0.0046\n",
1537
- "present 3 0.0046\n",
1538
- "learn 3 0.0046\n",
1539
- "colleagu 3 0.0046\n",
1540
- "also 3 0.0046\n",
1541
- "neural 3 0.0046\n",
1542
- "process 3 0.0046\n",
1543
- "jennif 3 0.0046\n",
1544
- "data 3 0.0046\n",
1545
- "comput 3 0.0046\n",
1546
- "join 3 0.0046\n",
1547
- "human 3 0.0046\n",
1548
- "insight 3 0.0046\n",
1549
- "includ 3 0.0046\n",
1550
- "expert 3 0.0046\n",
1551
- "particularli 3 0.0046\n",
1552
- "deep 3 0.0046\n",
1553
- "convers 3 0.0046\n",
1554
- "could 3 0.0046\n",
1555
- "share 3 0.0046\n",
1556
- "applic 3 0.0046\n",
1557
- "audienc 3 0.0046\n",
1558
- "opportun 3 0.0046\n",
1559
- "expertis 3 0.0046\n",
1560
- "potenti 3 0.0046\n",
1561
- "connect 3 0.0046\n",
1562
- "world 2 0.0031\n",
1563
- "gather 2 0.0031\n",
1564
- "latest 2 0.0031\n",
1565
- "machin 2 0.0031\n",
1566
- "artifici 2 0.0031\n",
1567
- "intellig 2 0.0031\n",
1568
- "accompani 2 0.0031\n",
1569
- "groundbreak 2 0.0031\n",
1570
- "inform 2 0.0031\n",
1571
- "scientist 2 0.0031\n",
1572
- "team 2 0.0031\n",
1573
- "introduc 2 0.0031\n",
1574
- "carlo 2 0.0031\n",
1575
- "engin 2 0.0031\n",
1576
- "warren 2 0.0031\n",
1577
- "professor 2 0.0031\n",
1578
- "import 2 0.0031\n",
1579
- "exchang 2 0.0031\n",
1580
- "david 2 0.0031\n",
1581
- "complex 2 0.0031\n",
1582
- "problem 2 0.0031\n",
1583
- "interest 2 0.0031\n",
1584
- "natur 2 0.0031\n",
1585
- "languag 2 0.0031\n",
1586
- "robot 2 0.0031\n",
1587
- "maria 2 0.0031\n",
1588
- "success 2 0.0031\n",
1589
- "integr 2 0.0031\n",
1590
- "healthcar 2 0.0031\n",
1591
- "follow 2 0.0031\n",
1592
- "impact 2 0.0031\n",
1593
- "foster 2 0.0031\n",
1594
- "next 2 0.0031\n",
1595
- "valuabl 2 0.0031\n",
1596
- "tabl 2 0.0031\n",
1597
- "use 2 0.0031\n",
1598
- "predict 2 0.0031\n",
1599
- "genet 2 0.0031\n",
1600
- "disord 2 0.0031\n",
1601
- "ethan 2 0.0031\n",
1602
- "blockchain 2 0.0031\n",
1603
- "combin 2 0.0031\n",
1604
- "enhanc 2 0.0031\n",
1605
- "bring 2 0.0031\n",
1606
- "group 2 0.0031\n",
1607
- "form 2 0.0031\n",
1608
- "panel 2 0.0031\n",
1609
- "industri 2 0.0031\n",
1610
- "transform 2 0.0031\n",
1611
- "knowledg 2 0.0031\n",
1612
- "cognit 2 0.0031\n",
1613
- "made 2 0.0031\n",
1614
- "excit 2 0.0031\n",
1615
- "start 2 0.0031\n",
1616
- "joint 2 0.0031\n",
1617
- "would 2 0.0031\n",
1618
- "push 2 0.0031\n",
1619
- "boundari 2 0.0031\n",
1620
- "bustl 1 0.0015\n",
1621
- "citi 1 0.0015\n",
1622
- "san 1 0.0015\n",
1623
- "francisco 1 0.0015\n",
1624
- "enthusiast 1 0.0015\n",
1625
- "annual 1 0.0015\n",
1626
- "melt 1 0.0015\n",
1627
- "pot 1 0.0015\n",
1628
- "chen 1 0.0015\n",
1629
- "renown 1 0.0015\n",
1630
- "mit 1 0.0015\n",
1631
- "find 1 0.0015\n",
1632
- "thompson 1 0.0015\n",
1633
- "well-respect 1 0.0015\n",
1634
- "figur 1 0.0015\n",
1635
- "duo 1 0.0015\n",
1636
- "aim 1 0.0015\n",
1637
- "revolution 1 0.0015\n",
1638
- "way 1 0.0015\n",
1639
- "commenc 1 0.0015\n",
1640
- "greet 1 0.0015\n",
1641
- "host 1 0.0015\n",
1642
- "familiar 1 0.0015\n",
1643
- "face 1 0.0015\n",
1644
- "lee 1 0.0015\n",
1645
- "googl 1 0.0015\n",
1646
- "showcas 1 0.0015\n",
1647
- "quantum 1 0.0015\n",
1648
- "mentor 1 0.0015\n",
1649
- "robert 1 0.0015\n",
1650
- "lang 1 0.0015\n",
1651
- "pioneer 1 0.0015\n",
1652
- "neurosci 1 0.0015\n",
1653
- "friend 1 0.0015\n",
1654
- "mendez 1 0.0015\n",
1655
- "softwar 1 0.0015\n",
1656
- "facebook 1 0.0015\n",
1657
- "special 1 0.0015\n",
1658
- "social 1 0.0015\n",
1659
- "media 1 0.0015\n",
1660
- "analyt 1 0.0015\n",
1661
- "keynot 1 0.0015\n",
1662
- "speaker 1 0.0015\n",
1663
- "none 1 0.0015\n",
1664
- "elizabeth 1 0.0015\n",
1665
- "distinguish 1 0.0015\n",
1666
- "stanford 1 0.0015\n",
1667
- "speech 1 0.0015\n",
1668
- "focus 1 0.0015\n",
1669
- "ethic 1 0.0015\n",
1670
- "implic 1 0.0015\n",
1671
- "benefit 1 0.0015\n",
1672
- "whole 1 0.0015\n",
1673
- "spark 1 0.0015\n",
1674
- "live 1 0.0015\n",
1675
- "sarah 1 0.0015\n",
1676
- "johnson 1 0.0015\n",
1677
- "polici 1 0.0015\n",
1678
- "advisor 1 0.0015\n",
1679
- "unit 1 0.0015\n",
1680
- "nation 1 0.0015\n",
1681
- "ahm 1 0.0015\n",
1682
- "khan 1 0.0015\n",
1683
- "cybersecur 1 0.0015\n",
1684
- "microsoft 1 0.0015\n",
1685
- "break 1 0.0015\n",
1686
- "session 1 0.0015\n",
1687
- "mingl 1 0.0015\n",
1688
- "caught 1 0.0015\n",
1689
- "former 1 0.0015\n",
1690
- "classmat 1 0.0015\n",
1691
- "kim 1 0.0015\n",
1692
- "analyst 1 0.0015\n",
1693
- "amazon 1 0.0015\n",
1694
- "brown 1 0.0015\n",
1695
- "knack 1 0.0015\n",
1696
- "solut 1 0.0015\n",
1697
- "invit 1 0.0015\n",
1698
- "anoth 1 0.0015\n",
1699
- "corner 1 0.0015\n",
1700
- "room 1 0.0015\n",
1701
- "patel 1 0.0015\n",
1702
- "roboticist 1 0.0015\n",
1703
- "carnegi 1 0.0015\n",
1704
- "mellon 1 0.0015\n",
1705
- "recent 1 0.0015\n",
1706
- "type 1 0.0015\n",
1707
- "arm 1 0.0015\n",
1708
- "perform 1 0.0015\n",
1709
- "delic 1 0.0015\n",
1710
- "surgic 1 0.0015\n",
1711
- "procedur 1 0.0015\n",
1712
- "unpreced 1 0.0015\n",
1713
- "precis 1 0.0015\n",
1714
- "assist 1 0.0015\n",
1715
- "gonzalez 1 0.0015\n",
1716
- "instrument 1 0.0015\n",
1717
- "fascin 1 0.0015\n",
1718
- "propos 1 0.0015\n",
1719
- "partnership 1 0.0015\n",
1720
- "day 1 0.0015\n",
1721
- "progress 1 0.0015\n",
1722
- "treat 1 0.0015\n",
1723
- "seri 1 0.0015\n",
1724
- "jame 1 0.0015\n",
1725
- "clark 1 0.0015\n",
1726
- "harvard 1 0.0015\n",
1727
- "lisa 1 0.0015\n",
1728
- "robinson 1 0.0015\n",
1729
- "vision 1 0.0015\n",
1730
- "nvidia 1 0.0015\n",
1731
- "demonstr 1 0.0015\n",
1732
- "imag 1 0.0015\n",
1733
- "recognit 1 0.0015\n",
1734
- "impress 1 0.0015\n",
1735
- "ananya 1 0.0015\n",
1736
- "singh 1 0.0015\n",
1737
- "ethicist 1 0.0015\n",
1738
- "oxford 1 0.0015\n",
1739
- "societ 1 0.0015\n",
1740
- "respons 1 0.0015\n",
1741
- "even 1 0.0015\n",
1742
- "gala 1 0.0015\n",
1743
- "dinner 1 0.0015\n",
1744
- "grand 1 0.0015\n",
1745
- "hyatt 1 0.0015\n",
1746
- "hotel 1 0.0015\n",
1747
- "perfect 1 0.0015\n",
1748
- "found 1 0.0015\n",
1749
- "seat 1 0.0015\n",
1750
- "henri 1 0.0015\n",
1751
- "zhang 1 0.0015\n",
1752
- "ventur 1 0.0015\n",
1753
- "capitalist 1 0.0015\n",
1754
- "sequoia 1 0.0015\n",
1755
- "capit 1 0.0015\n",
1756
- "keen 1 0.0015\n",
1757
- "invest 1 0.0015\n",
1758
- "promis 1 0.0015\n",
1759
- "startup 1 0.0015\n",
1760
- "priya 1 0.0015\n",
1761
- "sharma 1 0.0015\n",
1762
- "legal 1 0.0015\n",
1763
- "electron 1 0.0015\n",
1764
- "frontier 1 0.0015\n",
1765
- "foundat 1 0.0015\n",
1766
- "provid 1 0.0015\n",
1767
- "regulatori 1 0.0015\n",
1768
- "landscap 1 0.0015\n",
1769
- "emerg 1 0.0015\n",
1770
- "struck 1 0.0015\n",
1771
- "martinez 1 0.0015\n",
1772
- "bioinformat 1 0.0015\n",
1773
- "california 1 0.0015\n",
1774
- "berkeley 1 0.0015\n",
1775
- "contact 1 0.0015\n",
1776
- "plan 1 0.0015\n",
1777
- "meet 1 0.0015\n",
1778
- "meanwhil 1 0.0015\n",
1779
- "liu 1 0.0015\n",
1780
- "ibm 1 0.0015\n",
1781
- "secur 1 0.0015\n",
1782
- "olivia 1 0.0015\n",
1783
- "parker 1 0.0015\n",
1784
- "cryptographi 1 0.0015\n",
1785
- "brainstorm 1 0.0015\n",
1786
- "variou 1 0.0015\n",
1787
- "decid 1 0.0015\n",
1788
- "explor 1 0.0015\n",
1789
- "morn 1 0.0015\n",
1790
- "resum 1 0.0015\n",
1791
- "featur 1 0.0015\n",
1792
- "sever 1 0.0015\n",
1793
- "leader 1 0.0015\n",
1794
- "william 1 0.0015\n",
1795
- "harri 1 0.0015\n",
1796
- "ceo 1 0.0015\n",
1797
- "inc. 1 0.0015\n",
1798
- "katherin 1 0.0015\n",
1799
- "adam 1 0.0015\n",
1800
- "senior 1 0.0015\n",
1801
- "openai 1 0.0015\n",
1802
- "rang 1 0.0015\n",
1803
- "financ 1 0.0015\n",
1804
- "mei 1 0.0015\n",
1805
- "ling 1 0.0015\n",
1806
- "tokyo 1 0.0015\n",
1807
- "highlight 1 0.0015\n",
1808
- "asia 1 0.0015\n",
1809
- "sat 1 0.0015\n",
1810
- "acquaint 1 0.0015\n",
1811
- "absorb 1 0.0015\n",
1812
- "wealth 1 0.0015\n",
1813
- "inspir 1 0.0015\n",
1814
- "talk 1 0.0015\n",
1815
- "samuel 1 0.0015\n",
1816
- "green 1 0.0015\n",
1817
- "yale 1 0.0015\n",
1818
- "intersect 1 0.0015\n",
1819
- "augment 1 0.0015\n",
1820
- "decision-mak 1 0.0015\n",
1821
- "reson 1 0.0015\n",
1822
- "deepli 1 0.0015\n",
1823
- "drew 1 0.0015\n",
1824
- "close 1 0.0015\n",
1825
- "reflect 1 0.0015\n",
1826
- "gain 1 0.0015\n",
1827
- "felt 1 0.0015\n",
1828
- "energ 1 0.0015\n",
1829
- "leav 1 0.0015\n",
1830
- "took 1 0.0015\n",
1831
- "moment 1 0.0015\n",
1832
- "thank 1 0.0015\n",
1833
- "organ 1 0.0015\n",
1834
- "karen 1 0.0015\n",
1835
- "wilson 1 0.0015\n",
1836
- "director 1 0.0015\n",
1837
- "resound 1 0.0015\n",
1838
- "togeth 1 0.0015\n",
1839
- "brightest 1 0.0015\n",
1840
- "mind 1 0.0015\n",
1841
- "spirit 1 0.0015\n",
1842
- "board 1 0.0015\n",
1843
- "flight 1 0.0015\n",
1844
- "back 1 0.0015\n",
1845
- "boston 1 0.0015\n",
1846
- "n't 1 0.0015\n",
1847
- "help 1 0.0015\n",
1848
- "feel 1 0.0015\n",
1849
- "optimist 1 0.0015\n",
1850
- "knew 1 0.0015\n",
1851
- "lead 1 0.0015\n",
1852
- "determin 1 0.0015\n",
1853
- "ever 1 0.0015\n",
1854
- "achiev 1 0.0015\n",
1855
- "ensur 1 0.0015\n",
1856
- "posit 1 0.0015\n",
1857
- "week 1 0.0015\n",
1858
- "stay 1 0.0015\n",
1859
- "touch 1 0.0015\n",
1860
- "began 1 0.0015\n",
1861
- "resourc 1 0.0015\n",
1862
- "tackl 1 0.0015\n",
1863
- "biolog 1 0.0015\n",
1864
- "expand 1 0.0015\n",
1865
- "profession 1 0.0015\n",
1866
- "enrich 1 0.0015\n",
1867
- "understand 1 0.0015\n",
1868
- "divers 1 0.0015\n",
1869
- "grate 1 0.0015\n",
1870
- "mani 1 0.0015\n",
1871
- "talent 1 0.0015\n",
1872
- "individu 1 0.0015\n",
1873
- "look 1 0.0015\n",
1874
- "forward 1 0.0015\n",
1875
- "renew 1 0.0015\n",
1876
- "enthusiasm 1 0.0015\n",
1877
- "sens 1 0.0015\n",
1878
- "purpos 1 0.0015\n",
1879
- "experi 1 0.0015\n",
1880
- "set 1 0.0015\n",
1881
- "stage 1 0.0015\n",
1882
- "discoveri 1 0.0015\n",
1883
- "\n",
1884
- "Frequency Distribution of Lemmatized Tokens:\n",
1885
- "Token Frequency Probability \n",
1886
- "------------------------------------------\n",
1887
- "AI 18 0.0275\n",
1888
- "Emily 13 0.0198\n",
1889
- "Dr. 12 0.0183\n",
1890
- "Michael 12 0.0183\n",
1891
- "work 10 0.0153\n",
1892
- "project 8 0.0122\n",
1893
- "conference 8 0.0122\n",
1894
- "new 8 0.0122\n",
1895
- "University 7 0.0107\n",
1896
- "research 7 0.0107\n",
1897
- "attendee 6 0.0092\n",
1898
- "technology 6 0.0092\n",
1899
- "collaboration 5 0.0076\n",
1900
- "advancement 5 0.0076\n",
1901
- "future 5 0.0076\n",
1902
- "event 4 0.0061\n",
1903
- "idea 4 0.0061\n",
1904
- "algorithm 4 0.0061\n",
1905
- "field 4 0.0061\n",
1906
- "network 4 0.0061\n",
1907
- "Jessica 4 0.0061\n",
1908
- "Raj 4 0.0061\n",
1909
- "Laura 4 0.0061\n",
1910
- "Tech 3 0.0046\n",
1911
- "Innovators 3 0.0046\n",
1912
- "innovation 3 0.0046\n",
1913
- "researcher 3 0.0046\n",
1914
- "eager 3 0.0046\n",
1915
- "learn 3 0.0046\n",
1916
- "colleague 3 0.0046\n",
1917
- "also 3 0.0046\n",
1918
- "neural 3 0.0046\n",
1919
- "Jennifer 3 0.0046\n",
1920
- "data 3 0.0046\n",
1921
- "join 3 0.0046\n",
1922
- "develop 3 0.0046\n",
1923
- "discussion 3 0.0046\n",
1924
- "include 3 0.0046\n",
1925
- "expert 3 0.0046\n",
1926
- "particularly 3 0.0046\n",
1927
- "deep 3 0.0046\n",
1928
- "conversation 3 0.0046\n",
1929
- "could 3 0.0046\n",
1930
- "share 3 0.0046\n",
1931
- "application 3 0.0046\n",
1932
- "audience 3 0.0046\n",
1933
- "discuss 3 0.0046\n",
1934
- "opportunity 3 0.0046\n",
1935
- "expertise 3 0.0046\n",
1936
- "potential 3 0.0046\n",
1937
- "world 2 0.0031\n",
1938
- "gather 2 0.0031\n",
1939
- "Conference 2 0.0031\n",
1940
- "Among 2 0.0031\n",
1941
- "late 2 0.0031\n",
1942
- "machine 2 0.0031\n",
1943
- "artificial 2 0.0031\n",
1944
- "intelligence 2 0.0031\n",
1945
- "accompany 2 0.0031\n",
1946
- "groundbreaking 2 0.0031\n",
1947
- "information 2 0.0031\n",
1948
- "scientist 2 0.0031\n",
1949
- "team 2 0.0031\n",
1950
- "introduce 2 0.0031\n",
1951
- "Carlos 2 0.0031\n",
1952
- "engineer 2 0.0031\n",
1953
- "Warren 2 0.0031\n",
1954
- "professor 2 0.0031\n",
1955
- "importance 2 0.0031\n",
1956
- "insight 2 0.0031\n",
1957
- "exchange 2 0.0031\n",
1958
- "David 2 0.0031\n",
1959
- "complex 2 0.0031\n",
1960
- "problem 2 0.0031\n",
1961
- "interested 2 0.0031\n",
1962
- "natural 2 0.0031\n",
1963
- "language 2 0.0031\n",
1964
- "processing 2 0.0031\n",
1965
- "collaborate 2 0.0031\n",
1966
- "robotic 2 0.0031\n",
1967
- "Maria 2 0.0031\n",
1968
- "success 2 0.0031\n",
1969
- "integrate 2 0.0031\n",
1970
- "presentation 2 0.0031\n",
1971
- "healthcare 2 0.0031\n",
1972
- "follow 2 0.0031\n",
1973
- "impact 2 0.0031\n",
1974
- "foster 2 0.0031\n",
1975
- "next 2 0.0031\n",
1976
- "valuable 2 0.0031\n",
1977
- "table 2 0.0031\n",
1978
- "use 2 0.0031\n",
1979
- "predict 2 0.0031\n",
1980
- "genetic 2 0.0031\n",
1981
- "disorder 2 0.0031\n",
1982
- "Ethan 2 0.0031\n",
1983
- "blockchain 2 0.0031\n",
1984
- "combine 2 0.0031\n",
1985
- "enhance 2 0.0031\n",
1986
- "bring 2 0.0031\n",
1987
- "group 2 0.0031\n",
1988
- "form 2 0.0031\n",
1989
- "panel 2 0.0031\n",
1990
- "industry 2 0.0031\n",
1991
- "knowledge 2 0.0031\n",
1992
- "human 2 0.0031\n",
1993
- "connection 2 0.0031\n",
1994
- "make 2 0.0031\n",
1995
- "excite 2 0.0031\n",
1996
- "start 2 0.0031\n",
1997
- "joint 2 0.0031\n",
1998
- "would 2 0.0031\n",
1999
- "push 2 0.0031\n",
2000
- "boundary 2 0.0031\n",
2001
- "bustling 1 0.0015\n",
2002
- "city 1 0.0015\n",
2003
- "San 1 0.0015\n",
2004
- "Francisco 1 0.0015\n",
2005
- "tech 1 0.0015\n",
2006
- "enthusiast 1 0.0015\n",
2007
- "annual 1 0.0015\n",
2008
- "melt 1 0.0015\n",
2009
- "pot 1 0.0015\n",
2010
- "Chen 1 0.0015\n",
2011
- "renowned 1 0.0015\n",
2012
- "MIT 1 0.0015\n",
2013
- "present 1 0.0015\n",
2014
- "finding 1 0.0015\n",
2015
- "Thompson 1 0.0015\n",
2016
- "well-respected 1 0.0015\n",
2017
- "figure 1 0.0015\n",
2018
- "duo 1 0.0015\n",
2019
- "aim 1 0.0015\n",
2020
- "revolutionize 1 0.0015\n",
2021
- "way 1 0.0015\n",
2022
- "process 1 0.0015\n",
2023
- "commenced 1 0.0015\n",
2024
- "greet 1 0.0015\n",
2025
- "host 1 0.0015\n",
2026
- "familiar 1 0.0015\n",
2027
- "face 1 0.0015\n",
2028
- "Lee 1 0.0015\n",
2029
- "Google 1 0.0015\n",
2030
- "showcase 1 0.0015\n",
2031
- "quantum 1 0.0015\n",
2032
- "compute 1 0.0015\n",
2033
- "mentor 1 0.0015\n",
2034
- "Robert 1 0.0015\n",
2035
- "Lang 1 0.0015\n",
2036
- "pioneer 1 0.0015\n",
2037
- "computational 1 0.0015\n",
2038
- "neuroscience 1 0.0015\n",
2039
- "friend 1 0.0015\n",
2040
- "Mendez 1 0.0015\n",
2041
- "software 1 0.0015\n",
2042
- "Facebook 1 0.0015\n",
2043
- "specialized 1 0.0015\n",
2044
- "social 1 0.0015\n",
2045
- "medium 1 0.0015\n",
2046
- "analytics 1 0.0015\n",
2047
- "keynote 1 0.0015\n",
2048
- "speaker 1 0.0015\n",
2049
- "none 1 0.0015\n",
2050
- "Elizabeth 1 0.0015\n",
2051
- "distinguish 1 0.0015\n",
2052
- "Stanford 1 0.0015\n",
2053
- "speech 1 0.0015\n",
2054
- "focus 1 0.0015\n",
2055
- "ethical 1 0.0015\n",
2056
- "implication 1 0.0015\n",
2057
- "benefit 1 0.0015\n",
2058
- "humanity 1 0.0015\n",
2059
- "whole 1 0.0015\n",
2060
- "spark 1 0.0015\n",
2061
- "lively 1 0.0015\n",
2062
- "among 1 0.0015\n",
2063
- "Sarah 1 0.0015\n",
2064
- "Johnson 1 0.0015\n",
2065
- "policy 1 0.0015\n",
2066
- "advisor 1 0.0015\n",
2067
- "United 1 0.0015\n",
2068
- "Nations 1 0.0015\n",
2069
- "Ahmed 1 0.0015\n",
2070
- "Khan 1 0.0015\n",
2071
- "cybersecurity 1 0.0015\n",
2072
- "Microsoft 1 0.0015\n",
2073
- "break 1 0.0015\n",
2074
- "session 1 0.0015\n",
2075
- "mingle 1 0.0015\n",
2076
- "caught 1 0.0015\n",
2077
- "former 1 0.0015\n",
2078
- "classmate 1 0.0015\n",
2079
- "Kim 1 0.0015\n",
2080
- "analyst 1 0.0015\n",
2081
- "Amazon 1 0.0015\n",
2082
- "Brown 1 0.0015\n",
2083
- "knack 1 0.0015\n",
2084
- "innovative 1 0.0015\n",
2085
- "solution 1 0.0015\n",
2086
- "invite 1 0.0015\n",
2087
- "another 1 0.0015\n",
2088
- "corner 1 0.0015\n",
2089
- "room 1 0.0015\n",
2090
- "Patel 1 0.0015\n",
2091
- "roboticist 1 0.0015\n",
2092
- "Carnegie 1 0.0015\n",
2093
- "Mellon 1 0.0015\n",
2094
- "recently 1 0.0015\n",
2095
- "developed 1 0.0015\n",
2096
- "type 1 0.0015\n",
2097
- "arm 1 0.0015\n",
2098
- "perform 1 0.0015\n",
2099
- "delicate 1 0.0015\n",
2100
- "surgical 1 0.0015\n",
2101
- "procedure 1 0.0015\n",
2102
- "unprecedented 1 0.0015\n",
2103
- "precision 1 0.0015\n",
2104
- "assistant 1 0.0015\n",
2105
- "Gonzalez 1 0.0015\n",
2106
- "instrumental 1 0.0015\n",
2107
- "fascinate 1 0.0015\n",
2108
- "propose 1 0.0015\n",
2109
- "partnership 1 0.0015\n",
2110
- "day 1 0.0015\n",
2111
- "progress 1 0.0015\n",
2112
- "treat 1 0.0015\n",
2113
- "series 1 0.0015\n",
2114
- "insightful 1 0.0015\n",
2115
- "James 1 0.0015\n",
2116
- "Clark 1 0.0015\n",
2117
- "Harvard 1 0.0015\n",
2118
- "Lisa 1 0.0015\n",
2119
- "Robinson 1 0.0015\n",
2120
- "computer 1 0.0015\n",
2121
- "vision 1 0.0015\n",
2122
- "Nvidia 1 0.0015\n",
2123
- "demonstrate 1 0.0015\n",
2124
- "image 1 0.0015\n",
2125
- "recognition 1 0.0015\n",
2126
- "impressed 1 0.0015\n",
2127
- "Ananya 1 0.0015\n",
2128
- "Singh 1 0.0015\n",
2129
- "ethicist 1 0.0015\n",
2130
- "Oxford 1 0.0015\n",
2131
- "societal 1 0.0015\n",
2132
- "responsible 1 0.0015\n",
2133
- "even 1 0.0015\n",
2134
- "gala 1 0.0015\n",
2135
- "dinner 1 0.0015\n",
2136
- "Grand 1 0.0015\n",
2137
- "Hyatt 1 0.0015\n",
2138
- "Hotel 1 0.0015\n",
2139
- "perfect 1 0.0015\n",
2140
- "networking 1 0.0015\n",
2141
- "found 1 0.0015\n",
2142
- "seat 1 0.0015\n",
2143
- "Henry 1 0.0015\n",
2144
- "Zhang 1 0.0015\n",
2145
- "venture 1 0.0015\n",
2146
- "capitalist 1 0.0015\n",
2147
- "Sequoia 1 0.0015\n",
2148
- "Capital 1 0.0015\n",
2149
- "keen 1 0.0015\n",
2150
- "invest 1 0.0015\n",
2151
- "promising 1 0.0015\n",
2152
- "startup 1 0.0015\n",
2153
- "Priya 1 0.0015\n",
2154
- "Sharma 1 0.0015\n",
2155
- "legal 1 0.0015\n",
2156
- "Electronic 1 0.0015\n",
2157
- "Frontier 1 0.0015\n",
2158
- "Foundation 1 0.0015\n",
2159
- "provide 1 0.0015\n",
2160
- "regulatory 1 0.0015\n",
2161
- "landscape 1 0.0015\n",
2162
- "emerge 1 0.0015\n",
2163
- "struck 1 0.0015\n",
2164
- "Martinez 1 0.0015\n",
2165
- "bioinformatics 1 0.0015\n",
2166
- "California 1 0.0015\n",
2167
- "Berkeley 1 0.0015\n",
2168
- "contact 1 0.0015\n",
2169
- "plan 1 0.0015\n",
2170
- "meet 1 0.0015\n",
2171
- "discus 1 0.0015\n",
2172
- "Meanwhile 1 0.0015\n",
2173
- "Liu 1 0.0015\n",
2174
- "developer 1 0.0015\n",
2175
- "IBM 1 0.0015\n",
2176
- "security 1 0.0015\n",
2177
- "Olivia 1 0.0015\n",
2178
- "Parker 1 0.0015\n",
2179
- "cryptography 1 0.0015\n",
2180
- "brainstorm 1 0.0015\n",
2181
- "various 1 0.0015\n",
2182
- "decide 1 0.0015\n",
2183
- "explore 1 0.0015\n",
2184
- "morning 1 0.0015\n",
2185
- "resume 1 0.0015\n",
2186
- "feature 1 0.0015\n",
2187
- "several 1 0.0015\n",
2188
- "leader 1 0.0015\n",
2189
- "William 1 0.0015\n",
2190
- "Harris 1 0.0015\n",
2191
- "CEO 1 0.0015\n",
2192
- "Inc. 1 0.0015\n",
2193
- "Katherine 1 0.0015\n",
2194
- "Adams 1 0.0015\n",
2195
- "senior 1 0.0015\n",
2196
- "OpenAI 1 0.0015\n",
2197
- "transform 1 0.0015\n",
2198
- "range 1 0.0015\n",
2199
- "finance 1 0.0015\n",
2200
- "Mei 1 0.0015\n",
2201
- "Ling 1 0.0015\n",
2202
- "Tokyo 1 0.0015\n",
2203
- "highlight 1 0.0015\n",
2204
- "Asia 1 0.0015\n",
2205
- "sat 1 0.0015\n",
2206
- "acquaintance 1 0.0015\n",
2207
- "absorb 1 0.0015\n",
2208
- "wealth 1 0.0015\n",
2209
- "inspire 1 0.0015\n",
2210
- "talk 1 0.0015\n",
2211
- "Samuel 1 0.0015\n",
2212
- "Green 1 0.0015\n",
2213
- "cognitive 1 0.0015\n",
2214
- "Yale 1 0.0015\n",
2215
- "intersection 1 0.0015\n",
2216
- "cognition 1 0.0015\n",
2217
- "augment 1 0.0015\n",
2218
- "decision-making 1 0.0015\n",
2219
- "resonate 1 0.0015\n",
2220
- "deeply 1 0.0015\n",
2221
- "drew 1 0.0015\n",
2222
- "close 1 0.0015\n",
2223
- "reflect 1 0.0015\n",
2224
- "gain 1 0.0015\n",
2225
- "felt 1 0.0015\n",
2226
- "energize 1 0.0015\n",
2227
- "leave 1 0.0015\n",
2228
- "take 1 0.0015\n",
2229
- "moment 1 0.0015\n",
2230
- "thank 1 0.0015\n",
2231
- "organizer 1 0.0015\n",
2232
- "Karen 1 0.0015\n",
2233
- "Wilson 1 0.0015\n",
2234
- "director 1 0.0015\n",
2235
- "Network 1 0.0015\n",
2236
- "resound 1 0.0015\n",
2237
- "together 1 0.0015\n",
2238
- "brightest 1 0.0015\n",
2239
- "mind 1 0.0015\n",
2240
- "spirit 1 0.0015\n",
2241
- "board 1 0.0015\n",
2242
- "flight 1 0.0015\n",
2243
- "back 1 0.0015\n",
2244
- "Boston 1 0.0015\n",
2245
- "n't 1 0.0015\n",
2246
- "help 1 0.0015\n",
2247
- "feel 1 0.0015\n",
2248
- "optimistic 1 0.0015\n",
2249
- "knew 1 0.0015\n",
2250
- "lead 1 0.0015\n",
2251
- "determine 1 0.0015\n",
2252
- "ever 1 0.0015\n",
2253
- "achieve 1 0.0015\n",
2254
- "ensure 1 0.0015\n",
2255
- "positive 1 0.0015\n",
2256
- "week 1 0.0015\n",
2257
- "stayed 1 0.0015\n",
2258
- "touch 1 0.0015\n",
2259
- "collaborator 1 0.0015\n",
2260
- "begin 1 0.0015\n",
2261
- "resource 1 0.0015\n",
2262
- "tackle 1 0.0015\n",
2263
- "biological 1 0.0015\n",
2264
- "expand 1 0.0015\n",
2265
- "professional 1 0.0015\n",
2266
- "enrich 1 0.0015\n",
2267
- "understand 1 0.0015\n",
2268
- "diverse 1 0.0015\n",
2269
- "grateful 1 0.0015\n",
2270
- "connect 1 0.0015\n",
2271
- "many 1 0.0015\n",
2272
- "talented 1 0.0015\n",
2273
- "individual 1 0.0015\n",
2274
- "look 1 0.0015\n",
2275
- "forward 1 0.0015\n",
2276
- "renew 1 0.0015\n",
2277
- "enthusiasm 1 0.0015\n",
2278
- "sense 1 0.0015\n",
2279
- "purpose 1 0.0015\n",
2280
- "transformative 1 0.0015\n",
2281
- "experience 1 0.0015\n",
2282
- "set 1 0.0015\n",
2283
- "stage 1 0.0015\n",
2284
- "discovery 1 0.0015\n"
2285
- ]
2286
- }
2287
- ],
2288
- "source": [
2289
- "# Read the text from the file and tokenize\n",
2290
- "file_path = 'E:/126156048/leb_2/name_essay.txt'\n",
2291
- "\n",
2292
- "with open(file_path, 'r', encoding='utf-8') as file:\n",
2293
- " content = file.read()\n",
2294
- " tokens = word_tokenize(content)\n",
2295
- "\n",
2296
- "# Print the original tokens\n",
2297
- "print(\"Original Tokens:\\n\", tokens)\n",
2298
- "\n",
2299
- "# Initialize the Porter Stemmer\n",
2300
- "stemmer = PorterStemmer()\n",
2301
- "\n",
2302
- "# Apply stemming to each token\n",
2303
- "stemmed_words = [stemmer.stem(token) for token in filtered_tokens]\n",
2304
- "\n",
2305
- "# Print the stemmed tokens\n",
2306
- "print(\"\\nStemmed Tokens:\\n\", stemmed_words)\n",
2307
- "\n",
2308
- "# Initialize the WordNet Lemmatizer\n",
2309
- "lemmatizer = WordNetLemmatizer()\n",
2310
- "\n",
2311
- "# Function to get part of speech tag for lemmatization\n",
2312
- "def get_wordnet_pos(word):\n",
2313
- " tag = nltk.pos_tag([word])[0][1][0].upper()\n",
2314
- " tag_dict = {\"J\": wordnet.ADJ,\n",
2315
- " \"N\": wordnet.NOUN,\n",
2316
- " \"V\": wordnet.VERB,\n",
2317
- " \"R\": wordnet.ADV}\n",
2318
- " return tag_dict.get(tag, wordnet.NOUN)\n",
2319
- "\n",
2320
- "# Apply lemmatization to each token\n",
2321
- "lemmatized_words = [lemmatizer.lemmatize(token, get_wordnet_pos(token)) for token in filtered_tokens]\n",
2322
- "\n",
2323
- "# Print the lemmatized tokens\n",
2324
- "print(\"\\nLemmatized Tokens:\\n\", lemmatized_words)\n",
2325
- "\n",
2326
- "# Calculate frequency distribution for original tokens\n",
2327
- "freq_dist_original = FreqDist(filtered_tokens)\n",
2328
- "total_original_tokens = len(filtered_tokens)\n",
2329
- "\n",
2330
- "# Calculate frequency distribution for stemmed tokens\n",
2331
- "freq_dist_stemmed = FreqDist(stemmed_words)\n",
2332
- "total_stemmed_tokens = len(stemmed_words)\n",
2333
- "\n",
2334
- "# Calculate frequency distribution for lemmatized tokens\n",
2335
- "freq_dist_lemmatized = FreqDist(lemmatized_words)\n",
2336
- "total_lemmatized_tokens = len(lemmatized_words)\n",
2337
- "\n",
2338
- "# Function to print frequency distributions\n",
2339
- "def print_freq_dist(freq_dist, total_tokens, title):\n",
2340
- " print(f\"\\n{title}:\")\n",
2341
- " print(f\"{'Token':<20} {'Frequency':<10} {'Probability':<12}\")\n",
2342
- " print(\"-\" * 42)\n",
2343
- " for word, frequency in freq_dist.most_common():\n",
2344
- " probability = frequency / total_tokens\n",
2345
- " print(f\"{word:<20} {frequency:<10} {probability:.4f}\")\n",
2346
- "\n",
2347
- "# Print frequency distributions and probabilities\n",
2348
- "print_freq_dist(freq_dist_original, total_original_tokens, \"Frequency Distribution of Original Tokens\")\n",
2349
- "print_freq_dist(freq_dist_stemmed, total_stemmed_tokens, \"Frequency Distribution of Stemmed Tokens\")\n",
2350
- "print_freq_dist(freq_dist_lemmatized, total_lemmatized_tokens, \"Frequency Distribution of Lemmatized Tokens\")"
2351
- ]
2352
- },
2353
- {
2354
- "cell_type": "code",
2355
- "execution_count": 89,
2356
- "id": "47548364-cf93-4c1d-b1ab-5f847b344442",
2357
- "metadata": {},
2358
- "outputs": [
2359
- {
2360
- "data": {
2361
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABW0AAAJOCAYAAADMCCWlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC1q0lEQVR4nOzdeVxV1f7/8fcREBxxBMQQ0ZznoRTNKRVDr0NpOZRDaV3TckArKc2hwTQ1MsfKMU2t1NT05lCOZV0VHOqaqaGYgoqVOKRM+/eHP87XI4OA+3C29no+Hvvx8Ky99vqsAyIfP2fttW2GYRgCAAAAAAAAAFhCPldPAAAAAAAAAADwfyjaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBCKNoCyBMLFy6UzWbL8Bg5cqSrp3dPufVr7eXlJT8/P7Vq1UoTJ07UuXPn0l0zbtw42Wy2HMW5evWqxo0bp23btuXouoxilS9fXv/6179yNM7tfPrpp4qIiMjwnM1m07hx40yNBwAA/lluzbnc3d1133336emnn9bp06dNjWWz2fTCCy+YNt6JEydks9k0ZcqU2/ZNe58nTpywt/Xr10/ly5d36Fe+fHn169fP/vrMmTMaN26c9u/fb86kb5kPuS65LnCvc3f1BAD8syxYsEBVq1Z1aPP393fRbO5taV/rpKQknTt3Trt27dKkSZM0ZcoUrVixQm3atLH3HTBggB555JEcjX/16lWNHz9ektSyZctsX5ebWLnx6aef6qefftKwYcPSndu9e7fuu+8+p88BAADc+9Jyrr///ls7duzQxIkTtX37dh06dEiFChVy9fTuWIcOHbR7926VKVMmy36rV69W0aJF7a/PnDmj8ePHq3z58qpbt67p8yLXJdcF7nUUbQHkqZo1a6phw4bZ6puUlGRftYCcu/Vr3bVrVw0fPlwPPfSQHnvsMR09elS+vr6SpPvuu8/pid3Vq1dVsGDBPIl1O40bN3ZpfAAAcO+4Oedq1aqVUlJS9MYbb+jLL7/Uk08+meE1aXnR3aB06dIqXbr0bfvVq1cvD2bzf8h1M0euC9wb2B4BgCVs27ZNNptNn3zyiUaMGKGyZcvK09NTx44dkyRt2bJFrVu3VtGiRVWwYEE1bdpU33zzTbpx1q9fr7p168rT01NBQUGaMmVKuluU0m4HW7hwYbrrM7qV6OjRo+rVq5d8fHzk6empatWqaebMmRnOf9myZXrttdfk7++vokWLqk2bNjpy5Ei6OF9//bVat24tb29vFSxYUNWqVdPEiRMlSZ988olsNpt2796d7roJEybIw8NDZ86cue3XNCPlypXT1KlTdenSJc2dO9fentFtXN9++61atmypkiVLqkCBAipXrpy6du2qq1ev6sSJE/bkffz48fbb09JuiUsbLzIyUt26dVPx4sVVsWLFTGOlWb16tWrXri0vLy9VqFBB06dPdzif0e150v99/dNuX2vZsqXWr1+vkydPOtw+lyaj7/NPP/2kzp07q3jx4vLy8lLdunW1aNGiDONk9/sMAAD+edIKZidPnpR0YyuBwoUL69ChQwoJCVGRIkXUunVrSdIff/yhQYMGqWzZssqfP78qVKig1157TdevX89w7Llz56py5cry9PRU9erVtXz5cofz58+f16BBg1S9enUVLlxYPj4+evjhh7Vz584Mx0tNTdVbb72lcuXKycvLSw0bNkyXY2eWf93q5u0Rtm3bpgceeECS9PTTT9tzsXHjxpHrkusCyCaWrwHIUykpKUpOTnZou3klbXh4uIKDgzVnzhzly5dPPj4+WrJkifr06aPOnTtr0aJF8vDw0Ny5c9WuXTtt3LjRnvR+88036ty5s4KDg7V8+XKlpKRo8uTJOnv2bK7n+7///U9NmjSxJ4B+fn7auHGjhgwZovj4eI0dO9ah/6uvvqqmTZvq448/VkJCgl555RV17NhRhw8flpubmyRp3rx5evbZZ9WiRQvNmTNHPj4++vXXX/XTTz9Jkrp3766XX35ZM2fOVHBwsH3s5ORkzZ07V48++ugdbSnRvn17ubm5aceOHZn2OXHihDp06KBmzZpp/vz5KlasmE6fPq2vv/5aiYmJKlOmjL7++ms98sgj6t+/vwYMGCBJ6VZhPPbYY+rRo4cGDhyoK1euZDmv/fv3a9iwYRo3bpz8/Py0dOlSDR06VImJiTne93jWrFl67rnndPz4ca1evfq2/Y8cOaImTZrIx8dH06dPV8mSJbVkyRL169dPZ8+e1csvv+zQPzvfZwAA8M+Utujg5rwoMTFRnTp10r///W+NGjVKycnJunbtmlq1aqXjx49r/Pjxql27tnbu3KmJEydq//79Wr9+vcO4a9eu1datWzVhwgQVKlRIs2bNUs+ePeXu7q5u3bpJulEElqSxY8fKz89Ply9f1urVq9WyZUt988036W7znzFjhgIDAxUREaHU1FRNnjxZoaGh2r59u0MemlP169fXggUL9PTTT2v06NHq0KGDpBsrXn18fMh1yXUBZIcBAHlgwYIFhqQMj6SkJGPr1q2GJKN58+YO1125csUoUaKE0bFjR4f2lJQUo06dOsaDDz5ob2vUqJHh7+9v/P333/a2hIQEo0SJEsbN/9xFR0cbkowFCxakm6ckY+zYsfbX7dq1M+677z7j4sWLDv1eeOEFw8vLy/jjjz8MwzDs82/fvr1Dv88++8yQZOzevdswDMO4dOmSUbRoUeOhhx4yUlNTM/16jR071sifP79x9uxZe9uKFSsMScb27dszvc4w/u9rvWfPnkz7+Pr6GtWqVXOId/PX6IsvvjAkGfv37890jPPnz6f7et063uuvv57puZsFBgYaNpstXby2bdsaRYsWNa5cueLw3qKjox36pX39t27dam/r0KGDERgYmOHcb513jx49DE9PTyMmJsahX2hoqFGwYEHjr7/+cohzu+8zAAC496XlJT/88IORlJRkXLp0yfjqq6+M0qVLG0WKFDHi4uIMwzCMvn37GpKM+fPnO1w/Z84cQ5Lx2WefObRPmjTJkGRs2rTJ3ibJKFCggH1MwzCM5ORko2rVqsb999+f6RyTk5ONpKQko3Xr1sajjz5qb0/LhzPLndu0aZPufd6cf/Xt2zddnhUYGGj07dvX/nrPnj2Z5tzkujeQ6wLICtsjAMhTixcv1p49exyOm1fadu3a1aH/999/rz/++EN9+/ZVcnKy/UhNTdUjjzyiPXv26MqVK7py5Yr27Nmjxx57TF5eXvbrixQpoo4dO+ZqrteuXdM333yjRx99VAULFnSI3759e127dk0//PCDwzWdOnVyeF27dm1J/3d73Pfff6+EhAQNGjQoyyfYPv/885Kkjz76yN42Y8YM1apVS82bN8/V+7mZYRhZnq9bt67y58+v5557TosWLdJvv/2Wqzi3fj+zUqNGDdWpU8ehrVevXkpISFBkZGSu4mfXt99+q9atWysgIMChvV+/frp69Wq62/du930GAAD/HI0bN5aHh4eKFCmif/3rX/Lz89N//vMf+36qaW7Ni7799lsVKlTIvko2Tdot+LduU9C6dWuHMd3c3NS9e3cdO3ZMv//+u719zpw5ql+/vry8vOTu7i4PDw998803Onz4cLq5Z5Y779ixQykpKTn7QuQAue4N5LoAskLRFkCeqlatmho2bOhw3OzWp9KmbW3QrVs3eXh4OByTJk2SYRj6448/9Oeffyo1NVV+fn7pYmbUlh0XLlxQcnKyPvjgg3Sx27dvL0mKj493uKZkyZIOrz09PSVJf//9t6Qb+4xJuu3DCXx9fdW9e3fNnTtXKSkpOnjwoHbu3KkXXnghV+/lZleuXNGFCxeyvO2sYsWK2rJli3x8fDR48GBVrFhRFStW1Pvvv5+jWLd7yvDNsvreXbhwIUdxc+rChQsZzjXta3Rr/Nt9nwEAwD9H2qKEqKgonTlzRgcPHlTTpk0d+hQsWFBFixZ1aLtw4YL8/PzSfZDv4+Mjd3f3dPlHdnKladOm6fnnn1ejRo20cuVK/fDDD9qzZ48eeeSRDPOUzMZMTEzU5cuXs/Huc4dc17GNXBdARtjTFoCl3Jq0lipVSpL0wQcfZPoUVF9fXyUlJclmsykuLi7d+Vvb0lYT3PqAh1uTleLFi8vNzU29e/fW4MGDM4wdFBSUxbtJL20frJtXQ2Rm6NCh+uSTT7RmzRp9/fXXKlasWKZPIM6J9evXKyUlJd2eZrdq1qyZmjVrppSUFO3du1cffPCBhg0bJl9fX/Xo0SNbsbJaTXyrrL53aYljZt+7W4vnOVWyZEnFxsama097CEba30MAAIBbpS1KyEpGOVHJkiX1448/yjAMh/Pnzp1TcnJyuvwjO7nSkiVL1LJlS82ePduh36VLlzKcV2Zj5s+fX4ULF87yPd0pcl1yXQBZY6UtAEtr2rSpihUrpv/973/pVuimHfnz51ehQoX04IMPatWqVbp27Zr9+kuXLmndunUOY/r6+srLy0sHDx50aF+zZo3D64IFC6pVq1aKiopS7dq1M4x966fQt9OkSRN5e3trzpw5t71tq0GDBmrSpIkmTZqkpUuXql+/fipUqFCO4t0qJiZGI0eOlLe3t/79739n6xo3Nzc1atRIM2fOlCT77Vtmf+L+888/68CBAw5tn376qYoUKaL69etLuvFUYknpvndr165NN56np2e259a6dWt9++236Z5UvHjxYhUsWDDTDwwAAAByq3Xr1rp8+bK+/PJLh/bFixfbz9/sm2++cXjAbkpKilasWKGKFSva7+Ky2Wz2HC3NwYMH093+niaz3LlZs2Z3/MCp2+WK5LrkugCyxkpbAJZWuHBhffDBB+rbt6/++OMPdevWTT4+Pjp//rwOHDig8+fP21cSvPHGG3rkkUfUtm1bjRgxQikpKZo0aZIKFSpkf5KudCOZfeqppzR//nxVrFhRderU0X//+199+umn6eK///77euihh9SsWTM9//zzKl++vC5duqRjx45p3bp1+vbbb3P8fqZOnaoBAwaoTZs2evbZZ+Xr66tjx47pwIEDmjFjhkP/oUOHqnv37rLZbBo0aFCOYv3000/2PXjPnTunnTt3asGCBXJzc9Pq1avTPf32ZnPmzNG3336rDh06qFy5crp27Zrmz58vSWrTpo2kG3ueBQYGas2aNWrdurVKlCihUqVK2ZPNnPL391enTp00btw4lSlTRkuWLNHmzZs1adIkFSxYUJL0wAMPqEqVKho5cqSSk5NVvHhxrV69Wrt27Uo3Xq1atbRq1SrNnj1bDRo0UL58+TJdBTN27Fh99dVXatWqlV5//XWVKFFCS5cu1fr16zV58mR5e3vn6j0BAABkpk+fPpo5c6b69u2rEydOqFatWtq1a5fefvtttW/f3p5zpSlVqpQefvhhjRkzRoUKFdKsWbP0yy+/aPny5fY+//rXv/TGG29o7NixatGihY4cOaIJEyYoKChIycnJ6ebg5uamtm3bKiwsTKmpqZo0aZISEhI0fvz4O35/FStWVIECBbR06VJVq1ZNhQsXlr+/v8O2BeS65LoAMkfRFoDlPfXUUypXrpwmT56sf//737p06ZJ8fHxUt25d+4MaJKlt27b68ssvNXr0aHXv3l1+fn4aNGiQ/v7773SJ59SpUyVJkydP1uXLl/Xwww/rq6++SpeEVa9eXZGRkXrjjTc0evRonTt3TsWKFVOlSpXs+9rmVP/+/eXv769JkyZpwIABMgxD5cuXV9++fdP17dKlizw9PdWqVStVqlQpR3GefvppSVL+/PlVrFgxVatWTa+88ooGDBiQZRIr3Xg4w6ZNmzR27FjFxcWpcOHCqlmzptauXauQkBB7v3nz5umll15Sp06ddP36dfXt21cLFy7M0Txvjvn0009r7NixOnr0qPz9/TVt2jQNHz7c3sfNzU3r1q3TCy+8oIEDB8rT01M9evTQjBkz1KFDB4fxhg4dqp9//lmvvvqqLl68KMMwMl3dXKVKFX3//fd69dVXNXjwYP3999+qVq2aFixY4PB3DAAAwCxeXl7aunWrXnvtNb377rs6f/68ypYtq5EjR2rs2LHp+nfq1Ek1atTQ6NGjFRMTo4oVK2rp0qXq3r27vc9rr72mq1evat68eZo8ebKqV6+uOXPmaPXq1dq2bVu6MV944QVdu3ZNQ4YM0blz51SjRg2tX78+3Z68uVGwYEHNnz9f48ePV0hIiJKSkjR27FiNGzfO3odcl1wXQOZsxu3uzwWAu9y4ceM0fvz4225HYEXr1q1Tp06dtH79+lwXiQEAAAArItcFgMyx0hYALOh///ufTp48qREjRqhu3boKDQ119ZQAAAAAU5DrAsDt8SAyALCgQYMGqVOnTipevLiWLVuWoyfTAgAAAFZGrgsAt8f2CAAAAAAAAABgIay0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALMTd1ROwotTUVJ05c0ZFihRhQ3QAAAAXMQxDly5dkr+/v/LlY63BnSLHBQAAcL3s5rgUbTNw5swZBQQEuHoaAAAAkHTq1Cndd999rp7GXY8cFwAAwDpul+NStM1AkSJFJN344hUtWtTFswEAAPhnSkhIUEBAgD03w50hxwUAAHC97Oa4FG0zkHa7WNGiRUloAQAAXIxb+c1BjgsAAGAdt8tx2RwMAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAsxN3VE8AN70TFO23sUfVKOW1sAAAAIDNJ40c4bWyPsVOdNjYAAICrsdIWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhbi0aLtjxw517NhR/v7+stls+vLLLx3O22y2DI9333030zEXLlyY4TXXrl1z8rsBAAAAAAAAgDvn0qLtlStXVKdOHc2YMSPD87GxsQ7H/PnzZbPZ1LVr1yzHLVq0aLprvby8nPEWAAAAAAAAAMBU7q4MHhoaqtDQ0EzP+/n5Obxes2aNWrVqpQoVKmQ5rs1mS3ctAAAAAAAAANwN7po9bc+ePav169erf//+t+17+fJlBQYG6r777tO//vUvRUVFZdn/+vXrSkhIcDgAAAAAAAAAwBXumqLtokWLVKRIET322GNZ9qtataoWLlyotWvXatmyZfLy8lLTpk119OjRTK+ZOHGivL297UdAQIDZ0wcAAAAAAACAbLlrirbz58/Xk08+edu9aRs3bqynnnpKderUUbNmzfTZZ5+pcuXK+uCDDzK9Jjw8XBcvXrQfp06dMnv6AAAAAAAAAJAtLt3TNrt27typI0eOaMWKFTm+Nl++fHrggQeyXGnr6ekpT0/PO5kiAAAAAAAAAJjirlhpO2/ePDVo0EB16tTJ8bWGYWj//v0qU6aME2YGAAAAAAAAAOZy6Urby5cv69ixY/bX0dHR2r9/v0qUKKFy5cpJkhISEvT5559r6tSpGY7Rp08flS1bVhMnTpQkjR8/Xo0bN1alSpWUkJCg6dOna//+/Zo5c6bz3xAAAAAAAAAA3CGXFm337t2rVq1a2V+HhYVJkvr27auFCxdKkpYvXy7DMNSzZ88Mx4iJiVG+fP+3YPivv/7Sc889p7i4OHl7e6tevXrasWOHHnzwQee9EQAAAAAAAAAwic0wDMPVk7CahIQEeXt76+LFiypatGiexHwnKt5pY4+qV8ppYwMAADiLK3Kye5krvp5J40c4bWyPsRnfiQcAAGBl2c3J7oo9bQEAAAAAAADgn4KiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBCKNoCAAAAAAAAgIVQtAUAAAByYNasWQoKCpKXl5caNGignTt3Ztl/+/btatCggby8vFShQgXNmTPH4fxHH32kZs2aqXjx4ipevLjatGmj//73vw59xo0bJ5vN5nD4+fmZ/t4AAABgDRRtAQAAgGxasWKFhg0bptdee01RUVFq1qyZQkNDFRMTk2H/6OhotW/fXs2aNVNUVJReffVVDRkyRCtXrrT32bZtm3r27KmtW7dq9+7dKleunEJCQnT69GmHsWrUqKHY2Fj7cejQIae+VwAAALiOu6snAAAAANwtpk2bpv79+2vAgAGSpIiICG3cuFGzZ8/WxIkT0/WfM2eOypUrp4iICElStWrVtHfvXk2ZMkVdu3aVJC1dutThmo8++khffPGFvvnmG/Xp08fe7u7uzupaAACAfwhW2gIAAADZkJiYqH379ikkJMShPSQkRN9//32G1+zevTtd/3bt2mnv3r1KSkrK8JqrV68qKSlJJUqUcGg/evSo/P39FRQUpB49eui3337Lcr7Xr19XQkKCwwEAAIC7A0VbAAAAIBvi4+OVkpIiX19fh3ZfX1/FxcVleE1cXFyG/ZOTkxUfH5/hNaNGjVLZsmXVpk0be1ujRo20ePFibdy4UR999JHi4uLUpEkTXbhwIdP5Tpw4Ud7e3vYjICAgu28VAAAALkbRFgAAAMgBm83m8NowjHRtt+ufUbskTZ48WcuWLdOqVavk5eVlbw8NDVXXrl1Vq1YttWnTRuvXr5ckLVq0KNO44eHhunjxov04derU7d8cAAAALIE9bQEAAIBsKFWqlNzc3NKtqj137ly61bRp/Pz8Muzv7u6ukiVLOrRPmTJFb7/9trZs2aLatWtnOZdChQqpVq1aOnr0aKZ9PD095enpmeU4AAAAsCZW2gIAAADZkD9/fjVo0ECbN292aN+8ebOaNGmS4TXBwcHp+m/atEkNGzaUh4eHve3dd9/VG2+8oa+//loNGza87VyuX7+uw4cPq0yZMrl4JwAAALA6irYAAABANoWFhenjjz/W/PnzdfjwYQ0fPlwxMTEaOHCgpBtbEvTp08fef+DAgTp58qTCwsJ0+PBhzZ8/X/PmzdPIkSPtfSZPnqzRo0dr/vz5Kl++vOLi4hQXF6fLly/b+4wcOVLbt29XdHS0fvzxR3Xr1k0JCQnq27dv3r15AAAA5Bm2RwAAAACyqXv37rpw4YImTJig2NhY1axZUxs2bFBgYKAkKTY2VjExMfb+QUFB2rBhg4YPH66ZM2fK399f06dPV9euXe19Zs2apcTERHXr1s0h1tixYzVu3DhJ0u+//66ePXsqPj5epUuXVuPGjfXDDz/Y4wIAAODeYjPSnoQAu4SEBHl7e+vixYsqWrRonsR8JyrjpwebYVS9Uk4bGwAAwFlckZPdy1zx9UwaP8JpY3uMneq0sQEAAJwluzkZ2yMAAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFuLSou2OHTvUsWNH+fv7y2az6csvv3Q4369fP9lsNoejcePGtx135cqVql69ujw9PVW9enWtXr3aSe8AAAAAAAAAAMzl0qLtlStXVKdOHc2YMSPTPo888ohiY2Ptx4YNG7Icc/fu3erevbt69+6tAwcOqHfv3nriiSf0448/mj19AAAAAAAAADCduyuDh4aGKjQ0NMs+np6e8vPzy/aYERERatu2rcLDwyVJ4eHh2r59uyIiIrRs2bI7mi8AAAAAAAAAOJvl97Tdtm2bfHx8VLlyZT377LM6d+5clv13796tkJAQh7Z27drp+++/d+Y0AQAAAAAAAMAULl1pezuhoaF6/PHHFRgYqOjoaI0ZM0YPP/yw9u3bJ09PzwyviYuLk6+vr0Obr6+v4uLiMo1z/fp1Xb9+3f46ISHBnDcAAAAAAAAAADlk6aJt9+7d7X+uWbOmGjZsqMDAQK1fv16PPfZYptfZbDaH14ZhpGu72cSJEzV+/Pg7nzAAAAAAAAAA3CHLb49wszJlyigwMFBHjx7NtI+fn1+6VbXnzp1Lt/r2ZuHh4bp48aL9OHXqlGlzBgAAAAAAAICcuKuKthcuXNCpU6dUpkyZTPsEBwdr8+bNDm2bNm1SkyZNMr3G09NTRYsWdTgAAAAAAAAAwBVcuj3C5cuXdezYMfvr6Oho7d+/XyVKlFCJEiU0btw4de3aVWXKlNGJEyf06quvqlSpUnr00Uft1/Tp00dly5bVxIkTJUlDhw5V8+bNNWnSJHXu3Flr1qzRli1btGvXrjx/fwAAAAAAAACQUy4t2u7du1etWrWyvw4LC5Mk9e3bV7Nnz9ahQ4e0ePFi/fXXXypTpoxatWqlFStWqEiRIvZrYmJilC/f/y0YbtKkiZYvX67Ro0drzJgxqlixolasWKFGjRrl3RsDAAAAAAAAgFxyadG2ZcuWMgwj0/MbN2687Rjbtm1L19atWzd169btTqYGAAAAAAAAAC5xV+1pCwAAAAAAAAD3Ooq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBCKNoCAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAJADs2bNUlBQkLy8vNSgQQPt3Lkzy/7bt29XgwYN5OXlpQoVKmjOnDkO5z/66CM1a9ZMxYsXV/HixdWmTRv997//veO4AAAAuHtRtAUAAACyacWKFRo2bJhee+01RUVFqVmzZgoNDVVMTEyG/aOjo9W+fXs1a9ZMUVFRevXVVzVkyBCtXLnS3mfbtm3q2bOntm7dqt27d6tcuXIKCQnR6dOncx0XAAAAdzebYRiGqydhNQkJCfL29tbFixdVtGjRPIn5TlS808YeVa+U08YGAABwFlfkZLfTqFEj1a9fX7Nnz7a3VatWTV26dNHEiRPT9X/llVe0du1aHT582N42cOBAHThwQLt3784wRkpKiooXL64ZM2aoT58+uYqbEVd8PZPGj3Da2B5jpzptbAAAAGfJbk7GSlsAAAAgGxITE7Vv3z6FhIQ4tIeEhOj777/P8Jrdu3en69+uXTvt3btXSUlJGV5z9epVJSUlqUSJErmOCwAAgLubu6snAAAAANwN4uPjlZKSIl9fX4d2X19fxcXFZXhNXFxchv2Tk5MVHx+vMmXKpLtm1KhRKlu2rNq0aZPruJJ0/fp1Xb9+3f46ISEh6zcIAAAAy2ClLQAAAJADNpvN4bVhGOnabtc/o3ZJmjx5spYtW6ZVq1bJy8vrjuJOnDhR3t7e9iMgICDTvgAAALAWirYAAABANpQqVUpubm7pVreeO3cu3SrYNH5+fhn2d3d3V8mSJR3ap0yZorffflubNm1S7dq17yiuJIWHh+vixYv249SpU9l6nwAAAHA9tkf4h+LBZwAAADmTP39+NWjQQJs3b9ajjz5qb9+8ebM6d+6c4TXBwcFat26dQ9umTZvUsGFDeXh42Nveffddvfnmm9q4caMaNmx4x3ElydPTU56enjl6j3c7HnwGAADuFRRtAQAAgGwKCwtT79691bBhQwUHB+vDDz9UTEyMBg4cKOnG6tbTp09r8eLFkqSBAwdqxowZCgsL07PPPqvdu3dr3rx5WrZsmX3MyZMna8yYMfr0009Vvnx5+4rawoULq3DhwtmKCwAAgHsLRVsAAAAgm7p3764LFy5owoQJio2NVc2aNbVhwwYFBgZKkmJjYxUTE2PvHxQUpA0bNmj48OGaOXOm/P39NX36dHXt2tXeZ9asWUpMTFS3bt0cYo0dO1bjxo3LVlwAAADcWyjaAgAAADkwaNAgDRo0KMNzCxcuTNfWokULRUZGZjreiRMn7jguAAAA7i08iAwAAAAAAAAALISiLQAAAAAAAABYiEuLtjt27FDHjh3l7+8vm82mL7/80n4uKSlJr7zyimrVqqVChQrJ399fffr00ZkzZ7Icc+HChbLZbOmOa9euOfndAAAAAAAAAMCdc2nR9sqVK6pTp45mzJiR7tzVq1cVGRmpMWPGKDIyUqtWrdKvv/6qTp063XbcokWLKjY21uHw8vJyxlsAAAAAAAAAAFO59EFkoaGhCg0NzfCct7e3Nm/e7ND2wQcf6MEHH1RMTIzKlSuX6bg2m01+fn6mzhUAAAAAAAAA8sJdtaftxYsXZbPZVKxYsSz7Xb58WYGBgbrvvvv0r3/9S1FRUXkzQQAAAAAAAAC4Q3dN0fbatWsaNWqUevXqpaJFi2bar2rVqlq4cKHWrl2rZcuWycvLS02bNtXRo0czveb69etKSEhwOAAAAAAAAADAFe6Kom1SUpJ69Oih1NRUzZo1K8u+jRs31lNPPaU6deqoWbNm+uyzz1S5cmV98MEHmV4zceJEeXt724+AgACz3wIAAAAAAAAAZIvli7ZJSUl64oknFB0drc2bN2e5yjYj+fLl0wMPPJDlStvw8HBdvHjRfpw6depOpw0AAAAAAAAAueLSB5HdTlrB9ujRo9q6datKliyZ4zEMw9D+/ftVq1atTPt4enrK09PzTqYKAAAAAAAAAKZwadH28uXLOnbsmP11dHS09u/frxIlSsjf31/dunVTZGSkvvrqK6WkpCguLk6SVKJECeXPn1+S1KdPH5UtW1YTJ06UJI0fP16NGzdWpUqVlJCQoOnTp2v//v2aOXNm3r9BAAAAAAAAAMghlxZt9+7dq1atWtlfh4WFSZL69u2rcePGae3atZKkunXrOly3detWtWzZUpIUExOjfPn+b5eHv/76S88995zi4uLk7e2tevXqaceOHXrwwQed+2YAAAAAAAAAwAQuLdq2bNlShmFkej6rc2m2bdvm8Pq9997Te++9d6dTAwAAAAAAAACXsPyDyAAAAAAAAADgn4SiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQtxdPQH8M7wTFe+0sUfVK5WnMTOLBwAAgH+WpPEjnDa2x9ipLo8HAABch5W2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBCKNoCAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAA97yFCxfq6tWrrp4GAAAAkC25KtpGR0ebPQ8AAADAacLDw+Xn56f+/fvr+++/d/V0AAAAgCzlqmh7//33q1WrVlqyZImuXbtm9pwAAAAAU/3+++9asmSJ/vzzT7Vq1UpVq1bVpEmTFBcX5+qpAQAAAOnkqmh74MAB1atXTyNGjJCfn5/+/e9/67///a/ZcwMAAABM4ebmpk6dOmnVqlU6deqUnnvuOS1dulTlypVTp06dtGbNGqWmprp6mgAAAICkXBZta9asqWnTpun06dNasGCB4uLi9NBDD6lGjRqaNm2azp8/b/Y8AQAAAFP4+PioadOmCg4OVr58+XTo0CH169dPFStW1LZt21w9PQAAAODOHkTm7u6uRx99VJ999pkmTZqk48ePa+TIkbrvvvvUp08fxcbGmjVPAAAA4I6cPXtWU6ZMUY0aNdSyZUslJCToq6++UnR0tM6cOaPHHntMffv2dfU0AQAAgDsr2u7du1eDBg1SmTJlNG3aNI0cOVLHjx/Xt99+q9OnT6tz585mzRMAAADItY4dOyogIEALFy7Us88+q9OnT2vZsmVq06aNJKlAgQIaMWKETp065eKZAgAAAJJ7bi6aNm2aFixYoCNHjqh9+/ZavHix2rdvr3z5btSAg4KCNHfuXFWtWtXUyQIAAAC54ePjo+3btys4ODjTPmXKlFF0dHQezgoAAADIWK5W2s6ePVu9evVSTEyMvvzyS/3rX/+yF2zTlCtXTvPmzTNlkgAAAMCdaNGiherXr5+uPTExUYsXL5Yk2Ww2BQYG5vXUAAAAgHRyVbQ9evSowsPD5efnl2mf/PnzsycYAAAALOHpp5/WxYsX07VfunRJTz/9tAtmBAAAAGQuV0XbBQsW6PPPP0/X/vnnn2vRokV3PCkAAADATIZhyGazpWv//fff5e3t7YIZAQAAAJnL1Z6277zzjubMmZOu3cfHR8899xwrbAEAAGAJ9erVk81mk81mU+vWreXu/n/pb0pKiqKjo/XII4+4cIYAAABAerkq2p48eVJBQUHp2gMDAxUTE3PHkwIAAADM0KVLF0nS/v371a5dOxUuXNh+Ln/+/Cpfvry6du3qotkBAAAAGctV0dbHx0cHDx5U+fLlHdoPHDigkiVLmjEvAAAA4I6NHTtWklS+fHl1795dXl5eLp4RAAAAcHu5Ktr26NFDQ4YMUZEiRdS8eXNJ0vbt2zV06FD16NHD1AkCAAAAd4rtuwAAAHA3yVXR9s0339TJkycd9gVLTU1Vnz599Pbbb5s6QQAAACA3SpQooV9//VWlSpVS8eLFM3wQWZo//vgjD2cGAAAAZC1XRdv8+fNrxYoVeuONN3TgwAEVKFBAtWrVUmBgoNnzAwAAAHLlvffeU5EiRex/zqpoCwAAAFhJroq2aSpXrqzKlSubNRcAAADANDdvidCvXz/XTQQAAADIoXy5uSglJUXz5s1Tr1691KZNGz388MMOR3bt2LFDHTt2lL+/v2w2m7788kuH84ZhaNy4cfL391eBAgXUsmVL/fzzz7cdd+XKlapevbo8PT1VvXp1rV69OqdvEQAAAHe5hISEbB8AAACAleSqaDt06FANHTpUKSkpqlmzpurUqeNwZNeVK1dUp04dzZgxI8PzkydP1rRp0zRjxgzt2bNHfn5+atu2rS5dupTpmLt371b37t3Vu3dvHThwQL1799YTTzyhH3/8McfvEwAAAHevYsWKqXjx4lkeaX0AAAAAK8nV9gjLly/XZ599pvbt299R8NDQUIWGhmZ4zjAMRURE6LXXXtNjjz0mSVq0aJF8fX316aef6t///neG10VERKht27YKDw+XJIWHh2v79u2KiIjQsmXL7mi+AAAAuHts3brV1VMAAAAAciVXK23z58+v+++/3+y5OIiOjlZcXJxCQkLsbZ6enmrRooW+//77TK/bvXu3wzWS1K5duyyvuX79OrfIAQAA3GNatGiR7SMnZs2apaCgIHl5ealBgwbauXNnlv23b9+uBg0ayMvLSxUqVNCcOXMczv/888/q2rWrypcvL5vNpoiIiHRjjBs3TjabzeHw8/PL0bwBAABw98hV0XbEiBF6//33ZRiG2fOxi4uLkyT5+vo6tPv6+trPZXZdTq+ZOHGivL297UdAQMAdzBwAAABWcPDgQaWmptr/nNWRXStWrNCwYcP02muvKSoqSs2aNVNoaKhiYmIy7B8dHa327durWbNmioqK0quvvqohQ4Zo5cqV9j5Xr15VhQoV9M4772RZiK1Ro4ZiY2Ptx6FDh7I9bwAAANxdcrU9wq5du7R161b95z//UY0aNeTh4eFwftWqVaZMTpJsNpvDa8Mw0rXd6TXh4eEKCwuzv05ISKBwCwAAcJerW7eu4uLi5OPjo7p168pms2W46MBmsyklJSVbY06bNk39+/fXgAEDJN3Ymmvjxo2aPXu2Jk6cmK7/nDlzVK5cOfvq2WrVqmnv3r2aMmWKunbtKkl64IEH9MADD0iSRo0alWlsd3d3VtcCAAD8Q+SqaFusWDE9+uijZs/FQVpCGhcXpzJlytjbz507l24l7a3X3bqq9nbXeHp6ytPT8w5nDAAAACuJjo5W6dKl7X++U4mJidq3b1+6wmpISEimW3FltnXXvHnzlJSUlG7xQ1aOHj0qf39/eXp6qlGjRnr77bdVoUKFnL8RAAAAWF6uirYLFiwwex7pBAUFyc/PT5s3b1a9evUk3UiUt2/frkmTJmV6XXBwsDZv3qzhw4fb2zZt2qQmTZo4fc4AAACwjsDAwAz/nFvx8fFKSUnJ0VZcmW3dlZycrPj4eIfFCVlp1KiRFi9erMqVK+vs2bN688031aRJE/38888qWbJkhtdcv35d169ft7/muQ0AAAB3j1wVbSUpOTlZ27Zt0/Hjx9WrVy8VKVJEZ86cUdGiRVW4cOFsjXH58mUdO3bM/jo6Olr79+9XiRIlVK5cOQ0bNkxvv/22KlWqpEqVKuntt99WwYIF1atXL/s1ffr0UdmyZe23ow0dOlTNmzfXpEmT1LlzZ61Zs0ZbtmzRrl27cvtWAQAAcA84cuSIPvjgAx0+fFg2m01Vq1bViy++qCpVquRonJxuxZVR/4zasxIaGmr/c61atRQcHKyKFStq0aJFDtt83WzixIkaP358tmMAAADAOnL1ILKTJ0+qVq1a6ty5swYPHqzz589LkiZPnqyRI0dme5y9e/eqXr169pW0YWFhqlevnl5//XVJ0ssvv6xhw4Zp0KBBatiwoU6fPq1NmzapSJEi9jFiYmIUGxtrf92kSRMtX75cCxYsUO3atbVw4UKtWLFCjRo1ys1bBQAAwD3giy++UM2aNbVv3z7VqVNHtWvXVmRkpGrWrKnPP/88W2OUKlVKbm5uOdqKK7Otu9zd3TNdIZsdhQoVUq1atXT06NFM+4SHh+vixYv249SpU7mOBwAAgLyVq5W2Q4cOVcOGDXXgwAGHZPPRRx+1P5QhO1q2bJnhwyDS2Gw2jRs3TuPGjcu0z7Zt29K1devWTd26dcv2PAAAAHBve/nllxUeHq4JEyY4tI8dO1avvPKKHn/88duOkT9/fjVo0ECbN292eL7D5s2b1blz5wyvCQ4O1rp16xzaNm3apIYNG+ZoP9tbXb9+XYcPH1azZs0y7cNzGwAAAO5euVppu2vXLo0ePVr58+d3aA8MDNTp06dNmRgAAABglri4OPXp0ydd+1NPPZXpfrQZCQsL08cff6z58+fr8OHDGj58uGJiYjRw4EBJN1a33hxn4MCBOnnypMLCwnT48GHNnz9f8+bNc7g7LTExUfv379f+/fuVmJio06dPa//+/Q7biI0cOVLbt29XdHS0fvzxR3Xr1k0JCQnq27dvbr4cAAAAsLhcrbRNTU1VSkpKuvbff//dYesCAAAAwApatmypnTt36v7773do37VrV5arVW/VvXt3XbhwQRMmTFBsbKxq1qypDRs22B90Fhsbq5iYGHv/oKAgbdiwQcOHD9fMmTPl7++v6dOnq2vXrvY+Z86csW8XJklTpkzRlClT1KJFC/tdZb///rt69uyp+Ph4lS5dWo0bN9YPP/xgygPWAAAAYD25Ktq2bdtWERER+vDDDyXd2Mbg8uXLGjt2rNq3b2/qBAEAAIDcWLt2rf3PnTp10iuvvKJ9+/apcePGkqQffvhBn3/+eY4f1jVo0CANGjQow3MLFy5M19aiRQtFRkZmOl758uWz3DJMkpYvX56jOQIAAODulqui7XvvvadWrVqpevXqunbtmnr16qWjR4+qVKlSWrZsmdlzBAAAAHKsS5cu6dpmzZqlWbNmObQNHjzYvr0BAAAAYAW5Ktr6+/tr//79WrZsmSIjI5Wamqr+/fvrySefVIECBcyeIwAAAJBjqamprp4CAAAAkCu5KtpKUoECBfTMM8/omWeeMXM+AAAAAAAAAPCPlqui7eLFi7M8n9GTeQEAAABXunLlirZv366YmBglJiY6nBsyZIiLZgUAAACkl6ui7dChQx1eJyUl6erVq8qfP78KFixI0RYAAACWEhUVpfbt2+vq1au6cuWKSpQoofj4eBUsWFA+Pj4UbQEAAGAp+XJz0Z9//ulwXL58WUeOHNFDDz3Eg8gAAABgOcOHD1fHjh31xx9/qECBAvrhhx908uRJNWjQQFOmTHH19AAAAAAHuSraZqRSpUp655130q3CBQAAAFxt//79GjFihNzc3OTm5qbr168rICBAkydP1quvvurq6QEAAAAOTCvaSpKbm5vOnDlj5pAAAADAHfPw8JDNZpMk+fr6KiYmRpLk7e1t/zMAAABgFbna03bt2rUOrw3DUGxsrGbMmKGmTZuaMjEAAADALPXq1dPevXtVuXJltWrVSq+//rri4+P1ySefqFatWq6eHgAAAOAgV0XbLl26OLy22WwqXbq0Hn74YU2dOtWMeQEAAACmefvtt3Xp0iVJ0htvvKG+ffvq+eef1/33368FCxa4eHYAAACAo1wVbVNTU82eBwAAAOA0DRs2tP+5dOnS2rBhgwtnAwAAAGQtV0VbAAAA4G507tw5HTlyRDabTVWqVFHp0qVdPSUAAAAgnVwVbcPCwrLdd9q0abkJAQAAAJgmISFBgwcP1vLly5WSkiLpxkN0u3fvrpkzZ8rb29vFMwQAAAD+T66KtlFRUYqMjFRycrKqVKkiSfr111/l5uam+vXr2/ulPaEXAAAAcKUBAwZo//79+uqrrxQcHCybzabvv/9eQ4cO1bPPPqvPPvvM1VMEAAAA7HJVtO3YsaOKFCmiRYsWqXjx4pKkP//8U08//bSaNWumESNGmDpJAAAA4E6sX79eGzdu1EMPPWRva9eunT766CM98sgjLpwZAAAAkF6+3Fw0depUTZw40V6wlaTixYvrzTff1NSpU02bHAAAAGCGkiVLZrgFgre3t0NOCwAAAFhBroq2CQkJOnv2bLr2c+fO6dKlS3c8KQAAAMBMo0ePVlhYmGJjY+1tcXFxeumllzRmzBgXzgwAAABIL1fbIzz66KN6+umnNXXqVDVu3FiS9MMPP+ill17SY489ZuoEAQAAgNyoV6+ewzMWjh49qsDAQJUrV06SFBMTI09PT50/f17//ve/XTVNAAAAIJ1cFW3nzJmjkSNH6qmnnlJSUtKNgdzd1b9/f7377rumThAAAADIjS5durh6CgAAAECu5KpoW7BgQc2aNUvvvvuujh8/LsMwdP/996tQoUJmzw8AAADIlbFjx7p6CgAAAECu5KpomyY2NlaxsbFq3ry5ChQoIMMwHG5BAwAAAKxk3759Onz4sGw2m6pXr6569eq5ekoAAABAOrkq2l64cEFPPPGEtm7dKpvNpqNHj6pChQoaMGCAihUrpqlTp5o9TwAAACDXzp07px49emjbtm0qVqyYDMPQxYsX1apVKy1fvlylS5d29RQBAAAAu3y5uWj48OHy8PBQTEyMChYsaG/v3r27vv76a9MmBwAAAJjhxRdfVEJCgn7++Wf98ccf+vPPP/XTTz8pISFBQ4YMcfX0AAAAAAe5Wmm7adMmbdy4Uffdd59De6VKlXTy5ElTJgYAAACY5euvv9aWLVtUrVo1e1v16tU1c+ZMhYSEuHBmAAAAQHq5Wml75coVhxW2aeLj4+Xp6XnHkwIAAADMlJqaKg8Pj3TtHh4eSk1NdcGMAAAAgMzlqmjbvHlzLV682P7aZrMpNTVV7777rlq1amXa5AAAAAAzPPzwwxo6dKjOnDljbzt9+rSGDx+u1q1bu3BmAAAAQHq52h7h3XffVcuWLbV3714lJibq5Zdftu8P9t1335k9RwAAAOCOzJgxQ507d1b58uUVEBAgm82mmJgY1apVS0uWLHH19AAAAAAHuSraVq9eXQcPHtTs2bPl5uamK1eu6LHHHtPgwYNVpkwZs+cIAAAA3JGAgABFRkZq8+bN+uWXX2QYhqpXr642bdq4emoAAABAOjku2iYlJSkkJERz587V+PHjnTEnAAAAwDTJycny8vLS/v371bZtW7Vt29bVUwIAAACylOM9bT08PPTTTz/JZrM5Yz4AAACAqdzd3RUYGKiUlBRXTwUAAADIllw9iKxPnz6aN2+e2XMBAAAAnGL06NEKDw/XH3/84eqpAAAAALeVqz1tExMT9fHHH2vz5s1q2LChChUq5HB+2rRppkwOAAAAMMP06dN17Ngx+fv7KzAwMF3+GhkZ6aKZAQAAAOnlqGj722+/qXz58vrpp59Uv359SdKvv/7q0IdtEwAAAGA1Xbp0kc1mk2EYrp4KAAAAcFs5KtpWqlRJsbGx2rp1qySpe/fumj59unx9fZ0yOQAAAOBOXL16VS+99JK+/PJLJSUlqXXr1vrggw9UqlQpV08NAAAAyFSOira3rkz4z3/+oytXrpg6IeBu9U5UvFPGHVUv4/9U5nU8AADuRmPHjtXChQv15JNPqkCBAvr000/1/PPP6/PPP3f11IC7QtL4EU4Z12PsVEvEAwDAqnK1p20abi8DAACAla1atUrz5s1Tjx49JElPPvmkmjZtqpSUFLm5ubl4dgAAAEDG8uWks81mS7dnLXvYAgAAwKpOnTqlZs2a2V8/+OCDcnd315kzZ1w4KwAAACBrOd4eoV+/fvL09JQkXbt2TQMHDkz39N1Vq1aZN0MAAAAgl1JSUpQ/f36HNnd3dyUnJ7toRgAAAMDt5aho27dvX4fXTz31lKmTAQAAAMx066IDKeOFByw6AAAAgJXkqGi7YMECZ80DAAAAMN2tiw4kFh4AAADA+u7oQWQAAACAlbHoAAAAAHejHD2IzBXKly9vfwDazcfgwYMz7L9t27YM+//yyy95PHMAAAAAAAAAyDnLr7Tds2ePUlJS7K9/+ukntW3bVo8//niW1x05ckRFixa1vy5durTT5ggAAAAAAAAAZrF80fbWYus777yjihUrqkWLFlle5+Pjo2LFijlxZgAAAAAAAABgPstvj3CzxMRELVmyRM8884xsNluWfevVq6cyZcqodevW2rp1a5Z9r1+/roSEBIcDAAAAAAAAAFzhrirafvnll/rrr7/Ur1+/TPuUKVNGH374oVauXKlVq1apSpUqat26tXbs2JHpNRMnTpS3t7f9CAgIcMLsAQAAAAAAAOD2LL89ws3mzZun0NBQ+fv7Z9qnSpUqqlKliv11cHCwTp06pSlTpqh58+YZXhMeHq6wsDD764SEBAq3AAAAAAAAAFzirinanjx5Ulu2bNGqVatyfG3jxo21ZMmSTM97enrK09PzTqYHAAAAAAAAAKa4a7ZHWLBggXx8fNShQ4ccXxsVFaUyZco4YVYAAAAAAAAAYK67YqVtamqqFixYoL59+8rd3XHK4eHhOn36tBYvXixJioiIUPny5VWjRg37g8tWrlyplStXumLqAAAAAAAAAJAjd0XRdsuWLYqJidEzzzyT7lxsbKxiYmLsrxMTEzVy5EidPn1aBQoUUI0aNbR+/Xq1b98+L6cMAAAAAAAAALlyVxRtQ0JCZBhGhucWLlzo8Prll1/Wyy+/nAezAgAAAAAAAADz3TV72gIAAAAAAADAPwFFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwELuigeRAXC9d6LinTLuqHql8jReVjEBAADwz5I0foRTxvUYOzVP42UVEwBwd2KlLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAcmDWrFkKCgqSl5eXGjRooJ07d2bZf/v27WrQoIG8vLxUoUIFzZkzx+H8zz//rK5du6p8+fKy2WyKiIgwJS4AAADuXhRtAQAAgGxasWKFhg0bptdee01RUVFq1qyZQkNDFRMTk2H/6OhotW/fXs2aNVNUVJReffVVDRkyRCtXrrT3uXr1qipUqKB33nlHfn5+psQFAADA3Y2iLQAAAJBN06ZNU//+/TVgwABVq1ZNERERCggI0OzZszPsP2fOHJUrV04RERGqVq2aBgwYoGeeeUZTpkyx93nggQf07rvvqkePHvL09DQlLgAAAO5uFG0BAACAbEhMTNS+ffsUEhLi0B4SEqLvv/8+w2t2796drn+7du20d+9eJSUlOS2uJF2/fl0JCQkOBwAAAO4OFG0BAACAbIiPj1dKSop8fX0d2n19fRUXF5fhNXFxcRn2T05OVnx8vNPiStLEiRPl7e1tPwICArIVDwAAAK5H0RYAAADIAZvN5vDaMIx0bbfrn1G72XHDw8N18eJF+3Hq1KkcxQMAAIDruLt6AgAAAMDdoFSpUnJzc0u3uvXcuXPpVsGm8fPzy7C/u7u7SpYs6bS4kuTp6ZnpHrkAAACwNlbaAgAAANmQP39+NWjQQJs3b3Zo37x5s5o0aZLhNcHBwen6b9q0SQ0bNpSHh4fT4gIAAODuxkpbAAAAIJvCwsLUu3dvNWzYUMHBwfrwww8VExOjgQMHSrqxJcHp06e1ePFiSdLAgQM1Y8YMhYWF6dlnn9Xu3bs1b948LVu2zD5mYmKi/ve//9n/fPr0ae3fv1+FCxfW/fffn624AAAAuLdQtAUAAACyqXv37rpw4YImTJig2NhY1axZUxs2bFBgYKAkKTY2VjExMfb+QUFB2rBhg4YPH66ZM2fK399f06dPV9euXe19zpw5o3r16tlfT5kyRVOmTFGLFi20bdu2bMUFAADAvYWiLQAAAJADgwYN0qBBgzI8t3DhwnRtLVq0UGRkZKbjlS9f3v5wstzGBQAAwL2FPW0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALMTd1RMAACt4JyreaWOPqlfK5fEAAADwz5M0foTTxvYYO9Xl8QDgXsZKWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBBLF23HjRsnm83mcPj5+WV5zfbt29WgQQN5eXmpQoUKmjNnTh7NFgAAAAAAAADunLurJ3A7NWrU0JYtW+yv3dzcMu0bHR2t9u3b69lnn9WSJUv03XffadCgQSpdurS6du2aF9MFAAAAAAAAgDti+aKtu7v7bVfXppkzZ47KlSuniIgISVK1atW0d+9eTZkyhaItAAAAAAAAgLuCpbdHkKSjR4/K399fQUFB6tGjh3777bdM++7evVshISEObe3atdPevXuVlJTk7KkCAAAAAAAAwB2zdNG2UaNGWrx4sTZu3KiPPvpIcXFxatKkiS5cuJBh/7i4OPn6+jq0+fr6Kjk5WfHx8ZnGuX79uhISEhwOAAAAAAAAAHAFS2+PEBoaav9zrVq1FBwcrIoVK2rRokUKCwvL8Bqbzebw2jCMDNtvNnHiRI0fP96EGQOANb0TlfkHV3dqVL1SeRrTKvEAAADgWknjRzhtbI+xU/M0plXiAbAOS6+0vVWhQoVUq1YtHT16NMPzfn5+iouLc2g7d+6c3N3dVbJkyUzHDQ8P18WLF+3HqVOnTJ03AAAAAAAAAGSXpVfa3ur69es6fPiwmjVrluH54OBgrVu3zqFt06ZNatiwoTw8PDId19PTU56enqbOFQAAAAAAAAByw9IrbUeOHKnt27crOjpaP/74o7p166aEhAT17dtX0o0Vsn369LH3HzhwoE6ePKmwsDAdPnxY8+fP17x58zRy5EhXvQUAAAAAAAAAyBFLr7T9/fff1bNnT8XHx6t06dJq3LixfvjhBwUGBkqSYmNjFRMTY+8fFBSkDRs2aPjw4Zo5c6b8/f01ffp0de3a1VVvAQAAAAAAAAByxNJF2+XLl2d5fuHChenaWrRoocjISCfNCAAAAAAAAACcy9LbIwAAAAAAAADAPw1FWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAsxN3VEwAA4G70TlS8U8YdVa9UnsbLLCbxzI3nzJhWiQcAAO5+SeNHOGVcj7FT7+l4mcW81+M5M6ZV4rkSK20BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAcmDWrFkKCgqSl5eXGjRooJ07d2bZf/v27WrQoIG8vLxUoUIFzZkzJ12flStXqnr16vL09FT16tW1evVqh/Pjxo2TzWZzOPz8/Ex9XwAAALAOirYAAABANq1YsULDhg3Ta6+9pqioKDVr1kyhoaGKiYnJsH90dLTat2+vZs2aKSoqSq+++qqGDBmilStX2vvs3r1b3bt3V+/evXXgwAH17t1bTzzxhH788UeHsWrUqKHY2Fj7cejQIae+VwAAALgORVsAAAAgm6ZNm6b+/ftrwIABqlatmiIiIhQQEKDZs2dn2H/OnDkqV66cIiIiVK1aNQ0YMEDPPPOMpkyZYu8TERGhtm3bKjw8XFWrVlV4eLhat26tiIgIh7Hc3d3l5+dnP0qXLu3MtwoAAAAXomgLAAAAZENiYqL27dunkJAQh/aQkBB9//33GV6ze/fudP3btWunvXv3KikpKcs+t4559OhR+fv7KygoSD169NBvv/12p28JAAAAFkXRFgAAAMiG+Ph4paSkyNfX16Hd19dXcXFxGV4TFxeXYf/k5GTFx8dn2efmMRs1aqTFixdr48aN+uijjxQXF6cmTZrowoULmc73+vXrSkhIcDgAAABwd6BoCwAAAOSAzWZzeG0YRrq22/W/tf12Y4aGhqpr166qVauW2rRpo/Xr10uSFi1alGnciRMnytvb234EBATc5p0BAADAKijaAgAAANlQqlQpubm5pVtVe+7cuXQrZdP4+fll2N/d3V0lS5bMsk9mY0pSoUKFVKtWLR09ejTTPuHh4bp48aL9OHXqVJbvDwAAANZB0RYAAADIhvz586tBgwbavHmzQ/vmzZvVpEmTDK8JDg5O13/Tpk1q2LChPDw8suyT2ZjSja0PDh8+rDJlymTax9PTU0WLFnU4AAAAcHegaAsAAABkU1hYmD7++GPNnz9fhw8f1vDhwxUTE6OBAwdKurG6tU+fPvb+AwcO1MmTJxUWFqbDhw9r/vz5mjdvnkaOHGnvM3ToUG3atEmTJk3SL7/8okmTJmnLli0aNmyYvc/IkSO1fft2RUdH68cff1S3bt2UkJCgvn375tl7BwAAQN5xd/UEAAAAgLtF9+7ddeHCBU2YMEGxsbGqWbOmNmzYoMDAQElSbGysYmJi7P2DgoK0YcMGDR8+XDNnzpS/v7+mT5+url272vs0adJEy5cv1+jRozVmzBhVrFhRK1asUKNGjex9fv/9d/Xs2VPx8fEqXbq0GjdurB9++MEeFwAAAPcWirYAAABADgwaNEiDBg3K8NzChQvTtbVo0UKRkZFZjtmtWzd169Yt0/PLly/P0RwBAABwd2N7BAAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZi6aLtxIkT9cADD6hIkSLy8fFRly5ddOTIkSyv2bZtm2w2W7rjl19+yaNZAwAAAAAAAEDuWbpou337dg0ePFg//PCDNm/erOTkZIWEhOjKlSu3vfbIkSOKjY21H5UqVcqDGQMAAAAAAADAnXF39QSy8vXXXzu8XrBggXx8fLRv3z41b948y2t9fHxUrFgxJ84OAAAAAAAAAMxn6ZW2t7p48aIkqUSJErftW69ePZUpU0atW7fW1q1bnT01AAAAAAAAADCFpVfa3swwDIWFhemhhx5SzZo1M+1XpkwZffjhh2rQoIGuX7+uTz75RK1bt9a2bdsyXZ17/fp1Xb9+3f46ISHB9PkDAAAAAAAAQHbcNUXbF154QQcPHtSuXbuy7FelShVVqVLF/jo4OFinTp3SlClTMi3aTpw4UePHjzd1vgAAAAAAAACQG3fF9ggvvvii1q5dq61bt+q+++7L8fWNGzfW0aNHMz0fHh6uixcv2o9Tp07dyXQBAAAAAAAAINcsvdLWMAy9+OKLWr16tbZt26agoKBcjRMVFaUyZcpket7T01Oenp65nSYAAAAAAAAAmMbSRdvBgwfr008/1Zo1a1SkSBHFxcVJkry9vVWgQAFJN1bJnj59WosXL5YkRUREqHz58qpRo4YSExO1ZMkSrVy5UitXrnTZ+wAAAAAAAACA7LJ00Xb27NmSpJYtWzq0L1iwQP369ZMkxcbGKiYmxn4uMTFRI0eO1OnTp1WgQAHVqFFD69evV/v27fNq2gAAAAAAAACQa5Yu2hqGcds+CxcudHj98ssv6+WXX3bSjAAAAAAAAADAue6KB5EBAAAAAAAAwD8FRVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBCKNoCAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBCKNoCAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICF3BVF21mzZikoKEheXl5q0KCBdu7cmWX/7du3q0GDBvLy8lKFChU0Z86cPJopAAAA7nXOyE1Xrlyp6tWry9PTU9WrV9fq1avvOC4AAADuXpYv2q5YsULDhg3Ta6+9pqioKDVr1kyhoaGKiYnJsH90dLTat2+vZs2aKSoqSq+++qqGDBmilStX5vHMAQAAcK9xRm66e/dude/eXb1799aBAwfUu3dvPfHEE/rxxx9zHRcAAAB3N8sXbadNm6b+/ftrwIABqlatmiIiIhQQEKDZs2dn2H/OnDkqV66cIiIiVK1aNQ0YMEDPPPOMpkyZksczBwAAwL3GGblpRESE2rZtq/DwcFWtWlXh4eFq3bq1IiIich0XAAAAdzd3V08gK4mJidq3b59GjRrl0B4SEqLvv/8+w2t2796tkJAQh7Z27dpp3rx5SkpKkoeHR7prrl+/ruvXr9tfX7x4UZKUkJBwp28h265dvuS0sRMS8v/j4jkzJvHu7niZxSSeufGcGZN4eROTeObGc2ZMq8RzTqwbuZhhGHkWMyvOyk13796t4cOHp+uTVrTNTVzJGjlu0rXrt++USx4ZvA/imRvPmTGJlzcxiWduPGfGJN7dHS+zmPd6PGfGtEo8Z8h2jmtY2OnTpw1JxnfffefQ/tZbbxmVK1fO8JpKlSoZb731lkPbd999Z0gyzpw5k+E1Y8eONSRxcHBwcHBwcHBY8Dh16pQ5yeUdclZu6uHhYSxdutShz9KlS438+fPnOq5hkONycHBwcHBwcFj5uF2Oa+mVtmlsNpvDa8Mw0rXdrn9G7WnCw8MVFhZmf52amqo//vhDJUuWzDKOKyQkJCggIECnTp1S0aJF78mYxCMe8Vwbk3jEs3I8V8QknusYhqFLly7J39/f1VNx4IzcNDtj5jQuOa514rkiJvGIZ+V4rohJPOIRz7Ux7/V4OZHdHNfSRdtSpUrJzc1NcXFxDu3nzp2Tr69vhtf4+fll2N/d3V0lS5bM8BpPT095eno6tBUrViz3E88DRYsWzfO/dHkdk3jEI55rYxKPeFaO54qYxHMNb29vV0/Bzlm5aWZ90sbMTVyJHNeK8VwRk3jEs3I8V8QkHvGI59qY93q87MpOjmvpB5Hlz59fDRo00ObNmx3aN2/erCZNmmR4TXBwcLr+mzZtUsOGDTPczxYAAADIDmflppn1SRszN3EBAABwd7P0SltJCgsLU+/evdWwYUMFBwfrww8/VExMjAYOHCjpxm1fp0+f1uLFiyVJAwcO1IwZMxQWFqZnn31Wu3fv1rx587Rs2TJXvg0AAADcA5yRmw4dOlTNmzfXpEmT1LlzZ61Zs0ZbtmzRrl27sh0XAAAA9xbLF227d++uCxcuaMKECYqNjVXNmjW1YcMGBQYGSpJiY2MVExNj7x8UFKQNGzZo+PDhmjlzpvz9/TV9+nR17drVVW/BVJ6enho7dmy6W93upZjEIx7xXBuTeMSzcjxXxCQebuaM3LRJkyZavny5Ro8erTFjxqhixYpasWKFGjVqlO24d7t/wt/7e/09Eo94Vo9JPOIRz7Ux7/V4zmAz0p6EAAAAAAAAAABwOUvvaQsAAAAAAAAA/zQUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAgMliYmKU0XM+DcNweKo8AAAAcLcgxwXyls3I6CcOLnfw4MFs9atdu7aTZwKz/PXXX/riiy90/PhxvfTSSypRooQiIyPl6+ursmXLunp6yIGUlBQdOnRIgYGBKl68uFNixMTEKCAgQDabzaHdMAydOnVK5cqVc0rcvLJo0SKVKlVKHTp0kCS9/PLL+vDDD1W9enUtW7ZMgYGBpsc8duyYjh8/rubNm6tAgQIyDCPd19csbm5uio2NlY+Pj0P7hQsX5OPjo5SUFKfEdZWEhAR9++23qlKliqpVq2b6+JGRkfLw8FCtWrUkSWvWrNGCBQtUvXp1jRs3Tvnz5zc95r3s999/19q1axUTE6PExESHc9OmTXPRrPBPQY577yHHvXeQ4945clxy3JwgxzXXPZnjGrAkm81m5MuXz7DZbJke+fLlc1r8vn37Gtu3b3fa+Nl15swZ4+TJk66exh07cOCAUbp0aeP+++833N3djePHjxuGYRijR482evfubXq8MmXKGD179jTmzp1r/PLLL6aPf6uxY8caJ06ccHocVxk6dKjx8ccfG4ZhGMnJyUbTpk0Nm81mFCpUyNi6datTYubLl884e/Zsuvb4+HjTf/aLFStmFC9ePN1RokQJw9/f32jevLkxf/58U2NWrlzZ+OabbwzDMIzvv//eKFCggDF37lyjY8eOxqOPPmpqrPj4eKN169b2fzfTfv6eeeYZIywszNRYaWw2m3Hu3Ll07SdOnDAKFizolJi3unjxorF69Wrjf//7n+ljP/7448YHH3xgGIZhXL161ahUqZLh4eFhuLu7G1988YXp8Ro2bGgf9/jx44aXl5fRs2dP4/777zeGDh1qSoy6desa9erVy9bhDAsXLjS++uor++uXXnrJ8Pb2NoKDg03993XLli1GwYIFjRo1ahju7u5G3bp1jWLFihne3t5Gq1atTIsDZIYc9wZy3NwhxzUXOS45bk65Osd1Zn5rGOS4zkCOe2fYHsGioqOj9dtvvyk6OjrTY9++fU6Lf+nSJYWEhKhSpUp6++23dfr0aafFysrDDz+soKAgU8YqXry4SpQoka3DbGFhYerXr5+OHj0qLy8ve3toaKh27NhherypU6eqaNGimjZtmqpVq6YyZcqoR48emjNnjg4fPmx6vHXr1qlixYpq3bq1Pv30U127ds30GLc6e/asevfuLX9/f7m7u8vNzc3hMNMXX3yhOnXqSLrxXqOjo/XLL79o2LBheu2110yNlcbI5BPyy5cvO/wdMsPrr7+ufPnyqUOHDho/frzGjRunDh06KF++fBo8eLAqV66s559/Xh999JFpMU+dOqX7779fkvTll1+qW7dueu655zRx4kTt3LnTtDiSNHz4cLm7uysmJkYFCxa0t3fv3l1ff/21qbHCwsIUFhYmm82mMWPG2F+HhYVp6NCh6t69u+rWrWtqzDRPPPGEZsyYIUn6+++/1bBhQz3xxBOqXbu2Vq5caWqsHTt2qFmzZpKk1atXyzAM/fXXX5o+fbrefPNNU2NJ0q+//mr/un3++edq3ry5Pv30Uy1cuNC099alSxd17txZnTt3Vrt27XT8+HF5enqqZcuWatmypby8vHT8+HG1a9fOlHi3evvtt1WgQAFJ0u7duzVjxgxNnjxZpUqV0vDhw02LEx4erhEjRuinn36Sl5eXVq5cqVOnTqlFixZ6/PHHTYsDZIYc9wZy3NwhxyXHzQlyXPO4KsfNy/xWIsd1BnLcO+Pu6gkgY5ndNnHx4kUtXbpU8+bN0/79+512+8HKlSt14cIFLVmyRAsXLtTYsWPVpk0b9e/fX507d5aHh4dpsZKTk/XWW2/pmWeeUUBAgMO5xYsX6+rVq6bEiYiIMGWc3NizZ4/mzp2brr1s2bKKi4szPV7Pnj3Vs2dPSTcSv61bt+qrr77Siy++qNTUVNP/3uzbt08HDx7UggULNHz4cA0ePFg9evTQM888owceeMDUWGn69eunmJgYjRkzRmXKlHHaLUCSFB8fLz8/P0nShg0b9Pjjj6ty5crq37+/pk+fbmqssLAwSbInRDcnYCkpKfrxxx9NT4h27dqlN998UwMHDnRonzt3rjZt2qSVK1eqdu3amj59up599llTYhYuXFgXLlxQuXLltGnTJvsvbC8vL/3999+mxEizadMmbdy4Uffdd59De6VKlXTy5ElTY0VFRUm68R+SQ4cOOdzSlD9/ftWpU0cjR440NWaaHTt22P+DdXOSuWjRIr355pvq2rWrabEuXrxo/8//119/ra5du6pgwYLq0KGDXnrpJdPipDEMQ6mpqZKkLVu26F//+pckKSAgQPHx8abEGDt2rP3PAwYM0JAhQ/TGG2+k63Pq1ClT4t0qs//kNW3aVC1btjQtzuHDh7Vs2TJJkru7u/7++28VLlxYEyZMUOfOnfX888+bFgvICDnuDeS4uUOOay5yXHLc7HJVjpuX+a1EjusM5Lh3yFVLfJEz33zzjfHkk08aBQoUMKpWrWq89tprRmRkZJ7Fj4yMNF544QXDy8vLKFWqlDFs2DDj119/NW38QoUKGdHR0aaNZzU+Pj7271fhwoXtt65s3LjRuO+++5wS89KlS8Z//vMfY9SoUUbjxo0NT09Po169esawYcOcEi9NUlKSsWrVKqNjx46Gh4eHUbNmTSMiIsL466+/TI1TuHBhIyoqytQxM1OuXDlj48aNRnJyshEQEGCsW7fOMAzD+Omnn4xixYqZGqtly5ZGy5YtDZvNZjRp0sT+umXLlkZISIjx3HPPmfqzZxg3fv6OHj2arv3o0aNGoUKFDMMwjGPHjpl6y1OvXr2M+vXrG/379zcKFixoxMfHG4ZhGGvWrDFq1KhhWhzDuPF3Je1rdvPP33//+1+jRIkSpsZK069fP+PixYtOGTszXl5eRkxMjGEYhtG7d2/jlVdeMQzDME6ePGn/PpqlUqVKxooVK4zLly8bpUuXtt8GuH//fqNkyZKmxjIMw2jVqpXRp08fY/HixYaHh4f97+u2bduMwMBA0+MVLVo0w5+zX3/91ShatKjp8QzDMEqXLm3/PVG3bl1j0aJFhmHc+Nkz8/vn6+tr/Pzzz4ZhGEb16tWNNWvWGIZx43tn9t8TIDvIce9u5LjkuNlFjkuOmxt5md8aBjmuM5Dj3hm2R7Cw33//XW+++aYqVKignj17qnjx4kpKStLKlSv15ptvql69enkyj9jYWG3atEmbNm2Sm5ub2rdvr59//lnVq1fXe++9Z0qMNm3aaNu2baaMlV3Hjx/X6NGj1bNnT507d07SjU/Tfv75Z9Njde7cWRMmTFBSUpKkG58wx8TEaNSoUaZ/OihJjRo1UunSpTVmzBglJyfr1VdfVVxcnCIjI037nmUmNTVViYmJun79ugzDUIkSJTR79mwFBARoxYoVpsUJCAjI8MmlzvD000/riSeeUM2aNWWz2dS2bVtJ0o8//qiqVauaGmvr1q3aunWr+vbtq//85z/211u3btXGjRs1d+5cVapUydSYJUqU0Lp169K1r1u3zv5J85UrV1SkSBHTYs6cOVPBwcE6f/68Vq5cqZIlS0q6saIlbQWNWZo3b67FixfbX9tsNqWmpurdd99Vq1atTI2VZsGCBSpatKhTxs5MQECAdu/erStXrujrr79WSEiIJOnPP/80/XbDYcOG6cknn9R9990nf39/+6fkO3bssD9IwUwRERGKjIzUCy+8oNdee83+af0XX3yhJk2amB6vQIEC2rVrV7r2Xbt2mf61TNO2bVsNGDBAAwYM0K+//mp/gMnPP/+s8uXLmxancePG+u677yRJHTp00IgRI+wrARs3bmxaHCAr5LjORY7rHOS4d4Yclxw3N/Iyv5XIcZ2BHPcOubZmjMyEhoYaRYoUMXr27Gl89dVXRnJysmEYhuHu7m7/9MCZEhMTjS+++MLo0KGD4eHhYTRo0MCYPXu2kZCQYO+zbNky0z6BnTNnjuHn52eMGDHC+PTTT401a9Y4HGbbtm2bUaBAAaNNmzZG/vz57Z9KTpo0yejatavp8S5evGg0bdrUKFasmOHm5mYEBAQYHh4eRvPmzY3Lly+bHi9tg/0nnnjCmDVrltM2ar/Z3r17jcGDBxslSpQwypQpY7zyyisOn2xPmTLF8PHxMS3exo0bjZCQkDxbvfL5558b06ZNM06dOmVvW7hwofHll186Jd5ff/1lXLhwIV37hQsXTP90+8MPPzTc3NyMjh07Gm+88Ybx5ptvGp06dTLc3d3tD6eYMmWK8cQTT5gW8+TJk0ZKSkq69tTUVNMfzPLzzz8bpUuXNh555BEjf/78Rrdu3Yxq1aoZvr6+xrFjx0yNleby5cvG6NGjjeDgYKNixYpGUFCQw+EMM2fONNzd3Y1ixYoZderUsX99p0+fbrRs2dL0eHv27DFWrVplXLp0yd721VdfGbt27TI9Vmb+/vtvIzEx0fRxJ06caHh6ehqDBw82PvnkE+OTTz4xBg8ebBQoUMCYOHGi6fEMwzD+/PNPY/DgwUanTp2M//znP/b2119/3XjzzTdNi3P8+HHjwIEDhmEYxpUrV4znn3/eqFWrlvHoo4/e0w/bgXWQ45Lj3glyXPOR45Lj5kRe57h5nd8aBjmu2chx74zNMPLoYzzkiLu7u4YMGaLnn3/e4RNHDw8PHThwQNWrV3dq/FKlSik1NVU9e/bUs88+m+H+Qn/++afq16+v6OjoO46XL1/mi75tNpvp+1MFBwfr8ccfV1hYmIoUKaIDBw6oQoUK2rNnj7p06eK0h1J8++23ioyMVGpqqurXr682bdo4JY4kHTx4UNu2bdP27du1c+dO5cuXTy1atFCrVq3S7et0p2rXrq3Dhw8rJCREzz77rDp27JjuQQnnz5+Xr6+vfc+e3ChevLjDvl5XrlxRcnKyChYsmG4Puj/++CPXcbJy7do1p30KebPQ0FB17NhRgwYNcmifM2eO1q5dqw0bNpga77vvvtOMGTN05MgRGYahqlWr6sUXX3TKJ7yS5ObmptjYWPn4+Di0X7hwQT4+Pqb/zMfFxWn27Nnat2+f/edv8ODBKlOmjKlx0vTs2VPbt29X7969M9yPbujQoU6Ju2/fPsXExKht27YqXLiwJGn9+vUqVqyYmjZt6pSYee3y5cvp/h1xxoqPzz77TO+//779wTbVqlXT0KFD9cQTT5geS5ISExMd9oe7WXx8vEqVKuWUuEBeI8f9P+S4uUOOS46bE+S45nJFjvtPyG8lclxkjKKtRe3evVvz58/XZ599pqpVq6p3797q3r27/P398ySh/eSTT/T444/nyS9uVyhcuLAOHTqkoKAgh4T2xIkTqlq1ap48GTYv7du3TzNmzNCSJUuc8pCGN954Q88884zKli1r6ri3WrRoUbb79u3b17S4KSkpevvttzVnzhydPXtWv/76qypUqKAxY8aofPny6t+/v2mx0pQoUULfffedqlWr5tD+yy+/qGnTprpw4YLpMfNSvnz5FBcXly6hPXnypKpXr64rV66YEicpKUkhISGaO3euKleubMqY2VGsWDGtX7/+nkokb5aSkqKFCxfqm2++0blz59IlmN9++62p8aKjo/XCCy9o27ZtDv8+G///CdTOemBRXurSpYtWrVqVrsBz9uxZtW7dWj/99JMpcfbs2aPU1FQ1atTIof3HH3+Um5ubGjZsaEocIDPkuM5FjkuOmxPkuOYjx727keOajxz3zri7egLIWHBwsIKDg/X+++9r+fLlmj9/vsLCwpSamqrNmzcrICDA1L13btW7d2+njX2r1NRULVy4UKtWrdKJEydks9lUoUIFde3aVb1793bKE1OLFSum2NhYBQUFObRHRUU5JSkbMmSI7r//fg0ZMsShfcaMGTp27JjpT/2NiorStm3btG3bNu3cuVOXLl1SnTp1NHToUKfsb2QYhooXL56u/e+//9a7776r119/3ZQ4ZiapOfHWW29p0aJFmjx5ssOTZWvVqqX33nvPKQnt9evXlZycnK49KSnJ9CfPSjd+Do8dO5ZhctK8eXPT4tz85ODXX3/d6U8O9vDw0E8//eTUJy9npHjx4va90vLS77//rrVr1yomJkaJiYkO56ZNm2ZanKFDh2rhwoXq0KGDfR88Z3ryySclSfPnz5evr2+efz/zQmxsrPr3768FCxbY2+Li4tSqVSvVqFHDtDiDBw/Wyy+/nC6hPX36tCZNmqQff/zRtFhARshxyXHvBDmuuchxyXFzyhU5bl7ltxI5rjOQ494ZVtreRY4cOaJ58+bpk08+0V9//aW2bdtq7dq1po3/2GOPZbvvqlWrTIlpGIY6duyoDRs2qE6dOqpataoMw9Dhw4d16NAhderUSV9++aUpsW728ssva/fu3fr8889VuXJlRUZG6uzZs+rTp4/69OmjsWPHmhqvbNmyWrt2rRo0aODQHhkZqU6dOun33383NZ67u7vq1aunFi1aqGXLlmrevLlTN4zP69uAJGnDhg1yc3NTu3btHNo3bdqklJQUhYaGmhbr/vvv19y5c9W6dWuHVSu//PKLgoOD9eeff5oWK03Lli1Vq1YtffDBBw7tgwcP1sGDB7Vz507TYv3www/q1auXTp48me7BF2Z/wpv2H6rt27crODjY4VaZ/Pnzq3z58ho5cqSpD6IYMWKEPDw89M4775g25u0sWbJEa9as0aJFixySdmf65ptv1KlTJwUFBenIkSOqWbOmTpw4IcMwVL9+fVNXBpQqVUqLFy9W+/btTRszK4ULF9a+fftUpUoVp8W49dbUrDjj1tQLFy6oefPmCgkJ0XvvvafTp0/r4YcfVp06dbR8+fIsb7HOicKFC+vgwYOqUKGCQ3t0dLRq166tS5cumRIHyAlyXPOQ45qLHJccN7vIcZ0jL/NbiRyXHNd6WGl7F6lSpYomT56siRMnat26dZo/f76p43t7e5s6XnYsXLhQO3bs0DfffJPu0/Fvv/1WXbp00eLFi9WnTx9T47711lvq16+fypYtK8MwVL16daWkpKhXr14aPXq0qbGkG/9QZfT1LVq0qOLj402P98cff+TpUz3Tbt+41YEDB5z2SeyoUaMyTFBSU1M1atQoUxPa06dP25/keWustKclm+2tt95SmzZtdODAAbVu3VrSjaRlz5492rRpk6mxBg4cqIYNG2r9+vUZ7k1lpq1bt0q68bTi999/P0/+niYmJurjjz/W5s2b1bBhQxUqVMjhvNmf0EvS1KlTdfz4cfn6+qp8+fLp9qOLjIw0PWZ4eLhGjBihCRMmqEiRIlq5cqV8fHz05JNP6pFHHjE1Vv78+TP8mXCWBx54QKdOnXJqQmv2arCcKlmypDZu3KiHHnpI0o292urXr6+lS5ealsxKkqenp86ePZsuoY2NjZW7O2khXIMc1zzkuOYixzUfOa55/gk5bl7mtxI5rjOQ494ZVtrCpUJCQvTwww9r1KhRGZ5/++23tX37dm3cuNEp8Y8fP66oqCilpqaqXr16pn7yebOaNWtq4MCBeuGFFxzaP/jgA82ePVv/+9//TI/5119/6YsvvtDx48f10ksvqUSJEoqMjJSvr69pt8elfWp38eJFFS1a1CERSklJ0eXLlzVw4EDNnDnTlHg3K1CggA4fPqzy5cs7tJ84cUI1atQwbb8oSWrYsKGGDRump556ymEVwvjx47VlyxZTVwTcbP/+/Zo8ebIOHDigAgUKqHbt2goPDzf972mhQoV04MCBPE1Q8lJWt0vabDbTP6GXpPHjx2d53uyVTpJUpEgR7d+/XxUrVlTx4sW1a9cu1ahRQwcOHFDnzp114sQJ02JNnTpVv/32m2bMmJEnt3EdP35cAwcO1FNPPaWaNWum+w9C7dq1nT6HvHL06FE99NBDatu2rT755BPTv749evRQXFyc1qxZYy+0/PXXX+rSpYt8fHz02WefmRoP+KcixyXHzS1yXPOQ4979OW5e5rcSOa4zkePmzt1bbsY94eDBg5o8eXKm50NDQzV9+nSnxa9YsaIqVqzotPHThIWF6YUXXtD58+f18MMPS7rxifLUqVOd8snXwYMH1bp1axUrVkwnTpzQs88+qxIlSmj16tU6efKkFi9ebEqciIgIGYahZ555RuPHj3dYaZF2G1BwcLApsW7l7e2t3377LV1Ce+zYsXSfMt+psWPHqnfv3jp9+rRSU1O1atUqHTlyRIsXL9ZXX31laqyb1a1bV59++qnTxk/TqFEjHTt2LE8T2itXruidd97JdJP/3377zbRYaSsf8pIzirK3U6hQIV2/fl2S5O/vr+PHj9v3iTJ7tdOuXbu0detW/ec//1GNGjXSJZhm3V6c5vz58zp+/Liefvppe5vNZnPqQxqOHz+uBQsW6Pjx43r//ffl4+Ojr7/+WgEBAabtv5XZ7WpXr17VunXrVLJkSXubWberTZ06Vc2bN1dgYKDq1asn6cZ/nn19ffXJJ5+YEgMAOS45bu6R45qHHNd8eZ3j5mV+K5HjkuNaD0Vb2NWvX1/ffPONihcvrnr16mX5yYdZtz388ccf8vX1zfS8r6+vU/ZSkvJ2Q/NnnnlG169f11tvvaU33nhDklS+fHnNnj3b9NvipBsJ9NNPP63Jkyc7PMwjNDRUvXr1Mi1O2kMTgoKC1KRJk3S/1JypU6dOGjZsmFavXm3/T8mxY8c0YsQIderUydRYHTt21IoVK/T222/bHy5Qv359rVu3Tm3btjU11s3SfqH+9ttvioiIcMovVEl68cUXNWLECMXFxalWrVp58gnvgAEDtH37dvXu3dvpt6u5Sl6sBLpZ48aN9d1336l69erq0KGDRowYoUOHDmnVqlVq3LixqbGKFSumRx991NQxs/LMM8+oXr16WrZsWZ48pGH79u0KDQ1V06ZNtWPHDr311lvy8fHRwYMH9fHHH+uLL74wJY4rblcrW7asDh48qKVLl9pXOD399NPq2bNnnv4bDuQlctz/Q46bPeS45Li5RY5rbo6bl/mtRI5Ljms9bI8Au/Hjx+ull15SwYIF8+y2Bzc3N8XFxal06dIZnj979qz8/f1N/4Qprzc0v9n58+dVoEABFS5c2GkxvL29FRkZqYoVKzrc6nTy5ElVqVJF165du+MYCQkJ9r2aEhISsuzrjD2dLl68qEceeUR79+7VfffdJ+nGf1KaNWumVatWqVixYqbHzEu3/kI9fPiwKlSooMmTJ+u///2vab9QJWW4l5CzP+EtVqyY1q9fr6ZNm5o+9q1atWqVZQLkjJ/3gwcPqk2bNvL29taJEyd05MgRVahQQWPGjDF1JdDNfvvtN12+fFm1a9fW1atXNXLkSO3atUv333+/3nvvPQUGBpoeM6/k9e2NwcHBevzxxxUWFubwb+iePXvUpUsXnT592tR4ycnJWrp0qdq1ayc/Pz9TxwZAjkuOmzPkuM5Fjmuef0KOey/ntxI5Lm6PlbawuzlJzavbHgzDUL9+/eTp6Znh+bRbIcyW1xua3yyz5N1MXl5eGSaZR44cMS1+8eLF7U/TLVasWIYJgzMTIm9vb3333XfasmWLw35YzZs3Nz2W9H+fKP/2228aOXKk01dNjho1Sm+++ab9F2qaVq1a6f333zc1VnR0tKnjZUfx4sWd9gCPW9WtW9fhdVJSkvbv36+ffvrJvpLGbGFhYerXr5/TVwLd7OZN9wsWLKhZs2Y5Jc7Nzp8/ryNHjshms6ly5cpO+/ft4YcfztOE9tChQxnetlm6dGlduHDB9Hju7u56/vnndfjwYdPHlqS1a9cqNDRUHh4eWrt2bZZ9zV7FBVgBOS45bk6Q45Lj3glyXHO5Ir+VyHHNQo575yja4rYuX76cbi8esz5Vzs4vE2fcWnX48GEtW7ZM0o1/SP7++28VLlxYEyZMUOfOnfX888+bGu/s2bMaOXKkfW+jWxe4m53wde7cWRMmTLBvtm2z2RQTE6NRo0apa9eupsT49ttv7QlJXu+nlJycLC8vL+3fv18hISEKCQlxarxbP1EeMGCAU/ZPu1le/kJ1xSfUb7zxhl5//XUtWrRIBQsWdGqs9957L8P2cePG6fLly06JuWfPHs2dOzdde9myZRUXF+eUmFLe3a525coVvfjii1q8eLH994Obm5v69OmjDz74wPTvaceOHTV8+HAdOnQow9sbzU7CihUrptjYWAUFBTm0R0VFOeU/sNKNffeioqKc8vPYpUsXxcXFycfHR126dMm0n7MKEIBVkePeOXJcc5HjkuPmxD8lx83L7RjIcc1HjntnKNoiQ9HR0XrhhRe0bds2h9uMzP5UecGCBaaMk1N5vaF5v379FBMTozFjxuTJ3kZTpkxR+/bt5ePjo7///lstWrRQXFycGjdurLfeesuUGC1atMjwz3nB3d1dgYGBefYPrytWTTr7F6qrP5WcOnWqjh8/Ll9fX5UvXz5dgmLWnoJZeeqpp/Tggw9qypQppo+dFyuBbnXrf7yc9XAW6cbPxPbt27Vu3Tr77X+7du3SkCFDNGLECM2ePdu0WJI0cOBASdKECRPSnXNGEtarVy+98sor+vzzz2Wz2ZSamqrvvvtOI0eOdEqRRZIGDRqkESNG6Pfff1eDBg3SPWzmTvbdu7kodWuBCvinIcc1FzmuuchxyXHNcC/luHmZ30rkuM5Ajntn2NMWGWrSpIkkaejQoRluiJ3XCYzZunTpog4dOujZZ5/Vyy+/rNWrV6tfv35atWqVihcvri1btpgar0iRItq5c2e6W1icbevWrdq3b59SU1NVv359tWnTxilxvv76axUuXFgPPfSQJGnmzJn66KOPVL16dc2cOVPFixc3PeaCBQv0+eefa8mSJU6/BSkv9k+71csvv6zdu3fr888/V+XKlRUZGamzZ8+qT58+6tOnzx3f3pkvXz77p5IZ7feVxlmfSubVnoJZ+eSTT/TKK6/ozJkzpo/93HPP6fz58/rss89UokQJHTx4UG5uburSpYuaN2/ulM3527Rpo/r169v/45X29/T7779Xr169dOLECdNilSpVSl988YVatmzp0L5161Y98cQTOn/+vGmxXCEpKUn9+vXT8uXLZRiG3N3dlZKSol69emnhwoVyc3MzPaYr9t1L89dff931eyQC2UWOS46bE+S45Lg5RY4bYWq8vMxvJXJcclzroWiLDBUuXFj79u1TlSpVXD0Vp8jrDc2rV6+upUuXql69eqaOm5VvvvnGfqvarZ86zZ8/39RYtWrV0qRJk9S+fXsdOnRIDRs21IgRI/Ttt9+qWrVqTlltUq9ePR07dkxJSUkKDAxM94mdmZ9i+/r66uuvv1a9evUckoVNmzapf//+OnXqlGmx0rjiF+q96rHHHnN4bRiGYmNjtXfvXo0ZM8YpyXNCQoLat2+vn3/+WZcuXZK/v7/i4uIUHBysDRs2pPv7aoa8/I9XwYIFtW/fPlWrVs2h/eeff9aDDz6oK1eumBbLlY4fP66oqCilpqaqXr16qlSpktNinTx5MsvzZv1emjRpksqXL6/u3btLkh5//HGtXLlSZcqU0YYNG1SnTh1T4gBWRY5LjpsT5LjkuFb2T8hx8/qDBXJc85Hj3hm2R0CGHnjgAZ06deqeTWjzekPziIgIjRo1SnPnzlX58uWdGku68QnvhAkT1LBhwzy5VS06OlrVq1eXJK1cuVIdO3bU22+/rcjISLVv394pMbPas8ZsebF/2q08PDy0dOlSTZgwwem/UE+dOqWAgIAMz/3www9q3Lix6TGlvNufqmjRog4/A/ny5VOVKlU0YcIEp+0VV7RoUe3atUvffvutIv9fe/cel/P9/w/8cRWdJCFhSAeTipSxLQ21sSGnmMNEa842Cjnssy2Ww2ym2OyAOVRzbI47OSZRWIhySFoH7eAQhqmQev3+8Ov6dq0Q1/t6v68rj/vtdt0+vK/r834+a7p6XO/D85WSovMrgQB5b1fz8vLCrFmzEBMTAzMzMwBAUVERwsPD4eXlJWmtMnJ+SC/j5OQEJycnnez7v+Sau7ds2TKsWbMGALBnzx7s3bsXO3fuRGxsLKZNm4bdu3fL0geRUphxpcWMKz1mXOkw40pP7owr9zgGZlzpMeNqh1faUqWysrIwbtw4DBs2DK1bt64wi0ebuSP65N69e5W+OdrZ2Ulap27duigsLMT9+/dhYWFR4ft5/fp1Ses1btwYCxYswPDhwyXd78PUq1cPiYmJcHV1xSuvvILAwECMGTMGubm5cHV1RWFhoSx96IoSV03KqVWrVkhKSkL9+vU1ticlJcHPzw83btyQvOZ/51NlZGTA0dERYWFhOlv4Qk65ubmyfHgtT87b1U6fPo3u3bvjzp07aNu2LVQqFU6ePAkzMzPs2rVLPT9RKo/7kL5161ata0yZMgVz5sxBrVq1MGXKlEe+NjIyUut6lcnKysLixYuRnp4OlUoFFxcXhISESBqqzc3Ncf78eTRr1gwhISG4c+cOli1bhvPnz+Oll17CP//8I1ktIn3EjMuM+ySYcZlxnxQzrrTkHsfAjMuMq294pS1VKj8/H1lZWXjnnXfU2+SaOyKH8+fPY+TIkTh06JDGdl19fbqYX/ko9+7dU89sk4O3tzemTJkCb29vJCcnY+PGjQAefJ+bNm0qWx+6ItcZ5Sf5hWppaQk3Nze8+eabWt9G1qlTJ7z++uvYv3+/ehGKAwcOoHfv3vj444+12vfDyLnwhaOjI44ePVohsN+4cQPt2rVDdna2pPXKanbs2BHDhw/HwIEDdT6TDnj44ixeXl6SLc5SpnXr1sjMzMSaNWtw7tw5CCEwZMgQBAQEwNzcXNJaALB06VJERUXp9EN6VFQUPvjgA9SqVQsnTpx46Ot0dVXXrl270KdPH3h4eMDb2xtCCBw6dAhubm746aef0K1bN0nq1K1bV33l0c6dOzF37lwAD37/GfrvdqKqYMZlxn0SzLjSYMZlxn1acuZbgBlXF5hxtcMrbalSrq6ucHFxwfTp0ytdpEGuS9x1xdvbGzVq1MD7779f6RktQ513UmbGjBmwtLREWFiYLPXy8vLw3nvvIS8vD8HBwRg5ciQAYPLkySgpKcGXX34pec2SkhIsWrQIsbGxyMvLw7179zSel/rKDjn4+vpi69atsLa2hq+v7yNfe/fuXZw5cwZ9+/bV+oy9EAIDBw7ElStXsHv3bhw+fBh9+vTB3LlzERISotW+H0bO+VTlF6Qo7/Lly7Czs1Ovsi2llJQUrF+/Hhs2bEB+fj7eeOMNDBs2DH369IGpqank9cqTcySDXOrXr4/k5GSd3sZV/t/Jwz4E6ZKnpyfeeOMNfPrppxrb33//fezevVuyGYYTJkzAzz//jOeffx4nTpxAbm4uLC0tsXHjRnz22WeyrGpNpCRmXGbcJ8GMKw1mXGZcbVXHfAsw4zLjPh4P2lKlatWqhdTUVLRo0ULpVnSiVq1aOH78OFq1aiVbzaysLKxevRpZWVn44osvYGtri507d6JZs2aS32YREhKCmJgYuLu7w93dvcKtalLe9nD//n2sXbsWr7/+Oho3bizZfh9n5syZWLFiBaZMmYKwsDB8+OGHyM3NxbZt2zBz5kwEBwdrtf8nCeHa1npax44dw2uvvYabN29qva/i4mL4+fmhoKAAaWlpmD9/PiZMmCBBl5WTY+GLH3/8EcCD2XDR0dGoU6eO+rmSkhLExcVhz549yMjI0LrWwwghsH//fqxbtw6bN29GSUkJBgwYoLP5VLr0448/okePHqhZs6b6e/swffr0kbS2HB/S69evj19//RUvvfQSjIyMcPnyZZ3MSnsYMzMznDp1qsJMv/Pnz8Pd3V2yD3nFxcX44osv8McffyAoKEi9eNDixYthaWmJUaNGSVKHSF8x40qPGVdazLjMuI/DjCstZlzdYsbVDg/aUqV69+6NoKAgnQ2gV1qHDh2waNEivPLKK7LUS0hIQI8ePeDt7Y0DBw4gPT0djo6OWLBgAZKTk7Fp0yZJ6z3qDLZKpcK+ffskrWdhYYH09HRZr05xcnLCl19+CT8/P9SuXRsnT55Ubzty5AjWrVun1f4dHBw0/p6fn4/CwkJYW1sDeHDbkYWFBWxtbXVy61F5ZW/T/71a5t69e9ixYwf69u37xPtMS0ursO3ff//FW2+9BT8/P4wfP169XRfz/eSYT2VkZATg/257La9mzZqwt7dHREQEevXqpXWtqkhJScHIkSORlpYm2S06cn7wKn+Wvux7Wxmpbr8tf/tkaWkpoqOjdfohfcyYMYiJiUHjxo2Rl5eHpk2bPvS2TF38zDdr1gyRkZEYOHCgxvbY2FhMnToVeXl5ktckehYx40qLGVd6zLjMuI9T3TOu3CcWmHH/DzOu/uFBW6rU8uXLMXfuXIwYMQJt2rSp8OYh9RkmOZRfdfLYsWP46KOP8Mknn1T69VlZWUla28vLCwMHDsSUKVM0zrgePXoU/fr1w19//SVpPbn5+voiJCRE1tVua9WqhfT0dNjZ2aFx48b45Zdf1LObPD09JTkzX2bdunX45ptvsHLlSvVq0xkZGRg9ejTGjh2LgIAAyWqVFxMTg88//xyZmZkAgJYtW2LatGmSzDwyMjKqEPTK/13X8/3kXPjCwcEBR48ehY2NjWT7rKo//vgD69evx7p163Dq1Cl4eXkhICBA4wODNvTpg5fUHnf7ZHnx8fGS1Ny5cyd+//13BAcHY/bs2Rqz6MrTxS2Vs2fPxqJFi/D++++jY8eOUKlUSExMxGeffYbQ0FB89NFHktSJjo6GjY0N/Pz8AADTp0/H8uXL4erqivXr1xv8reFEj8OMy4z7JJhxmXGfFDOu9hm3OudbgBmXGfcJCaJKqFSqhz6MjIyUbu+plPVe9vjv38tvk1qtWrVEdna2EEIIS0tLkZWVJYQQIicnR5iamkpeT26xsbHC0dFRLFmyRBw6dEikpqZqPHShZcuW4siRI0IIIV555RUxf/58IYQQGzZsEA0aNJC0lqOjo0hJSamw/dixY8Le3l7SWmUiIiKEhYWFmD59uti+fbvYtm2bmDZtmrCwsBCRkZFa7z83N7fKD12Ki4sTn3/+ufjss8/Enj17dFpLTsuWLROdO3cWRkZGwtXVVcybN0/k5OTotObatWuFt7e3OHfunHrbuXPnRKdOncSaNWskrRUdHS3u3LlTYfvdu3dFdHS0pLWUEBQUJG7duiVrzdLSUhEZGSmaNGmi/n3bpEkTsXjxYlFaWipZnZYtW4q4uDghhBCHDh0S5ubmYtmyZaJ3797C399fsjpE+ooZV1rMuNJjxtUOM65uyZ1x5cy3QjDj6gIzrnZ4pS09MxISEqr82i5dukhau2nTpoiNjUXHjh01rkLYunUrpk6diqysLEnrya2y20h0fRb7/fffh5WVFT744ANs2rQJb731Fuzt7ZGXl4fJkydXGHSuDQsLC+zfvx8vvviixvbk5GT4+PigsLBQslplHBwcEB4ejsDAQI3t0dHR+Pjjj5GTkyNJneLiYowZMwZhYWFwdHSUZJ/6Zvbs2Y98fubMmZLXbNasmXqlWQ8PD8n3XxknJyds2rRJPb+pzPHjx/Hmm29K9m8GAIyNjXHx4sUKC19cu3YNtra2kv/MjxgxAl988UWFqwIKCgowceJEg5yf9ij//vsvADz0KghtWFhY4Ny5c7Czs8OMGTNw8eJFxMTE4MyZM/Dx8UF+fr7kNYlIt5hxdYcZlxlXnz0LGVfOfAsw4+oaM+6T40Fb0tCzZ0+sX79ePcx83rx5eO+999S3Ily7dg2dOnXC2bNnFezS8EyfPh2HDx/GDz/8gJYtWyIlJQWXL19GYGAgAgMDMWvWLKVb1MqFCxce+bwctyIcOXIEhw4dQosWLSS/tbF3797Iy8vDypUr8cILL0ClUuHYsWMYPXo0mjVr9tiB9U/DzMwMp0+frrBQSmZmJtq0aSPpyrPW1tZISUmRPdAmJydj//79uHLlCkpLSzWek3Ihkf+GvOLiYuTk5KBGjRpwcnLSyUqiQggkJiZi2bJlyM7Oxg8//IAmTZrg+++/h4ODg05mDcr5wethixikpqbC19dX8pWtHxagr169ikaNGuH+/fuS1lPCd999Bx8fnwqLNEjN1tYWu3btgqenJzw9PTF58mQEBgYiKysLbdu2xe3bt3Van0gpzLi6wYzLjPukmHGZcZ+E3CcWmHGlx4yrJeUu8iV9ZGRkJC5fvqz+e+3atdW3OQkhxKVLlwz21rHyVq1aJWJjYytsj42NFVFRUZLXu3fvnhg6dKj69rSaNWsKIyMjMWzYMHH//n3J65G0rly5Inr06CFUKpUwMTERJiYmwsjISPTo0UPj50VKbm5uYt68eRW2z5kzR7Ru3VrSWkFBQSIiIkLSfT7OvHnzhEqlEq1atRJdunQRPj4+6oevr6/O69+8eVP4+/uLmJgYnex/06ZNwtzcXIwaNUqYmpqq30e//vpr0aNHD53U7NWrl3B3dxdHjx5V32p09OhR4eHhIXr37i1JDQ8PD+Hp6SmMjIxEmzZthKenp/rh7u4uateuLQYOHChJLSEe/He6ceOGUKlU4vfffxc3b95UP65fvy6io6NF48aNJaunJGdnZ6FSqUTjxo3FkCFDxNKlS0V6errkdYYOHSratWsnRo4cKSwsLMTVq1eFEEJs375duLm5SV6PSF8w4zLjUkXMuNJjxpWWHPlWCGZcXWLG1Q6vtCUN5VdOBKBxmxMAXL58Gc8995xObgWSk7OzM5YuXVphCHhCQgLGjBmDjIwMyWoJIZCXl4cGDRrg0qVLSElJQWlpKTw9PXV+tklO33//PZYuXYqcnBwcPnwYzZs3x+LFi+Hg4PBUK7/qY83z58/j3LlzEELAxcUFLVu2lLxGmc2bN2Pw4MHo2rUrvL291QPb4+LiEBsbC39/f8lqzZs3DwsXLsRrr72GF154ocICCVKsyvpfDRs2xGeffYagoCDJ911Vp0+fRq9evZCbmyv5vsuf3S3/Pnry5El0794dly5dkrxmfn4+3n77bezcuVO98ExxcTG6d++O1atXo2HDhlrXCA8PV/9vaGgoLC0t1c+ZmJjA3t4eAwYMgImJida1gP9bTORhVCoVwsPD8eGHH0pST2mXLl1CfHw8EhISsH//fmRmZqJBgwbw8fHBhg0bJKlx48YNfPTRR/jjjz8wfvx4dO/eHQAwa9YsmJiYVJvvJdF/MeMy4z4tZlxpMePqXnXKuHLkW4AZV9eYcbWg5BFj0j8qlUrjrGr5BQWEqD5XIZiamlY6MD0nJ0eYmZlJWqukpETUrFlTnD9/XtL96pNvvvlG2NjYiLlz5wpzc3P1v5nVq1cLHx+falNTbsePHxcBAQGiXbt2wtPTUwQEBFS6WIS27O3tH/pwcHCQvJ4QQjRq1Ejxn4mDBw8Ka2trnezb3Nxc/R5T/n00KytL5wuznD9/Xr2wR0ZGhk5qREVFiaKiIp3su7z9+/eL+Ph4oVKpxJYtW8T+/fvVj0OHDom//vpL5z0o4fbt22Lnzp0iKChI1KhRQxgbGyvdEpHBY8Zlxn0azLi6wYyrW9Ux48qRb4VgxtU1ZtwnV0Ppg8akX1QqVYUzPo86A2SobG1tkZaWBnt7e43tqampqF+/vqS1jIyM8Pzzz+PatWvV6qqD8pYsWYLvvvsO/fr101gcoX379pg6darB1ywpKUFUVBTi4uIqnU21b98+SeuVXzhhzZo1ku67MlIP8K+KyZMn4+uvv8bixYt1XuvLL7/U+LsQAhcvXsT333+vPgMrtcaNG+P333+v8B6TmJgo6Vy1KVOmYM6cOahVqxamTJlS4fnyi9NIOUPt7bfflmxfj1K2YE5OTg7s7Oyq5e+jMjt27FBffZCamgo3Nzd07twZmzdvRqdOnSStdfDgQVnnLRPpA2ZcZtynwYzLjPukmHG1p1S+BZhxdYEZVzs8aEsahBAICgqCqakpAODOnTsYN26c+laSu3fvKtmeZIYMGYLg4GDUrl0bnTt3BvDgzT8kJARDhgyRvN6CBQswbdo0fPvtt2jdurXk+1daTk5OhUH4AGBqaoqCggKDrxkSEoKoqCj4+fmhdevWOv+lWrNmTWzduhVhYWE6rVMZ8f8n5uj6a5w6dSr8/Pzg5OQEV1dX9e1OZbZs2aLV/tPS0tC6dWsYGRlh0aJFGs8ZGRmhQYMGePvtt/G///1PqzoPM3bsWISEhGDVqlVQqVT4+++/cfjwYUydOlXSlXxPnDiB4uJi9Z8fRur/niUlJVi0aBFiY2ORl5eHe/fuaTwvxSIN5f8b3rx5E6dOnXroa93d3bWupzQ/Pz80aNAAoaGh2LVrl3qxJKlt3rwZw4cPR0BAAFJSUtS/1//991988skn+PXXX3VSl0hpzLjMuE+DGVdazLjMuFWhVL4FmHF1gRlXOzxoSxr+e2Zp2LBhFV4TGBgoVzs6M3fuXFy4cAGvvfYaatR48GNQWlqKwMBAfPLJJ5LXGzZsGAoLC9G2bVuYmJjA3Nxc43mpV6GUm4ODA06ePFlhBd0dO3bA1dXV4Gtu2LABsbGx6Nmzp6T7fRR/f39s27at0rPLuhATE4PPP/8cmZmZAICWLVti2rRpGD58uE7qTZw4EfHx8fD19UX9+vUlD12enp4aK7EePXoUNjY2ktZ4lOnTp+PmzZvw9fXFnTt30LlzZ5iammLq1KmYMGGCZHXi4+Mr/bOuhYeHY8WKFZgyZQrCwsLw4YcfIjc3F9u2bZMssHt4eKjnT3p4eEClUqk/cJWnUqkMfgYl8OBKkQMHDuDzzz9HZGQkunTpAh8fH/j4+MDFxUWyOnPnzsXSpUsRGBioMUOsY8eOmD17tmR1iPQNMy4z7tNgxpUeM652noWMq1S+BZhxdYEZVzs8aEsaVq9erXQLsjAxMcHGjRsxZ84cpKamwtzcHG3atKkQjqQix+0xSpo2bRree+893LlzB0IIJCcnY/369Zg/fz5WrFhh8DVNTEzQokULSff5OC1atMCcOXNw6NAhnS+cEBkZibCwMEyYMAHe3t4QQiApKQnjxo3D1atXMXnyZMlqlYmJicHmzZvh5+cn+b4BwNraGjk5ObC1tUVeXl6lQUjX5s2bhw8//BBnz55FaWkpXF1dNRY1MGRr167Fd999Bz8/P4SHh+Ott96Ck5MT3N3dceTIEUn+febk5KBBgwbqP1d3kyZNwqRJkwAAp06dQkJCAvbu3YuQkBDUr18fFy9elKRORkaG+uq78qysrHDjxg1JahDpI2ZcZtynwYwrPWZc7TDj6hYzrvSYcbUk/xhdIqqOli9fLuzs7IRKpRIqlUo0bdpUrFixolrUXLhwoXj33XdFaWmp5Pt+GDkXTrC3txfR0dEVtkdFRQl7e3tJa5Wxs7MT6enpOtm3EEKMHj1amJqaCnt7e2FkZCTs7OyEg4NDpQ96chYWFuLChQtCiAcLbhw/flwI8WARCisrK0lr3bt3TwQFBWksGFSdpaSkiMjISNG7d29hbW0tjI2NRfv27SXbv6Ojo9izZ48QQnMBkejoaOHi4iJZHSKi6oIZV1rMuNphxtUtZlzdYcZ9OiohFDg1Q6SAxw00L0/qgeYAkJWVhdWrVyMrKwtffPEFbG1tsXPnTjRr1gxubm6S11PK1atXUVpaqr5lpzrU9Pf3R3x8POrVqwc3NzfJZ1M9jtDxDC4zMzOcPn26wpUWmZmZaNOmDe7cuSN5zdWrV2Pnzp1YvXo1LCwsJN8/AOzcuRO///47goODMXv2bNSuXbvS14WEhOikfnXm7OyMmJgYvPTSS+jUqRP8/Pzw/vvvY+PGjZg4cSKuXLkiaT1ra2ukpKRIuoibvunTpw8SExNx69YteHh4qG8b69y5M6ysrCSrs2DBAkRHR2PVqlXo1q0bfv31V1y4cAGTJ0/GzJkzJR3fQUTyYMaVBzOu9Jhxnw4zru4w40qPGVc7HI9Az4yqDjTXhYSEBPTo0QPe3t44cOAA5s2bp17dd8WKFdi0aZOs/UgtPDwcw4YNg5OTk2wzlYqKiiCEgIWFBWxsbHDhwgUsXrwYrq6ueP311yWtZW1tDX9/f0n3WRUrV67EokWL1DO4nn/+eUyaNAmjRo2StE6LFi0QGxuLDz74QGP7xo0bdbYa9JdffomsrCw0bNgQ9vb2FT4kpKSkaF2jbNXc48ePIyQk5KGBlp6cv78/4uLi8NJLLyEkJARvvfUWVq5ciby8PJ3caij3/DsltGzZEmPGjJE8wP6XXPOWiUg+zLi6w4yrG8y42mHG1R1mXOkx42qHV9oSycDLywsDBw7ElClTULt2baSmpsLR0RFHjx5Fv3798Ndffyndolbc3d1x5swZdOjQAcOGDcPgwYPVc3p05fXXX0f//v0xbtw43LhxA87OzjAxMcHVq1cRGRmJ8ePH67S+roWFhWHRokWYOHEivLy8AACHDx/GV199hZCQEMydO1eyWps3b8bgwYPRtWtXeHt7Q6VSITExEXFxcYiNjdVJmA8PD3/k87NmzZK8JunOb7/9hqSkJLRo0QJ9+vSRfP/z5s3DwoUL8dprr+l8/p1SYmJiMHjwYPXK9mXu3buHDRs2SL5AUmFhYbWcRUdE8mLGlR4zLjMu6Q9mXO0x42qHB23pmTJixIjHvkalUmHlypWS1rW0tMSpU6fg4OCgEWhzc3PRqlUrndyaI7czZ85g7dq12LBhA/7880907doVw4YNQ79+/XRya5CNjQ0SEhLg5uaGFStWYMmSJThx4gQ2b96MmTNnIj09XdJ69+/fx/79+5GVlYWhQ4eidu3a+Pvvv2FlZaWTXwQ2NjZYsmQJ3nrrLY3t69evx8SJE3H16lVJ66WkpCAyMhLp6ekQQsDV1RWhoaHw9PSUtA4ZvuLiYowZMwZhYWGy3crl4ODw0OdUKhWys7Nl6UOXjI2NNVaDLnPt2jXY2tpqvXpw//79H/uaGjVqoFGjRujWrRt69+6tVT0ikhczru4w40qLGZf0FTOubjDjaofjEeiZEhUVhebNm8PT01PWlTatra1x8eLFCm/KJ06cQJMmTWTrQ5fc3NzwySef4JNPPkFSUhLWrVuHSZMmYdy4cbh165bk9QoLC9W3Au3evRv9+/eHkZERXn75ZVy4cEHSWhcuXED37t2Rl5eHu3fvolu3bqhduzYWLFiAO3fuYOnSpZLWA4CSkhK0b9++wvYXXngB9+/fl7RWQEAAfHx8MHPmTLRs2VLSfT/KjRs3sGnTJmRlZWHatGmoV68eUlJS0LBhw2rzc1Ed1axZE1u3bkVYWJhsNZ+FlXWFEJXO9Pvzzz9Rp04drfdflX2UlpYiMzMTK1aswNSpUzF79myt6xKRPJhxdYcZV1rMuNXj56I6YsbVDWZc7fCgLT1Txo0bhw0bNiA7OxsjRozAsGHDUK9ePZ3XHTp0KGbMmIEffvgBKpUKpaWlSEpKwtSpUyW/HUAf1KpVC+bm5jAxMcG///6rkxotWrTAtm3b4O/vj127dqlnDF25ckXyWTkhISFo3749UlNTUb9+ffV2f39/yWdvlRk2bBi+/fbbCguGLF++HAEBAZLWsrS0REREBMaNG4eGDRuiS5cu6NKlC3x8fNCqVStJa5VJS0tD165dUadOHeTm5mL06NGoV68etm7digsXLiAmJkYndUkaSs7f0vWiJXLz9PSESqWCSqXCa6+9hho1/i+alZSUICcnRz27ThurV6+u8mt/+eUXjB8/3qACLdGzjhlXHsy42mPGZcbVZ8y40mHGlQbHI9Az5+7du9iyZQtWrVqFQ4cOwc/PDyNHjsTrr7+uszfI4uJiBAUFYcOGDRBCoEaNGigpKcHQoUMRFRUFY2NjndSVU05ODtatW4e1a9fi/Pnz6Ny5M4YOHYqBAwdKcgbtvzZt2oShQ4eipKQEr776Kvbs2QMAmD9/Pg4cOIAdO3ZIVsvGxgZJSUlwdnaucOufq6srCgsLJatVZuLEiYiJiUGzZs3w8ssvAwCOHDmCP/74A4GBgRqLGki1EvSlS5ewf/9+7N+/HwkJCTh//jxsbW1x8eJFSfZfXteuXdGuXTssWLBA43t66NAhDB06FLm5uZLXJOkoMX8rJiYGn3/+uXrRkpYtW2LatGkYPny45LXkVDb7Ljw8HKGhoRq3opqYmMDe3h4DBgyAiYmJbD3duHEDI0aM0Pmq4UQkLWZc3WDGlRYzbq7kNUk6zLjSYcaVBg/a0jPtwoULiIqKQkxMDIqLi3H27FnJZjfdunWrwtnw7OxspKSkoLS0FJ6enjpbtVRuXl5eSE5ORps2bRAQEIChQ4fKcuvPpUuXcPHiRbRt2xZGRkYAgOTkZFhZWUl69rxevXpITEyEq6urRvhKTEzEgAEDcPnyZclqlfH19a3S61QqFfbt2ydJzYKCAiQmJqpDbUpKClxdXXWyEnWdOnWQkpICJycnje/phQsX4OzsXC1m4FVncs/fioyMRFhYGCZMmABvb28IIZCUlISvv/4ac+fO1clqvnKLjo7G4MGDYWZmpnQrRFQNMONKgxmXGfdJMeMaNmZc6THjaofjEeiZVna5vhACpaWlku67bt266oHbr776KrZs2QJHR0fZhprLydfXFytWrICbm5usdRs1aoTbt29jz5496Ny5M8zNzdGhQwfJrybp1q0bFi9ejOXLlwN48O/m9u3bmDVrFnr27ClprTLx8fE62W9lZsyYgYSEBKSmpqJ169bo3Lkz/ve//6Fz586wtrbWSU0zM7NK58BlZGTofFVm0p7c87eWLFmCb7/9VuNW2759+8LNzQ0ff/xxtQi0b7/9Nm7cuIE1a9ZwBh4RaY0ZVxrMuNJjxiV9xowrPWZc7fBKW3rmlL91LDExEb169cI777yD7t27q89kS6FOnTo4cuQIXFxcYGRkhMuXL/MXtYSuXbuGQYMGIT4+HiqVCpmZmXB0dMTIkSNhbW2NiIgIyWr9/fff8PX1hbGxMTIzM9G+fXtkZmbCxsYGBw4cqLASpqExMjJCgwYNMHnyZPTt2xcuLi46rzlmzBjk5+cjNjYW9erVQ1paGoyNjdGvXz907twZixcv1nkPJA055m+ZmZnh9OnTaNGihcb2zMxMtGnTplpctfLfGXgZGRlwdHREWFgYZ+ARUZUw41YPzLjSYcYlbTDjSoMZVzs8aEvPlHfffRcbNmyAnZ0d3nnnHQwbNkxj6L6UBgwYgKSkJLi4uCAhIQEdO3Z86LwWqW79kdOUKVMwZ84c1KpV67GD2qWaR1VeYGAgrly5ghUrVsDFxUV969Hu3bsxefJknDlzRtJ6RUVF2LBhA44fP47S0lK0a9cOAQEBMDc3l7SOElJTU5GQkID9+/fj4MGDMDY2Vi/S4OPjo5OAe+vWLfTs2RNnzpzBv//+i+eeew6XLl2Cl5cXfv311wrzo0j/yDl/q3Xr1hg6dCg++OADje1z587Fxo0bcerUKclryq1sdhpn4BHR02DGlQ4zLjOuNphxDR8zrrSYcbXDg7b0TDEyMoKdnZ16JcOHkWIwdVFREaKjo5GVlYWIiAiMHj0aFhYWlb520aJFWteTm6+vL7Zu3Qpra+tHzqaSch5VeY0aNcKuXbvQtm1bjTf/nJwctGnTBrdv35as1oEDB9CxY0eNFS8B4P79+zh06BA6d+4sWS19kJqaisWLF2PNmjUoLS1FSUmJzmrt27dPPQOvXbt26Nq1q85qkXTknr+1efNmDB48GF27doW3tzdUKhUSExMRFxeH2NhY+Pv7S1pPCZyBR0TaYMaVDjMuM64UmHENEzOu9JhxtcOZtvRMCQwM1OntDeWZm5tj3LhxAIBjx47hs88+09nsJCWUn0cl52yqMgUFBZV+QLh69SpMTU0lreXr66ue3VbezZs34evrq9PAJ5cTJ06oF2c4ePAgbt26BQ8PjyovFvG0Xn31Vbz66qs6rUHSk3v+1oABA/Dbb79h0aJF2LZtG4QQcHV1RXJyMjw9PSWtpRTOwCMibTDjSocZlxlXCsy4hokZV3rMuNrhlbZEZJD8/PzQrl07zJkzB7Vr10ZaWhqaN2+OIUOGoLS0FJs2bZKs1sPmtZ0/fx7t27ev9JeQIalbty5u376Ntm3bqm8X69y5c4WVoaUUHByMFi1aIDg4WGP7V199hd9//53zvvTcszB/S26cgUdERAAzrpSYcelJMeNKjxlXOzxoSySDkpISREVFIS4uDleuXKmwiq8hzvsqr6CgAJ9++ulDv77s7GzJa6anp6NLly544YUXsG/fPvTp0wdnzpzB9evXkZSUBCcnJ61r9O/fHwCwfft2dO/eXePqhpKSEqSlpcHZ2Rk7d+7UupaSfv75Z50H2P9q0qQJfvzxR7zwwgsa21NSUtCnTx/8+eefsvVCT07u+VsP+9CoUqlgamr60FmKhuRhM/Befvll7NixgzPwiEgvMeMy4+ozZlx6Usy40mPG1Q7HIxDJICQkBFFRUfDz80Pr1q1lu31NLqNGjUJCQgKGDx+Oxo0b6/zrKy4uxrvvvosff/wRO3bsgLGxMQoKCtC/f3+89957aNy4sSR16tSpA+DByqG1a9fWWJDBxMQEL7/8MkaPHi1JLSX16tVL9prXrl1Tf3/Ls7KywtWrV2Xvh55MeHg4Bg8ejAMHDlQ6f0tq1tbWj3xfadq0KYKCgjBr1ixJV0iXk5WVFRITExEfH6+xGAxn4BGRPmPGlRYzrrSYcelJMeNKjxlXO7zSlkgGNjY2iImJQc+ePZVuRSesra3xyy+/wNvbW7aaDRo0wKFDh/D888/rvFZ4eDimTZv20EU26Mm1bt0a48aNw4QJEzS2l82ROnv2rEKdUVUdP34cixYtQnp6unr+VmhoqE7mb8XExODDDz9EUFAQXnzxRQghcPToUURHR+Ojjz5Cfn4+Fi5ciGnTplW4MsKQxMXFPfRqrlWrVinUFRHRwzHjSo8Z17Ax4xo+ZlzpMeM+PV5pSyQDExOTCnNxqpO6deuiXr16stYMDAzEypUr8emnn+q8VkJCAkJCQioE2lu3bqFfv34Gf+ufEqZMmYIJEyYgPz9fvUhDXFwcIiIiONfIQLzwwgtYs2aNLLWio6MRERGBQYMGqbf16dMHbdq0wbJlyxAXFwc7OzvMmzfPYANteHg4Zs+ejfbt28tyNRcRkRSYcaXHjGvYmHENHzOutJhxtcMrbYlkEBERgezsbHz11VfV8k1qzZo12L59O6Kjo2U7Uz9x4kTExMSgRYsWaN++fYVZOJGRkZLVMjY2rnRl3StXrqBJkyYoLi6WrNaz5Ntvv8W8efPw999/AwDs7e3x8ccfa6zWSvqrpKQEW7duRXp6OlQqFVxcXNC3b1/UqCH9+WALCwukpqZWuOooMzMTbdu2RWFhIXJycuDm5obCwkLJ68uhcePGWLBgAYYPH650K0REVcaMKz1mXMPHjGvYmHGlxYyrHV5pSySDshkuO3bsgJubG2rWrKnx/JYtWxTqTBoRERHIyspCw4YNYW9vX+HrS0lJkbzm6dOn0a5dOwAPVrgtT6oPDWlpaQAezPs6e/YsLl26pH6upKQEO3fuRJMmTSSp9SwaP348xo8fj/z8fJibm8PS0lLplqiKTp8+jb59++LSpUtwdnYG8ODnsEGDBvjxxx/Rpk0bSes1bdq00quOVq5ciWbNmgF4MEOubt26ktaV071799CxY0el2yAieiLMuMy4VBEzruFixpUeM652eNCWSAbW1tbw9/dXug2d6du3r+xXV8THx+u8hoeHB1QqFVQqlfr2pvLMzc2xZMkSnfdR3TVo0EDpFugJjRo1Cm5ubjh27Jg6RP7zzz8ICgrCmDFjcPjwYUnrLVy4EAMHDsSOHTvQoUMHqFQqHD16FOfOncOmTZsAAEePHsXgwYMlrSunUaNGYd26dQgLC1O6FSKiKmPGlR4zbvXBjGt4mHGlx4yrHY5HICJ6iAsXLkAIAUdHRyQnJ2sELxMTE9ja2sLY2FjBDg3X5cuXMXXqVPVA+v/+KiopKVGoM6oKc3NzHDt2DG5ubhrbT58+jQ4dOqCoqEjymrm5uVi6dCnOnz8PIQRatWqFsWPHwt7eXvJaSggJCUFMTAzc3d3h7u5e4WouKW+HJSKiZxszru4w4xo2ZlzpMeNqh1faEskoPz8fGRkZUKlUaNmypcGffTUyMqr06gMrKys4Oztj+vTp6N+/vwKdSaN58+YAoF7h8uzZs8jLy8O9e/c0XtenTx/ZezN0QUFByMvLQ1hYGAfSGyBnZ2dcvny5QqC9cuWKzhaksbe3l2VRFqWkpaXBw8MDwIMPBuXx54OI9B0zrmFhxtUdZlzDxowrPWZc7fBKWyIZFBQUqBcVKAtHxsbGCAwMxJIlS2Rb2EBq27dvr3T7jRs3kJycjNWrVyM6OhoDBw6UuTNp5eTkwN/fH2lpaVCpVOoz5mW/ZHjG/MnVrl0bBw8eVP8CJ/1369Yt9Z8TExMxffp0fPzxx3j55ZcBAEeOHMHs2bPx6aefomfPnlrXK5u3VxXu7u5a1yMioifHjMuMS5qYcQ0PMy7pMx60JZLB2LFjsXfvXnz11Vfw9vYG8OAXQnBwMLp164Zvv/1W4Q514+uvv0ZMTAx+++03pVvRSu/evWFsbIzvvvsOjo6O+O2333D9+nWEhoZi4cKF6NSpk9ItGhxXV1esXbsWnp6eSrdCVfTfq47++8Gu/N+l+JBXVu9xMUWqekRE9OSYcZlxSRMzruFhxiV9xoO2RDKwsbHBpk2b4OPjo7E9Pj4egwYNQn5+vjKN6VhmZiZefPFF/PPPP0q3ohUbGxvs27cP7u7uqFOnDpKTk+Hs7Ix9+/YhNDQUJ06cULpFg7N7925ERERg2bJl1WZeU3WXkJBQ5dd26dJF63oXLlyo8mvLbvMkIiJ5MeMy45ImZlzDw4xL+owzbYlkUFhYiIYNG1bYbmtri8LCQgU6kkdRURHMzMyUbkNrJSUlsLS0BPAg3P79999wdnZG8+bNkZGRoXB3hmnw4MEoLCyEk5MTLCwsKgykv379ukKd0cNIEVKfRGUhtbKZeyqVioGWiEghzLiGjRlXesy4hocZl/QZD9oSycDLywuzZs1CTEyMOuAVFRUhPDwcXl5eCnenO9999121uDWodevWSEtLg6OjI1566SUsWLAAJiYmWL58ORwdHZVuzyAtXrxY6RZIAoWFhZUuXCL1/K3s7Gz4+/vj1KlTnLlHRKRHmHENGzOu9JhxqwdmXNIXHI9AJINTp06hR48euHPnDtq2bQuVSoWTJ0/C1NQUu3fvrrA6paGYMmVKpdtv3ryJY8eOISsrCwcPHjT4ULtr1y4UFBSgf//+yM7ORq9evXDu3DnUr18fGzduxKuvvqp0i0Syys/PxzvvvIMdO3ZU+rzUAZMz94iI9BMzLjMuUXXCjEv6hgdtiWRSVFSENWvW4Ny5cxBCwNXVFQEBATA3N1e6tafm6+tb6XYrKyu0atUK7777brW9peP69euoW7euxtB6ejpFRUUoLi7W2GZlZaVQN1QVAQEByM3NxeLFi+Hr64utW7fi8uXLmDt3LiIiIuDn5ydpPc7cIyLSX8y41QszrnSYcQ0PMy7pG45HIJLB/Pnz0bBhQ4wePVpj+6pVq5Cfn48ZM2Yo1Jl24uPjlW5BMfXq1VO6BYNWUFCAGTNmIDY2FteuXavwPG8F0m/79u3D9u3b0aFDBxgZGaF58+bo1q0brKysMH/+fMkDLWfuERHpJ2bc6ocZVzvMuIaNGZf0jZHSDRA9C5YtW4ZWrVpV2O7m5oalS5cq0BGRsqZPn459+/bhm2++gampKVasWIHw8HA899xziImJUbo9eoyCggLY2toCePDhrmx18DZt2iAlJUXyemUz9wCoZ+4lJSVh9uzZnLlHRKQgZlwiTcy4ho0Zl/QNr7QlksGlS5fQuHHjCtsbNGiAixcvKtARkbJ++uknxMTEwMfHByNGjECnTp3QokULNG/eHGvXrkVAQIDSLdIjODs7IyMjA/b29vDw8MCyZctgb2+PpUuXVvpep62PPvoIBQUFAIC5c+eiV69e6NSpk3rmHhERKYMZl0gTM65hY8YlfcODtkQyaNasGZKSkuDg4KCxPSkpCc8995xCXREp5/r16+qfBysrK1y/fh0A8Morr2D8+PFKtkZVMGnSJPWH8VmzZuGNN97A2rVrYWJigqioKMnrvfHGG+o/Ozo64uzZs5y5R0SkB5hxiTQx4xo2ZlzSNzxoSySDUaNGYdKkSSguLlavwhoXF4fp06cjNDRU4e6I5Ofo6Ijc3Fw0b94crq6uiI2NxYsvvoiffvoJ1tbWSrdHj1H+KhFPT0/k5ubi3LlzsLOzg42NjSw9cOYeEZHymHGJNDHjGjZmXNI3KiGEULoJoupOCIH3338fX375Je7duwcAMDMzw4wZMzBz5kyFuyOS36JFi2BsbIzg4GDEx8fDz88PJSUluH//PiIjIxESEqJ0i0RERPQYzLhEmphxiUhKPGhLJKPbt28jPT0d5ubmeP7552Fqaqp0S0R6IS8vD8eOHYOTkxPatm2rdDtUiSlTplT5tZGRkTrshIiI9A0zLlHlmHH1HzMu6TMetCUiItnl5ubC3t5e6TboCfj6+lbpdSqVCvv27dNxN0RERET6hxnX8DDjkj7jQVsiIpKdkZEROnbsiOHDh2PgwIGc3UREREREBo8Zl4ikZKR0A0RE9Ow5duwYvLy8MHfuXDz33HPo27cvfvjhB9y9e1fp1oiIiIiIngozLhFJiVfaEhGRYoQQ2L9/P9atW4fNmzejpKQEAwYMwKpVq5Rujf6jf//+VX7tli1bdNgJERERkX5jxjUczLikz3jQloiI9EJKSgpGjhyJtLQ0lJSUKN0O/cc777xT5deuXr1ah50QERERGQ5mXP3GjEv6jAdtiYhIMX/88QfWr1+PdevW4dSpU/Dy8kJAQADGjx+vdGtERERERE+FGZeIpFBD6QaIiOjZs3z5cqxduxZJSUlwdnZGQEAAtm3bxtV2DUx+fj4yMjKgUqnQsmVLNGjQQOmWiIiIiBTDjFs9MOOSvuCVtkREJLtmzZphyJAhCAgIgIeHh9Lt0BMqKCjAxIkTERMTg9LSUgCAsbExAgMDsWTJElhYWCjcIREREZH8mHENGzMu6RsetCUiItkJIaBSqZRug57S2LFjsXfvXnz11Vfw9vYGACQmJiI4OBjdunXDt99+q3CHRERERPJjxjVszLikb3jQloiIZJGWllbl17q7u+uwE9KWjY0NNm3aBB8fH43t8fHxGDRoEPLz85VpjIiIiEhmzLjVBzMu6RvOtCUiIll4eHhApVKh7Fzho65C4Mq6+q2wsBANGzassN3W1haFhYUKdERERESkDGbc6oMZl/SNkdINEBHRsyEnJwfZ2dnIycnBli1b4ODggG+++QYnTpzAiRMn8M0338DJyQmbN29WulV6DC8vL8yaNQt37txRbysqKkJ4eDi8vLwU7IyIiIhIXsy41QczLukbjkcgIiLZvfjii/j444/Rs2dPje2//vorwsLCcPz4cYU6o6o4deoUevTogTt37qBt27ZQqVQ4efIkTE1NsXv3bri5uSndIhEREZHsmHENGzMu6RsetCUiItmZm5sjJSUFLi4uGtvT09PRrl07FBUVKdQZVVVRURHWrFmDc+fOQQgBV1dXBAQEwNzcXOnWiIiIiBTBjGv4mHFJn/CgLRERya5du3ZwcXHBypUrYWZmBgC4e/cuRowYgfT0dKSkpCjcIT3K/Pnz0bBhQ4wYMUJj+6pVq5Cfn48ZM2Yo1BkRERGRcphxDRszLukbHrQlIiLZJScno3fv3igtLUXbtm0BAKmpqVCpVPj555/x4osvKtwhPYq9vT3WrVuHjh07amz/7bffMGTIEOTk5CjUGREREZFymHENGzMu6RsetCUiIkUUFhZWuPVo6NChqFWrltKt0WOYmZkhPT0dDg4OGtuzs7Ph6uqqsXgDERER0bOEGddwMeOSvqmhdANERPRssrCwwCuvvAI7Ozvcu3cPABAXFwcA6NOnj5Kt0WM0a9YMSUlJFQJtUlISnnvuOYW6IiIiIlIeM67hYsYlfcODtkREJLvs7Gz4+/vj1KlTUKlUEEJApVKpny8pKVGwO3qcUaNGYdKkSSguLsarr74K4MGHkenTpyM0NFTh7oiIiIiUwYxr2JhxSd/woC0REckuJCQEDg4O2Lt3LxwdHfHbb7/h+vXrCA0NxcKFC5Vujx5j+vTpuH79Ot599131FSRmZmaYMWMG/ve//yncHREREZEymHENGzMu6RvOtCUiItnZ2Nhg3759cHd3R506dZCcnAxnZ2fs27cPoaGhOHHihNItUhXcvn0b6enpMDc3x/PPPw9TU1OlWyIiIiJSDDNu9cCMS/qCV9oSEZHsSkpKYGlpCeBBuP3777/h7OyM5s2bIyMjQ+HuqKosLS3RoUMHpdsgIiIi0gvMuNUDMy7pCx60JSIi2bVu3RppaWlwdHTESy+9hAULFsDExATLly+Ho6Oj0u0RERERET0xZlwikhLHIxARkex27dqFgoIC9O/fH9nZ2ejVqxfOnTuH+vXrY+PGjerB/0REREREhoIZl4ikxIO2RESkF65fv466detqrLBLRERERGTImHGJ6GnxoC0RERERERERERGRHjFSugEiIiIiIiIiIiIi+j88aEtERERERERERESkR3jQloiIiIiIiIiIiEiP8KAtERERERERERERkR7hQVsiIgOmUqmwbds2pdsgIiIiIpIMMy4REQ/aEhEpSqVSPfIRFBSkdItERERERE+EGZeISHs1lG6AiOhZdvHiRfWfN27ciJkzZyIjI0O9zdzcXIm2iIiIiIieGjMuEZH2eKUtEZGCGjVqpH7UqVMHKpVKY9u6devg5OQEExMTODs74/vvv3/k/mbPno2GDRvi5MmTAIBDhw6hc+fOMDc3R7NmzRAcHIyCggL16+3t7fHJJ59gxIgRqF27Nuzs7LB8+XL18/fu3cOECRPQuHFjmJmZwd7eHvPnz9fJ94KIiIiIqgdmXCIi7fGgLRGRntq6dStCQkIQGhqK06dPY+zYsXjnnXcQHx9f4bVCCISEhGDlypVITEyEh4cHTp06hTfeeAP9+/dHWloaNm7ciMTEREyYMEHj/xsREYH27dvjxIkTePfddzF+/HicO3cOAPDll1/ixx9/RGxsLDIyMrBmzRrY29vL8eUTERERUTXEjEtEVDUqIYRQugkiIgKioqIwadIk3LhxAwDg7e0NNzc3jasCBg0ahIKCAvzyyy8AHswL++GHH7B9+3YcO3YMe/bsQdOmTQEAgYGBMDc3x7Jly9T//8TERHTp0gUFBQXqqwo6deqkvrpBCIFGjRohPDwc48aNQ3BwMM6cOYO9e/dCpVLJ9J0gIiIiouqCGZeI6OnwSlsiIj2Vnp4Ob29vjW3e3t5IT0/X2DZ58mQcPnwYBw8eVIdZADh+/DiioqJgaWmpfrzxxhsoLS1FTk6O+nXu7u7qP5fdunblyhUAQFBQEE6ePAlnZ2cEBwdj9+7duvhSiYiIiOgZwYxLRFQ1PGhLRKTH/nvmXwhRYVu3bt3w119/YdeuXRrbS0tLMXbsWJw8eVL9SE1NRWZmJpycnNSvq1mzZoWapaWlAIB27dohJycHc+bMQVFREQYNGoQ333xTyi+RiIiIiJ4xzLhERI9XQ+kGiIioci4uLkhMTERgYKB626FDh+Di4qLxuj59+qB3794YOnQojI2NMWTIEAAPwuiZM2fQokULrfqwsrLC4MGDMXjwYLz55pvo3r07rl+/jnr16mm1XyIiIiJ69jDjEhFVDQ/aEhHpqWnTpmHQoEFo164dXnvtNfz000/YsmUL9u7dW+G1/v7++P777zF8+HDUqFEDb775JmbMmIGXX34Z7733HkaPHo1atWohPT0de/bswZIlS6rUw6JFi9C4cWN4eHjAyMgIP/zwAxo1agRra2uJv1oiIiIiehYw4xIRVQ0P2hIR6al+/frhiy++wOeff47g4GA4ODhg9erV8PHxqfT1b775JkpLSzF8+HAYGRmhf//+SEhIwIcffohOnTpBCAEnJycMHjy4yj1YWlris88+Q2ZmJoyNjdGhQwf8+uuvMDLidB0iIiIienLMuEREVaMSQgilmyAiIiIiIiIiIiKiB3gaiYiIiIiIiIiIiEiP8KAtERERERERERERkR7hQVsiIiIiIiIiIiIiPcKDtkRERERERERERER6hAdtiYiIiIiIiIiIiPQID9oSERERERERERER6REetCUiIiIiIiIiIiLSIzxoS0RERERERERERKRHeNCWiIiIiIiIiIiISI/woC0RERERERERERGRHuFBWyIiIiIiIiIiIiI9woO2RERERERERERERHrk/wFF8wAO/ODlHQAAAABJRU5ErkJggg==",
2362
- "text/plain": [
2363
- "<Figure size 1400x600 with 2 Axes>"
2364
- ]
2365
- },
2366
- "metadata": {},
2367
- "output_type": "display_data"
2368
- },
2369
- {
2370
- "data": {
2371
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABW0AAAJOCAYAAADMCCWlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACmj0lEQVR4nOzdd3QV1drH8d8hlZZQkxBKCEUIHUFphiJNUCmCgqgUAS9iAQIWUN+AekUQMBcBsVBVigooCldAKVJVSKgiBgwEISEGlFAkhGTeP1g5l8NJQsqcnAG/n7VmLc6ePfvZEyA8eZjZ22YYhiEAAAAAAAAAgCUUcfcEAAAAAAAAAAD/Q9EWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RZAoZg/f75sNluWx5gxY9w9vVvK9V9rX19fBQUFqV27dpo4caKSkpKcrhk/frxsNlue4ly8eFHjx4/Xxo0b83RdVrGqVq2q++67L0/j3MiiRYsUFRWV5Tmbzabx48ebGg8AAPyzXJ9zeXp6qlKlSho0aJBOnDhhaiybzaann37atPGOHj0qm82mKVOm3LBv5n0ePXrU3jZw4EBVrVrVoV/VqlU1cOBA++eTJ09q/Pjx2r17tzmTvm4+5LrkusCtztPdEwDwzzJv3jzVrl3boS04ONhNs7m1ZX6t09LSlJSUpC1btmjSpEmaMmWKli5dqg4dOtj7DhkyRPfcc0+exr948aImTJggSWrbtm2ur8tPrPxYtGiR9u/fr5EjRzqd2759uypVquTyOQAAgFtfZs71999/6/vvv9fEiRO1adMm7du3T8WLF3f39Ars3nvv1fbt21WhQoUc+61YsUJ+fn72zydPntSECRNUtWpVNWrUyPR5keuS6wK3Ooq2AApVvXr11LRp01z1TUtLsz+1gLy7/mvdq1cvjRo1SnfddZceeOABxcbGKjAwUJJUqVIllyd2Fy9eVLFixQol1o00b97crfEBAMCt49qcq127dkpPT9drr72mL774Qo888kiW12TmRTeD8uXLq3z58jfs17hx40KYzf+Q62aPXBe4NbA8AgBL2Lhxo2w2mz766CONHj1aFStWlI+Pjw4fPixJ+vbbb9W+fXv5+fmpWLFiatWqlb777juncVatWqVGjRrJx8dHoaGhmjJlitMrSpmvg82fP9/p+qxeJYqNjVW/fv0UEBAgHx8fhYWFaebMmVnOf/HixXrppZcUHBwsPz8/dejQQYcOHXKK880336h9+/by9/dXsWLFFBYWpokTJ0qSPvroI9lsNm3fvt3puldffVVeXl46efLkDb+mWalSpYqmTp2qc+fO6b333rO3Z/Ua1/r169W2bVuVLVtWRYsWVZUqVdSrVy9dvHhRR48etSfvEyZMsL+elvlKXOZ40dHR6t27t0qXLq3q1atnGyvTihUr1KBBA/n6+qpatWqaPn26w/msXs+T/vf1z3x9rW3btlq1apWOHTvm8Ppcpqx+n/fv36/u3burdOnS8vX1VaNGjbRgwYIs4+T29xkAAPzzZBbMjh07JunqUgIlSpTQvn371KlTJ5UsWVLt27eXJJ05c0bDhw9XxYoV5e3trWrVqumll15SampqlmO/9957uu222+Tj46M6depoyZIlDuf/+OMPDR8+XHXq1FGJEiUUEBCgu+++W5s3b85yvIyMDP373/9WlSpV5Ovrq6ZNmzrl2NnlX9e7dnmEjRs36o477pAkDRo0yJ6LjR8/nlyXXBdALvH4GoBClZ6eritXrji0Xfsk7dixY9WiRQvNnj1bRYoUUUBAgD7++GP1799f3bt314IFC+Tl5aX33ntPnTt31po1a+xJ73fffafu3burRYsWWrJkidLT0zV58mSdOnUq3/P9+eef1bJlS3sCGBQUpDVr1ujZZ59VcnKyIiMjHfqPGzdOrVq10ocffqiUlBS98MILuv/++3Xw4EF5eHhIkubMmaOhQ4eqTZs2mj17tgICAvTrr79q//79kqQ+ffro+eef18yZM9WiRQv72FeuXNF7772nnj17FmhJia5du8rDw0Pff/99tn2OHj2qe++9V+Hh4Zo7d65KlSqlEydO6JtvvtHly5dVoUIFffPNN7rnnns0ePBgDRkyRJKcnsJ44IEH1LdvXw0bNkwXLlzIcV67d+/WyJEjNX78eAUFBemTTz7RiBEjdPny5Tyvezxr1iw98cQTOnLkiFasWHHD/ocOHVLLli0VEBCg6dOnq2zZsvr44481cOBAnTp1Ss8//7xD/9z8PgMAgH+mzIcOrs2LLl++rG7duulf//qXXnzxRV25ckWXLl1Su3btdOTIEU2YMEENGjTQ5s2bNXHiRO3evVurVq1yGHflypXasGGDXn31VRUvXlyzZs3Sww8/LE9PT/Xu3VvS1SKwJEVGRiooKEjnz5/XihUr1LZtW3333XdOr/nPmDFDISEhioqKUkZGhiZPnqwuXbpo06ZNDnloXt1+++2aN2+eBg0apJdffln33nuvpKtPvAYEBJDrkusCyA0DAArBvHnzDElZHmlpacaGDRsMSUbr1q0drrtw4YJRpkwZ4/7773doT09PNxo2bGjceeed9rZmzZoZwcHBxt9//21vS0lJMcqUKWNc++0uLi7OkGTMmzfPaZ6SjMjISPvnzp07G5UqVTLOnj3r0O/pp582fH19jTNnzhiGYdjn37VrV4d+n376qSHJ2L59u2EYhnHu3DnDz8/PuOuuu4yMjIxsv16RkZGGt7e3cerUKXvb0qVLDUnGpk2bsr3OMP73tf7pp5+y7RMYGGiEhYU5xLv2a/T5558bkozdu3dnO8Yff/zh9PW6frz/+7//y/bctUJCQgybzeYUr2PHjoafn59x4cIFh3uLi4tz6Jf59d+wYYO97d577zVCQkKynPv18+7bt6/h4+NjxMfHO/Tr0qWLUaxYMeOvv/5yiHOj32cAAHDry8xLduzYYaSlpRnnzp0zvv76a6N8+fJGyZIljcTERMMwDGPAgAGGJGPu3LkO18+ePduQZHz66acO7ZMmTTIkGWvXrrW3STKKFi1qH9MwDOPKlStG7dq1jRo1amQ7xytXrhhpaWlG+/btjZ49e9rbM/Ph7HLnDh06ON3ntfnXgAEDnPKskJAQY8CAAfbPP/30U7Y5N7nuVeS6AHLC8ggACtXChQv1008/ORzXPmnbq1cvh/7btm3TmTNnNGDAAF25csV+ZGRk6J577tFPP/2kCxcu6MKFC/rpp5/0wAMPyNfX1359yZIldf/99+drrpcuXdJ3332nnj17qlixYg7xu3btqkuXLmnHjh0O13Tr1s3hc4MGDST97/W4bdu2KSUlRcOHD89xB9snn3xSkvTBBx/Y22bMmKH69eurdevW+bqfaxmGkeP5Ro0aydvbW0888YQWLFig3377LV9xrv/9zEndunXVsGFDh7Z+/fopJSVF0dHR+YqfW+vXr1f79u1VuXJlh/aBAwfq4sWLTq/v3ej3GQAA/HM0b95cXl5eKlmypO677z4FBQXpv//9r3091UzX50Xr169X8eLF7U/JZsp8Bf/6ZQrat2/vMKaHh4f69Omjw4cP6/fff7e3z549W7fffrt8fX3l6ekpLy8vfffddzp48KDT3LPLnb///nulp6fn7QuRB+S6V5HrAsgJRVsAhSosLExNmzZ1OK51/a60mUsb9O7dW15eXg7HpEmTZBiGzpw5oz///FMZGRkKCgpyiplVW26cPn1aV65c0TvvvOMUu2vXrpKk5ORkh2vKli3r8NnHx0eS9Pfff0u6us6YpBtuThAYGKg+ffrovffeU3p6uvbu3avNmzfr6aefzte9XOvChQs6ffp0jq+dVa9eXd9++60CAgL01FNPqXr16qpevbr+85//5CnWjXYZvlZOv3enT5/OU9y8On36dJZzzfwaXR//Rr/PAADgnyPzoYSYmBidPHlSe/fuVatWrRz6FCtWTH5+fg5tp0+fVlBQkNN/5AcEBMjT09Mp/8hNrjRt2jQ9+eSTatasmZYtW6YdO3bop59+0j333JNlnpLdmJcvX9b58+dzcff5Q67r2EauCyArrGkLwFKuT1rLlSsnSXrnnXey3QU1MDBQaWlpstlsSkxMdDp/fVvm0wTXb/BwfbJSunRpeXh46LHHHtNTTz2VZezQ0NAc7sZZ5jpY1z4NkZ0RI0boo48+0pdffqlvvvlGpUqVynYH4rxYtWqV0tPTndY0u154eLjCw8OVnp6unTt36p133tHIkSMVGBiovn375ipWTk8TXy+n37vMxDG737vri+d5VbZsWSUkJDi1Z26CkfnnEAAA4HqZDyXkJKucqGzZsvrhhx9kGIbD+aSkJF25csUp/8hNrvTxxx+rbdu2evfddx36nTt3Lst5ZTemt7e3SpQokeM9FRS5LrkugJzxpC0AS2vVqpVKlSqln3/+2ekJ3czD29tbxYsX15133qnly5fr0qVL9uvPnTunr776ymHMwMBA+fr6au/evQ7tX375pcPnYsWKqV27doqJiVGDBg2yjH39/0LfSMuWLeXv76/Zs2ff8LWtJk2aqGXLlpo0aZI++eQTDRw4UMWLF89TvOvFx8drzJgx8vf317/+9a9cXePh4aFmzZpp5syZkmR/fcvs/3E/cOCA9uzZ49C2aNEilSxZUrfffrukq7sSS3L6vVu5cqXTeD4+PrmeW/v27bV+/XqnnYoXLlyoYsWKZfsfBgAAAPnVvn17nT9/Xl988YVD+8KFC+3nr/Xdd985bLCbnp6upUuXqnr16va3uGw2mz1Hy7R3716n198zZZc7h4eHF3jDqRvliuS65LoAcsaTtgAsrUSJEnrnnXc0YMAAnTlzRr1791ZAQID++OMP7dmzR3/88Yf9SYLXXntN99xzjzp27KjRo0crPT1dkyZNUvHixe076UpXk9lHH31Uc+fOVfXq1dWwYUP9+OOPWrRokVP8//znP7rrrrsUHh6uJ598UlWrVtW5c+d0+PBhffXVV1q/fn2e72fq1KkaMmSIOnTooKFDhyowMFCHDx/Wnj17NGPGDIf+I0aMUJ8+fWSz2TR8+PA8xdq/f799Dd6kpCRt3rxZ8+bNk4eHh1asWOG0++21Zs+erfXr1+vee+9VlSpVdOnSJc2dO1eS1KFDB0lX1zwLCQnRl19+qfbt26tMmTIqV66cPdnMq+DgYHXr1k3jx49XhQoV9PHHH2vdunWaNGmSihUrJkm64447VKtWLY0ZM0ZXrlxR6dKltWLFCm3ZssVpvPr162v58uV699131aRJExUpUiTbp2AiIyP19ddfq127dvq///s/lSlTRp988olWrVqlyZMny9/fP1/3BAAAkJ3+/ftr5syZGjBggI4ePar69etry5YteuONN9S1a1d7zpWpXLlyuvvuu/XKK6+oePHimjVrln755RctWbLE3ue+++7Ta6+9psjISLVp00aHDh3Sq6++qtDQUF25csVpDh4eHurYsaMiIiKUkZGhSZMmKSUlRRMmTCjw/VWvXl1FixbVJ598orCwMJUoUULBwcEOyxaQ65LrAsgeRVsAlvfoo4+qSpUqmjx5sv71r3/p3LlzCggIUKNGjewbNUhSx44d9cUXX+jll19Wnz59FBQUpOHDh+vvv/92SjynTp0qSZo8ebLOnz+vu+++W19//bVTElanTh1FR0frtdde08svv6ykpCSVKlVKNWvWtK9rm1eDBw9WcHCwJk2apCFDhsgwDFWtWlUDBgxw6tujRw/5+PioXbt2qlmzZp7iDBo0SJLk7e2tUqVKKSwsTC+88IKGDBmSYxIrXd2cYe3atYqMjFRiYqJKlCihevXqaeXKlerUqZO935w5c/Tcc8+pW7duSk1N1YABAzR//vw8zfPamIMGDVJkZKRiY2MVHBysadOmadSoUfY+Hh4e+uqrr/T0009r2LBh8vHxUd++fTVjxgzde++9DuONGDFCBw4c0Lhx43T27FkZhpHt0821atXStm3bNG7cOD311FP6+++/FRYWpnnz5jn8GQMAADCLr6+vNmzYoJdeeklvvfWW/vjjD1WsWFFjxoxRZGSkU/9u3bqpbt26evnllxUfH6/q1avrk08+UZ8+fex9XnrpJV28eFFz5szR5MmTVadOHc2ePVsrVqzQxo0bncZ8+umndenSJT377LNKSkpS3bp1tWrVKqc1efOjWLFimjt3riZMmKBOnTopLS1NkZGRGj9+vL0PuS65LoDs2YwbvZ8LADe58ePHa8KECTdcjsCKvvrqK3Xr1k2rVq3Kd5EYAAAAsCJyXQDIHk/aAoAF/fzzzzp27JhGjx6tRo0aqUuXLu6eEgAAAGAKcl0AuDE2IgMACxo+fLi6deum0qVLa/HixXnamRYAAACwMnJdALgxlkcAAAAAAAAAAAvhSVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBCPN09ASvKyMjQyZMnVbJkSRZEBwAAcBPDMHTu3DkFBwerSBGeNSgoclwAAAD3y22OS9E2CydPnlTlypXdPQ0AAABIOn78uCpVquTuadz0yHEBAACs40Y5LkXbLJQsWVLS1S+en5+fm2cDAADwz5SSkqLKlSvbczMUDDkuAACA++U2x6Vom4XM18X8/PxIaAEAANyMV/nNQY4LAABgHTfKcVkcDAAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBCKNoCAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQT3dPAFe9GZPssrFfbFzOZWMDAAAA2UmbMNplY3tFTnXZ2AAAAO7Gk7YAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAsxK1F2++//17333+/goODZbPZ9MUXXzict9lsWR5vvfVWtmPOnz8/y2suXbrk4rsBAAAAAAAAgIJza9H2woULatiwoWbMmJHl+YSEBIdj7ty5stls6tWrV47j+vn5OV3r6+vrilsAAAAAAAAAAFN5ujN4ly5d1KVLl2zPBwUFOXz+8ssv1a5dO1WrVi3HcW02m9O1AAAAAAAAAHAzuGnWtD116pRWrVqlwYMH37Dv+fPnFRISokqVKum+++5TTExMIcwQAAAAAAAAAArupinaLliwQCVLltQDDzyQY7/atWtr/vz5WrlypRYvXixfX1+1atVKsbGx2V6TmpqqlJQUhwMAAAAAAAAA3OGmKdrOnTtXjzzyyA3Xpm3evLkeffRRNWzYUOHh4fr0009122236Z133sn2mokTJ8rf399+VK5c2ezpAwAAAAAAAECu3BRF282bN+vQoUMaMmRInq8tUqSI7rjjjhyftB07dqzOnj1rP44fP16Q6QIAAAAAAABAvrl1I7LcmjNnjpo0aaKGDRvm+VrDMLR7927Vr18/2z4+Pj7y8fEpyBQBAAAAAAAAwBRuLdqeP39ehw8ftn+Oi4vT7t27VaZMGVWpUkWSlJKSos8++0xTp07Ncoz+/furYsWKmjhxoiRpwoQJat68uWrWrKmUlBRNnz5du3fv1syZM11/QwAAAAAAAABQQG4t2u7cuVPt2rWzf46IiJAkDRgwQPPnz5ckLVmyRIZh6OGHH85yjPj4eBUp8r9VHv766y898cQTSkxMlL+/vxo3bqzvv/9ed955p+tuBAAAAAAAAABMYjMMw3D3JKwmJSVF/v7+Onv2rPz8/Aol5psxyS4b+8XG5Vw2NgAAgKu4Iye7lbnj65k2YbTLxvaKzPpNPAAAACvLbU52U2xEBgAAAAAAAAD/FBRtAQAAAAAAAMBCKNoCAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAABAHsyaNUuhoaHy9fVVkyZNtHnz5hz7b9q0SU2aNJGvr6+qVaum2bNnO5z/4IMPFB4ertKlS6t06dLq0KGDfvzxR4c+48ePl81mcziCgoJMvzcAAABYA0VbAAAAIJeWLl2qkSNH6qWXXlJMTIzCw8PVpUsXxcfHZ9k/Li5OXbt2VXh4uGJiYjRu3Dg9++yzWrZsmb3Pxo0b9fDDD2vDhg3avn27qlSpok6dOunEiRMOY9WtW1cJCQn2Y9++fS69VwAAALiPp7snAAAAANwspk2bpsGDB2vIkCGSpKioKK1Zs0bvvvuuJk6c6NR/9uzZqlKliqKioiRJYWFh2rlzp6ZMmaJevXpJkj755BOHaz744AN9/vnn+u6779S/f397u6enJ0/XAgAA/EPwpC0AAACQC5cvX9auXbvUqVMnh/ZOnTpp27ZtWV6zfft2p/6dO3fWzp07lZaWluU1Fy9eVFpamsqUKePQHhsbq+DgYIWGhqpv37767bffCnA3AAAAsDKKtgAAAEAuJCcnKz09XYGBgQ7tgYGBSkxMzPKaxMTELPtfuXJFycnJWV7z4osvqmLFiurQoYO9rVmzZlq4cKHWrFmjDz74QImJiWrZsqVOnz6d7XxTU1OVkpLicAAAAODmQNEWAAAAyAObzebw2TAMp7Yb9c+qXZImT56sxYsXa/ny5fL19bW3d+nSRb169VL9+vXVoUMHrVq1SpK0YMGCbONOnDhR/v7+9qNy5co3vjkAAABYAkVbAAAAIBfKlSsnDw8Pp6dqk5KSnJ6mzRQUFJRlf09PT5UtW9ahfcqUKXrjjTe0du1aNWjQIMe5FC9eXPXr11dsbGy2fcaOHauzZ8/aj+PHj+c4JgAAAKyDoi0AAACQC97e3mrSpInWrVvn0L5u3Tq1bNkyy2tatGjh1H/t2rVq2rSpvLy87G1vvfWWXnvtNX3zzTdq2rTpDeeSmpqqgwcPqkKFCtn28fHxkZ+fn8MBAACAmwNFWwAAACCXIiIi9OGHH2ru3Lk6ePCgRo0apfj4eA0bNkzS1adb+/fvb+8/bNgwHTt2TBERETp48KDmzp2rOXPmaMyYMfY+kydP1ssvv6y5c+eqatWqSkxMVGJios6fP2/vM2bMGG3atElxcXH64Ycf1Lt3b6WkpGjAgAGFd/MAAAAoNJ7ungAAAABws+jTp49Onz6tV199VQkJCapXr55Wr16tkJAQSVJCQoLi4+Pt/UNDQ7V69WqNGjVKM2fOVHBwsKZPn65evXrZ+8yaNUuXL19W7969HWJFRkZq/PjxkqTff/9dDz/8sJKTk1W+fHk1b95cO3bssMcFAADArcVmZO6EALuUlBT5+/vr7NmzhfYa2ZsxWe8ebIYXG5dz2dgAAACu4o6c7Fbmjq9n2oTRLhvbK3Kqy8YGAABwldzmZCyPAAAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBC3Fq0/f7773X//fcrODhYNptNX3zxhcP5gQMHymazORzNmze/4bjLli1TnTp15OPjozp16mjFihUuugMAAAAAAAAAMJdbi7YXLlxQw4YNNWPGjGz73HPPPUpISLAfq1evznHM7du3q0+fPnrssce0Z88ePfbYY3rooYf0ww8/mD19AAAAAAAAADCdpzuDd+nSRV26dMmxj4+Pj4KCgnI9ZlRUlDp27KixY8dKksaOHatNmzYpKipKixcvLtB8AQAAAAAAAMDVLL+m7caNGxUQEKDbbrtNQ4cOVVJSUo79t2/frk6dOjm0de7cWdu2bXPlNAEAAAAAAADAFG590vZGunTpogcffFAhISGKi4vTK6+8orvvvlu7du2Sj49PltckJiYqMDDQoS0wMFCJiYnZxklNTVVqaqr9c0pKijk3AAAAAAAAAAB5ZOmibZ8+fey/rlevnpo2baqQkBCtWrVKDzzwQLbX2Ww2h8+GYTi1XWvixImaMGFCwScMAAAAAAAAAAVk+eURrlWhQgWFhIQoNjY22z5BQUFOT9UmJSU5PX17rbFjx+rs2bP24/jx46bNGQAAAAAAAADy4qYq2p4+fVrHjx9XhQoVsu3TokULrVu3zqFt7dq1atmyZbbX+Pj4yM/Pz+EAAAAAAAAAAHdw6/II58+f1+HDh+2f4+LitHv3bpUpU0ZlypTR+PHj1atXL1WoUEFHjx7VuHHjVK5cOfXs2dN+Tf/+/VWxYkVNnDhRkjRixAi1bt1akyZNUvfu3fXll1/q22+/1ZYtWwr9/gAAAAAAAAAgr9xatN25c6fatWtn/xwRESFJGjBggN59913t27dPCxcu1F9//aUKFSqoXbt2Wrp0qUqWLGm/Jj4+XkWK/O+B4ZYtW2rJkiV6+eWX9corr6h69epaunSpmjVrVng3BgAAAAAAAAD55Naibdu2bWUYRrbn16xZc8MxNm7c6NTWu3dv9e7duyBTAwAAAAAAAAC3uKnWtAUAAAAAAACAWx1FWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBCKNoCAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAABAHsyaNUuhoaHy9fVVkyZNtHnz5hz7b9q0SU2aNJGvr6+qVaum2bNnO5z/4IMPFB4ertKlS6t06dLq0KGDfvzxxwLHBQAAwM2Loi0AAACQS0uXLtXIkSP10ksvKSYmRuHh4erSpYvi4+Oz7B8XF6euXbsqPDxcMTExGjdunJ599lktW7bM3mfjxo16+OGHtWHDBm3fvl1VqlRRp06ddOLEiXzHBQAAwM3NZhiG4e5JWE1KSor8/f119uxZ+fn5FUrMN2OSXTb2i43LuWxsAAAAV3FHTnYjzZo10+233653333X3hYWFqYePXpo4sSJTv1feOEFrVy5UgcPHrS3DRs2THv27NH27duzjJGenq7SpUtrxowZ6t+/f77iZsUdX8+0CaNdNrZX5FSXjQ0AAOAquc3JeNIWAAAAyIXLly9r165d6tSpk0N7p06dtG3btiyv2b59u1P/zp07a+fOnUpLS8vymosXLyotLU1lypTJd1wAAADc3DzdPQEAAADgZpCcnKz09HQFBgY6tAcGBioxMTHLaxITE7Psf+XKFSUnJ6tChQpO17z44ouqWLGiOnTokO+4kpSamqrU1FT755SUlJxvEAAAAJbBk7YAAABAHthsNofPhmE4td2of1btkjR58mQtXrxYy5cvl6+vb4HiTpw4Uf7+/vajcuXK2fYFAACAtVC0BQAAAHKhXLly8vDwcHq6NSkpyekp2ExBQUFZ9vf09FTZsmUd2qdMmaI33nhDa9euVYMGDQoUV5LGjh2rs2fP2o/jx4/n6j4BAADgfiyP8A/FxmcAAAB54+3trSZNmmjdunXq2bOnvX3dunXq3r17lte0aNFCX331lUPb2rVr1bRpU3l5ednb3nrrLb3++utas2aNmjZtWuC4kuTj4yMfH5883ePNjo3PAADArYKiLQAAAJBLEREReuyxx9S0aVO1aNFC77//vuLj4zVs2DBJV59uPXHihBYuXChJGjZsmGbMmKGIiAgNHTpU27dv15w5c7R48WL7mJMnT9Yrr7yiRYsWqWrVqvYnakuUKKESJUrkKi4AAABuLRRtAQAAgFzq06ePTp8+rVdffVUJCQmqV6+eVq9erZCQEElSQkKC4uPj7f1DQ0O1evVqjRo1SjNnzlRwcLCmT5+uXr162fvMmjVLly9fVu/evR1iRUZGavz48bmKCwAAgFsLRVsAAAAgD4YPH67hw4dneW7+/PlObW3atFF0dHS24x09erTAcQEAAHBrYSMyAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFuLVo+/333+v+++9XcHCwbDabvvjiC/u5tLQ0vfDCC6pfv76KFy+u4OBg9e/fXydPnsxxzPnz58tmszkdly5dcvHdAAAAAAAAAEDBubVoe+HCBTVs2FAzZsxwOnfx4kVFR0frlVdeUXR0tJYvX65ff/1V3bp1u+G4fn5+SkhIcDh8fX1dcQsAAAAAAAAAYCpPdwbv0qWLunTpkuU5f39/rVu3zqHtnXfe0Z133qn4+HhVqVIl23FtNpuCgoJMnSsAAAAAAAAAFIabak3bs2fPymazqVSpUjn2O3/+vEJCQlSpUiXdd999iomJybF/amqqUlJSHA4AAAAAAAAAcIebpmh76dIlvfjii+rXr5/8/Pyy7Ve7dm3Nnz9fK1eu1OLFi+Xr66tWrVopNjY222smTpwof39/+1G5cmVX3AIAAAAAAAAA3NBNUbRNS0tT3759lZGRoVmzZuXYt3nz5nr00UfVsGFDhYeH69NPP9Vtt92md955J9trxo4dq7Nnz9qP48ePm30LAAAAAAAAAJArbl3TNjfS0tL00EMPKS4uTuvXr8/xKdusFClSRHfccUeOT9r6+PjIx8enoFMFAAAAAAAAgAKz9JO2mQXb2NhYffvttypbtmyexzAMQ7t371aFChVcMEMAAAAAAAAAMJdbn7Q9f/68Dh8+bP8cFxen3bt3q0yZMgoODlbv3r0VHR2tr7/+Wunp6UpMTJQklSlTRt7e3pKk/v37q2LFipo4caIkacKECWrevLlq1qyplJQUTZ8+Xbt379bMmTML/wYBAAAAAAAAII/cWrTduXOn2rVrZ/8cEREhSRowYIDGjx+vlStXSpIaNWrkcN2GDRvUtm1bSVJ8fLyKFPnfA8N//fWXnnjiCSUmJsrf31+NGzfW999/rzvvvNO1NwMAAAAAAAAAJnBr0bZt27YyDCPb8zmdy7Rx40aHz2+//bbefvvtgk4NAAAAAAAAANzC0mvaAgAAAAAAAMA/DUVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFeLp7AvhneDMm2WVjv9i4XKHGzC4eAAAA/lnSJox22dhekVPdHg8AALgPT9oCAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBCKNoCAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAgFve/PnzdfHiRXdPAwAAAMiVfBVt4+LizJ4HAAAA4DJjx45VUFCQBg8erG3btrl7OgAAAECO8lW0rVGjhtq1a6ePP/5Yly5dMntOAAAAgKl+//13ffzxx/rzzz/Vrl071a5dW5MmTVJiYqK7pwYAAAA4yVfRds+ePWrcuLFGjx6toKAg/etf/9KPP/5o9twAAAAAU3h4eKhbt25avny5jh8/rieeeEKffPKJqlSpom7duunLL79URkaGu6cJAAAASMpn0bZevXqaNm2aTpw4oXnz5ikxMVF33XWX6tatq2nTpumPP/4we54AAACAKQICAtSqVSu1aNFCRYoU0b59+zRw4EBVr15dGzdudPf0AAAAgIJtRObp6amePXvq008/1aRJk3TkyBGNGTNGlSpVUv/+/ZWQkGDWPAEAAIACOXXqlKZMmaK6deuqbdu2SklJ0ddff624uDidPHlSDzzwgAYMGODuaQIAAAAFK9ru3LlTw4cPV4UKFTRt2jSNGTNGR44c0fr163XixAl1797drHkCAAAA+Xb//fercuXKmj9/voYOHaoTJ05o8eLF6tChgySpaNGiGj16tI4fP+7mmQIAAACSZ34umjZtmubNm6dDhw6pa9euWrhwobp27aoiRa7WgENDQ/Xee++pdu3apk4WAAAAyI+AgABt2rRJLVq0yLZPhQoVFBcXV4izAgAAALKWrydt3333XfXr10/x8fH64osvdN9999kLtpmqVKmiOXPmmDJJAAAAoCDatGmj22+/3an98uXLWrhwoSTJZrMpJCSksKcGAAAAOMlX0TY2NlZjx45VUFBQtn28vb1ZEwwAAACWMGjQIJ09e9ap/dy5cxo0aJAbZgQAAABkL19F23nz5umzzz5zav/ss8+0YMGCAk8KAAAAMJNhGLLZbE7tv//+u/z9/d0wIwAAACB7+VrT9s0339Ts2bOd2gMCAvTEE0/whC0AAAAsoXHjxrLZbLLZbGrfvr08Pf+X/qanpysuLk733HOPG2cIAAAAOMtX0fbYsWMKDQ11ag8JCVF8fHyBJwUAAACYoUePHpKk3bt3q3PnzipRooT9nLe3t6pWrapevXq5aXYAAABA1vJVtA0ICNDevXtVtWpVh/Y9e/aobNmyZswLAAAAKLDIyEhJUtWqVdWnTx/5+vq6eUYAAADAjeWraNu3b189++yzKlmypFq3bi1J2rRpk0aMGKG+ffuaOkEAAACgoFi+CwAAADeTfBVtX3/9dR07dsxhXbCMjAz1799fb7zxhqkTBAAAAPKjTJky+vXXX1WuXDmVLl06y43IMp05c6YQZwYAAADkLF9FW29vby1dulSvvfaa9uzZo6JFi6p+/foKCQnJ0zjff/+93nrrLe3atUsJCQlasWKFfd0x6eouvxMmTND777+vP//8U82aNdPMmTNVt27dHMddtmyZXnnlFR05ckTVq1fXv//9b/Xs2TM/twoAAICb1Ntvv62SJUvaf51T0RYAAACwknwVbTPddtttuu222/J9/YULF9SwYUMNGjQoyw0gJk+erGnTpmn+/Pm67bbb9Prrr6tjx446dOiQPQG/3vbt29WnTx+99tpr6tmzp1asWKGHHnpIW7ZsUbNmzfI9VwAAANxcrl0SYeDAge6bCAAAAJBH+Srapqena/78+fruu++UlJSkjIwMh/Pr16/P1ThdunRRly5dsjxnGIaioqL00ksv6YEHHpAkLViwQIGBgVq0aJH+9a9/ZXldVFSUOnbsqLFjx0qSxo4dq02bNikqKkqLFy/O7S0CAADgJpeSkpLrvn5+fi6cCQAAAJA3+SrajhgxQvPnz9e9996revXqueRVs7i4OCUmJqpTp072Nh8fH7Vp00bbtm3Ltmi7fft2jRo1yqGtc+fOioqKMn2OAAAAsK5SpUrdME81DEM2m03p6emFNCsAAADgxvJVtF2yZIk+/fRTde3a1ez52CUmJkqSAgMDHdoDAwN17NixHK/L6prM8bKSmpqq1NRU++e8PJUBAAAAa9qwYYO7pwAAAADkS743IqtRo4bZc8nS9U9HZD4NYeY1EydO1IQJE/I/SUDSmzHJLhn3xcbl/pHxAAAoqDZt2rhk3FmzZumtt95SQkKC6tatq6ioKIWHh2fbf9OmTYqIiNCBAwcUHBys559/XsOGDbOfP3DggP7v//5Pu3bt0rFjx/T2229r5MiRDmOMHz/eKV+90YMJgBnSJox2ybhekVP/kfEAAMitIvm5aPTo0frPf/4jwzDMno9dUFCQJDkloklJSU5P0l5/XV6vGTt2rM6ePWs/jh8/XoCZAwAAwAr27t1r33th7969OR65tXTpUo0cOVIvvfSSYmJiFB4eri5duig+Pj7L/nFxceratavCw8MVExOjcePG6dlnn9WyZcvsfS5evKhq1arpzTfftOfAWalbt64SEhLsx759+3I9bwAAANxc8vWk7ZYtW7Rhwwb997//Vd26deXl5eVwfvny5QWeWGhoqIKCgrRu3To1btxYknT58mVt2rRJkyZNyva6Fi1aaN26dQ7r2q5du1YtW7bM9hofHx/5+PgUeM4AAACwjkaNGikxMVEBAQFq1KiRbDZblg8d5GVN22nTpmnw4MEaMmSIpKub4K5Zs0bvvvuuJk6c6NR/9uzZqlKlin1/hbCwMO3cuVNTpkxRr169JEl33HGH7rjjDknSiy++mG1sT0/PHIu6AAAAuHXkq2hbqlQp9ezZs8DBz58/r8OHD9s/x8XFaffu3SpTpoyqVKmikSNH6o033lDNmjVVs2ZNvfHGGypWrJj69etnv6Z///6qWLGiPUkeMWKEWrdurUmTJql79+768ssv9e2332rLli0Fni8AAABuHnFxcSpfvrz91wV1+fJl7dq1y6mw2qlTJ23bti3La7Zv3+6wsa50dZPcOXPmKC0tzenhh5zExsYqODhYPj4+atasmd544w1Vq1Yt2/7s2wAAAHDzylfRdt68eaYE37lzp9q1a2f/HBERIUkaMGCA5s+fr+eff15///23hg8frj///FPNmjXT2rVrVbJkSfs18fHxKlLkf6s8tGzZUkuWLNHLL7+sV155RdWrV9fSpUvVrFkzU+YMAACAm0NISEiWv86v5ORkpaen52nT2+w2yb1y5YqSk5NVoUKFXMVu1qyZFi5cqNtuu02nTp3S66+/rpYtW+rAgQMqW7ZsltewbwMAAMDNK19FW0m6cuWKNm7cqCNHjqhfv34qWbKkTp48KT8/P5UoUSJXY7Rt2zbHdXFtNpvGjx+v8ePHZ9tn48aNTm29e/dW7969czUHAAAA/DMcOnRI77zzjg4ePCibzabatWvrmWeeUa1atfI0Tl43vc2qf1btOenSpYv91/Xr11eLFi1UvXp1LViwwP7gw/XGjh3rcC4lJUWVK1fOdUwAAAC4T76KtseOHdM999yj+Ph4paamqmPHjipZsqQmT56sS5cuafbs2WbPEwAAAMi3zz//XA8//LCaNm2qFi1aSJJ27NihevXqadGiRXrwwQdvOEa5cuXk4eGRp01vs9sk19PTM9snZHOjePHiql+/vmJjY7Ptw74NAAAAN68iN+7ibMSIEWratKn+/PNPFS1a1N7es2dPfffdd6ZNDgAAADDD888/r7Fjx2r79u2aNm2apk2bpm3btmncuHF64YUXcjWGt7e3mjRponXr1jm0r1u3LttNbzM3yb3W2rVr1bRp0zytZ3u91NRUHTx4MNfLKwAAAODmkq+i7ZYtW/Tyyy/L29vboT0kJEQnTpwwZWIAAACAWRITE9W/f3+n9kcffTTb9WizEhERoQ8//FBz587VwYMHNWrUKMXHx2vYsGGSri5JcG2cYcOG6dixY4qIiNDBgwc1d+5czZkzR2PGjLH3uXz5snbv3q3du3fr8uXLOnHihHbv3u2wYe+YMWO0adMmxcXF6YcfflDv3r2VkpKiAQMG5OfLAQAAAIvL1/IIGRkZSk9Pd2r//fffHTYJAwAAAKygbdu22rx5s2rUqOHQvmXLFoWHh+d6nD59+uj06dN69dVXlZCQoHr16mn16tX2jc4SEhIUHx9v7x8aGqrVq1dr1KhRmjlzpoKDgzV9+nT16tXL3ufkyZNq3Lix/fOUKVM0ZcoUtWnTxr5/w++//66HH35YycnJKl++vJo3b64dO3aYssEaAAAArCdfRduOHTsqKipK77//vqSrmyicP39ekZGR6tq1q6kTBAAAAPJj5cqV9l9369ZNL7zwgnbt2qXmzZtLurqm7WeffaYJEybkadzhw4dr+PDhWZ6bP3++U1ubNm0UHR2d7XhVq1bNcXNeSVqyZEme5ggAAICbW76Ktm+//bbatWunOnXq6NKlS+rXr59iY2NVrlw5LV682Ow5AgAAAHnWo0cPp7ZZs2Zp1qxZDm1PPfWUfXkDAAAAwAryVbQNDg7W7t27tXjxYkVHRysjI0ODBw/WI4884rAxGQAAAOAuGRkZ7p4CAAAAkC/5KtpKUtGiRfX444/r8ccfN3M+AAAAAAAAAPCPlq+i7cKFC3M8n9XOvAAAAIA7XbhwQZs2bVJ8fLwuX77scO7ZZ59106wAAAAAZ/kq2o4YMcLhc1pami5evChvb28VK1aMoi0AAAAsJSYmRl27dtXFixd14cIFlSlTRsnJySpWrJgCAgIo2gIAAMBSiuTnoj///NPhOH/+vA4dOqS77rqLjcgAAABgOaNGjdL999+vM2fOqGjRotqxY4eOHTumJk2aaMqUKe6eHgAAAOAgX0XbrNSsWVNvvvmm01O4AAAAgLvt3r1bo0ePloeHhzw8PJSamqrKlStr8uTJGjdunLunBwAAADgwrWgrSR4eHjp58qSZQwIAAAAF5uXlJZvNJkkKDAxUfHy8JMnf39/+awAAAMAq8rWm7cqVKx0+G4ahhIQEzZgxQ61atTJlYgAAAIBZGjdurJ07d+q2225Tu3bt9H//939KTk7WRx99pPr167t7egAAAICDfBVte/To4fDZZrOpfPnyuvvuuzV16lQz5gUAAACY5o033tC5c+ckSa+99poGDBigJ598UjVq1NC8efPcPDsAAADAUb6KthkZGWbPAwAAAHCZpk2b2n9dvnx5rV692o2zAQAAAHKWr6ItAAAAcDNKSkrSoUOHZLPZVKtWLZUvX97dUwIAAACc5KtoGxERkeu+06ZNy08IAAAAwDQpKSl66qmntGTJEqWnp0u6uolunz59NHPmTPn7+7t5hgAAAMD/5KtoGxMTo+joaF25ckW1atWSJP3666/y8PDQ7bffbu+XuUMvAAAA4E5DhgzR7t279fXXX6tFixay2Wzatm2bRowYoaFDh+rTTz919xQBAAAAu3wVbe+//36VLFlSCxYsUOnSpSVJf/75pwYNGqTw8HCNHj3a1EkCAAAABbFq1SqtWbNGd911l72tc+fO+uCDD3TPPfe4cWYAAACAsyL5uWjq1KmaOHGivWArSaVLl9brr7+uqVOnmjY5AAAAwAxly5bNcgkEf39/h5wWAAAAsIJ8FW1TUlJ06tQpp/akpCSdO3euwJMCAAAAzPTyyy8rIiJCCQkJ9rbExEQ999xzeuWVV9w4MwAAAMBZvpZH6NmzpwYNGqSpU6eqefPmkqQdO3boueee0wMPPGDqBAEAAID8aNy4scMeC7GxsQoJCVGVKlUkSfHx8fLx8dEff/yhf/3rX+6aJgAAAOAkX0Xb2bNna8yYMXr00UeVlpZ2dSBPTw0ePFhvvfWWqRMEAAAA8qNHjx7ungIAAACQL/kq2hYrVkyzZs3SW2+9pSNHjsgwDNWoUUPFixc3e34AAABAvkRGRrp7CgAAAEC+5KtomykhIUEJCQlq3bq1ihYtKsMwHF5BAwAAAKxk165dOnjwoGw2m+rUqaPGjRu7e0oAAACAk3wVbU+fPq2HHnpIGzZskM1mU2xsrKpVq6YhQ4aoVKlSmjp1qtnzBAAAAPItKSlJffv21caNG1WqVCkZhqGzZ8+qXbt2WrJkicqXL+/uKQIAAAB2RfJz0ahRo+Tl5aX4+HgVK1bM3t6nTx998803pk0OAAAAMMMzzzyjlJQUHThwQGfOnNGff/6p/fv3KyUlRc8++6y7pwcAAAA4yNeTtmvXrtWaNWtUqVIlh/aaNWvq2LFjpkwMAAAAMMs333yjb7/9VmFhYfa2OnXqaObMmerUqZMbZwYAAAA4y9eTthcuXHB4wjZTcnKyfHx8CjwpAAAAwEwZGRny8vJyavfy8lJGRoYbZgQAAABkL19F29atW2vhwoX2zzabTRkZGXrrrbfUrl070yYHAAAAmOHuu+/WiBEjdPLkSXvbiRMnNGrUKLVv396NMwMAAACc5Wt5hLfeektt27bVzp07dfnyZT3//PP29cG2bt1q9hwBAACAApkxY4a6d++uqlWrqnLlyrLZbIqPj1f9+vX18ccfu3t6AAAAgIN8FW3r1KmjvXv36t1335WHh4cuXLigBx54QE899ZQqVKhg9hwBAACAAqlcubKio6O1bt06/fLLLzIMQ3Xq1FGHDh3cPTUAAADASZ6LtmlpaerUqZPee+89TZgwwRVzAgAAAExz5coV+fr6avfu3erYsaM6duzo7ikBAAAAOcrzmrZeXl7av3+/bDabK+YDAAAAmMrT01MhISFKT09391QAAACAXMnXRmT9+/fXnDlzzJ4LAAAA4BIvv/yyxo4dqzNnzrh7KgAAAMAN5WtN28uXL+vDDz/UunXr1LRpUxUvXtzh/LRp00yZHAAAAGCG6dOn6/DhwwoODlZISIhT/hodHe2mmQEAAADO8lS0/e2331S1alXt379ft99+uyTp119/dejDsgkAAACwmh49eshms8kwDHdPBQAAALihPBVta9asqYSEBG3YsEGS1KdPH02fPl2BgYEumRwAAABQEBcvXtRzzz2nL774QmlpaWrfvr3eeecdlStXzt1TAwAAALKVpzVtr38y4b///a8uXLhg6oQAAAAAs0RGRmr+/Pm699579fDDD+vbb7/Vk08+6e5pAQAAADnK15q2mXi9DAAAAFa2fPlyzZkzR3379pUkPfLII2rVqpXS09Pl4eHh5tkBAAAAWcvTk7Y2m81pzVrWsAUAAIBVHT9+XOHh4fbPd955pzw9PXXy5Ek3zgoAAADIWZ6etDUMQwMHDpSPj48k6dKlSxo2bJjT7rvLly83b4YA/pHejEl22dgvNnZex/BWjwcA/1Tp6eny9vZ2aPP09NSVK1fcNCMA/2RpE0a7bGyvyKn/uHgAcCvLU9F2wIABDp8fffRRUycDAAAAmOn6hw6krB884KEDAAAAWEmeirbz5s1z1TwAAAAA013/0IHEgwcAAACwvgJtRAYAAABYGQ8dAAAA4GaUp43IAAAAAAAAAACuRdEWAAAAAAAAACyEoi0AAAAAAAAAWIjli7ZVq1aVzWZzOp566qks+2/cuDHL/r/88kshzxwAAAAAAAAA8s7yG5H99NNPSk9Pt3/ev3+/OnbsqAcffDDH6w4dOiQ/Pz/75/Lly7tsjgAAAAAAAABgFssXba8vtr755puqXr262rRpk+N1AQEBKlWqlAtnBgAAAAAAAADms/zyCNe6fPmyPv74Yz3++OOy2Ww59m3cuLEqVKig9u3ba8OGDYU0QwAAAAAAAAAoGMs/aXutL774Qn/99ZcGDhyYbZ8KFSro/fffV5MmTZSamqqPPvpI7du318aNG9W6dessr0lNTVVqaqr9c0pKitlTBwAAAAAAAIBcuamKtnPmzFGXLl0UHBycbZ9atWqpVq1a9s8tWrTQ8ePHNWXKlGyLthMnTtSECRNMny8AAAAAAAAA5NVNszzCsWPH9O2332rIkCF5vrZ58+aKjY3N9vzYsWN19uxZ+3H8+PGCTBUAAAAAAAAA8u2medJ23rx5CggI0L333pvna2NiYlShQoVsz/v4+MjHx6cg0wMAAAAAAAAAU9wURduMjAzNmzdPAwYMkKen45THjh2rEydOaOHChZKkqKgoVa1aVXXr1rVvXLZs2TItW7bMHVMHAAAAAAAAgDy5KYq23377reLj4/X44487nUtISFB8fLz98+XLlzVmzBidOHFCRYsWVd26dbVq1Sp17dq1MKcMAAAAAAAAAPlyUxRtO3XqJMMwsjw3f/58h8/PP/+8nn/++UKYFQAAAAAAAACY76bZiAwAAAAAAAAA/gko2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYiKe7JwAAcL03Y5JdNvaLjcsVakyrxAMAAIB7pU0Y7bKxvSKnFmpMq8QDYB08aQsAAAAAAAAAFkLRFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAgDyYNWuWQkND5evrqyZNmmjz5s059t+0aZOaNGkiX19fVatWTbNnz3Y4f+DAAfXq1UtVq1aVzWZTVFSUKXEBAABw86JoCwAAAOTS0qVLNXLkSL300kuKiYlReHi4unTpovj4+Cz7x8XFqWvXrgoPD1dMTIzGjRunZ599VsuWLbP3uXjxoqpVq6Y333xTQUFBpsQFAADAzY2iLQAAAJBL06ZN0+DBgzVkyBCFhYUpKipKlStX1rvvvptl/9mzZ6tKlSqKiopSWFiYhgwZoscff1xTpkyx97njjjv01ltvqW/fvvLx8TElLgAAAG5uFG0BAACAXLh8+bJ27dqlTp06ObR36tRJ27Zty/Ka7du3O/Xv3Lmzdu7cqbS0NJfFlaTU1FSlpKQ4HAAAALg5ULQFAAAAciE5OVnp6ekKDAx0aA8MDFRiYmKW1yQmJmbZ/8qVK0pOTnZZXEmaOHGi/P397UflypVzFQ8AAADuR9EWAAAAyAObzebw2TAMp7Yb9c+q3ey4Y8eO1dmzZ+3H8ePH8xQPAAAA7uPp7gkAAAAAN4Ny5crJw8PD6enWpKQkp6dgMwUFBWXZ39PTU2XLlnVZXEny8fHJdo1cAAAAWBtP2gIAAAC54O3trSZNmmjdunUO7evWrVPLli2zvKZFixZO/deuXaumTZvKy8vLZXEBAABwc+NJWwAAACCXIiIi9Nhjj6lp06Zq0aKF3n//fcXHx2vYsGGSri5JcOLECS1cuFCSNGzYMM2YMUMREREaOnSotm/frjlz5mjx4sX2MS9fvqyff/7Z/usTJ05o9+7dKlGihGrUqJGruAAAALi1ULQFAAAAcqlPnz46ffq0Xn31VSUkJKhevXpavXq1QkJCJEkJCQmKj4+39w8NDdXq1as1atQozZw5U8HBwZo+fbp69epl73Py5Ek1btzY/nnKlCmaMmWK2rRpo40bN+YqLgAAAG4tFG0BAACAPBg+fLiGDx+e5bn58+c7tbVp00bR0dHZjle1alX75mT5jQsAAIBbC2vaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIZ7ungAAADejN2OSXTLui43LFWq87GIWdjwAAAC4X9qE0S4Z1yty6i0dL6eYQH7xpC0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBBLF23Hjx8vm83mcAQFBeV4zaZNm9SkSRP5+vqqWrVqmj17diHNFgAAAAAAAAAKztPdE7iRunXr6ttvv7V/9vDwyLZvXFycunbtqqFDh+rjjz/W1q1bNXz4cJUvX169evUqjOkCAAAAAAAAQIFYvmjr6el5w6drM82ePVtVqlRRVFSUJCksLEw7d+7UlClTKNoCAAAAAAAAuClYenkESYqNjVVwcLBCQ0PVt29f/fbbb9n23b59uzp16uTQ1rlzZ+3cuVNpaWnZXpeamqqUlBSHAwAAAAAAAADcwdJP2jZr1kwLFy7UbbfdplOnTun1119Xy5YtdeDAAZUtW9apf2JiogIDAx3aAgMDdeXKFSUnJ6tChQpZxpk4caImTJjgknsAAAA39mZMssvGfrFxObfHc2XM7OIBAADAvdImjHbZ2F6RU90ez5Uxs4v3T2LpJ227dOmiXr16qX79+urQoYNWrVolSVqwYEG219hsNofPhmFk2X6tsWPH6uzZs/bj+PHjJsweAAAAAAAAAPLO0k/aXq948eKqX7++YmNjszwfFBSkxMREh7akpCR5enpm+WRuJh8fH/n4+Jg6VwAAAAAAAADID0s/aXu91NRUHTx4MNtlDlq0aKF169Y5tK1du1ZNmzaVl5dXYUwRAAAAAAAAAArE0kXbMWPGaNOmTYqLi9MPP/yg3r17KyUlRQMGDJB0dVmD/v372/sPGzZMx44dU0REhA4ePKi5c+dqzpw5GjNmjLtuAQAAAAAAAADyxNLLI/z+++96+OGHlZycrPLly6t58+basWOHQkJCJEkJCQmKj4+39w8NDdXq1as1atQozZw5U8HBwZo+fbp69erlrlsAAAAAAAAAgDyxdNF2yZIlOZ6fP3++U1ubNm0UHR3tohkBAAAAAAAAgGtZenkEAAAAAAAAAPinoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBCKNoCAAAAAAAAgIVQtAUAAAAAAAAAC/F09wQAAABgvjdjkl0y7ouNy7lkXAAAAOBG0iaMdsm4XpFTXTJuQfCkLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBCKNoCAAAAeTBr1iyFhobK19dXTZo00ebNm3Psv2nTJjVp0kS+vr6qVq2aZs+e7dRn2bJlqlOnjnx8fFSnTh2tWLHC4fz48eNls9kcjqCgIFPvCwAAANZB0RYAAADIpaVLl2rkyJF66aWXFBMTo/DwcHXp0kXx8fFZ9o+Li1PXrl0VHh6umJgYjRs3Ts8++6yWLVtm77N9+3b16dNHjz32mPbs2aPHHntMDz30kH744QeHserWrauEhAT7sW/fPpfeKwAAANyHoi0AAACQS9OmTdPgwYM1ZMgQhYWFKSoqSpUrV9a7776bZf/Zs2erSpUqioqKUlhYmIYMGaLHH39cU6ZMsfeJiopSx44dNXbsWNWuXVtjx45V+/btFRUV5TCWp6engoKC7Ef58uVdeasAAABwI4q2AAAAQC5cvnxZu3btUqdOnRzaO3XqpG3btmV5zfbt2536d+7cWTt37lRaWlqOfa4fMzY2VsHBwQoNDVXfvn3122+/FfSWAAAAYFEUbQEAAIBcSE5OVnp6ugIDAx3aAwMDlZiYmOU1iYmJWfa/cuWKkpOTc+xz7ZjNmjXTwoULtWbNGn3wwQdKTExUy5Ytdfr06Wznm5qaqpSUFIcDAAAANweKtgAAAEAe2Gw2h8+GYTi13aj/9e03GrNLly7q1auX6tevrw4dOmjVqlWSpAULFmQbd+LEifL397cflStXvsGdAQAAwCoo2gIAAAC5UK5cOXl4eDg9VZuUlOT0pGymoKCgLPt7enqqbNmyOfbJbkxJKl68uOrXr6/Y2Nhs+4wdO1Znz561H8ePH8/x/gAAAGAdFG0BAACAXPD29laTJk20bt06h/Z169apZcuWWV7TokULp/5r165V06ZN5eXllWOf7MaUri59cPDgQVWoUCHbPj4+PvLz83M4AAAAcHOgaAsAAADkUkREhD788EPNnTtXBw8e1KhRoxQfH69hw4ZJuvp0a//+/e39hw0bpmPHjikiIkIHDx7U3LlzNWfOHI0ZM8beZ8SIEVq7dq0mTZqkX375RZMmTdK3336rkSNH2vuMGTNGmzZtUlxcnH744Qf17t1bKSkpGjBgQKHdOwAAAAqPp7snAAAAANws+vTpo9OnT+vVV19VQkKC6tWrp9WrVyskJESSlJCQoPj4eHv/0NBQrV69WqNGjdLMmTMVHBys6dOnq1evXvY+LVu21JIlS/Tyyy/rlVdeUfXq1bV06VI1a9bM3uf333/Xww8/rOTkZJUvX17NmzfXjh077HEBAABwa6FoCwAAAOTB8OHDNXz48CzPzZ8/36mtTZs2io6OznHM3r17q3fv3tmeX7JkSZ7mCAAAgJsbyyMAAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIsXbSdOHGi7rjjDpUsWVIBAQHq0aOHDh06lOM1GzdulM1mczp++eWXQpo1AAAAAAAAAOSfpYu2mzZt0lNPPaUdO3Zo3bp1unLlijp16qQLFy7c8NpDhw4pISHBftSsWbMQZgwAAAAAAAAABePp7gnk5JtvvnH4PG/ePAUEBGjXrl1q3bp1jtcGBASoVKlSLpwdAAAAAAAAAJjP0k/aXu/s2bOSpDJlytywb+PGjVWhQgW1b99eGzZsyLFvamqqUlJSHA4AAAAAAAAAcIebpmhrGIYiIiJ01113qV69etn2q1Chgt5//30tW7ZMy5cvV61atdS+fXt9//332V4zceJE+fv724/KlSu74hYAAAAAAAAA4IYsvTzCtZ5++mnt3btXW7ZsybFfrVq1VKtWLfvnFi1a6Pjx45oyZUq2SyqMHTtWERER9s8pKSkUbgEAAAAAAAC4xU3xpO0zzzyjlStXasOGDapUqVKer2/evLliY2OzPe/j4yM/Pz+HAwAAAAAAAADcwdJP2hqGoWeeeUYrVqzQxo0bFRoamq9xYmJiVKFCBZNnBwAAAAAAAADms3TR9qmnntKiRYv05ZdfqmTJkkpMTJQk+fv7q2jRopKuLm1w4sQJLVy4UJIUFRWlqlWrqm7durp8+bI+/vhjLVu2TMuWLXPbfQAAAAAAAABAblm6aPvuu+9Kktq2bevQPm/ePA0cOFCSlJCQoPj4ePu5y5cva8yYMTpx4oSKFi2qunXratWqVeratWthTRsAAAAAAAAA8s3SRVvDMG7YZ/78+Q6fn3/+eT3//PMumhEAAAAAAAAAuNZNsREZAAAAAAAAAPxTULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBCKNoCAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBCKNoCAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQm6Kou2sWbMUGhoqX19fNWnSRJs3b86x/6ZNm9SkSRP5+vqqWrVqmj17diHNFAAAALc6V+Smy5YtU506deTj46M6depoxYoVBY4LAACAm5fli7ZLly7VyJEj9dJLLykmJkbh4eHq0qWL4uPjs+wfFxenrl27Kjw8XDExMRo3bpyeffZZLVu2rJBnDgAAgFuNK3LT7du3q0+fPnrssce0Z88ePfbYY3rooYf0ww8/5DsuAAAAbm6WL9pOmzZNgwcP1pAhQxQWFqaoqChVrlxZ7777bpb9Z8+erSpVqigqKkphYWEaMmSIHn/8cU2ZMqWQZw4AAIBbjSty06ioKHXs2FFjx45V7dq1NXbsWLVv315RUVH5jgsAAICbm6WLtpcvX9auXbvUqVMnh/ZOnTpp27ZtWV6zfft2p/6dO3fWzp07lZaW5rK5AgAA4Nbmqtw0uz6ZY+YnLgAAAG5unu6eQE6Sk5OVnp6uwMBAh/bAwEAlJiZmeU1iYmKW/a9cuaLk5GRVqFDB6ZrU1FSlpqbaP589e1aSlJKSUtBbyLVL58+5bOyUFO9/XDxXxiTezR0vu5jEMzeeK2MSr3BiEs/ceK6MaZV4rol1NRczDKPQYubEVblpdn0yx8xPXMkaOW7apdQbd8onryzug3jmxnNlTOIVTkzimRvPlTGJd3PHyy7mrR7PlTGtEs8Vcp3jGhZ24sQJQ5Kxbds2h/bXX3/dqFWrVpbX1KxZ03jjjTcc2rZs2WJIMhISErK8JjIy0pDEwcHBwcHBwcFhweP48ePmJJcF5Krc1MvLy1i0aJFDn48//tjw8fHJd1zDIMfl4ODg4ODg4LDycaMc19JP2pYrV04eHh5OTxAkJSU5PWmQKSgoKMv+np6eKlu2bJbXjB07VhEREfbPGRkZOnPmjMqWLSubzVbAuzBXSkqKKleurOPHj8vPz++WjEk84hHPvTGJRzwrx3NHTOK5j2EYOnfunIKDg909FUmuy02z65M5Zn7iSuS4VornjpjEI56V47kjJvGIRzz3xrzV4+VFbnNcSxdtvb291aRJE61bt049e/a0t69bt07du3fP8poWLVroq6++cmhbu3atmjZtKi8vryyv8fHxkY+Pj0NbqVKlCjZ5F/Pz8yv0P3SFHZN4xCOee2MSj3hWjueOmMRzD39/f3dPwc5VuWmLFi20bt06jRo1yqFPy5Yt8x1XIse1Yjx3xCQe8awczx0xiUc84rk35q0eL7dyk+NaumgrSREREXrsscfUtGlTtWjRQu+//77i4+M1bNgwSVefIDhx4oQWLlwoSRo2bJhmzJihiIgIDR06VNu3b9ecOXO0ePFid94GAAAAbgGuyE1HjBih1q1ba9KkSerevbu+/PJLffvtt9qyZUuu4wIAAODWYvmibZ8+fXT69Gm9+uqrSkhIUL169bR69WqFhIRIkhISEhQfH2/vHxoaqtWrV2vUqFGaOXOmgoODNX36dPXq1ctdtwAAAIBbhCty05YtW2rJkiV6+eWX9corr6h69epaunSpmjVrluu4AAAAuLVYvmgrScOHD9fw4cOzPDd//nyntjZt2ig6OtrFs3IPHx8fRUZGOr3qdivFJB7xiOfemMQjnpXjuSMm8XA9V+SmvXv3Vu/evfMd92b3T/hzf6vfI/GIZ/WYxCMe8dwb81aP5wo2wzAMd08CAAAAAAAAAHBVEXdPAAAAAAAAAADwPxRtAQAAAAAAAMBCKNoCAAAAAAAAgIVQtAUAAAAAAAAAC6FoC7iYYRg6duyY/v77b3dPxWWOHz+e7bkdO3aYGistLU2DBg3Sb7/9Zuq4AOAOaWlpateunX799Vd3TwUA8oQclxwXALJDjmsOm2EYhrsnAWd79+5VvXr1VKRIEe3duzfHvg0aNChwvJUrV6pLly7y8vLSypUrc+zbrVu3AsfLjZ07d+rixYtq3bp1ocRzlYyMDPn6+urAgQOqWbOmu6fjErVr19bWrVtVtmxZh/atW7fq3nvv1V9//WVqvFKlSik6OlrVqlUzddycxMfHq3LlyrLZbA7thmHo+PHjqlKlSqHNBXn3zTffqESJErrrrrskSTNnztQHH3ygOnXqaObMmSpdurTpMf/66y99/vnnOnLkiJ577jmVKVNG0dHRCgwMVMWKFU2Pd/nyZXl7e2d5Ljk5WeXKlTMtVkRERJbtNptNvr6+qlGjhrp3764yZcqYEu/ZZ59VjRo19Oyzzzq0z5gxQ4cPH1ZUVJQpca6Vnp6uFStW6ODBg7LZbKpdu7Z69OghT09P02OVL19e27ZtK9R/IzIyMnT48GElJSUpIyPD4dzN/u8urI0clxz3ZkKOS45rdbd6jluY+a1Ejms2ctyCo2hrUUWKFFFiYqICAgJUpEgR2Ww2ZfVbZbPZlJ6ebnq87JgVLzfCwsL066+/mhZv+vTpue57/TfNgqpbt67mzJmj5s2bmzquVQwdOlTR0dHauHGjSpYsKUn6/vvvdf/992v8+PEaNWqUqfEGDRqk+vXrZ/uPqit4eHgoISFBAQEBDu2nT59WQECA6X8vgoOD1bZtW7Vt21Zt2rRRrVq1TB3/ehMmTNCjjz6q6tWruzROdlJSUrR+/XrVqlVLYWFhpo9fv359TZo0SV27dtW+fft0xx13KCIiQuvXr1dYWJjmzZtnary9e/eqQ4cO8vf319GjR3Xo0CFVq1ZNr7zyio4dO6aFCxeaGk+SevTooeXLlzt9Dz916pTat2+v/fv3mxarXbt2io6OVnp6umrVqiXDMBQbGysPDw/Vrl1bhw4dks1m05YtW1SnTp0Cx6tYsaJWrlypJk2aOLRHR0erW7du+v333wsc41r79+9X9+7dlZiYaP+79+uvv6p8+fJauXKl6tevb2q80aNHy8vLS2+++aap42Znx44d6tevn44dO+aUWxTmv/P4ZyLHJce9mZDjkuMWFDluwRRmfiuR45LjWg9FW4s6duyYqlSpIpvNpmPHjuXYNyQkpJBmZb60tDQ98cQTeuWVV5z+R/nkyZNKS0sz7f5CQ0Nz1c9ms5n+WtKqVav05ptv6t1331W9evVMHTsrp06d0pgxY/Tdd98pKSnJ6RuW2d+sDMPQgw8+qKSkJK1du1bbt29Xt27d9Prrr2vEiBGmxpKkf//735oyZYrat2+vJk2aqHjx4g7nzf6BRLr6Q9+pU6dUvnx5h/Zjx46pTp06unDhgqnxFi9erE2bNmnjxo369ddfFRgYqDZt2tgTXLOTvgYNGujAgQO644479Oijj6pPnz5O92qmhx56SK1bt9bTTz+tv//+Ww0bNtTRo0dlGIaWLFmiXr16mRqvRIkS2r9/v6pWrarx48dr//79+vzzzxUdHa2uXbsqMTHR1HgdOnTQ7bffrsmTJ6tkyZLas2ePqlWrpm3btqlfv346evSoqfEkqVmzZqpTp45Dcp6YmKh27dqpbt26+vzzz02LFRUVpc2bN2vevHny8/OTdPWHksGDB+uuu+7S0KFD1a9fP/39999as2ZNgeP5+vpq//79qlGjhkP74cOHVa9ePV26dKnAMa7VvHlzBQQEaMGCBfYnVP78808NHDhQSUlJ2r59u6nxnnnmGS1cuFA1atRQ06ZNnb6nTZs2zdR4jRo10m233aYJEyaoQoUKTk9X+fv7mxoPuBY5LjluQZDjkuPmFTnuzZ3jFmZ+K5HjkuNaD0Xbm8jPP/+s+Ph4Xb582d5ms9l0//33u3FWBeeO14AKW+nSpXXx4kVduXJF3t7eKlq0qMP5M2fOmBqvS5cuio+P19NPP53lN6vu3bubGk+6+sPJvffeqwsXLmjv3r2aOHGinn76adPjSDn/cGL2DySZTzr85z//0dChQ1WsWDH7ufT0dP3www/y8PDQ1q1bTYt5vVOnTmnDhg36+uuvtXTpUmVkZLjkfwkPHDigTz75REuWLNHvv/+uDh066NFHH1WPHj0c7tsMQUFBWrNmjRo2bKhFixYpMjJSe/bs0YIFC/T+++8rJibG1HhlypSx/4/4XXfdpf79++uJJ57Q0aNHVadOHV28eNHUeP7+/oqOjlb16tUdEtpjx46pVq1apidg0tUnYlq3bq1OnTrp7bff1okTJ3T33XerYcOGWrJkSY5PmOVVxYoVtW7dOqcnDA4cOKBOnTrpxIkTio6OVqdOnZScnFzgePXq1dOwYcOcvqe88847evfdd/Xzzz8XOMa1ihYtqp07d6pu3boO7fv379cdd9xh+vqN7dq1y/aczWbT+vXrTY1XvHhx7dmzx+kHBMBdyHFvXuS45iLHJcfNq1s9xy3M/FYixyXHtR7zF62A6X777Tf17NlT+/btc3iFLDNJMeMfNne+VtWzZ0998cUXhfoaUKbLly8rLi5O1atXd8kaLplcsRZNTrZs2aLNmzerUaNGLouR1Tp0kZGRevjhh/Xoo4+qdevW9j5mrEl3rbi4OFPHy0lmYmUYhvbt2+ewppK3t7caNmyoMWPGuCT2+fPntWXLFvvTCDExMapfv77atGnjknh169bVG2+8oTfeeENbt27VokWLNHLkSA0bNkwpKSmmxjp79qx9LahvvvlGvXr1UrFixXTvvffqueeeMzWWJN11112KiIhQq1at9OOPP2rp0qWSrr4OVKlSJdPj+fr6Zvk1O3TokMue7ihbtqzWrFljX9Ns1apVuv322/XJJ5+YntCePXtWSUlJTgntH3/8Yb/vUqVKORRgCiIiIkJPP/20/vjjD919992SpO+++05Tp051yffXWrVq6dSpU04JbVJSkkuSwA0bNpg+Zk6aNWumw4cP31IJLW5O5LiuQ46bf+S45LgFQY5rrsLMbyVyXLOR45rAgOXdd999Rvfu3Y2kpCSjRIkSxoEDB4zNmzcbd955p/H999+bEqNq1aq5OkJDQ02Jd63XX3/dKFWqlNGrVy/jjTfeMP7zn/84HK5w4cIF4/HHHzc8PDwMDw8P48iRI4ZhGMYzzzxjTJw40SUxC1NYWJgRHR3t0hg2m80oUqSIYbPZ7Me1nzN/XaRIEZfOIyMjw8jIyHBpDMMwjIEDBxpnz551eZxMd955p+Hr62s0bdrUGDNmjLFy5Urjzz//LLT4MTExxujRo42KFSsavr6+po9fs2ZNY+nSpcb58+eN8uXLG999951hGIaxe/duo2zZsqbHO3bsmHHvvfcaDRo0MD788EN7+8iRI41nnnnG9HhDhw41evToYVy+fNkoUaKE8dtvvxnHjh0zGjdubIwYMcL0eNf69ddfjYCAAOORRx5x2d+Nfv36GaGhocby5cuN48ePG7///ruxfPlyo1q1asajjz5qGIZhLF682GjSpIlpMWfNmmVUrFjR/j0mNDTUWLBggWnjX2vVqlVG3bp1jc8++8w4fvy4cfz4ceOzzz4z6tevb6xatco4e/as/bhZ7Nmzx34sX77cqFOnjjFv3jxj586dDuf27Nnj7qniH4Qc13zkuAVHjuta5Ljm+qfkuIWR3xoGOS45rvWwPMJNoFy5clq/fr0aNGggf39//fjjj6pVq5bWr1+v0aNHm/6KRWErzNeAMo0YMUJbt25VVFSU7rnnHu3du1fVqlXTypUrFRkZ6ZKv6ZEjRzRv3jwdOXJE//nPfxQQEKBvvvlGlStXdvqfroJau3atpk6dqvfee09Vq1Y1dexMN1qH7lquWJNu4cKFeuuttxQbGytJuu222/Tcc8/pscceMz2WdPV/XdPT0512Cj1z5ow8PT3tax6ZpUyZMrLZbOrQoYN9swZXbF5wrbi4OC1atEiffPKJfv31V7Vu3Vr9+vXTgw8+aPr6P7NmzdKIESNUokQJhYSEKDo6WkWKFNE777yj5cuXF/r/ypotJSVFXbt21YEDB3Tu3DkFBwcrMTFRLVq00OrVq53Wc8qv0qVLO70aKkkXL16Uj4+PPDw87G1mvqJ6/vx5jRo1SgsXLtSVK1ckSZ6enhowYIDefvttFS9eXLt375Yk05+G+uOPP1S0aFGVKFHC1HGvde2TG5lfX+O6JwANwzBtQ4N27dpl+fuYyYxXx3La8EmS/dzNukkDbk7kuOS4eUWOaz5yXHLcvCiMHNdd+a1Ejpv5mRzXOlge4SaQnp5u/4tbrlw5nTx5UrVq1VJISIgOHTrk5tkVXGG+BpTpiy++0NKlS9W8eXOHbyJ16tTRkSNHTI+3adMmdenSRa1atdL333+vf//73woICNDevXv14YcfmrKA+vX/uF24cEHVq1dXsWLF5OXl5dDXjH/cMpPUnDbacJVp06bplVde0dNPP61WrVrJMAxt3bpVw4YNU3Jysuk7+UpS3759df/992v48OEO7Z9++qlWrlyp1atXmxrvzJkz2rt3rzZu3Khvv/1WkZGRKlKkiNq0aaN27dpp2LBhpsZr0aKFfvzxR9WvX1+DBg1Sv379VLFiRVNjXGv48OFq1qyZ4uPj1bFjR3sCUa1aNb3++uumx4uOjpaXl5d9R9Qvv/xS8+bNU506dTR+/HiHVwLN4Ofnpy1btmj9+vWKjo5WRkaGbr/9dnXo0MHUOIX9WmqmEiVK6IMPPtDbb7+t3377TYZhqHr16g5JpqteXXXl5iGZCvsHquu/Vmlpadq9e7f279+vAQMGmBLDHf/WAjdCjms+clxy3LwixzUXOW7BuSu/lchxzUaOW3A8aXsTCA8P1+jRo9WjRw/169dPf/75p15++WW9//772rVrl/bv31/gGBEREXrttddUvHjxG667ZcYOf7ld28tms2nq1KkFjne9YsWKaf/+/apWrZrDAup79uxR69atdfbsWVPjtWjRQg8++KAiIiIc4v3000/q0aOHTpw4UeAYCxYsyHVfs75BZirsjTZCQ0M1YcIE9e/f36F9wYIFGj9+vEu+cZcpU0Zbt251ehLgl19+UatWrXT69GnTY15r165dmjFjhj7++GOXbNIwbtw4PfLII6Y/EZOVtLQ01apVS19//bXTelGucscdd+jFF19Ur1699Ntvv6lu3brq2bOnfvrpJ917771uTQ7NcOXKFX3yySfq3LmzgoKCCjX277//LpvN5tIfgAp7t3CrGD9+vM6fP68pU6a4eyqAS5DjkuPmBjkuOW5BkONGFco8XMGd+a1EjutK5Li5x5O2N4GXX35ZFy5ckCS9/vrruu+++xQeHq6yZcvaFxovqJiYGKWlpdl/nZ2cHm3Pa7xr7dq1S+np6apVq5akqwune3h4qEmTJqbEu94dd9yhVatW6ZlnnpH0v/v64IMP1KJFC9Pj7du3T4sWLXJqL1++vGmJkNlJal4U9kYbCQkJatmypVN7y5YtlZCQ4JKYqamp9ldkrpWWlmb6LpvS1b8jGzdu1MaNG7V582adO3dODRs21IgRI3LchTO/3njjDfuvr39FxmxeXl5KTU112fhZ+fXXX+3/0/vZZ5+pdevWWrRokbZu3aq+ffuaktC6c7MbT09PPfnkkzp48KCp42YnIyNDr7/+uqZOnarz589LkkqWLKnRo0frpZdeMn1jiIEDByo+Pl6vvPJKlruFu8Jff/2lOXPm6ODBg7LZbKpTp44ef/xx01+jzMmjjz6qO++80/SEduLEiQoMDNTjjz/u0D537lz98ccfeuGFF0yNB2SHHNd85LjmIsclx80Lclxzc9zCzm8lctzCQo6bB4W7hC7Mcvr06UJZmL4wTJ061bj//vuNM2fO2NvOnDljdO/e3ZgyZYpLYm7dutUoWbKkMWzYMMPX19cYMWKE0aFDB6N48eLGzp07TY9XsWJFY+vWrYZhGEaJEiXsm0JkLmputlWrVhnffPONU/uaNWuM1atXmx6vsDfaqFu3rvHvf//bqf21114z6tWrZ3o8wzCMNm3aGE8//bRT+/Dhw4277rrL9HgeHh5G06ZNjdGjRxtfffVVoSwGv2DBAqNevXqGj4+P4ePjY9SvX99YuHChS2JNnDjRGDBggJGWluaS8a9XsmRJ49dffzUMwzA6dOhgREVFGYZxdfMGszahuH5Tm+LFixs2m80oXbq0Ubp0acNmsxnFixd3yWY3hmEYbdu2NVasWOGSsa/34osvGuXLlzdmzZpl7Nmzx9i9e7cxc+ZMo3z58sa4ceNMj1eiRAkjJibG9HGz89NPPxllypQxKlasaPTs2dPo0aOHUalSJaNs2bLGrl27Cm0eCxcuNCpUqGD6uCEhIfZ/k661Y8cOo2rVqqbHA/KCHLdgyHHNRY5LjptX5LjmKsz81jDIcQsLOW7uUbSF2wUHBxv79+93at+3b59L/iJn2rt3r9G/f3+jbt26RlhYmPHII48Ye/fudUms5557zrjrrruMhIQEo2TJkkZsbKyxZcsWo1q1asb48eNNj5e5++P1/vvf/xoNGjQwPV5h78b8+eefGx4eHkbnzp2NV1991XjttdeMzp07G56ensby5ctNj2cYhrFlyxbD19fXCA8PN8aPH2+MHz/eCA8PN3x9fU3b4fpahb1j59SpU41ixYoZzz//vPHll18aX3zxhfHcc88ZxYoVM6ZNm2Z6vB49ehglS5Y0KlSoYHTq1Mno2bOnw2G2du3aGf379zcWLlxoeHl5GbGxsYZhGMbGjRuNkJAQ0+N98sknRqtWrYxffvnF3vbLL78Y4eHhxscff2x6PMMwjE8//dSoVq2a8c477xjbtm1z6W6pFSpUML788kun9i+++MIIDg42NZZhFM5u4de66667jIEDBzr8wJWWlmYMGDDACA8PNz3e9X/+e/ToYTRr1szw8PBwyb8RPj4+xm+//ebUfuTIEcPHx8f0eMA/FTkuOW5ekeOajxzXXIWd4xZmfmsY5LhmI8ctONa0hZNLly7pnXfe0YYNG5SUlKSMjAyH89HR0abGK1mypL788kvdfffdDu3r169X9+7dde7cOVPjuUNaWpoGDhyoJUuWyDAMeXp6Kj09Xf369dP8+fMddsA0Q9GiRXXw4EGnXXWPHj2qunXr2l9FvJnt2rVLb7/9tg4ePCjDMFSnTh2NHj1ajRs3dlnM3bt3a/LkydqzZ4+KFi2qBg0aaOzYsapZs6ZL4v3111/6/PPPdeTIET333HMqU6aMoqOjFRgYaPraSoW9htqgQYNyPD9v3jxT4+3du1ePPPKI4uPjFRERocjISEnSM888o9OnT2f5amdBVK9eXZ9//rnTn8ddu3apd+/eLlmTLqvXtVy1W6qvr6/27t2r2267zaH90KFDatSokemvUxbGbuHXKlq0qGJiYlS7dm2H9p9//llNmzbVxYsXTY03cOBAh9fhihQpovLly+vuu+9Wp06dTI0lSTVr1lRkZKQeffRRh/aPPvpIkZGRLtnRHrACclzzkeOajxyXHDcvbvUctzDzW4kclxzXeljTFk4ef/xxrVu3Tr1799add97p8nVVevbsqUGDBmnq1Klq3ry5JGnHjh167rnn9MADD7g0tiT9/fff9rXOMvn5+RV43JSUFPs4Xl5e+uSTT/Taa6/Zd9ls3LixyxIhf39//fbbb07f+A8fPqzixYu7JGYmw8VrRWVq0qSJPv74Y5fGuF6jRo1MT3yys3fvXrVv316lSpXS0aNHNXToUJUpU0YrVqzQsWPHtHDhQlPjFfYaamYnrDfSoEED7du3z6n9rbfeMv0HSunq1/P67yvS1c0ETp06ZXo8qXB3Tm3YsKFmzJjhtMbZjBkz1LBhQ9Pj9enTRxcvXnTpbuHX8vPzU3x8vFNCe/z4cZUsWdLUWJI0f/5808fMyZAhQzRy5EilpaXZi0nfffednn/+eY0ePbpQ5wIUJnJcctyCIMc1BzmuuW71HLcw81uJHNds5LgmcNcjvrAuPz8/Y8uWLYUW78KFC8aTTz5p+Pj4GEWKFDGKFClieHt7G08++aRx/vx5l8V86qmnjPLly9tjXnuYoUiRIsapU6cMw7j62sqff/5pyri5MXToUKN+/frG4cOH7W2xsbFGgwYNjMGDB7skZmGuFWUYhnHlyhXjs88+s7869vnnn7t87ajDhw8bL730kvHwww/bf2//+9//ZvnqY0G1b9/eeO655wzDcFwjbuvWrS551ckda6ilpaUZ69atM2bPnm2kpKQYhmEYJ06cMM6dO+eSeIXpvvvuMxo0aGD89NNP9rUZf/rpJ6NRo0bG/fff7+bZFdzGjRuN4sWLG2FhYcbjjz9uDB482AgLCzNKlCjhklcp58+fn+NhtmeeecaoVKmSsWTJEiM+Pt44fvy4sXjxYqNSpUrGiBEjTI8XGhpqJCcnO7X/+eefLnn9NiMjw3j++ecNX19f+797xYoVMyZMmGB6LMBKyHHJcfODHNdc5Lg3N3Jcc5HjmutWzHEp2sJJWFiYS9aHuZHz58/bF/t2VSKbafjw4UZYWJjx2WefGUWLFjXmzp1rvPbaa0alSpVMW4vHz8/P+Pnnnw3DMAybzWYkJSWZMm5u/PXXX0bz5s0NT09P+7pbnp6eLkusC3utqH379hnVqlUzihUrZjRu3Nho3LixUbx4caNq1aouW7Nt48aNRtGiRY0OHToY3t7e9gRz0qRJRq9evUyP5+fnZ/+B5NqE9ujRoy5Zj6ew11A7evSoUbt2baNYsWKGh4eH/f5GjBhh/Otf/zI9ns1my/KHVzN/iL1WUlKS0aVLF8Nmsxne3t6Gt7e3UaRIEaNLly72H4Zc4fDhw8bTTz9ttG/f3ujQoYPxzDPPOPxga6YTJ04Y48aNMx544AGjZ8+exksvvWScOHHCJbEKW2pqqvHss8/af9+KFCli+Pj4GCNHjjQuXbpkejybzZbln4vExETD29vb9HiZzp07Z/z444/Gvn37XHJfgNWQ45Lj5hU5LjluXpHjmq8w81vDIMc1EzluwbGmLZz897//1fTp0zV79myFhIS4ezouUaVKFS1cuFBt27aVn5+foqOjVaNGDX300UdavHixVq9eXeAYvXr10tatWxUWFqZNmzapZcuW8vb2zrLv+vXrCxzvehkZGfr2228d1qZq3bq16XGkwl8rqnnz5goICNCCBQtUunRpSdKff/6pgQMHKikpSdu3bzc1niS1aNFCDz74oCIiIlSyZEnt2bNH1apV008//aQePXroxIkTpsYLDAzUN998o8aNGzvEW7t2rQYPHqzjx4+bGk8q3DXUevTooZIlS2rOnDkqW7as/f42bdqkIUOGKDY21tR4X375pcPntLQ0xcTEaMGCBZowYYIGDx5sarxMv/76q3755RcZhqGwsDCn9bHMtGbNGnXr1k2NGjVSq1atZBiGtm3bpj179uirr75Sx44dXRa7MLnqdd+sXLx4UUeOHJFhGKpRo4aKFStm6vgrV66UdPXvw4IFC+Tv728/l56eru+++07r1q3ToUOHTI2b6fDhwzpy5Ihat26tokWL2teHA25V5LjkuHlFjkuOm1fkuOb6p+S3EjmumW6lHJeiLZz88ccfeuihh/T9998Xyroq7lCiRAkdOHBAISEhqlSpkpYvX64777xTcXFxql+/vs6fP1/gGH///bcWLFigI0eOaOrUqRo6dGi23wzffvvtAsfLdOXKFfn6+mr37t2qV6+eaePmxNfXV/v371eNGjUc2mNjY1W/fn1dunTJ1HhFixbVzp07VbduXYf2/fv364477jB9gXjp6p+Zffv2KTQ01CHBPHr0qGrXrm36PT7xxBP6448/9Omnn6pMmTLau3evPDw81KNHD7Vu3VpRUVGmxits5cqV09atW1WrVi2nr2edOnVMXwQ/O4sWLdLSpUudEt6bUePGjdW5c2e9+eabDu0vvvii1q5dW+ANdvbu3Zvrvg0aNChQrOtduHBBL7zwgj799FOdPn3a6bzZm1AUlszNNTI31LiWl5eXqlatqqlTp+q+++4zNe7p06f10EMPacOGDbLZbIqNjVW1atU0ePBglSpVSlOnTjU1HmAV5LjkuHlFjkuOm1fkuOZydX4rkeO6AjmuediIDE4efvhhnThxQm+88YYCAwNv2v+RyEnmP5whISGqU6eOPv30U91555366quvVKpUKVNiFC1aVMOGDZMk7dy5U5MmTTJt7Jx4enoqJCSkUL/B16hRQ59++qnGjRvn0L506VKXbERRq1YtnTp1yimhTUpKckqqzVKqVCklJCQoNDTUoT0mJsb0XW4lacqUKeratasCAgL0999/q02bNkpMTFTz5s3173//2/R40tUnVw4fPpzljtpmP8GSkZGR5Z/R33//3SWL4GenWbNmGjp0qOnjpqen/397dx4e47n3Afw7SUR2SxZiy2IPIomlPVIRa7VqSxFvQghVisYSEU5LaykHJ2J7W0vt+1K06iBFkkpQS2RBEBFJe1BqaUgQMvf7hyvzJiZUmvuZmSTfz3XN1bhn+vxuIzPznee5F6xbtw5Hjhwp9vlUYuRRamoqduzYodU+bNgwKV+APDw8ig1eL1NiJ9/JkycjOjoaX3/9NYKCgvC///u/+O9//4sVK1Zohfi/qySbAu3evVtKzYLfCxcXF5w+fRp2dnZSjvtXJkyYgEqVKiErKwtNmzbVtPv7+2PChAllMtASvQlm3KpSajDjMuOWBjOubpSXjKt0vgWYcQtjxjU8PGlLWo4fP44TJ04osjuioQgODkZSUhI6dOiAqVOnokePHli6dCmeP3+OhQsXSq8XHR0t/Ziv8/nnn2Pq1KnYtGkTqlevrni9GTNmwN/fHz///DO8vb2hUqkQFxeHI0eOFPsh+3dkZ2drfp4zZw5CQkLw5ZdfFtmNeebMmZg3b56Uei8LCAhAeHg4du7cCZVKBbVajfj4eEyaNElrypwMNjY2iIuLQ3R0NM6ePQu1Wg0vLy906dJFei3gxfMXEBCAzMxMrcCiREDp2rUrFi1ahJUrV2pqPHr0CF988QXef/99qbVe5fHjx1i6dCnq1Kkj/djjxo3DunXr0KNHDzRv3lwnJwbs7e2RmJio9SUyMTERDg4OpT6+rnfvLWzfvn2a6b7Dhg1D+/bt0aBBAzg5OWHz5s0IDAwsdY3C07Z0TdfPbVRUFA4dOqT1u9+wYUNkZmbqtC9EusSMy4xbUsy4zLglxYwrl9L5FmDGVRIzbulxeQTS4uXlha+//loTFCqCrKwsnDlzBvXr11ckyOv6iqSnpyeuXr2KZ8+ewcnJCZaWlkXulzGN5GUJCQlYuHChYmtFGRkZFQkFBW9dBW2F/6zECIxnz55h6NCh2LZtG4QQMDExQX5+PgICArBu3ToYGxtLr3nkyJFX/s6sWbNGai0PDw80atQIM2bMgKOjo1YAk/1hf+PGDXTs2BHGxsZIS0tD69atkZaWBjs7O/z888/SQliBatWqaf3+PHz4EBYWFti0aRN69eoltZ6dnR02bNigs3AOADNnzkRkZCSmTJmCdu3aab5Yzps3D6Ghofj888911hfZdDHdV59mzpz52vunT58utZ61tTUSEhLQsGFDrfULu3fvXuz0PKLygBmXGffvYMZlxi0JZly5ynO+BZhxmXH/GkfakpZ//etfCA0NxVdffYUWLVporfel1GLY+lSvXj3Uq1dPsePr+opknz59FD3+ywIDA+Hr64vp06crtgi9rkdyvKxSpUrYvHkzZs6ciXPnzkGtVsPT01ORqXHAi5EdM2fOROvWrYsNmLKlpaVh165dik29e1mtWrWQmJiIrVu3IiEhAWq1GsOHD0dgYCDMzc2l14uMjCzyHBoZGcHe3h5vvfWWZqMPmUxNTXX2XBaYNm0arK2tERERgalTpwJ48Tx/+eWXCAkJkV4vPT0dixYtQmpqKlQqFZo2bYpx48ahfv360mvpYrrvy54/f46YmBikp6cjICAA1tbWuHHjBmxsbGBlZSW11p49e4r8+dmzZ8jIyICJiQnq168vPdD6+Phgw4YNmDVrFgBoRlYtWLAAHTt2lFqLyJAw48rHjFt6zLjMuKVR3jOurvMtwIwrEzNu6XGkLWkpWDQagNZVO6Wu8OqDLq/w6mPUnS6NHDkSsbGxSEtLQ40aNdChQwd06NABvr6+aNKkib67VyY5Ojpi/vz5GDx4sE7qderUCZMnT0b37t11Ui83N1f6LqWGJCIiAteuXcOyZcv0smbiw4cPAUCxtdN0vZNvZGQkjI2NERISgujoaPTo0QP5+fma6b7jxo2TWi8zMxPdu3dHVlYWnj59iitXrsDV1RXjx4/HkydPsHz5cqn1ipOdnY2hQ4eib9++0t8HLl68CF9fX7Rq1QpHjx5Fr169cOHCBdy7dw/x8fGKfCkhMgTMuMy4JcWMKx8zbtmmz4yrdL4FmHGZcQ0PT9qSltjY2Nfe36FDBx31RDl/dYX35StCpVWrVi3ExMQodoXeUNy6dQsxMTGIiYlBbGwsrly5AgcHB9y8eVORerm5ucjKykJeXl6Rdlm7ek6cOBGzZs2CpaUlJk6c+NrHWllZoVmzZujXr5+UaWS2trY4deqUzj5Y9uzZg88//xxhYWHFjj6SvVOqlZUV+vTpg8GDB6Nr165FvkgrYe3atbCyskL//v2LtO/cuRO5ubkYMmSI1Hp9+/ZFdHQ0qlevjmbNmmk9n7IW+S9s1apV8PX1VWxkTGG62Mn3dZSe7tunTx9YW1tj9erVsLW11Uytio2NxUcffYS0tDTpNYtz/vx5fPDBB7h+/brU42ZlZcHExAQrVqwosp7gmDFj8OzZM0VH5RHpEzMuM+7fxYzLjPummHHlZlxd5luAGZcZ1/DwpC0V69ixY1ixYgXS09Oxa9cu1K5dGxs3boSLiwveeecdfXev1HR9hVfXVyTz8/MRGRmJHTt2FBv47t27p0jdnJwcxMXFaUJtQkIC3NzccO7cOal17ty5g+DgYBw4cKDY+2WNlOnYsSP27NmDqlWr/uV0iqdPn+LChQvo3bs3NmzYUOra4eHhsLKywrRp00p9rDdRXKAs2EVVidFHu3fvxtatW7F//37Y2NjA398fgwYNQps2baTWKdC4cWMsX75c698xNjYWH3/8MS5fviy1XnBw8GvvX7t2rdR6ANCkSRNcuXIFNWvW1IwC6tChgyIjgczMzJCSkqIVoK9cuQJ3d3c8efJEar3r16/D2dlZ6jFfx87ODvHx8WjcuHGR9bCuX78ONzc35Obm6qQfcXFx6NmzJ+7fvy/1uMbGxrh586bWunp3796Fg4NDuRltSFQcZly5mHGZcUuKGVeu8p5xdZlvAWZcZlzDwzVtSct3332HwYMHIzAwEOfOncPTp08BvJiOMGfOHPznP//Rcw9LLy8vD+3atdNZvYIdUg8cOKCTK5IzZszAt99+i4kTJ2LatGn47LPPcP36dezdu1f6ujHAi/AVGxuLpKQkNG/eHD4+Ppg6dSp8fHwUWYtn/PjxuH//Pk6ePKkJnb///jtmz56NiIgIaXUKrzH2JuuNnTlzBp07d5ZS+8mTJ1i5ciUOHz4Md3d3rd8Z2TtA63pnTz8/P/j5+eHhw4fYtWsXtm7dinbt2sHFxQWDBg2S/nuamZkJFxcXrXYnJydkZWVJrQUoc1L2r1y6dAm3bt1CdHQ0YmNjERkZidGjR8Pe3h6+vr7Ytm2btFq62Mm3MFdXV7Rr1w6DBw9G//79Fd8xXK1WFxvqfvvtN0Wm5C1ZsqTIn4UQuHnzJjZu3KjIdM5XXa9/9OgRzMzMpNcjMhTMuPIx48rFjMuMW1LlPePqMt8CzLiyMeOWHkfakhZPT09MmDABQUFBRa6+JCYmonv37rh165a+u1hqur7Cq+srkvXr18eSJUvQo0cPWFtbIzExUdN28uRJbNmyRWq9ggXvJ0yYgN69e6Np06ZSj/8yR0dHfP/992jbti1sbGxw5swZNGrUCD/88APmz5+PuLg4Reu/vKtvgby8PBw4cAC9e/cudY3XjXpQqVTSd2M2BBcvXkRgYCCSk5OlXwWtV68eli1bprWD7vfff48xY8bgt99+k1oP0O0i/y8rGBG0bds2bNq0CUIIPH/+XNrxdb2Tb0JCArZu3Ypt27bhzp07ePfddzFo0CD06tULlStXlloLAPz9/VGlShWsXLkS1tbWSE5Ohr29PXr37o169epJec9OTk5G8+bNYWRkpPVlq+A9tVOnTpg6daq0EF0wBXbx4sUYMWJEkTX38vPz8csvv8DY2Bjx8fFS6hEZGmZc+Zhx5WLGZcYtqYqUcZXOtwAzLjOu4eFJW9JiYWGBixcvwtnZuUigvXbtGtzc3KRPCdCVwus1qdVqrF+/Hu7u7jq5wqtrlpaWSE1NRb169eDo6Ij9+/fDy8sL165dg6enJ/7880+p9ZKSkhAbG4uYmBgcO3YMxsbGmukrvr6+0gOujY0NkpOT4ezsDGdnZ2zevBne3t7IyMhAs2bNFJvWsWHDBixYsECz1k+jRo0QFhamsymISrty5QpiYmKK3bhEidErwIvRFj/88AO2bNmCgwcPwsHBAf/zP/+DefPmSa0zefJk7NixA2vXroWPjw+AF9PGhg0bhn79+uHf//631Hr6WOT/wIEDmtdhUlISmjVrBh8fH/j6+qJ9+/ZSdxAWQmDRokWIiIjAjRs3ALxY1zAsLAwhISGKTZEVQiAmJgZbtmzBd999h/z8fHz44YfSN9a5ceMGOnbsCGNjY6SlpaF169ZIS0uDnZ0dfv75ZykjLQpP33JxccHp06dhZ2cnofevVvBFOTY2Fv/4xz9gamqquc/U1BTOzs6YNGmSztaNI9I1Zlxm3JJixmXG/buYceXQZb4FmHGZcQ2QIHqJq6ur+Omnn4QQQlhZWYn09HQhhBDr168XTZs21WfXSsXX1/eNbh07dlSsD7dv3xbHjh0TcXFx4vbt24rVadSokTh58qQQQoh33nlHzJ07VwghxLZt24S9vb1idQskJiaKoUOHChMTE2FkZCT9+K1btxYHDx4UQgjRu3dvMXjwYPHbb7+JyZMnC1dXV+n1hBAiIiJCWFhYiMmTJ4vvv/9e7N27V4SFhQkLCwuxcOFCRWrq0sqVK4WxsbGoUaOGaNmypfDw8NDcPD09pdc7dOiQCAoKEjY2NqJatWpixIgRIiYmRnqdAk+fPhUDBgwQKpVKVKpUSVSqVEkYGxuL4OBg8fTpU+n1evfuLQYNGiSePn1a5H00JiZGNGjQQHo9IYRQqVTCwcFBzJs3Tzx48ECRGsXJzs4W2dnZOqtX4OzZs8LDw0OR9xghhMjNzRWrV68WY8aMEZ988olYtWqVyM3NlXb86tWra96njYyMFP1MeNnQoUPFn3/+qbN6RIaCGZcZt7SYccseZly5dJ1x9ZVvhWDG/buYceXiSVvSMm/ePOHm5iZOnjwprK2txbFjx8SmTZuEvb29WLp0qb67VyY9evRIBAcHC2NjY6FSqYRKpRImJiZi2LBhIicnR3q98PBw8dVXXwkhhNi5c6cwMTERDRo0EKampiI8PFx6PSGESEhIEAsXLhS9evUS1apVE8bGxqJVq1Zi0qRJ0mtt2rRJrF27VlPX3t5eGBkZCTMzM7Ft2zbp9YQQwtnZWaxfv16rfd26dcLZ2VmRmrpUr1498a9//Utn9czNzUW/fv3Enj17RF5ens7qXrlyRezYsUPs27dPXL9+XbE6tra24tKlS0KIoicGMjIyhLm5uSI1IyMjRd++fYWdnZ2oUaOGGDBggPj666/FxYsXFamnD1lZWWLevHmiZcuWwsjISHh7e4uvv/5aeh0l3pdfNmLECFG5cmXh7OwsjIyMRL169YSLi0uxNyKSgxlXPmZcuZhx5WPGlUvXGbci5FshmHHp1bg8AhXrs88+Q2RkpGaaWOXKlTFp0iTMmjVLzz2T488//0R+fr7WQt/37t2DiYkJbGxspNYbOXIkDh8+jGXLlsHb2xvAi40bQkJC0LVrV3zzzTdS673s5MmTOH78OBo0aKC13pEM1apVw6NHj9CyZUvNdDEfHx/pz+Or5Obm4tKlS6hXr55iUy/MzMxw/vx5NGjQoEh7WloaWrRoUWanVBawsbFBYmIiXF1ddVIvOztbZ78fxcnPz0dKSgqcnJykT6sCgOrVqyMuLg5ubm5FpuDGxcXhww8/xO+//y69ZmEpKSmIjY1FdHQ09u3bB1tbW9y8eVPa8X///XdMmjQJR44cwe3bt7UW/Ze9XtvKlSuxefNmzW63gYGBCAgIUGy3XSsrK/Tp0weDBw9G165di915WoaDBw/i6tWrCAkJwcyZM1+5rte4ceMUqU9UETHjMuOWBDMuM25JMeMql3GVzrcAM64szLjy8KQtvVJubi4uXrwItVoNNzc3xTfO0aX33nsPPXv2xOjRo4u0L1++HD/88IP03YPt7Oywa9cu+Pr6FmmPjo7GgAEDcOfOHan1dO3HH3/UaYDVh+bNmyMgIAD//Oc/i7TPnj0b27dvR0pKip56Jsfw4cPRpk0bjBo1SrEahUNsdnb2ax8r+3dp/PjxaNGiBYYPH478/Hx06NABx48fh4WFBX788Uet12Zp6WKR/1c5d+4cYmJiEB0djWPHjuHhw4fw9PTE6dOnpdV47733kJWVhbFjx8LR0VFrfS8ZG5UUVrduXQwcOBCBgYHw8PCQeuzi7N69G1u3bsX+/fthY2MDf39/DBo0CG3atFGkXnBwMJYsWaLIrr1EpI0ZVx5m3LKPGbf0mHGVz7i6yLcAM65szLilx5O2VCFVr14d8fHxWpsHXLp0Cd7e3rh7967UehYWFjh79qxWvQsXLqBt27bIycmRWg8ANm7ciOXLlyMjIwMnTpyAk5MTFi1aBBcXF+kfNrpQeJONv6LEJhvfffcd/P390aVLF3h7e2t2Ej1y5Ah27NiBvn37Sq+pS3PnzsXChQvRo0cPtGjRQmvjkpCQkFLXKLwovZGRUbEL+QshoFKppF/FrlOnDvbu3YvWrVtj7969GD16NGJiYrBhwwZER0dL30lUF4v8v6xXr16Ii4tDdnY2PDw8FB0RZG1tjWPHjukkXAL//3uhaw8fPsSuXbuwdetWREdHw8XFBYMGDVJs0xIiotJixmXGLSlmXGbcktB1xtVlvgWYcZlxDQ9P2lKFZGlpiZMnT6JFixZF2lNSUvDWW29J35m1c+fOsLW1xYYNG2BmZgYAePz4MYYMGYJ79+7h8OHDUut98803mD59OsaPH4+vvvoK58+fh6urK9atW4f169cjOjpaaj1dKNgR8q+oVCocPXpUkT4kJCRg4cKFSE1NhRACbm5uCA0NhaenpyL1dMnFxeWV96lUKly7dq3UNWJjY+Ht7Q0TExPExsa+9rEdOnQodb3CzMzMcPXqVdSpUwcff/wxLCwssGjRImRkZKBly5Z/OSri73j8+DG2bduGs2fPQq1Ww8vLC4GBgTA3N5deCwAmTZqks2mbbm5u2Lx5s6K/+8nJyW/8WHd3d8X6UeDixYsIDAxEcnKy9C9cRESyMOMy4/4dzLilw4yrXMbVZb4FmHGZcQ2Q7pfRJdK/Dh06iLFjx2q1jx49WrzzzjvS6yUnJ4vatWsLW1tb0alTJ9G5c2dha2sratWqJc6fPy+9XtOmTcWePXuEEEUXiE9JSRG2trbS65V3eXl5YujQoZrnkcqeevXqiUOHDonnz5+LunXrin379gkhhDh//ryoWrWq9HqxsbHi2bNnWu3Pnj0TsbGx0usJ8WL38ydPnmi1P336tNgNRkrj0KFDolu3biIjI0PqcQtTqVTCyMhIs7GNkZHRK29Kefz4sdi+fbvo3bu3qFy5sqhbt66YPHmyYvWIiEqLGZdKghm37CvvGVeX+VYIZlwyPBxpSxVSfHw8unTpgjZt2qBz584AgCNHjuD06dOIiopC+/btpdd8/PgxNm3ahEuXLmmuYCt1RdLc3ByXLl2Ck5NTkQXi09LS4O7ujsePH0uvWd5VrVoVCQkJOtvEQBcmTpyIWbNmwdLS8rVT81QqFSIiIqTXf/DgAU6dOoXbt29DrVYXuS8oKEhqrS+//BKLFi2Co6MjcnNzceXKFVSuXBlr1qzBqlWrcOLECan1Ck+TK+zu3btwcHBQ5Cq2LmtWq1YNubm5eP78OSwsLLSmGt67d6/UNTIzMzU/nzt3DpMmTUJYWBj+8Y9/AABOnDiBiIgIzJ8/H3369Cl1vcKioqKwefNm7N27F8bGxujXrx8CAwOlj44hIpKNGZcZt6SYcZlxS0LXGVfX9ZhxydCY6LsDRPrg7e2NEydOYMGCBdixYwfMzc3h7u6O1atXo2HDhtLrzZ07FzVq1MCIESOKtK9ZswZ37txBeHi41HouLi5ITEyEk5NTkfYDBw7Azc1Nai1d8fPze+PH7t69W3r9vn37Yu/evSVad8zQnTt3Ds+ePdP8/CpKrLO0b98+BAYGIicnB9bW1kVqqFQqRQJt8+bN8euvv6J///6oXLkygBdBcMqUKVJrAa9en+ru3buwtLSUXu91NX/77TdUqVJFaq1FixZJPV5xCr9/9e/fH0uWLMH777+vaXN3d0fdunUxbdo06YG2T58+6NGjB9avX48ePXpoBXYiIkPFjFv2MOPKx4xbfjKuLvMtwIxLhocnbanC8vDwwObNm3VSa8WKFdiyZYtWe7NmzTBw4EDpgTYsLAxjxozBkydPIITAqVOnsHXrVsydOxfffvut1Fq6osSHckk0aNAAs2bNwvHjx9GqVSutUCJjEwNdK7zum67XgAsNDcWwYcMwZ84cWFhY6KRmv379tNqGDBkitUbBFy+VSoWhQ4dqgjMA5OfnIzk5Ge3atZNa09PTEyqVCiqVCp07d4aJyf9/tOfn5yMjIwPdu3eXWlP28/ZXUlJSil2TzsXFBRcvXpRe79atW+V6p3AiKt+YccsWZlz5mHHLfsbVR74FmHHJ8HB5BKowsrOzNW9Qf7Ugu+w3MjMzM6Smpmq9IV+7dg1ubm548uSJ1HoAsGrVKsyePRu//vorAKB27dr48ssvMXz4cOm1KgJdbGJQkVhaWiIlJUXRqXhLlizBxx9/DDMzMyxZsuS1j5X1hSQ4OBgAsH79egwYMKDI1FBTU1M4OztjxIgRsLOzk1IPAGbMmKH5b2hoKKysrLRqfvjhhzA1NZVWEwDUajWuXr1a7NQ/Hx8fqbW8vLzQtGlTrF69WrPRzdOnTzFs2DCkpqYiISFBaj0ASE9Px9q1a5Geno7FixfDwcEBBw8eRN26ddGsWTPp9YiI/i5mXGbc0mDGlYsZV07G1Ve+BZhxybDwpC1VGIXXwzEyMip2mkXB9AvZa+M0bNgQX3zxBQYNGlSkfePGjfjiiy8UDUN//PEH1Gq11jpA5cGdO3dw+fJlqFQqNGrUCPb29jqpW/C2qcSUqorCz88PAwcOxIABAxSr4eLigjNnzsDW1lbnX0hmzJiBsLAwnY2wAF6EaH9/f03gU9LJkycREBCAzMxMvBwjlHgPPXXqFHr27Am1Wo2WLVsCAJKSkqBSqfDjjz+ibdu2UuvFxsbivffeg7e3N37++WekpqbC1dUV8+fPx6lTp7Br1y6p9YiISoMZlxlXFmbc0mPGlUuX+RZgxmXGNTxcHoEqjKNHj6J69eoAdD9N5qOPPsL48ePx7NkzdOrUCcCLTSEmT56M0NBQ6fUeP34MIQQsLCxgZ2eHzMxMLFq0CG5ubujWrZv0erqWk5ODTz/9FBs2bNBc/TQ2NkZQUBCWLl2qWIhYvXo1IiMjkZaWBuDFF5Xx48fjo48+UqReedajRw+EhYXh4sWLaNGihdZ6Sr169Sp1jYyMjGJ/1oXY2FiMGzdO63cxOzsbffr0wdGjR6XXHDJkCB48eIBNmzYhPT0dYWFhqF69OhISElCjRg3Url1bWq1Ro0ahdevW2L9/PxwdHRX/cte2bVtkZGQU2ejG398fAQEBiqyfNmXKFMyePRsTJ06EtbW1pr1jx45YvHix9HpERKXBjMuMW1rMuPIw48rNuLrMtwAzLhkejrSlCuvJkydITk4udtqDjA/TwoQQmDJlCpYsWYK8vDwAL6aThYeHY/r06VJrAUC3bt3g5+eHUaNG4cGDB2jcuDFMTU3xxx9/YOHChfjkk0+k19SlkSNH4vDhw1i2bBm8vb0BAHFxcQgJCUHXrl3xzTffSK85bdo0REZG4tNPPy2ys+eyZcswbtw4zJ49W3rN8szIyOiV98m6iv2mG2oosXPwq3a6vX37NmrXrq3ZHEOm5ORkdOnSBVWqVMH169dx+fJluLq6Ytq0acjMzMSGDRuk1bK0tERSUhIaNGgg7Zhv4uLFi8jKytK8jxaQ/Z5tZWWlWWOs8O7k169fR5MmTRSZ7ktEJAszbtnFjFv2MePKzbi6zLcAMy4zrgESRBXQgQMHhL29vVCpVFo3IyMjxeo+fPhQnDp1SqSkpIgnT54oVsfW1lacP39eCCHEqlWrhLu7u8jPzxc7duwQTZo0Uayurtja2oro6Git9qNHjwo7OzvFam7ZskWrfcuWLcLW1laRmlQ6vr6+RW7W1tbCwsJCeHp6Ck9PT2FpaSlsbGxEx44dpdVMSkoSSUlJQqVSiejoaM2fk5KSREJCgpgzZ45wcnKSVq+wTp06ibCwMCGEEFZWViI9PV0IIUR8fLz0mh07dhQHDhyQeszXSU9PF+7u7pr36IL/Ftxkq127toiPjxdCFH0ud+/eLVxdXaXXIyKShRm3bGPGpTdRkTKuLvOtEMy4ZHi4PAJVSGPHjkX//v0xffp01KhRQ2d1rays0KZNG8Xr5ObmaqY7REVFwc/PD0ZGRnj77beRmZmpeH2l5ebmFvvv5uDggNzcXEVq5ufno3Xr1lrtrVq1wvPnzxWpWZ7NnDnzlfepVCpMmzat1DUKTxFduHAhrK2tsX79elSrVg0AcP/+fQQHB6N9+/alrlXAw8NDs9NtwTTRwszNzbF06VJp9Qo7c+YMVq5cqdVeu3Zt3Lp1q9THT05O1vz86aefIjQ0FLdu3Sp26p+7u3up6xU2btw4uLi44PDhw3B1dcUvv/yCe/fuITQ0FP/+97+l1gKAgIAAhIeHY+fOnVCpVFCr1YiPj8ekSZMQFBQkvR4RkSzMuGUbM27Zx4wrl9L5FmDGZcY1cPo+a0ykD9bW1uLq1av67oZiWrRoIRYvXiyysrKEjY2NOH78uBBCiDNnzogaNWrouXel16lTJ9G/f3/x+PFjTVtubq7o37+/6Ny5syI1x44dKyZMmKDVHhoaKkaPHq1IzfLMw8OjyK1Zs2bCwsJC2NjYCE9PT+n1atWqpRmZU1hKSopwdHSUVuf69esiIyNDqFQqcfr0aXH9+nXN7caNG+L58+fSar3MwcFBJCQkCCGKXjk/dOiQqFOnTqmPX3gEwKtGcCk1ksvW1lYkJSUJIYSwsbERly5dEkIIceTIEeHh4SG9Xl5enggICND8nSpVqiRUKpUYNGiQov+GRESlxYxbtjHjln3MuHIpnW+FYMZlxjVsHGlLFVK/fv0QExOD+vXr67sripg+fToCAgIwYcIEdOrUSbM+VVRUFDw9PfXcu9JbtGgR3nvvPdSpUwctW7aESqVCYmIiKleujKioKMXqrl69GlFRUXj77bcBvNhd9Ndff0VQUFCRtaUWLlyoWB/Ki3Pnzmm1ZWdnY+jQoejbt6/0etnZ2fj999/RrFmzIu23b9/Gw4cPpdVxcnICAM0agrpanwoAevfujZkzZ2LHjh0AXozmyMrKwpQpU/Dhhx+W+vi63uiisPz8fFhZWQEA7OzscOPGDTRu3BhOTk64fPmy9HqVKlXC5s2bMWvWLCQkJECtVsPT0xMNGzaUXouISCZm3LKNGbfsY8aVm3GVzrcAMy4zrmHjRmRUIeXm5qJ///6wt7cvdtpDSEiInnomz61bt3Dz5k20bNlSsyD+qVOnYGNjgyZNmui5d6X3+PHjIrtsurm5ITAwEObm5orU69ix4xs9TqVSSd81tSI5f/48PvjgA1y/fl3qcYOCghAbG4uIiIgiX0jCwsLg4+OD9evXS62XkZGBvn37Ijk5GSqVCgUftQU70MrYhOJl2dnZeP/993HhwgU8fPgQtWrVwq1bt/D222/jwIEDiuxAqyvt27dHaGgo+vTpg4CAANy/fx+ff/45Vq5cibNnz+L8+fOlrvGmm3oA/NJKRIaLGZcZt6SYcXWDGffvKc/5FmDGpb/Gk7ZUIX377bcYNWoUzM3NYWtrq/mQAV584Fy7dk2PvZPn6tWrSE9Ph4+PD8zNzSGEKPJ3Lavmzp2LGjVqYNiwYUXa16xZgzt37iA8PFxPPaPSiouLQ8+ePXH//n2px83NzcWkSZOwZs0aza62JiYmGD58OBYsWCA98PXs2RPGxsZYtWpVsetTyVxj7GXR0dE4e/Ys1Go1vLy80KVLF+k1dP0aPHToEHJycuDn54dr167hgw8+wKVLl2Bra4vt27cXu7ZaSb38pfXs2bPIz89H48aNAQBXrlyBsbExWrVqxS+tRGSwmHHLNmbc8osZt3R0kW8BZlxmXMPDk7ZUIdWsWRMhISGYMmWK5gp9eXL37l0MGDAA0dHRUKlUSEtLg6urK4YPH46qVasiIiJC310sFWdnZ2zZsgXt2rUr0v7LL79g4MCBep3iQm9myZIlRf4shMDNmzexceNG+Pj4YOvWrYrUzcnJQXp6OoQQaNCggWJX5+3s7HD06FG4u7ujSpUqOHXqFBo3boyjR48iNDS02KlzMhw5cgRHjhzB7du3NdPXCqxZs0ZaHUN4Dd67dw/VqlVT5Ev6woULERMT88pNPUJDQ6XXJCKSgRmXGZf0ixlXfsbVVb4FDOM1yIxLhXFNW6qQ8vLy4O/vXy7DLABMmDABlSpVQlZWFpo2bapp9/f3x4QJE8p8oL116xYcHR212u3t7XHz5k099IhKKjIyssifjYyMYG9vjyFDhmDq1KmK1bW0tJS+62txdL0+FQDMmDEDM2fOROvWreHo6KjoiCNDeA1Wr15dsWNHREQgKipKE2YBoFq1apg9eza6devGQEtEBosZlxmX9IsZVy5d5lvAMF6DzLhUGE/aUoU0ZMgQbN++Hf/85z/13RVFREVF4dChQ6hTp06R9oYNGyIzM1NPvZKnbt26iI+Ph4uLS5H2+Ph41KpVS0+9opIo7yNFmjdvjuTkZLi6uuKtt97C/PnzYWpqipUrV8LV1VWRmsuXL8e6deswePBgRY5fWHl/DepqUw8iItmYccu28v75WhEw48qly3wLlP/XIDNu2cOTtlQh5efnY/78+Th06BDc3d21Nmko6wtw5+TkwMLCQqv9jz/+QOXKlfXQI7k++ugjjB8/Hs+ePdOs83PkyBFMnjyZVwfJIHz++efIyckBAMyePRsffPAB2rdvr1mfSgl5eXlaU7mUUt5fg3379kVwcHCxm3r4+fnpuXdERK/GjFu2lffPVyr7dJ1xdZlvgfL/GmTGLXu4pi1VSK/bJbU87Izao0cPeHl5YdasWbC2tkZycjKcnJwwcOBAqNVq7Nq1S99dLBUhBKZMmYIlS5YgLy8PAGBmZobw8HBMnz5dz70jKp6S61MBQHh4OKysrDBt2jRFjl9YeX8N6npTDyIiWZhxmXGJdE3JjKvLfAuU/9cgM27Zw5O2ROVQamoqOnTooNkBslevXrhw4QLu3buH+Ph41K9fX99dlOLRo0dITU2Fubk5GjZsWC5GWBD9XePGjcOGDRvg7u6us9FV5f01qKtNPYiI6M0w4xJVLPrIt0D5fw0y45YdPGlLVM48e/YM3bp1w9y5c3HgwAGcPXsWarUaXl5eGDNmTLELqxNR2aeP0VVXr15Feno6fHx8YG5uDiGE4htEEBFRxcSMS1Tx6Gv2ADMuGQqetCUqh+zt7XH8+HE0bNhQ310honLo7t27GDBgAKKjo6FSqZCWlgZXV1cMHz4cVatWLfO7dxMRkWFixiUiJTHjkqEx0ncHiEi+oKAgrF69Wt/dIKJyasKECahUqRKysrKKbAjj7++PgwcP6rFnRERUnjHjEpGSmHHJ0JjouwNEJF9eXh6+/fZb/PTTT2jdurXWGjVlfedgItKvqKgoHDp0CHXq1CnS3rBhQ2RmZuqpV0REVN4x4xKRkphxydDwpC1ROXT+/Hl4eXkBAK5cuVLkPq7FQ0SllZOTU2T0QYE//vij3G3UQEREhoMZl4iUxIxLhoZr2hIREVGJ9OjRA15eXpg1axasra2RnJwMJycnDBw4EGq1Grt27dJ3F4mIiIiISoQZlwwNT9oSERFRiVy8eBG+vr5o1aoVjh49il69euHChQu4d+8e4uPjUb9+fX13kYiIiIioRJhxydBwIzIiIiIqESsrKyQmJqJt27bo2rUrcnJy4Ofnh3PnzqFSpUr67h4RERERUYkx45Kh4UhbIiIiKhFjY2PcvHkTDg4ORdrv3r0LBwcH5Ofn66lnRERERER/DzMuGRqOtCUiIqISedX13kePHsHMzEzHvSEiIiIiKj1mXDI0JvruABEREZUNEydOBPBih+7p06cX2V03Pz8fv/zyCzw8PPTUOyIiIiKikmPGJUPFk7ZERET0Rs6dOwfgxSiElJQUmJqaau4zNTVFy5YtMWnSJH11j4iIiIioxJhxyVBxTVsiIiIqkeDgYCxevBg2Njb67goRERERkRTMuGRoeNKWiIiIiIiIiIiIyIBwIzIiIiIiIiIiIiIiA8KTtkREREREREREREQGhCdtiYiIiIiIiIiIiAwIT9oSERERERERERERGRCetCUiKsNUKhX27t2r724QEREREUnDjEtExJO2RER6pVKpXnsbOnSovrtIRERERFQizLhERKVnou8OEBFVZDdv3tT8vH37dkyfPh2XL1/WtJmbm+ujW0REREREfxszLhFR6XGkLRGRHtWsWVNzq1KlClQqVZG2LVu2oH79+jA1NUXjxo2xcePG1x5v5syZqFGjBhITEwEAx48fh4+PD8zNzVG3bl2EhIQgJydH83hnZ2fMmTMHw4YNg7W1NerVq4eVK1dq7s/Ly8PYsWPh6OgIMzMzODs7Y+7cuYo8F0RERERUPjDjEhGVHk/aEhEZqD179mDcuHEIDQ3F+fPnMXLkSAQHByM6OlrrsUIIjBs3DqtXr0ZcXBw8PDyQkpKCd999F35+fkhOTsb27dsRFxeHsWPHFvl/IyIi0Lp1a5w7dw6jR4/GJ598gkuXLgEAlixZgh9++AE7duzA5cuXsWnTJjg7O+vir09ERERE5RAzLhHRm1EJIYS+O0FERMC6deswfvx4PHjwAADg7e2NZs2aFRkVMGDAAOTk5GD//v0AXqwXtnPnTnz//fc4c+YMfvrpJ9SpUwcAEBQUBHNzc6xYsULz/8fFxaFDhw7IycnRjCpo3769ZnSDEAI1a9bEjBkzMGrUKISEhODChQs4fPgwVCqVjp4JIiIiIiovmHGJiP4ejrQlIjJQqamp8Pb2LtLm7e2N1NTUIm0TJkzAiRMncOzYMU2YBYCzZ89i3bp1sLKy0tzeffddqNVqZGRkaB7n7u6u+blg6trt27cBAEOHDkViYiIaN26MkJAQREVFKfFXJSIiIqIKghmXiOjN8KQtEZEBe/nKvxBCq61r167473//i0OHDhVpV6vVGDlyJBITEzW3pKQkpKWloX79+prHVapUSaumWq0GAHh5eSEjIwOzZs3C48ePMWDAAPTr10/mX5GIiIiIKhhmXCKiv2ai7w4QEVHxmjZtiri4OAQFBWnajh8/jqZNmxZ5XK9evdCzZ08EBATA2NgYAwcOBPAijF64cAENGjQoVT9sbGzg7+8Pf39/9OvXD927d8e9e/dQvXr1Uh2XiIiIiCoeZlwiojfDk7ZERAYqLCwMAwYMgJeXFzp37ox9+/Zh9+7dOHz4sNZj+/bti40bN2Lw4MEwMTFBv379EB4ejrfffhtjxozBiBEjYGlpidTUVPz0009YunTpG/UhMjISjo6O8PDwgJGREXbu3ImaNWuiatWqkv+2RERERFQRMOMSEb0ZnrQlIjJQffr0weLFi7FgwQKEhITAxcUFa9euha+vb7GP79evH9RqNQYPHgwjIyP4+fkhNjYWn332Gdq3bw8hBOrXrw9/f/837oOVlRXmzZuHtLQ0GBsbo02bNvjPf/4DIyOurkNEREREJceMS0T0ZlRCCKHvThARERERERERERHRC7yMRERERERERERERGRAeNKWiIiIiIiIiIiIyIDwpC0RERERERERERGRAeFJWyIiIiIiIiIiIiIDwpO2RERERERERERERAaEJ22JiIiIiIiIiIiIDAhP2hIREREREREREREZEJ60JSIiIiIiIiIiIjIgPGlLREREREREREREZEB40paIiIiIiIiIiIjIgPCkLREREREREREREZEB4UlbIiIiIiIiIiIiIgPyfwDUZJy0PzYRAAAAAElFTkSuQmCC",
2372
- "text/plain": [
2373
- "<Figure size 1400x600 with 2 Axes>"
2374
- ]
2375
- },
2376
- "metadata": {},
2377
- "output_type": "display_data"
2378
- },
2379
- {
2380
- "data": {
2381
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABW0AAAJOCAYAAADMCCWlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACxyklEQVR4nOzdeXhN1/7H8c+RRGJKjJlaIqh5qNISGkMRjdbQ0tIJNbRKryG0leIaOhiKpq2p7UWoFm3Rark1UyodSEL1p4qGKAmlrRgqiWT//vDkXEcGSeyTs+n79Tz7eZy1117ftROO7/mevde2GYZhCAAAAAAAAABgCcVcPQEAAAAAAAAAwP9QtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BVAkoqOjZbPZctxGjRrl6undUq79WXt5ecnf319t27bV5MmTderUqWzHTJgwQTabrUBxLl68qAkTJmjr1q0FOi6nWFWrVtWDDz5YoHGu56OPPlJUVFSO+2w2myZMmGBqPAAA8M9ybc7l7u6u22+/XU8//bSOHz9uaiybzabnn3/etPGOHDkim82m6dOnX7dv1nkeOXLE3ta3b19VrVrVoV/VqlXVt29f++sTJ05owoQJio+PN2fS18yHXJdcF7jVubt6AgD+WRYuXKjatWs7tAUGBrpoNre2rJ91enq6Tp06pR07dmjq1KmaPn26li9frvbt29v7DhgwQPfff3+Bxr948aImTpwoSWrTpk2+jytMrML46KOPtG/fPg0fPjzbvpiYGN1+++1OnwMAALj1ZeVcf//9t77++mtNnjxZ27Zt048//qhSpUq5eno37IEHHlBMTIwCAgLy7Ldq1Sp5e3vbX584cUITJ05U1apVdeedd5o+L3Jdcl3gVkfRFkCRql+/vpo2bZqvvunp6farFlBw1/6su3fvrhEjRujee+/Vww8/rIMHD8rPz0+SdPvttzs9sbt48aJKlixZJLGup3nz5i6NDwAAbh1X51xt27ZVRkaGXnnlFX322Wd64okncjwmKy+6GVSqVEmVKlW6br/GjRsXwWz+h1w3d+S6wK2B5REAWMLWrVtls9n0wQcfaOTIkbrtttvk6empQ4cOSZI2btyodu3aydvbWyVLllTLli21adOmbOOsWbNGd955pzw9PRUcHKzp06dnu0Up63aw6OjobMfndCvRwYMH9fjjj8vX11eenp6qU6eOZs+eneP8ly5dqjFjxigwMFDe3t5q3769Dhw4kC3OV199pXbt2snHx0clS5ZUnTp1NHnyZEnSBx98IJvNppiYmGzHTZo0SR4eHjpx4sR1f6Y5qVKlimbMmKFz587p3XfftbfndBvX5s2b1aZNG1WoUEElSpRQlSpV1L17d128eFFHjhyxJ+8TJ060356WdUtc1nixsbHq0aOHypUrp+rVq+caK8uqVavUsGFDeXl5qVq1anr77bcd9ud0e570v59/1u1rbdq00Zo1a3T06FGH2+ey5PR73rdvn7p27apy5crJy8tLd955pxYtWpRjnPz+ngEAwD9PVsHs6NGjkq4sJVC6dGn9+OOPCgsLU5kyZdSuXTtJ0h9//KHBgwfrtttuU/HixVWtWjWNGTNGqampOY797rvvqmbNmvL09FTdunW1bNkyh/2///67Bg8erLp166p06dLy9fXVfffdp+3bt+c4XmZmpl577TVVqVJFXl5eatq0abYcO7f861pXL4+wdetW3X333ZKkp59+2p6LTZgwgVyXXBdAPnH5GoAilZGRocuXLzu0XX0lbWRkpEJCQjRv3jwVK1ZMvr6+WrJkiXr37q2uXbtq0aJF8vDw0LvvvquOHTtq3bp19qR306ZN6tq1q0JCQrRs2TJlZGRo2rRpOnnyZKHn+3//939q0aKFPQH09/fXunXrNHToUJ0+fVrjx4936P/yyy+rZcuW+s9//qOUlBS99NJL6ty5s/bv3y83NzdJ0vz58zVw4EC1bt1a8+bNk6+vr3755Rft27dPktSzZ0+9+OKLmj17tkJCQuxjX758We+++64eeuihG1pSolOnTnJzc9PXX3+da58jR47ogQceUGhoqBYsWKCyZcvq+PHj+uqrr5SWlqaAgAB99dVXuv/++9W/f38NGDBAkrJdhfHwww+rV69eGjRokC5cuJDnvOLj4zV8+HBNmDBB/v7++vDDDzVs2DClpaUVeN3jOXPm6JlnntHhw4e1atWq6/Y/cOCAWrRoIV9fX7399tuqUKGClixZor59++rkyZN68cUXHfrn5/cMAAD+mbIuOrg6L0pLS1OXLl307LPPavTo0bp8+bIuXbqktm3b6vDhw5o4caIaNmyo7du3a/LkyYqPj9eaNWscxl29erW2bNmiSZMmqVSpUpozZ44ee+wxubu7q0ePHpKuFIElafz48fL399f58+e1atUqtWnTRps2bcp2m/+sWbMUFBSkqKgoZWZmatq0aQoPD9e2bdsc8tCCuuuuu7Rw4UI9/fTTGjt2rB544AFJV6549fX1Jdcl1wWQHwYAFIGFCxcaknLc0tPTjS1bthiSjFatWjkcd+HCBaN8+fJG586dHdozMjKMRo0aGffcc4+9rVmzZkZgYKDx999/29tSUlKM8uXLG1e/3SUkJBiSjIULF2abpyRj/Pjx9tcdO3Y0br/9duPs2bMO/Z5//nnDy8vL+OOPPwzDMOzz79Spk0O/jz/+2JBkxMTEGIZhGOfOnTO8vb2Ne++918jMzMz15zV+/HijePHixsmTJ+1ty5cvNyQZ27Zty/U4w/jfz/qHH37ItY+fn59Rp04dh3hX/4w+/fRTQ5IRHx+f6xi///57tp/XteP9+9//znXf1YKCggybzZYtXocOHQxvb2/jwoULDueWkJDg0C/r579lyxZ72wMPPGAEBQXlOPdr592rVy/D09PTSExMdOgXHh5ulCxZ0vjrr78c4lzv9wwAAG59WXnJt99+a6Snpxvnzp0zvvzyS6NSpUpGmTJljOTkZMMwDKNPnz6GJGPBggUOx8+bN8+QZHz88ccO7VOnTjUkGevXr7e3STJKlChhH9MwDOPy5ctG7dq1jRo1auQ6x8uXLxvp6elGu3btjIceesjenpUP55Y7t2/fPtt5Xp1/9enTJ1ueFRQUZPTp08f++ocffsg15ybXvYJcF0BeWB4BQJFavHixfvjhB4ft6ittu3fv7tB/586d+uOPP9SnTx9dvnzZvmVmZur+++/XDz/8oAsXLujChQv64Ycf9PDDD8vLy8t+fJkyZdS5c+dCzfXSpUvatGmTHnroIZUsWdIhfqdOnXTp0iV9++23Dsd06dLF4XXDhg0l/e/2uJ07dyolJUWDBw/O8wm2zz33nCTp/ffft7fNmjVLDRo0UKtWrQp1PlczDCPP/XfeeaeKFy+uZ555RosWLdKvv/5aqDjX/j7zUq9ePTVq1Mih7fHHH1dKSopiY2MLFT+/Nm/erHbt2qly5coO7X379tXFixez3b53vd8zAAD452jevLk8PDxUpkwZPfjgg/L399d///tf+3qqWa7NizZv3qxSpUrZr5LNknUL/rXLFLRr185hTDc3N/Xs2VOHDh3Sb7/9Zm+fN2+e7rrrLnl5ecnd3V0eHh7atGmT9u/fn23uueXOX3/9tTIyMgr2gygAct0ryHUB5IWiLYAiVadOHTVt2tRhu9q1T6XNWtqgR48e8vDwcNimTp0qwzD0xx9/6M8//1RmZqb8/f2zxcypLT/OnDmjy5cv65133skWu1OnTpKk06dPOxxToUIFh9eenp6SpL///lvSlXXGJF334QR+fn7q2bOn3n33XWVkZGjv3r3avn27nn/++UKdy9UuXLigM2fO5HnbWfXq1bVx40b5+vpqyJAhql69uqpXr6633nqrQLGu95Thq+X1uztz5kyB4hbUmTNncpxr1s/o2vjX+z0DAIB/jqyLEuLi4nTixAnt3btXLVu2dOhTsmRJeXt7O7SdOXNG/v7+2b7I9/X1lbu7e7b8Iz+50syZM/Xcc8+pWbNmWrFihb799lv98MMPuv/++3PMU3IbMy0tTefPn8/H2RcOua5jG7kugJywpi0AS7k2aa1YsaIk6Z133sn1Kah+fn5KT0+XzWZTcnJytv3XtmVdTXDtAx6uTVbKlSsnNzc3PfXUUxoyZEiOsYODg/M4m+yy1sG6+mqI3AwbNkwffPCBPv/8c3311VcqW7Zsrk8gLog1a9YoIyMj25pm1woNDVVoaKgyMjK0a9cuvfPOOxo+fLj8/PzUq1evfMXK62ria+X1u8tKHHP73V1bPC+oChUqKCkpKVt71kMwsv4eAgAAXCvrooS85JQTVahQQd99950Mw3DYf+rUKV2+fDlb/pGfXGnJkiVq06aN5s6d69Dv3LlzOc4rtzGLFy+u0qVL53lON4pcl1wXQN640haApbVs2VJly5bV//3f/2W7QjdrK168uEqVKqV77rlHK1eu1KVLl+zHnzt3Tl988YXDmH5+fvLy8tLevXsd2j///HOH1yVLllTbtm0VFxenhg0b5hj72m+hr6dFixby8fHRvHnzrnvbVpMmTdSiRQtNnTpVH374ofr27atSpUoVKN61EhMTNWrUKPn4+OjZZ5/N1zFubm5q1qyZZs+eLUn227fM/sb9p59+0p49exzaPvroI5UpU0Z33XWXpCtPJZaU7Xe3evXqbON5enrme27t2rXT5s2bsz2pePHixSpZsmSuXxgAAAAUVrt27XT+/Hl99tlnDu2LFy+277/apk2bHB6wm5GRoeXLl6t69er2u7hsNps9R8uyd+/ebLe/Z8ktdw4NDb3hB05dL1ck1yXXBZA3rrQFYGmlS5fWO++8oz59+uiPP/5Qjx495Ovrq99//1179uzR77//br+S4JVXXtH999+vDh06aOTIkcrIyNDUqVNVqlQp+5N0pSvJ7JNPPqkFCxaoevXqatSokb7//nt99NFH2eK/9dZbuvfeexUaGqrnnntOVatW1blz53To0CF98cUX2rx5c4HPZ8aMGRowYIDat2+vgQMHys/PT4cOHdKePXs0a9Ysh/7Dhg1Tz549ZbPZNHjw4ALF2rdvn30N3lOnTmn79u1auHCh3NzctGrVqmxPv73avHnztHnzZj3wwAOqUqWKLl26pAULFkiS2rdvL+nKmmdBQUH6/PPP1a5dO5UvX14VK1a0J5sFFRgYqC5dumjChAkKCAjQkiVLtGHDBk2dOlUlS5aUJN19992qVauWRo0apcuXL6tcuXJatWqVduzYkW28Bg0aaOXKlZo7d66aNGmiYsWK5XoVzPjx4/Xll1+qbdu2+ve//63y5cvrww8/1Jo1azRt2jT5+PgU6pwAAABy07t3b82ePVt9+vTRkSNH1KBBA+3YsUOvv/66OnXqZM+5slSsWFH33Xefxo0bp1KlSmnOnDn6+eeftWzZMnufBx98UK+88orGjx+v1q1b68CBA5o0aZKCg4N1+fLlbHNwc3NThw4dFBERoczMTE2dOlUpKSmaOHHiDZ9f9erVVaJECX344YeqU6eOSpcurcDAQIdlC8h1yXUB5I6iLQDLe/LJJ1WlShVNmzZNzz77rM6dOydfX1/deeed9gc1SFKHDh302WefaezYserZs6f8/f01ePBg/f3339kSzxkzZkiSpk2bpvPnz+u+++7Tl19+mS0Jq1u3rmJjY/XKK69o7NixOnXqlMqWLas77rjDvq5tQfXv31+BgYGaOnWqBgwYIMMwVLVqVfXp0ydb327dusnT01Nt27bVHXfcUaA4Tz/9tCSpePHiKlu2rOrUqaOXXnpJAwYMyDOJla48nGH9+vUaP368kpOTVbp0adWvX1+rV69WWFiYvd/8+fP1wgsvqEuXLkpNTVWfPn0UHR1doHleHfPpp5/W+PHjdfDgQQUGBmrmzJkaMWKEvY+bm5u++OILPf/88xo0aJA8PT3Vq1cvzZo1Sw888IDDeMOGDdNPP/2kl19+WWfPnpVhGLle3VyrVi3t3LlTL7/8soYMGaK///5bderU0cKFCx3+jgEAAJjFy8tLW7Zs0ZgxY/TGG2/o999/12233aZRo0Zp/Pjx2fp36dJF9erV09ixY5WYmKjq1avrww8/VM+ePe19xowZo4sXL2r+/PmaNm2a6tatq3nz5mnVqlXaunVrtjGff/55Xbp0SUOHDtWpU6dUr149rVmzJtuavIVRsmRJLViwQBMnTlRYWJjS09M1fvx4TZgwwd6HXJdcF0DubMb17s8FgJvchAkTNHHixOsuR2BFX3zxhbp06aI1a9YUukgMAAAAWBG5LgDkjittAcCC/u///k9Hjx7VyJEjdeeddyo8PNzVUwIAAABMQa4LANfHg8gAwIIGDx6sLl26qFy5clq6dGmBnkwLAAAAWBm5LgBcH8sjAAAAAAAAAICFcKUtAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIe6unoAVZWZm6sSJEypTpgwLogMAALiIYRg6d+6cAgMDVawY1xrcKHJcAAAA18tvjkvRNgcnTpxQ5cqVXT0NAAAASDp27Jhuv/12V0/jpkeOCwAAYB3Xy3Ep2uagTJkykq788Ly9vV08GwAAgH+mlJQUVa5c2Z6b4caQ4wIAALhefnNcirY5yLpdzNvbm4QWAADAxbiV3xzkuAAAANZxvRyXxcEAAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBCKNoCAAAAAAAAgIW4u3oCuGJK3GmnjT26cUWnjQ0AAADkJn3iSKeN7TF+htPGBgAAcDWutAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEJcWbb/++mt17txZgYGBstls+uyzzxz222y2HLc33ngj1zGjo6NzPObSpUtOPhsAAAAAAAAAuHEuLdpeuHBBjRo10qxZs3Lcn5SU5LAtWLBANptN3bt3z3Ncb2/vbMd6eXk54xQAAAAAAAAAwFTurgweHh6u8PDwXPf7+/s7vP7888/Vtm1bVatWLc9xbTZbtmMBAAAAAAAA4GZw06xpe/LkSa1Zs0b9+/e/bt/z588rKChIt99+ux588EHFxcUVwQwBAAAAAAAA4MbdNEXbRYsWqUyZMnr44Yfz7Fe7dm1FR0dr9erVWrp0qby8vNSyZUsdPHgw12NSU1OVkpLisAEAAAAAAACAK9w0RdsFCxboiSeeuO7atM2bN9eTTz6pRo0aKTQ0VB9//LFq1qypd955J9djJk+eLB8fH/tWuXJls6cPAAAAAAAAAPlyUxRtt2/frgMHDmjAgAEFPrZYsWK6++6787zSNjIyUmfPnrVvx44du5HpAgAAAAAAAEChufRBZPk1f/58NWnSRI0aNSrwsYZhKD4+Xg0aNMi1j6enpzw9PW9kigAAAAAAAABgCpcWbc+fP69Dhw7ZXyckJCg+Pl7ly5dXlSpVJEkpKSn65JNPNGPGjBzH6N27t2677TZNnjxZkjRx4kQ1b95cd9xxh1JSUvT2228rPj5es2fPdv4JAQAAAAAAAMANcmnRdteuXWrbtq39dUREhCSpT58+io6OliQtW7ZMhmHosccey3GMxMREFSv2v1Ue/vrrLz3zzDNKTk6Wj4+PGjdurK+//lr33HOP804EAAAAAAAAAExiMwzDcPUkrCYlJUU+Pj46e/asvL29iyTmlLjTTht7dOOKThsbAADAWVyRk93KXPHzTJ840mlje4zP+U48AAAAK8tvTnZTPIgMAAAAAAAAAP4pKNoCAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAABAAcyZM0fBwcHy8vJSkyZNtH379jz7b9u2TU2aNJGXl5eqVaumefPmOex///33FRoaqnLlyqlcuXJq3769vv/+e4c+EyZMkM1mc9j8/f1NPzcAAABYA0VbAAAAIJ+WL1+u4cOHa8yYMYqLi1NoaKjCw8OVmJiYY/+EhAR16tRJoaGhiouL08svv6yhQ4dqxYoV9j5bt27VY489pi1btigmJkZVqlRRWFiYjh8/7jBWvXr1lJSUZN9+/PFHp54rAAAAXMfd1RMAAAAAbhYzZ85U//79NWDAAElSVFSU1q1bp7lz52ry5MnZ+s+bN09VqlRRVFSUJKlOnTratWuXpk+fru7du0uSPvzwQ4dj3n//fX366afatGmTevfubW93d3fn6loAAIB/CK60BQAAAPIhLS1Nu3fvVlhYmEN7WFiYdu7cmeMxMTEx2fp37NhRu3btUnp6eo7HXLx4Uenp6SpfvrxD+8GDBxUYGKjg4GD16tVLv/76a57zTU1NVUpKisMGAACAmwNFWwAAACAfTp8+rYyMDPn5+Tm0+/n5KTk5OcdjkpOTc+x/+fJlnT59OsdjRo8erdtuu03t27e3tzVr1kyLFy/WunXr9P777ys5OVktWrTQmTNncp3v5MmT5ePjY98qV66c31MFAACAi1G0BQAAAArAZrM5vDYMI1vb9frn1C5J06ZN09KlS7Vy5Up5eXnZ28PDw9W9e3c1aNBA7du315o1ayRJixYtyjVuZGSkzp49a9+OHTt2/ZMDAACAJbCmLQAAAJAPFStWlJubW7arak+dOpXtatos/v7+OfZ3d3dXhQoVHNqnT5+u119/XRs3blTDhg3znEupUqXUoEEDHTx4MNc+np6e8vT0zHMcAAAAWBNX2gIAAAD5ULx4cTVp0kQbNmxwaN+wYYNatGiR4zEhISHZ+q9fv15NmzaVh4eHve2NN97QK6+8oq+++kpNmza97lxSU1O1f/9+BQQEFOJMAAAAYHUUbQEAAIB8ioiI0H/+8x8tWLBA+/fv14gRI5SYmKhBgwZJurIkQe/eve39Bw0apKNHjyoiIkL79+/XggULNH/+fI0aNcreZ9q0aRo7dqwWLFigqlWrKjk5WcnJyTp//ry9z6hRo7Rt2zYlJCTou+++U48ePZSSkqI+ffoU3ckDAACgyLA8AgAAAJBPPXv21JkzZzRp0iQlJSWpfv36Wrt2rYKCgiRJSUlJSkxMtPcPDg7W2rVrNWLECM2ePVuBgYF6++231b17d3ufOXPmKC0tTT169HCINX78eE2YMEGS9Ntvv+mxxx7T6dOnValSJTVv3lzffvutPS4AAABuLTYj60kIsEtJSZGPj4/Onj0rb2/vIok5JS7npwebYXTjik4bGwAAwFlckZPdylzx80yfONJpY3uMn+G0sQEAAJwlvzkZyyMAAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAsxKVF26+//lqdO3dWYGCgbDabPvvsM4f9ffv2lc1mc9iaN29+3XFXrFihunXrytPTU3Xr1tWqVaucdAYAAAAAAAAAYC6XFm0vXLigRo0aadasWbn2uf/++5WUlGTf1q5dm+eYMTEx6tmzp5566int2bNHTz31lB599FF99913Zk8fAAAAAAAAAEzn7srg4eHhCg8Pz7OPp6en/P398z1mVFSUOnTooMjISElSZGSktm3bpqioKC1duvSG5gsAAAAAAAAAzmb5NW23bt0qX19f1axZUwMHDtSpU6fy7B8TE6OwsDCHto4dO2rnzp25HpOamqqUlBSHDQAAAAAAAABcwdJF2/DwcH344YfavHmzZsyYoR9++EH33XefUlNTcz0mOTlZfn5+Dm1+fn5KTk7O9ZjJkyfLx8fHvlWuXNm0cwAAAAAAAACAgnDp8gjX07NnT/uf69evr6ZNmyooKEhr1qzRww8/nOtxNpvN4bVhGNnarhYZGamIiAj765SUFAq3AAAAAAAAAFzC0kXbawUEBCgoKEgHDx7MtY+/v3+2q2pPnTqV7erbq3l6esrT09O0eQIAAAAAAABAYVl6eYRrnTlzRseOHVNAQECufUJCQrRhwwaHtvXr16tFixbOnh4AAAAAAAAA3DCXXml7/vx5HTp0yP46ISFB8fHxKl++vMqXL68JEyaoe/fuCggI0JEjR/Tyyy+rYsWKeuihh+zH9O7dW7fddpsmT54sSRo2bJhatWqlqVOnqmvXrvr888+1ceNG7dixo8jPDwAAAAAAAAAKyqVF2127dqlt27b211nryvbp00dz587Vjz/+qMWLF+uvv/5SQECA2rZtq+XLl6tMmTL2YxITE1Ws2P8uGG7RooWWLVumsWPHaty4capevbqWL1+uZs2aFd2JAQAAAAAAAEAhubRo26ZNGxmGkev+devWXXeMrVu3Zmvr0aOHevTocSNTAwAAAAAAAACXuKnWtAUAAAAAAACAWx1FWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBCKNoCAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAogDlz5ig4OFheXl5q0qSJtm/fnmf/bdu2qUmTJvLy8lK1atU0b948h/3vv/++QkNDVa5cOZUrV07t27fX999/f8NxAQAAcPOiaAsAAADk0/LlyzV8+HCNGTNGcXFxCg0NVXh4uBITE3Psn5CQoE6dOik0NFRxcXF6+eWXNXToUK1YscLeZ+vWrXrssce0ZcsWxcTEqEqVKgoLC9Px48cLHRcAAAA3N5thGIarJ2E1KSkp8vHx0dmzZ+Xt7V0kMafEnXba2KMbV3Ta2AAAAM7iipzsepo1a6a77rpLc+fOtbfVqVNH3bp10+TJk7P1f+mll7R69Wrt37/f3jZo0CDt2bNHMTExOcbIyMhQuXLlNGvWLPXu3btQcXPiip9n+sSRThvbY/wMp40NAADgLPnNybjSFgAAAMiHtLQ07d69W2FhYQ7tYWFh2rlzZ47HxMTEZOvfsWNH7dq1S+np6Tkec/HiRaWnp6t8+fKFjgsAAICbm7urJwAAAADcDE6fPq2MjAz5+fk5tPv5+Sk5OTnHY5KTk3Psf/nyZZ0+fVoBAQHZjhk9erRuu+02tW/fvtBxJSk1NVWpqan21ykpKXmfIAAAACyDK20BAACAArDZbA6vDcPI1na9/jm1S9K0adO0dOlSrVy5Ul5eXjcUd/LkyfLx8bFvlStXzrUvAAAArIWiLQAAAJAPFStWlJubW7arW0+dOpXtKtgs/v7+OfZ3d3dXhQoVHNqnT5+u119/XevXr1fDhg1vKK4kRUZG6uzZs/bt2LFj+TpPAAAAuB7LI/xD8eAzAACAgilevLiaNGmiDRs26KGHHrK3b9iwQV27ds3xmJCQEH3xxRcObevXr1fTpk3l4eFhb3vjjTf06quvat26dWratOkNx5UkT09PeXp6Fugcb3Y8+AwAANwqKNoCAAAA+RQREaGnnnpKTZs2VUhIiN577z0lJiZq0KBBkq5c3Xr8+HEtXrxYkjRo0CDNmjVLERERGjhwoGJiYjR//nwtXbrUPua0adM0btw4ffTRR6patar9itrSpUurdOnS+YoLAACAWwtFWwAAACCfevbsqTNnzmjSpElKSkpS/fr1tXbtWgUFBUmSkpKSlJiYaO8fHBystWvXasSIEZo9e7YCAwP19ttvq3v37vY+c+bMUVpamnr06OEQa/z48ZowYUK+4gIAAODWQtEWAAAAKIDBgwdr8ODBOe6Ljo7O1ta6dWvFxsbmOt6RI0duOC4AAABuLTyIDAAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCXFm2//vprde7cWYGBgbLZbPrss8/s+9LT0/XSSy+pQYMGKlWqlAIDA9W7d2+dOHEizzGjo6Nls9mybZcuXXLy2QAAAAAAAADAjXNp0fbChQtq1KiRZs2alW3fxYsXFRsbq3Hjxik2NlYrV67UL7/8oi5dulx3XG9vbyUlJTlsXl5ezjgFAAAAAAAAADCVuyuDh4eHKzw8PMd9Pj4+2rBhg0PbO++8o3vuuUeJiYmqUqVKruPabDb5+/ubOlcAAAAAAAAAKAo31Zq2Z8+elc1mU9myZfPsd/78eQUFBen222/Xgw8+qLi4uDz7p6amKiUlxWEDAAAAAAAAAFe4aYq2ly5d0ujRo/X444/L29s71361a9dWdHS0Vq9eraVLl8rLy0stW7bUwYMHcz1m8uTJ8vHxsW+VK1d2xikAAAAAAAAAwHXdFEXb9PR09erVS5mZmZozZ06efZs3b64nn3xSjRo1UmhoqD7++GPVrFlT77zzTq7HREZG6uzZs/bt2LFjZp8CAAAAAAAAAOSLS9e0zY/09HQ9+uijSkhI0ObNm/O8yjYnxYoV0913353nlbaenp7y9PS80akCAAAAAAAAwA2z9JW2WQXbgwcPauPGjapQoUKBxzAMQ/Hx8QoICHDCDAEAAAAAAADAXC690vb8+fM6dOiQ/XVCQoLi4+NVvnx5BQYGqkePHoqNjdWXX36pjIwMJScnS5LKly+v4sWLS5J69+6t2267TZMnT5YkTZw4Uc2bN9cdd9yhlJQUvf3224qPj9fs2bOL/gQBAAAAAAAAoIBcWrTdtWuX2rZta38dEREhSerTp48mTJig1atXS5LuvPNOh+O2bNmiNm3aSJISExNVrNj/Lhj+66+/9Mwzzyg5OVk+Pj5q3Lixvv76a91zzz3OPRkAAAAAAAAAMIFLi7Zt2rSRYRi57s9rX5atW7c6vH7zzTf15ptv3ujUAAAAAAAAAMAlLL2mLQAAAAAAAAD801C0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALMSlDyLDP8eUuNNOG3t044pFGjO3eAAAAPhnSZ840mlje4yf4fJ4AADAdbjSFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBCKNoCAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAIBbXnR0tC5evOjqaQAAAAD5UqiibUJCgtnzAAAAAJwmMjJS/v7+6t+/v3bu3Onq6QAAAAB5KlTRtkaNGmrbtq2WLFmiS5cumT0nAAAAwFS//fablixZoj///FNt27ZV7dq1NXXqVCUnJ7t6agAAAEA2hSra7tmzR40bN9bIkSPl7++vZ599Vt9//73ZcwMAAABM4ebmpi5dumjlypU6duyYnnnmGX344YeqUqWKunTpos8//1yZmZmuniYAAAAgqZBF2/r162vmzJk6fvy4Fi5cqOTkZN17772qV6+eZs6cqd9//93seQIAAACm8PX1VcuWLRUSEqJixYrpxx9/VN++fVW9enVt3brV1dMDAAAAbuxBZO7u7nrooYf08ccfa+rUqTp8+LBGjRql22+/Xb1791ZSUpJZ8wQAAABuyMmTJzV9+nTVq1dPbdq0UUpKir788kslJCToxIkTevjhh9WnTx9XTxMAAAC4saLtrl27NHjwYAUEBGjmzJkaNWqUDh8+rM2bN+v48ePq2rWrWfMEAAAACq1z586qXLmyoqOjNXDgQB0/flxLly5V+/btJUklSpTQyJEjdezYMRfPFAAAAJDcC3PQzJkztXDhQh04cECdOnXS4sWL1alTJxUrdqUGHBwcrHfffVe1a9c2dbIAAABAYfj6+mrbtm0KCQnJtU9AQIASEhKKcFYAAABAzgp1pe3cuXP1+OOPKzExUZ999pkefPBBe8E2S5UqVTR//nxTJgkAAADciNatW+uuu+7K1p6WlqbFixdLkmw2m4KCgop6agAAAEA2hSraHjx4UJGRkfL398+1T/HixVkTDAAAAJbw9NNP6+zZs9naz507p6efftoFMwIAAAByV6ii7cKFC/XJJ59ka//kk0+0aNGiG54UAAAAYCbDMGSz2bK1//bbb/Lx8XHBjAAAAIDcFWpN2ylTpmjevHnZ2n19ffXMM89whS0AAAAsoXHjxrLZbLLZbGrXrp3c3f+X/mZkZCghIUH333+/C2cIAAAAZFeoou3Ro0cVHBycrT0oKEiJiYk3PCkAAADADN26dZMkxcfHq2PHjipdurR9X/HixVW1alV1797dRbMDAAAAclaooq2vr6/27t2rqlWrOrTv2bNHFSpUMGNeAAAAwA0bP368JKlq1arq2bOnvLy8XDwjAAAA4PoKVbTt1auXhg4dqjJlyqhVq1aSpG3btmnYsGHq1auXqRMEAAAAbhTLdwEAAOBmUqii7auvvqqjR486rAuWmZmp3r176/XXXzd1ggAAAEBhlC9fXr/88osqVqyocuXK5fggsix//PFHEc4MAAAAyFuhirbFixfX8uXL9corr2jPnj0qUaKEGjRooKCgILPnBwAAABTKm2++qTJlytj/nFfRFgAAALCSQhVts9SsWVM1a9Ys9PFff/213njjDe3evVtJSUlatWqV/WERkmQYhiZOnKj33ntPf/75p5o1a6bZs2erXr16eY67YsUKjRs3TocPH1b16tX12muv6aGHHir0PAEAAHDzuXpJhL59+7puIgAAAEABFapom5GRoejoaG3atEmnTp1SZmamw/7Nmzfna5wLFy6oUaNGevrpp3N8au+0adM0c+ZMRUdHq2bNmnr11VfVoUMHHThwwH7VxLViYmLUs2dPvfLKK3rooYe0atUqPfroo9qxY4eaNWtW8JMFAADATSklJSXffb29vZ04EwAAAKBgClW0HTZsmKKjo/XAAw+ofv36hb7VLDw8XOHh4TnuMwxDUVFRGjNmjB5++GFJ0qJFi+Tn56ePPvpIzz77bI7HRUVFqUOHDoqMjJQkRUZGatu2bYqKitLSpUsLNU8AAADcfMqWLXvdPNUwDNlsNmVkZBTRrAAAAIDrK1TRdtmyZfr444/VqVMns+djl5CQoOTkZIWFhdnbPD091bp1a+3cuTPXom1MTIxGjBjh0NaxY0dFRUXlGis1NVWpqan21wW5KgMAAADWtGXLFldPAQAAACiUQj+IrEaNGmbPxUFycrIkyc/Pz6Hdz89PR48ezfO4nI7JGi8nkydP1sSJE29gtoA0Je60U8Yd3biiU8YFAOBW17p1a6eMO2fOHL3xxhtKSkpSvXr1FBUVpdDQ0Fz7b9u2TREREfrpp58UGBioF198UYMGDbLv/+mnn/Tvf/9bu3fv1tGjR/Xmm29q+PDhDmNMmDAhW756vRwXMEP6xJFOGddj/AynjAsAwK2iWGEOGjlypN566y0ZhmH2fLK59pa2rFvYzDwmMjJSZ8+etW/Hjh0r/IQBAABgCXv37rU/e2Hv3r15bvm1fPlyDR8+XGPGjFFcXJxCQ0MVHh6uxMTEHPsnJCSoU6dOCg0NVVxcnF5++WUNHTpUK1assPe5ePGiqlWrpilTpsjf3z/X2PXq1VNSUpJ9+/HHH/M9bwAAANxcCnWl7Y4dO7Rlyxb997//Vb169eTh4eGwf+XKlTc8sayENTk5WQEBAfb2U6dOZbuS9trjrr3i4HrHeHp6ytPT8wZnDAAAACu58847lZycLF9fX915552y2Ww5XnRQkDVtZ86cqf79+2vAgAGSrjxPYd26dZo7d64mT56crf+8efNUpUoV+1JdderU0a5duzR9+nT7g3jvvvtu3X333ZKk0aNH5xrb3d09z6IuAAAAbh2FKtqWLVtWDz30kNlzcRAcHCx/f39t2LBBjRs3liSlpaVp27Ztmjp1aq7HhYSEaMOGDQ7r2q5fv14tWrRw6nwBAABgLQkJCapUqZL9zzcqLS1Nu3fvzlZYDQsL086dO3M8JiYmxuEZDdKV5y3Mnz9f6enp2S5+yMvBgwcVGBgoT09PNWvWTK+//rqqVauWa3+e2wAAAHDzKlTRduHChaYEP3/+vA4dOmR/nZCQoPj4eJUvX15VqlTR8OHD9frrr+uOO+7QHXfcoddff10lS5bU448/bj+md+/euu222+xXNgwbNkytWrXS1KlT1bVrV33++efauHGjduzYYcqcAQAAcHMICgrK8c+Fdfr0aWVkZBTo+Qm5PW/h8uXLOn36tMMdZXlp1qyZFi9erJo1a+rkyZN69dVX1aJFC/3000+qUKFCjsfw3AYAAICbV6GKtpJ0+fJlbd26VYcPH9bjjz+uMmXK6MSJE/L29lbp0qXzNcauXbvUtm1b++uIiAhJUp8+fRQdHa0XX3xRf//9twYPHqw///xTzZo10/r161WmTBn7MYmJiSpW7H9L87Zo0ULLli3T2LFjNW7cOFWvXl3Lly9Xs2bNCnuqAAAAuAUcOHBA77zzjvbv3y+bzabatWvrX//6l2rVqlWgcQr6/ISc+ufUnpfw8HD7nxs0aKCQkBBVr15dixYtsufQ14qMjHTYl5KSosqVK+c7JgAAAFynUEXbo0eP6v7771diYqJSU1PVoUMHlSlTRtOmTdOlS5c0b968fI3Tpk2bPB9mZrPZNGHCBE2YMCHXPlu3bs3W1qNHD/Xo0SNfcwAAAMCt79NPP9Vjjz2mpk2bKiQkRJL07bffqn79+vroo4/0yCOPXHeMihUrys3NrUDPT8jteQvu7u65XiGbH6VKlVKDBg108ODBXPvw3AYAAICbV7Hrd8lu2LBhatq0qf7880+VKFHC3v7QQw9p06ZNpk0OAAAAMMOLL76oyMhIxcTEaObMmZo5c6Z27typl19+WS+99FK+xihevLiaNGmiDRs2OLRv2LAh1+cnZD1v4Wrr169X06ZNC7Se7bVSU1O1f//+fC+vAAAAgJtLoYq2O3bs0NixY1W8eHGH9qCgIB0/ftyUiQEAAABmSU5OVu/evbO1P/nkk7muR5uTiIgI/ec//9GCBQu0f/9+jRgxQomJiRo0aJCkK0sSXB1n0KBBOnr0qCIiIrR//34tWLBA8+fP16hRo+x90tLSFB8fr/j4eKWlpen48eOKj493ePbDqFGjtG3bNiUkJOi7775Tjx49lJKSoj59+hTmxwEAAACLK9TyCJmZmcrIyMjW/ttvvzmsNwsAAABYQZs2bbR9+3bVqFHDoX3Hjh0KDQ3N9zg9e/bUmTNnNGnSJCUlJal+/fpau3at/UFnSUlJSkxMtPcPDg7W2rVrNWLECM2ePVuBgYF6++231b17d3ufEydOqHHjxvbX06dP1/Tp09W6dWv7UmC//fabHnvsMZ0+fVqVKlVS8+bN9e2335rygDUAAABYT6GKth06dFBUVJTee+89SVfWnj1//rzGjx+vTp06mTpBAAAAoDBWr15t/3OXLl300ksvaffu3WrevLmkK2vafvLJJ5o4cWKBxh08eLAGDx6c477o6Ohsba1bt1ZsbGyu41WtWjXP5zxI0rJlywo0RwAAANzcClW0ffPNN9W2bVvVrVtXly5d0uOPP66DBw+qYsWKWrp0qdlzBAAAAAqsW7du2drmzJmjOXPmOLQNGTLEvrwBAAAAYAWFKtoGBgYqPj5eS5cuVWxsrDIzM9W/f3898cQTDg8mAwAAAFwlMzPT1VMAAAAACqVQRVtJKlGihPr166d+/fqZOR8AAAAAAAAA+EcrVNF28eLFee7P6cm8AAAAgCtduHBB27ZtU2JiotLS0hz2DR061EWzAgAAALIrVNF22LBhDq/T09N18eJFFS9eXCVLlqRoCwAAAEuJi4tTp06ddPHiRV24cEHly5fX6dOnVbJkSfn6+lK0BQAAgKUUK8xBf/75p8N2/vx5HThwQPfeey8PIgMAAIDljBgxQp07d9Yff/yhEiVK6Ntvv9XRo0fVpEkTTZ8+3dXTAwAAABwUqmibkzvuuENTpkzJdhUuAAAA4Grx8fEaOXKk3Nzc5ObmptTUVFWuXFnTpk3Tyy+/7OrpAQAAAA5MK9pKkpubm06cOGHmkAAAAMAN8/DwkM1mkyT5+fkpMTFRkuTj42P/MwAAAGAVhVrTdvXq1Q6vDcNQUlKSZs2apZYtW5oyMQAAAMAsjRs31q5du1SzZk21bdtW//73v3X69Gl98MEHatCggaunBwAAADgoVNG2W7duDq9tNpsqVaqk++67TzNmzDBjXgAAAIBpXn/9dZ07d06S9Morr6hPnz567rnnVKNGDS1cuNDFswMAAAAcFapom5mZafY8AAAAAKdp2rSp/c+VKlXS2rVrXTgbAAAAIG+FKtoCAAAAN6NTp07pwIEDstlsqlWrlipVquTqKQEAAADZFKpoGxERke++M2fOLEwIAAAAwDQpKSkaMmSIli1bpoyMDElXHqLbs2dPzZ49Wz4+Pi6eIQAAAPA/hSraxsXFKTY2VpcvX1atWrUkSb/88ovc3Nx011132ftlPaEXAAAAcKUBAwYoPj5eX375pUJCQmSz2bRz504NGzZMAwcO1Mcff+zqKQIAAAB2hSradu7cWWXKlNGiRYtUrlw5SdKff/6pp59+WqGhoRo5cqSpkwQAAABuxJo1a7Ru3Trde++99raOHTvq/fff1/333+/CmQEAAADZFSvMQTNmzNDkyZPtBVtJKleunF599VXNmDHDtMkBAAAAZqhQoUKOSyD4+Pg45LQAAACAFRSqaJuSkqKTJ09maz916pTOnTt3w5MCAAAAzDR27FhFREQoKSnJ3pacnKwXXnhB48aNc+HMAAAAgOwKtTzCQw89pKefflozZsxQ8+bNJUnffvutXnjhBT388MOmThAAAAAojMaNGzs8Y+HgwYMKCgpSlSpVJEmJiYny9PTU77//rmeffdZV0wQAAACyKVTRdt68eRo1apSefPJJpaenXxnI3V39+/fXG2+8YeoEAQAAgMLo1q2bq6cAAAAAFEqhirYlS5bUnDlz9MYbb+jw4cMyDEM1atRQqVKlzJ4fAAAAUCjjx4939RQAAACAQilU0TZLUlKSkpKS1KpVK5UoUUKGYTjcggYAAABYye7du7V//37ZbDbVrVtXjRs3dvWUAAAAgGwKVbQ9c+aMHn30UW3ZskU2m00HDx5UtWrVNGDAAJUtW1YzZswwe54AAABAoZ06dUq9evXS1q1bVbZsWRmGobNnz6pt27ZatmyZKlWq5OopAgAAAHbFCnPQiBEj5OHhocTERJUsWdLe3rNnT3311VemTQ4AAAAww7/+9S+lpKTop59+0h9//KE///xT+/btU0pKioYOHerq6QEAAAAOCnWl7fr167Vu3TrdfvvtDu133HGHjh49asrEAAAAALN89dVX2rhxo+rUqWNvq1u3rmbPnq2wsDAXzgwAAADIrlBX2l64cMHhCtssp0+flqen5w1PCgAAADBTZmamPDw8srV7eHgoMzPTBTMCAAAAcleoom2rVq20ePFi+2ubzabMzEy98cYbatu2rWmTAwAAAMxw3333adiwYTpx4oS97fjx4xoxYoTatWvnwpkBAAAA2RVqeYQ33nhDbdq00a5du5SWlqYXX3zRvj7YN998Y/YcAQAAgBsya9Ysde3aVVWrVlXlypVls9mUmJioBg0aaMmSJa6eHgAAAOCgUEXbunXrau/evZo7d67c3Nx04cIFPfzwwxoyZIgCAgLMniMAAABwQypXrqzY2Fht2LBBP//8swzDUN26ddW+fXtXTw0AAADIpsBF2/T0dIWFhendd9/VxIkTnTEnAAAAwDSXL1+Wl5eX4uPj1aFDB3Xo0MHVUwIAAADyVOA1bT08PLRv3z7ZbDZnzAcAAAAwlbu7u4KCgpSRkeHqqQAAAAD5UqgHkfXu3Vvz5883ey4AAACAU4wdO1aRkZH6448/XD0VAAAA4LoKtaZtWlqa/vOf/2jDhg1q2rSpSpUq5bB/5syZpkwOAAAAMMPbb7+tQ4cOKTAwUEFBQdny19jYWBfNDAAAAMiuQEXbX3/9VVWrVtW+fft01113SZJ++eUXhz4smwAAAACr6datm2w2mwzDcPVUAAAAgOsqUNH2jjvuUFJSkrZs2SJJ6tmzp95++235+fk5ZXIAAADAjbh48aJeeOEFffbZZ0pPT1e7du30zjvvqGLFiq6eGgAAAJCrAhVtr70y4b///a8uXLhg6oQA5M+UuNNOGXd045w/xN4q8fKKCQC49YwfP17R0dF64oknVKJECX300Ud67rnn9Mknn7h6agBykD5xpFPG9Rg/45aOl1dMAMDNqVBr2mbh9jIAAABY2cqVKzV//nz16tVLkvTEE0+oZcuWysjIkJubm4tnBwAAAOSsWEE622y2bGvWsoYtAAAArOrYsWMKDQ21v77nnnvk7u6uEydOuHBWAAAAQN4KvDxC37595enpKUm6dOmSBg0alO3puytXrjRvhgAAAEAhZWRkqHjx4g5t7u7uunz5sotmBAAAAFxfgYq2ffr0cXj95JNPmjoZAAAAwEzXXnQg5XzhARcdAAAAwEoKVLRduHChs+YBAAAAmO7aiw4kLjwAAACA9d3Qg8gAAAAAK+OiAwAAANyMCvQgMleoWrWq/QFoV29DhgzJsf/WrVtz7P/zzz8X8cwBAAAAAAAAoOAsf6XtDz/8oIyMDPvrffv2qUOHDnrkkUfyPO7AgQPy9va2v65UqZLT5ggAAAAAAAAAZrF80fbaYuuUKVNUvXp1tW7dOs/jfH19VbZsWSfODAAAAAAAAADMZ/nlEa6WlpamJUuWqF+/frLZbHn2bdy4sQICAtSuXTtt2bKliGYIAAAAAAAAADfG8lfaXu2zzz7TX3/9pb59++baJyAgQO+9956aNGmi1NRUffDBB2rXrp22bt2qVq1a5XhMamqqUlNT7a9TUlLMnjoAAAAAAAAA5MtNVbSdP3++wsPDFRgYmGufWrVqqVatWvbXISEhOnbsmKZPn55r0Xby5MmaOHGi6fMFAAAAAAAAgIK6aZZHOHr0qDZu3KgBAwYU+NjmzZvr4MGDue6PjIzU2bNn7duxY8duZKoAAAAAAAAAUGg3zZW2CxculK+vrx544IECHxsXF6eAgIBc93t6esrT0/NGpgcAAAAAAAAAprgpiraZmZlauHCh+vTpI3d3xylHRkbq+PHjWrx4sSQpKipKVatWVb169ewPLluxYoVWrFjhiqkDAAAAAAAAQIHcFEXbjRs3KjExUf369cu2LykpSYmJifbXaWlpGjVqlI4fP64SJUqoXr16WrNmjTp16lSUUwYAAAAAAACAQrkpirZhYWEyDCPHfdHR0Q6vX3zxRb344otFMCsAAAAAAAAAMN9N8yAyAAAAAAAAAPgnoGgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQd1dPAACsYErcaaeNPbpxRZfHAwAAwD9P+sSRThvbY/wMl8cDgFsZV9oCAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAABQAHPmzFFwcLC8vLzUpEkTbd++Pc/+27ZtU5MmTeTl5aVq1app3rx5Dvt/+uknde/eXVWrVpXNZlNUVJQpcQEAAHDzomgLAAAA5NPy5cs1fPhwjRkzRnFxcQoNDVV4eLgSExNz7J+QkKBOnTopNDRUcXFxevnllzV06FCtWLHC3ufixYuqVq2apkyZIn9/f1PiAgAA4OZG0RYAAADIp5kzZ6p///4aMGCA6tSpo6ioKFWuXFlz587Nsf+8efNUpUoVRUVFqU6dOhowYID69eun6dOn2/vcfffdeuONN9SrVy95enqaEhcAAAA3N4q2AAAAQD6kpaVp9+7dCgsLc2gPCwvTzp07czwmJiYmW/+OHTtq165dSk9Pd1pcAAAA3NzcXT0BAAAA4GZw+vRpZWRkyM/Pz6Hdz89PycnJOR6TnJycY//Lly/r9OnTCggIcEpcSUpNTVVqaqr9dUpKynVjAQAAwBq40hYAAAAoAJvN5vDaMIxsbdfrn1O72XEnT54sHx8f+1a5cuUCxQMAAIDrULQFAAAA8qFixYpyc3PLdnXrqVOnsl0Fm8Xf3z/H/u7u7qpQoYLT4kpSZGSkzp49a9+OHTuWr3gAAABwPYq2AAAAQD4UL15cTZo00YYNGxzaN2zYoBYtWuR4TEhISLb+69evV9OmTeXh4eG0uJLk6ekpb29vhw0AAAA3B9a0BQAAAPIpIiJCTz31lJo2baqQkBC99957SkxM1KBBgyRdubr1+PHjWrx4sSRp0KBBmjVrliIiIjRw4EDFxMRo/vz5Wrp0qX3MtLQ0/d///Z/9z8ePH1d8fLxKly6tGjVq5CsuAAAAbi0UbQEAAIB86tmzp86cOaNJkyYpKSlJ9evX19q1axUUFCRJSkpKUmJior1/cHCw1q5dqxEjRmj27NkKDAzU22+/re7du9v7nDhxQo0bN7a/nj59uqZPn67WrVtr69at+YoLAACAWwtFWwAAAKAABg8erMGDB+e4Lzo6Oltb69atFRsbm+t4VatWtT+crLBxAQAAcGthTVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBCKNoCAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAW4u7qCQAAnG9K3GmnjT26ccUijZlbPAAAAPyzpE8c6bSxPcbPKNKYucUD8M/FlbYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBCKNoCAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhli7aTpgwQTabzWHz9/fP85ht27apSZMm8vLyUrVq1TRv3rwimi0AAAAAAAAA3Dh3V0/geurVq6eNGzfaX7u5ueXaNyEhQZ06ddLAgQO1ZMkSffPNNxo8eLAqVaqk7t27F8V0AQAAAAAAAOCGWL5o6+7uft2ra7PMmzdPVapUUVRUlCSpTp062rVrl6ZPn07RFgAAAAAAAMBNwdLLI0jSwYMHFRgYqODgYPXq1Uu//vprrn1jYmIUFhbm0NaxY0ft2rVL6enpzp4qAAAAAAAAANwwSxdtmzVrpsWLF2vdunV6//33lZycrBYtWujMmTM59k9OTpafn59Dm5+fny5fvqzTp0/nGic1NVUpKSkOGwAAAAAAAAC4gqWXRwgPD7f/uUGDBgoJCVH16tW1aNEiRURE5HiMzWZzeG0YRo7tV5s8ebImTpxowowBAK4yJS73L+duxOjGFW/peHnFBAAAgGulTxzplHE9xs/4R8YDbiaWvtL2WqVKlVKDBg108ODBHPf7+/srOTnZoe3UqVNyd3dXhQoVch03MjJSZ8+etW/Hjh0zdd4AAAAAAAAAkF+WvtL2Wqmpqdq/f79CQ0Nz3B8SEqIvvvjCoW39+vVq2rSpPDw8ch3X09NTnp6eps4VAAAAAAAAAArD0lfajho1Stu2bVNCQoK+++479ejRQykpKerTp4+kK1fI9u7d295/0KBBOnr0qCIiIrR//34tWLBA8+fP16hRo1x1CgAAAAAAAABQIJa+0va3337TY489ptOnT6tSpUpq3ry5vv32WwUFBUmSkpKSlJiYaO8fHBystWvXasSIEZo9e7YCAwP19ttvq3v37q46BQAAAAAAAAAoEEsXbZctW5bn/ujo6GxtrVu3VmxsrJNmBAAAAAAAAADOZenlEQAAAAAAAADgn4aiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBCKNoCAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAW4u7qCQAAAOuZEnfaaWOPblzxHxfPmTGtEg8AAMDq0ieOdNrYHuNn/OPiOTOmVeK5ElfaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBCKNoCAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAKIA5c+YoODhYXl5eatKkibZv355n/23btqlJkyby8vJStWrVNG/evGx9VqxYobp168rT01N169bVqlWrHPZPmDBBNpvNYfP39zf1vAAAAGAdFG0BAACAfFq+fLmGDx+uMWPGKC4uTqGhoQoPD1diYmKO/RMSEtSpUyeFhoYqLi5OL7/8soYOHaoVK1bY+8TExKhnz5566qmntGfPHj311FN69NFH9d133zmMVa9ePSUlJdm3H3/80annCgAAANehaAsAAADk08yZM9W/f38NGDBAderUUVRUlCpXrqy5c+fm2H/evHmqUqWKoqKiVKdOHQ0YMED9+vXT9OnT7X2ioqLUoUMHRUZGqnbt2oqMjFS7du0UFRXlMJa7u7v8/f3tW6VKlZx5qgAAAHAhirYAAABAPqSlpWn37t0KCwtzaA8LC9POnTtzPCYmJiZb/44dO2rXrl1KT0/Ps8+1Yx48eFCBgYEKDg5Wr1699Ouvv97oKQEAAMCiKNoCAAAA+XD69GllZGTIz8/Pod3Pz0/Jyck5HpOcnJxj/8uXL+v06dN59rl6zGbNmmnx4sVat26d3n//fSUnJ6tFixY6c+ZMrvNNTU1VSkqKwwYAAICbA0VbAAAAoABsNpvDa8MwsrVdr/+17dcbMzw8XN27d1eDBg3Uvn17rVmzRpK0aNGiXONOnjxZPj4+9q1y5crXOTMAAABYBUVbAAAAIB8qVqwoNze3bFfVnjp1KtuVsln8/f1z7O/u7q4KFSrk2Se3MSWpVKlSatCggQ4ePJhrn8jISJ09e9a+HTt2LM/zAwAAgHVQtAUAAADyoXjx4mrSpIk2bNjg0L5hwwa1aNEix2NCQkKy9V+/fr2aNm0qDw+PPPvkNqZ0ZemD/fv3KyAgINc+np6e8vb2dtgAAABwc6BoCwAAAORTRESE/vOf/2jBggXav3+/RowYocTERA0aNEjSlatbe/fube8/aNAgHT16VBEREdq/f78WLFig+fPna9SoUfY+w4YN0/r16zV16lT9/PPPmjp1qjZu3Kjhw4fb+4waNUrbtm1TQkKCvvvuO/Xo0UMpKSnq06dPkZ07AAAAio67qycAAAAA3Cx69uypM2fOaNKkSUpKSlL9+vW1du1aBQUFSZKSkpKUmJho7x8cHKy1a9dqxIgRmj17tgIDA/X222+re/fu9j4tWrTQsmXLNHbsWI0bN07Vq1fX8uXL1axZM3uf3377TY899phOnz6tSpUqqXnz5vr222/tcQEAAHBroWgLAAAAFMDgwYM1ePDgHPdFR0dna2vdurViY2PzHLNHjx7q0aNHrvuXLVtWoDkCAADg5sbyCAAAAAAAAABgIRRtAQAAAAAAAMBCKNoCAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAAAAAAAAWIili7aTJ0/W3XffrTJlysjX11fdunXTgQMH8jxm69atstls2baff/65iGYNAAAAAAAAAIVn6aLttm3bNGTIEH377bfasGGDLl++rLCwMF24cOG6xx44cEBJSUn27Y477iiCGQMAAAAAAADAjXF39QTy8tVXXzm8XrhwoXx9fbV79261atUqz2N9fX1VtmxZJ84OAAAAAAAAAMxn6Sttr3X27FlJUvny5a/bt3HjxgoICFC7du20ZcuWPPumpqYqJSXFYQMAAAAAAAAAV7hpiraGYSgiIkL33nuv6tevn2u/gIAAvffee1qxYoVWrlypWrVqqV27dvr6669zPWby5Mny8fGxb5UrV3bGKQAAAAAAAADAdVl6eYSrPf/889q7d6927NiRZ79atWqpVq1a9tchISE6duyYpk+fnuuSCpGRkYqIiLC/TklJoXALAAAAAAAAwCVuiitt//Wvf2n16tXasmWLbr/99gIf37x5cx08eDDX/Z6envL29nbYAAAAAAAAAMAVLH2lrWEY+te//qVVq1Zp69atCg4OLtQ4cXFxCggIMHl2AAAAAAAAAGA+SxdthwwZoo8++kiff/65ypQpo+TkZEmSj4+PSpQoIenK0gbHjx/X4sWLJUlRUVGqWrWq6tWrp7S0NC1ZskQrVqzQihUrXHYeAAAAAAAAAJBfli7azp07V5LUpk0bh/aFCxeqb9++kqSkpCQlJiba96WlpWnUqFE6fvy4SpQooXr16mnNmjXq1KlTUU0bAAAAAAAAAArN0kVbwzCu2yc6Otrh9YsvvqgXX3zRSTMCAAAAAAAAAOe6KR5EBgAAAAAAAAD/FBRtAQAAAAAAAMBCKNoCAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBCKNoCAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFnJTFG3nzJmj4OBgeXl5qUmTJtq+fXue/bdt26YmTZrIy8tL1apV07x584popgAAALjVOSM3XbFiherWrStPT0/VrVtXq1atuuG4AAAAuHlZvmi7fPlyDR8+XGPGjFFcXJxCQ0MVHh6uxMTEHPsnJCSoU6dOCg0NVVxcnF5++WUNHTpUK1asKOKZAwAA4FbjjNw0JiZGPXv21FNPPaU9e/boqaee0qOPPqrvvvuu0HEBAABwc7N80XbmzJnq37+/BgwYoDp16igqKkqVK1fW3Llzc+w/b948ValSRVFRUapTp44GDBigfv36afr06UU8cwAAANxqnJGbRkVFqUOHDoqMjFTt2rUVGRmpdu3aKSoqqtBxAQAAcHNzd/UE8pKWlqbdu3dr9OjRDu1hYWHauXNnjsfExMQoLCzMoa1jx46aP3++0tPT5eHhke2Y1NRUpaam2l+fPXtWkpSSknKjp5Bvl86fc9rYKSnF/3HxnBmTeDd3vNxiEs/ceM6MSbyiiUk8c+M5M6ZV4jkn1pVczDCMIouZF2flpjExMRoxYkS2PllF28LElayR46ZfSr1+p0LyyOE8iGduPGfGJF7RxCSeufGcGZN4N3e83GLe6vGcGdMq8Zwh3zmuYWHHjx83JBnffPONQ/trr71m1KxZM8dj7rjjDuO1115zaPvmm28MScaJEydyPGb8+PGGJDY2NjY2NjY2Ngtux44dMye5vEHOyk09PDyMDz/80KHPhx9+aBQvXrzQcQ2DHJeNjY2NjY2Nzcrb9XJcS19pm8Vmszm8NgwjW9v1+ufUniUyMlIRERH215mZmfrjjz9UoUKFPOO4QkpKiipXrqxjx47J29v7loxJPOIRz7UxiUc8K8dzRUziuY5hGDp37pwCAwNdPRUHzshN8zNmQeOS41onnitiEo94Vo7nipjEIx7xXBvzVo9XEPnNcS1dtK1YsaLc3NyUnJzs0H7q1Cn5+fnleIy/v3+O/d3d3VWhQoUcj/H09JSnp6dDW9myZQs/8SLg7e1d5H/pijom8YhHPNfGJB7xrBzPFTGJ5xo+Pj6unoKds3LT3PpkjVmYuBI5rhXjuSIm8Yhn5XiuiEk84hHPtTFv9Xj5lZ8c19IPIitevLiaNGmiDRs2OLRv2LBBLVq0yPGYkJCQbP3Xr1+vpk2b5rieLQAAAJAfzspNc+uTNWZh4gIAAODmZukrbSUpIiJCTz31lJo2baqQkBC99957SkxM1KBBgyRdue3r+PHjWrx4sSRp0KBBmjVrliIiIjRw4EDFxMRo/vz5Wrp0qStPAwAAALcAZ+Smw4YNU6tWrTR16lR17dpVn3/+uTZu3KgdO3bkOy4AAABuLZYv2vbs2VNnzpzRpEmTlJSUpPr162vt2rUKCgqSJCUlJSkxMdHePzg4WGvXrtWIESM0e/ZsBQYG6u2331b37t1ddQqm8vT01Pjx47Pd6nYrxSQe8Yjn2pjEI56V47kiJvFwNWfkpi1atNCyZcs0duxYjRs3TtWrV9fy5cvVrFmzfMe92f0T/t7f6udIPOJZPSbxiEc818a81eM5g83IehICAAAAAAAAAMDlLL2mLQAAAAAAAAD801C0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAJktMTFROz/k0DMPhqfI3q1v9/AAAAJDdrZ4D3urnh5uPzcjpbyRcbu/evfnq17BhQyfPBGY4duyYKleunOO+b7/9Vs2bNzc1XmJioipXriybzebQbhiGjh07pipVqpgaT5L++usvffrppzp8+LBeeOEFlS9fXrGxsfLz89Ntt91mejw4z6VLl+Tl5eW08SdMmKCnn35aQUFBTovham5ubkpKSpKvr69D+5kzZ+Tr66uMjAynxD106JAOHz6sVq1aqUSJEjIMI9v7gBlcdX6ucv78eWVmZjq0eXt7u2g25khLS1Px4sVz3Hf69GlVrFixiGeEfwpy3FtHUee3Ejkubgw57o0jx711ctxbMb+Vbr0cl6KtRRUrVkw2my3Hb3my2Gw2p71p9O3bV/369VOrVq2cMv4/Te3atfXNN9+oQoUKDu3ffPONHnjgAf3111+mxivq/2z27t2r9u3by8fHR0eOHNGBAwdUrVo1jRs3TkePHtXixYtNjecKt3oSlpmZqddee03z5s3TyZMn9csvv9h/h1WrVlX//v1Ni9WkSRPt2bNHrVu3Vv/+/fXwww87NYGWpIyMDEVHR2vTpk06depUtgRl8+bNpsYrVqyYTp48qUqVKjm0Hz16VHXr1tWFCxdMjXfmzBn17NlTmzdvls1m08GDB1WtWjX1799fZcuW1YwZM0yNV9Tn5woJCQl6/vnntXXrVl26dMnenvUh4UbfRxs3bpzvDxuxsbE3FCsn3bp108qVK1WsmONNVydPnlS7du20b98+02MCEjnuraSo81uJHNcZyHHJcQuCHPfmznGdnd9K5Lhmc3f1BJCzhISE6/b5888/nRb/3LlzCgsLU+XKlfX000+rT58+LvkmOSkpSenp6aZ8a16uXLl8v3n88ccfNxzvaqGhoQoLC9PWrVtVpkwZSdLXX3+tzp07a8KECabGkpTrN4/nz593SuIQERGhvn37atq0afbzk6Tw8HA9/vjjpseTpMDAQLVp00Zt2rRR69atVatWLafEyfLFF1/o1VdfLbIk7OTJkxo1apQ9Abv2w63ZH0peffVVLVq0SNOmTdPAgQPt7Q0aNNCbb75pakK7e/du7d27VwsXLtSIESM0ZMgQ9erVS/369dPdd99tWpyrDRs2TNHR0XrggQdUv359p3wzL135tyBdKTiMGzdOJUuWtO/LyMjQd999pzvvvNP0uCNGjJC7u7sSExNVp04de3vPnj01YsQI0xJaV51flt9++02rV69WYmKi0tLSHPbNnDnT1FhPPPGEJGnBggXy8/Mz/e9Mt27d7H++dOmS5syZo7p16yokJETSlavUfvrpJw0ePNjUuFmSkpLUv39/LVy40N6WnJystm3bql69ek6JCUjkuFluhRy3qPNbiRzXGchxyXHzgxz31shxnZ3fSuS4ZuNK25vM2bNn9eGHH2r+/PmKj4936uX5Z86c0ZIlSxQdHa19+/apffv26t+/v7p27SoPDw+nxb1anTp19Msvv5hynosWLcp33z59+txwvKsZhqFHHnlEp06d0vr16xUTE6MuXbro1Vdf1bBhw0yLk/WfzVtvvaWBAwfm+J+Nm5ubvvnmG9NiSpKPj49iY2NVvXp1lSlTRnv27FG1atV09OhR1apVy+FbPLMsXbpU27Zt09atW/XLL7/Iz89PrVu3tie4V/+nbpasJOyjjz5SWlqaU5Ow8PBwJSYm6vnnn1dAQEC2/1C7du1qarwaNWro3XffVbt27Rx+hz///LNCQkKc9gH68uXL+uKLL7Rw4UJ99dVXqlWrlgYMGKC+ffvKx8fHtDgVK1bU4sWL1alTJ9PGzEnbtm0lSdu2bVNISIjDrTnFixdX1apVNWrUKN1xxx2mxvX399e6devUqFEjh99fQkKCGjRooPPnz5sSx1XnJ0mbNm1Sly5dFBwcrAMHDqh+/fo6cuSIDMPQXXfdZfqVJKVLl9bu3bud/mFZkgYMGKCAgAC98sorDu3jx4/XsWPHtGDBAtNjnjlzRq1atVJYWJjefPNNHT9+XPfdd58aNWqkZcuWZbs6AXA2ctzCc1WOW1T5rUSOS45beOS45iDHvTVy3KLMbyVyXFMYuCls2rTJeOKJJ4wSJUoYtWvXNsaMGWPExsYWWfzY2Fjj+eefN7y8vIyKFSsaw4cPN3755RdTxk5PTzcmTJhgJCYmZtv3/fffG1u3bjUljqulpaUZHTp0MFq0aGGULl3aeOedd0yP0aZNG6NNmzaGzWYzWrRoYX/dpk0bIywszHjmmWdM+71dzdfX1/73sXTp0sbhw4cNwzCMdevWGbfffrvp8a6VnJxsLF261HjiiScMd3d3o1ixYk6Nl56ebqxcudLo3Lmz4eHhYdSvX9+Iiooy/vrrL9NilC5d2oiLizNtvOvx8vIyjhw5Yo+d9Tv86aefjFKlSjktbmpqqrFs2TIjLCzMcHd3N1q1amXUqlXLKFOmjLFs2TLT4gQEBBgHDhwwbbzr6du3r3H27Nkii1e6dGn7v+2rf3/ff/+9Ub58edPjFfX5GYZh3H333ca4ceMMw/jfOZ47d87o0qWLMWfOHNPjtWnTxtiwYYPp4+bE29s7x/fmX375xfD29nZa3GPHjhlBQUHG8OHDjTvuuMPo2bOncfnyZafFA3JCjntzK4r81jDIcclxC48c11zkuOYryhy3KPNbwyDHNQNFWws7duyY8corrxjBwcGGr6+v8fzzzxvu7u7GTz/9VKTzOHHihDFlyhSjZs2aRqlSpYzevXsbHTp0MNzd3Y2ZM2eaEqNUqVJGQkKCKWPl16FDh4wxY8YYvXr1Mk6ePGkYhmH897//Nfbt22fK+Hv27Mm27dixw6hcubIxaNAgh3azFfV/NgMHDjS6detmpKWlGaVLlzZ+/fVX4+jRo0bjxo2NYcOGOS3uuXPnjP/+97/G6NGjjebNmxuenp5G48aNjeHDhzstpmEUTRJWp06dIv3Q2qRJE+ODDz4wDMMxIZowYYJx7733mh5v165dxpAhQ4zy5csbAQEBxksvvWQcPHjQvn/69OmGr6+vafGmT59uDB482MjMzDRtTCvp1KmTMXbsWMMwDPu/wYyMDOORRx4xunfv7uLZmaN06dLGoUOHDMMwjLJly9rfq+Pj442goCDT4x06dMho3769ER0dbezatSvb+7mZ/Pz8jAULFmRrX7Bggan/DnLyyy+/GL6+vsYTTzxxy/77gPWQ4zqXM3NcV+a3hkGOS45bcOS4Nzdy3CBTYxVlfmsY5LhmoGhrUeHh4UaZMmWMxx57zPjyyy/t3woUVUKblpZmfPrpp8YDDzxgeHh4GE2aNDHmzp1rpKSk2PssXbrUKFu2rCnxunbtaixcuNCUsfJj69atRokSJYz27dsbxYsXt//nPXXqVNPe/G02m1GsWDHDZrPZt6tfZ/3ZGd+Y//XXX8aZM2eytZ85c8Ypie7Zs2eNli1bGmXLljXc3NyMypUrGx4eHkarVq2M8+fPmx7PMAzjnnvuMby8vIymTZsao0aNMlavXm38+eefTomVpSiTsHXr1hlhYWFF9kFv9erVho+PjzFlyhSjZMmSxhtvvGEMGDDAKF68uLF+/XpTYzVo0MBwd3c3OnXqZKxatSrHbz1PnTpl2Gw202J269bN8PHxMYKDg40HH3zQeOihhxw2s50/f94YO3asERISYlSvXt0IDg522Mz2008/GZUqVTLuv/9+o3jx4kaPHj2MOnXqGH5+fvYk0ExFfX6GcSXpy/r/r27dusbnn39uGMaVhNYZV8rExMQYwcHBOb6Hm/2+PXnyZMPT09MYMmSI8cEHHxgffPCBMWTIEKNEiRLG5MmTTYtTtmxZo1y5ctk2T09Pw9vb26ENcBZyXOdydo7ryvzWMMhxnYUc1xzkuOS4hVGUOW5R5reGQY5rBh5EZlHr16/X0KFD9dxzzzll3ZTrCQgIUGZmph577DF9//33OS663bFjR5UtW9aUeOHh4YqMjNS+ffvUpEkTlSpVymF/ly5dTImTZfTo0Xr11VcVERHh8FCBtm3b6q233jIlRn4etOEsvXr1UufOnbMt7v3xxx9r9erVWrt2ranxvL29tWPHDm3evFmxsbHKzMzUXXfdpfbt25sa52oHDx5UyZIlVa1aNVWrVk01atQw7e9jTho2bKj9+/crLCxM8+fPV+fOneXm5ubQp3fv3nrhhRcKHePaB4lcuHBB1atXV8mSJbOtsWf2w/I6d+6s5cuX6/XXX5fNZtO///1v3XXXXfriiy/UoUMHU2M98sgj6tevX54PfqlUqVK2p9/eiLJly+qhhx4ybbzrGTBggLZt26annnoqx/XazFa3bl3t3btXc+fOlZubmy5cuKCHH35YQ4YMUUBAgOnxivr8JKl58+b65ptvVLduXT3wwAMaOXKkfvzxR61cuVLNmzc3PV6/fv3UuHFjLV261GkPasgyevRoVatWTW+99ZY++ugjSVfWu4yOjtajjz5qWpyoqCjTxgIKixz35s5xXZnfSuS4zkCOax5yXPOR45qb4xZlfiuR45qBB5FZVExMjBYsWKCPP/5YtWvX1lNPPaWePXsqMDBQe/bsUd26dZ0a/4MPPtAjjzzi1CeHXi2vxaBtNpvpD6MoXbq0fvzxRwUHBzssaH7kyBHVrl3b1IcKpKen65lnntG4ceNUrVo108bNS/ny5fXNN99ke1DBzz//rJYtW+rMmTNFMg9n27t3r7Zu3apt27Zp+/btKlasmFq3bq22bdtq0KBBpsZ65ZVXrpuE3ShXPiwP5ipbtqzWrFmjli1bOj1Wenq6wsLC9O6776pmzZpOjycV7fll+fXXX3X+/Hk1bNhQFy9e1KhRo7Rjxw7VqFFDb775poKCgkyNV6pUKe3Zs0c1atQwdVwruHz5sj788EN17NhR/v7+rp4O/mHIcf/nZs5xXZHfSuS45LhwNXJc8xVljnsr57fSrZnjcqWtRYWEhCgkJERvvfWWli1bpgULFigiIkKZmZnasGGDKleu7PDtudmeeuopp42dEzO/bcyPsmXLKikpScHBwQ7tcXFxpicsHh4eWrVqlcaNG2fquHlJTU3V5cuXs7Wnp6fr77//Nj3e0KFDVaNGDQ0dOtShfdasWTp06JDTvvlq2LChGjZsqKFDh2r37t2aNWuWlixZok8//dT0hNYwDJUrVy5b+99//6033nhD//73v284hquT1L/++kuffvqpfv31V40aNUrly5dXbGys/Pz8TP13kfUE6GvZbDZ5eXmpRo0a6tq1q8qXL29azCy///67Dhw4IJvNppo1a6pSpUqmx5CuXFHijPnnxMPDQ/v27SuSKwGyFOX5Zbm6KFCyZEnNmTPHqfHuu+++WzapdXd313PPPaf9+/e7eir4ByLHda6iynFdkd9K5LjkuIVDjmseclzzFWWOeyvnt9KtmeNype1N5MCBA5o/f74++OAD/fXXX+rQoYNWr15t2vgPP/xwvvuuXLnStLiZmZmKjo7WypUrdeTIEdlsNlWrVk3du3fXU0895ZQ36RdffFExMTH65JNPVLNmTcXGxurkyZPq3bu3evfurfHjx5sa7+mnn1aDBg1y/Y/cbG3atFGDBg30zjvvOLQPGTJEe/fu1fbt202Nd9ttt2n16tVq0qSJQ3tsbKy6dOmi3377zdR40pUPH1u3btXWrVu1fft2nTt3To0aNVKbNm3Utm1bPfDAA6bGc3NzU1JSknx9fR3az5w5I19fX9OvlFm7dq3c3NzUsWNHh/b169crIyND4eHhpsbbu3ev2rdvLx8fHx05ckQHDhxQtWrVNG7cOB09elSLFy82LVbbtm0VGxurjIwM1apVS4Zh6ODBg3Jzc1Pt2rXtCeeOHTtMu+LqwoUL+te//qXFixfbP0C7ubmpd+/eeuedd1SyZElT4mRZsmSJPv/8cy1atMj0sXMycuRIeXh4aMqUKU6PJRX9+WXJ+tB1+PBhvfDCC0770CVJ7733nl599VX169dPDRo0yHb75o3e0nztraJ5MftWUenKv8Nhw4apW7dupo8NFBQ5rnmKMsct6vxWIsclxy04clxy3IK41XNcZ+e3Ejmu2Sja3oQyMjL0xRdfaMGCBaYmtE8//XS++y5cuNCUmIZhqHPnzlq7dq0aNWqk2rVryzAM7d+/Xz/++KO6dOmizz77zJRYV0tPT1ffvn21bNkyGYYhd3d3ZWRk6PHHH1d0dHS2dZxu1Guvvabp06erXbt2Oa5ndu239zfqm2++Ufv27XX33XerXbt2kqRNmzbphx9+0Pr16xUaGmpqPC8vL+3bty/bN3aHDh1S/fr1TV1uIou7u7saN26s1q1bq02bNmrVqpW8vb1Nj5OlWLFiOnnyZLZvrTdv3qyePXvq999/NzVew4YNNWXKFHXq1Mmh/auvvtJLL72kPXv2mBqvffv2uuuuuzRt2jSH2yl37typxx9/XEeOHDEtVlRUlLZv366FCxfaf2cpKSnq37+/7r33Xg0cOFCPP/64/v77b61bt86UmM8++6w2btyoWbNm2W932rFjh4YOHaoOHTpo7ty5psTJ0rhxYx0+fFiGYahq1arZEqLY2FhT42Ul6zVq1FDTpk2zvcfMnDnT1HhFfX5S0X7okpx/S7OrbxX95JNPNHr0aI0YMSLH/5caNmxoekzgeshxb1xR5rhFnd9K5LjOQI57xLRY5LjkuIVRlDluUSzZQ45rLoq2cKmFCxdq2LBh+vzzz9W2bVuHfZs3b1a3bt00a9Ys9e7d2ynxDx8+rLi4OGVmZqpx48ZOeyDGtbeoXc1ms+nXX381PWZ8fLymTZumPXv2qESJEmrYsKEiIyOdco7169fXoEGD9Pzzzzu0v/POO5o7d67+7//+z/SYKSkpTk1gs2R9U3j27Fl5e3s7fGuYkZGh8+fPa9CgQZo9e7apcUuUKKH9+/eratWqDu1HjhxRvXr1dOHCBVPj+fj4KDY2VtWrV3dIaI8ePapatWqZ+qHktttu04YNG7JdYfDTTz8pLCxMx48fV2xsrMLCwnT69GlTYlasWFGffvqp2rRp49C+ZcsWPfroo6Z/IJk4cWKe+82+mv/a98+r2Ww2bd682dR4RX1+UtF+6PonyClpt9lsMgzDKetsAv80/4Qc1xX5rUSOaxZyXHLcwiDHJce1ulstx2VNW7jU0qVL9fLLL+f4Znzfffdp9OjR+vDDD52W0FavXl3Vq1d3ythXc8WTdu+88077ExqdLSIiQs8//7x+//133XfffZKuXPUwY8YMp6315e3tXSS3kURFRckwDPXr108TJ06Uj4+PfV/x4sVVtWpVhYSEmBLraj4+Pvr111+zJbSHDh3K9m2hGby8vJSSkpKt/cCBA6aviXX27FmdOnUqW0L7+++/2+dQtmxZpaWlmRbz4sWL8vPzy9bu6+urixcvmhYnizMSurxs2bKlSOMV9flJ0g8//KB33303W/ttt92m5OTkIp+P2Q4fPqyFCxfq8OHDeuutt+Tr66uvvvpKlStXVr169UyP5+onwAO3un9Cjuuq9xFyXHLcgiDHNRc5rvnIcc11q+W4FG1hd9ddd2nTpk0qV66cGjdunOc6JGbdFrB3715NmzYt1/3h4eF6++23TYl1rd9++02rV69WYmJitv84zb7N4mpZF7c7e0H1rDfHX3/9VVFRUU59c+zXr59SU1P12muv6ZVXXpEkVa1aVXPnznXah5G9e/eqXbt2Klu2rI4cOaKBAweqfPnyWrVqlam3kWTdshEcHKwWLVpku0XGWbp06aLhw4dr1apV9g9dhw4d0siRI01Za+haXbt21aRJk/Txxx9LuvL3MzExUaNHj1b37t1Nj9WvXz/NmDFDd999t2w2m77//nuNGjXKvvbQ999/b+pTYkNCQjR+/HgtXrzY/sTwv//+WxMnTnTKBxKpaNdfdYWiPr+i/NCVZdOmTdq0aZNOnTqV7WFCCxYsMC3Otm3bFB4erpYtW+rrr7/Wa6+9Jl9fX+3du1f/+c9/9Omnn5oWK4uZTyIGrI4c93+cleMWVX4rkeOS4xYMOa75yHHNVdQ5blHltxI5rhlYHgF2EydO1AsvvKCSJUsW2W0BxYsX19GjRxUQEJDj/hMnTig4OFipqammxMuyadMmdenSRcHBwTpw4IDq16+vI0eOyDAM3XXXXabfZiFJixcv1htvvKGDBw9KkmrWrKkXXnjBKU8xvvbNcf/+/apWrZqmTZum77//3ilvjll+//13lShRQqVLl3ZaDKlobiO5+va0nP4jvZrZt7GdPXtW999/v3bt2qXbb79d0pUPYaGhoVq5cqXKli1raryUlBR16tRJP/30k86dO6fAwEAlJycrJCREa9euNfXKh/Pnz2vEiBFavHix/QnQ7u7u6tOnj958802VKlVK8fHxkq5cTWOGffv26f7779elS5fUqFEj2Ww2xcfHy8vLS+vWrTP9Q15Rr7/atm3bPD8om/2eVtTnJ0nPPPOMfv/9d3388ccqX7689u7dKzc3N3Xr1k2tWrUy/YqniRMnatKkSWratKkCAgKy/XxXrVplWqyQkBA98sgjioiIcHg/++GHH9StWzcdP37ctFhXO3z4sKKiorR//37ZbDbVqVNHw4YNK5I7UICiRI7rvBy3KPNbiRyXHLfgyHHJcQviVs9xizK/lchxzUDRFi7l5uam5OTkXL9BOnnypAIDA01fd+See+7R/fffr0mTJtnfPHx9ffXEE0/o/vvv13PPPWdqvJkzZ2rcuHF6/vnn1bJlSxmGoW+++UazZ8/Wq6++qhEjRpgaz1VvjkWpKNanuvppusWKFcsxYXDm2jiZmZnauHGjw5ptrVq1Mj3O1TZv3qzY2FhlZmbqrrvuUvv27Z0W6/z58/r1119lGIaqV6/u9A9Bf//9t5YsWaKff/5ZhmGobt26euKJJ1SiRAnTYxX12lTXvoekp6crPj5e+/btU58+ffTWW2+ZGs8Va28V5YcuSQoICNC0adOcVni4WunSpfXjjz8qODjY4ed55MgR1a5d2ykPulm3bp26dOmiO++80/7/0s6dO7Vnzx598cUX6tChg+kxgX+Sf0KOW9T5rUSOS45beOS45iDHPWJqPKloc9yizG8lclwzsDwCruv8+fPZLps36xtXwzDUt29feXp65rjf7KsPsuzfv19Lly6VdOXbz7///lulS5fWpEmT1LVrV9OLtlkPK7j6NqquXbuqXr16mjBhgulJ7Y8//pjjWl+VKlXSmTNnTI0lXfngMWrUKPttFtd+F+SMZK8obiPZvHmzypcvL6lo11O6fPmyvLy8FB8fr7CwMIWFhRVZ7Pvuu8++ZpuzlS5dWuXLl5fNZnN6MitdefDFwIEDnR5HKvq1qd58880c2ydMmKDz58+bHs8Va295e3trx44dRfahKy0tTS1atHDK2NcqW7askpKSsj3UJy4uzmm3GWY9VXfKlCnZ2l966aWbLqEFCoMc98YUdX4rkeOS4xYeOa45yHHNV5Q5blHmtxI5rhko2iJHCQkJev7557V161aHbz/M/sY1ay2lvDhjvahSpUrZk+XAwEAdPnzYfuuIWU/yvFpSUlKOb44tWrRQUlKS6fGK+s2xb9++SkxM1Lhx43K8zcIZimJ9qtatW+f4Z2dzd3dXUFCQ059sWZC19IYOHWpa3MzMTL366quaMWOGPdkqU6aMRo4cqTFjxuT4xM/CWL16tcLDw+Xh4aHVq1fn2dfsNdRcsf5qTp588kndc889mj59uqnjuvL8iupD14ABA/TRRx9p3LhxTo/1+OOP66WXXtInn3wim82mzMxMffPNNxo1apTT1kzcv3+//f3zav369XPaw3UAKyDHNU9R57cSOS45bv6Q4/4POW7B3Oo5blHmtxI5rhko2iJHTzzxhKQrC1H7+fk5LUFZuHChU8a9nubNm+ubb75R3bp19cADD2jkyJH68ccftXLlSjVv3tz0eDVq1NDHH3+sl19+2aF9+fLluuOOO0yPV9Rvjjt27ND27dtNW5spP6ZPn65OnTrJ19dXf//9t1q3bq3k5GQ1b95cr732munxvvrqK5UuXVr33nuvJGn27Nl6//33VbduXc2ePVvlypUzNd7YsWMVGRmpJUuW2K+EMNu131z//vvvunjxon0tsb/++kslS5aUr6+vqQntmDFjNH/+fE2ZMsXhdsoJEybo0qVLpv3+unXrpuTkZPn6+tof/pATZ9z6V5QPvchLTEyM/aEUZiqq8yvqD10RERH2P2dmZuq9997Txo0b1bBhw2wPaDHzYT6vvfaa+vbtq9tuu81+W2NGRoYef/xxjR071rQ4V6tUqZLi4+Oz/R8UHx8vX19fp8QErIAc1zxFnd9K5LjkuPlDjnsFOW7B3Yo5rqvyW4kc1wysaYsclS5dWrt371atWrVcPRWn+PXXX3X+/Hk1bNhQFy9e1KhRo7Rjxw7VqFFDb775pulPHFyxYoV69uyp9u3bq2XLlrLZbNqxY4c2bdqkjz/+WA899JCp8dLT09W3b18tW7ZMhmHI3d3d/uYYHR0tNzc3U+PVrVtXH374oRo3bmzquPmxZcsW7d692+m3Sjdo0EBTp05Vp06d9OOPP6pp06YaOXKkNm/erDp16pj+4axx48Y6dOiQ0tPTFRQUlG0tI7Oebp3lo48+0pw5czR//nz7v/sDBw5o4MCBevbZZ+0fcs0QGBioefPmZfvm//PPP9fgwYNvifXoinr91YcfftjhtWEYSkpK0q5duzRu3DjTHqyTpajO79orqfL60PXrr7/ecLy2bdvmu68zbic9fPiw4uLilJmZqcaNGzut6CFJkyZN0ptvvqnRo0erRYsW9v+Xpk6dqpEjRzotkQZcjRzXvBy3qPNbiRzXGchxyXELghz35stxXZ3fSuS4N4KiLXLUtm1bjRkzxqkLtP/TxMbGaubMmdq/f7/9W6aRI0c6NQksqjfH9evXa8aMGXr33XdVtWpVp8TIyaZNm+xrjF27Jt2CBQtMjVW6dGnt27dPVatW1YQJE7Rv3z59+umnio2NVadOnUxf46ionm6dpXr16vr000+z/X3cvXu3evTooYSEBNNieXl5ae/evapZs6ZD+4EDB3TnnXfq77//Ni1WlsWLF6tnz57Z1hZMS0vTsmXLnHZ7TlGtv9q3b1+Hq8WKFSumSpUq6b777nPqenFF+VCPovzQ9U9gGIaioqI0Y8YMnThxQtKVD5svvPCChg4dWiS3AAOuQI5rLlfktxI5rpnIcclxC4Mc1zzkuOa61XJcirbI0eHDhzVo0CA9+eSTql+/frbL5hs2bOiimZkrLS0tx2SoSpUqpsZ54okn1KZNG7Vu3Trbf+K3gnLlyunixYu6fPmySpYsme3vyx9//GF6zIkTJ2rSpElq2rRpjmuMrVq1ytR45cuX144dO1S3bl3de++96t27t5555hkdOXJEdevW1cWLF02NV9RKliyprVu36p577nFo//7779WmTRtTz69Zs2Zq1qxZttuC/vWvf+mHH37Qt99+a1qsLFc/JflqZ86cka+vr9PXVrvVHDlypEg/vEpF+6FLurLu1VtvvaUyZco4tF+4cEH/+te/bvhDc0REhF555RWVKlXK4ba1nJh9q9q1zp07J0nZzhW4FZHjmpfj3ur5rUSOS45bMOS4N79bPcd1dn4rkeOajaItcvTtt9/q8ccf15EjR+xtNpvN9Ic0uMovv/yi/v37a+fOnQ7tzjq/Z599Vtu2bdPBgwfl5+en1q1bq3Xr1mrTpo1q165tSoyCvDmWLl1a9erVU48ePUy5jWzRov9v787Doqz6N4DfMyCLAqKyiMquIiAqaG7kgmWa+5JLoqRmZWqiomJv7muZJGVlmguQC5q59ZaogaJgSgoCKQoBQosLymsmaiKc3x9ezM8JNHHOzMBwf66LKzjz+HwPxDD3c+Y550Q+8fGn2YyjshwcHLBy5UqMGTNG+rkr0r9/fxQXF8Pf3x9LlixBbm4uGjdujEOHDmHKlCnIzMzUST+0pX///sjPz8fGjRvRtm1bKBQKnD59Gm+88QYcHR3/dZODyoiPj0ffvn3h5OSETp06QaFQ4MSJE/j111/x/fffo0uXLtJqlVEqlbh69Wq5DQRSU1MREBCglYuupKQkHD16tMKLZtkBxc3NDT/99BMaNGig1n7z5k34+flJWTrgUUqlEp07d8aYMWMwbNgwra1J9yhdXnQBj78Iun79Oho2bIgHDx5odP769esjMzMTNjY2T5y2plAoEBcXp1Gtinz55Zfo3r27VqenEVVFzLjyvj9d5FuAGVfbmHGZcSuLGVcuXWZcbedbgBlXNg7aUoW8vLzg6emJ2bNnV7hJg+w1X3XN398fxsbGmDNnToXvYLdu3Vorda9cuYKjR4/i6NGjiI+PR2ZmJuzs7KTssBsQEIA9e/bA2tr6X9et+fvvv3Hu3DkMHDgQUVFRGtfWhwYNGiApKQnu7u46qZefn4/JkycjPz8fU6dOxeuvvw4AmD59OkpKSiq1mPzTKCkpwerVq7Fz507k5+fj/v37ao/LDmAFBQV47bXXEBMTo7qL5MGDB+jVqxciIiKkL9r+xx9/4LPPPsOFCxdU0yknTZqERo0aSa3j6+sLhUKB1NRUeHt7w9j4//ffLCkpQW5uLnr37l3hDqOaWL58OebOnQsPD49yf0O1EVCUSqVqQ4pHXb16FU5OTqqdxGVJTk7G9u3bER0djYKCAvTq1QujR4/GgAEDyk3Pk0VXF123bt2CEAL16tVDVlaW2kVQSUkJvv32W8yZM0c13epZPfr/7HEXJNrUokULZGZmomHDhqpBlm7dukkdaCGqiphx5WdcbeZbgBlX25hxmXErgxlXPl1kXF3lW4AZVzYO2lKF6tSpg9TUVDRt2lTfXdGKOnXq4MyZMzp/4hYVFSEhIUEVbJOTk+Hl5YWUlBSd9gMATp8+jRdeeAF//vmnlPNlZ2dj8+bNyM7Oxscffww7OzvExMTA0dER3t7eUmo8KjQ0FBYWFpg3b570c//TgwcPsHXrVrz00ktwcHDQej0AmD9/PjZs2IAZM2Zg3rx5eO+993Dp0iXs3bsX8+fPl7rT7aMyMzNVIdPT07PaT3csWzdt0aJFCAkJgYWFheoxExMTuLi4YOjQoTAxMZFa197eHh988AHGjh0r9bz/VBbiBg0ahMjISNStW1f1WElJCWJjY3H48GFcvHhRK/WFEDh69Ci2bduGb775BiUlJRg6dKj09faAii+6iouL0bt3b2zevBn29vZS6iiVyieudaVQKLBo0SK89957GtVp0KABvv/+e3To0OGxd8lo25UrV3DkyBHEx8fj6NGjqhDfvXt3REdH67QvRLrCjCtfVcq3ADNuZTDjVl/MuMy4laGrfAsw48rGQVuqUP/+/TF27FgMHTpU313Riueeew6rV6/G888/r5N6oaGhiI+PR2pqKlq2bImuXbuiW7du6Nq1q2qHSG0pe4r/84/0/fv3ceDAAQwcOFDjGvHx8Xj55Zfh7++PY8eOISMjA25ubli5ciWSkpKwa9cujWv8U3BwMKKiotCqVSu0atWq3Bpjsqfm1K5dGxkZGTq7A8fd3R2ffPIJ+vbtC0tLS5w9e1bVdvLkSWzbtk0n/ZAlLS3tqY/VxnqCkZGRGDFiBMzMzKSfuyIODg44duyY1qflKJVKAP8/tfdRtWrVgouLC8LCwtCvXz+t9gN4eGfC66+/jrS0NK1OL87KylJteKONi674+HgIIdCjRw988803atPiTExM4OzsLOVumTfffBNRUVFwcHBAfn4+mjRp8tipvLKn/v1T2YBLdHQ0tmzZAiGElOlxRFURM648+sy3ADOuLMy4mmHG1Q5mXLkZV1f5FmDGlY2DtlSh9evXY+nSpRg/fjx8fHzKhYUBAwboqWfP7tatW6rPT58+jblz52L58uUVfn9WVlZSa5ftcjl9+nQMHDgQnp6eUs9fkaioKHz44YfIysoCADRv3hyzZs3SyvpYnTp1wrBhwzBjxgxYWloiNTVVNRVi0KBB+P3336XX1PX6OAEBAQgODsagQYOknvdx6tSpg4yMDDg5OcHBwQHfffedat0mX19faXePlCkpKUFERMRjdyrW9OdZ9u7uv73kGMJ6ggCwcuVK/PHHHwgPD9dJPVdXV/z000+wsbHRSb0yv/76K7Zv345t27YhPT0dnTp1QmBgIN5++20p59fnRgZ5eXlwcnLS6g6zMTEx+OWXXzB16lQsXrz4sZskBAcHS6994MAB1d0HZVMru3btiu7du6NLly6oV6+e9JpEVQEzrryMq498CzDjMuNWDjOuXMy41Tvj6iLfAsy4Mhn/+yFUE02cOBEAsHjx4nKPVdcXHGtra7U/TkIIvPDCC2rHaGsTipSUFNUfjrCwMBgZGanWV+nevbv0kPvRRx9h3rx5mDJlCvz9/SGEQGJiIiZOnIjr169j+vTpUuulp6dX+K64ra0tbty4IbVWmSNHjmjlvI8zadIkhISE4LfffkPbtm1Rp04dtcdlv3PepEkTXL58GU5OTmjatCkOHToEPz8//PTTT1pZTyk4OBgRERHo27cvWrZsKf2FXOaup89C1+unzZw5E3379oW7uzu8vLzKXTTv3r1baj1d/3zXr1+PrVu3IiEhAS1atEBgYCD27t0rfbfdlJQUFBcXqz5/HFm/r2lpaWjZsiWUSiX+/PNPpKenP/ZYGc/53r17A3i4O3BwcLBOd7bt27cvbG1tERISgoMHD6pNOyQyZMy48r4/XedbgBlXG5hxNcOMy4z7LHSZcXWdbwFmXJl4py3VGPHx8U99bLdu3bTYk4e7eYaHh2PLli0oLS2VfoHg6uqKRYsWISgoSK09MjISCxculP7i16RJE+zcuROdO3dWuwthz549mDlzJrKzs6XW04eyKTqP0uZu03PmzIGVlRX+85//YNeuXXj11Vfh4uKC/Px8TJ8+He+//77UejY2NoiKikKfPn2knreq0PX6aZMnT8bGjRsREBBQ4UY3mzdvllqvosGHR82fP19qPUdHR4wcORKBgYFo06aN1HPr06MbJzzpzpnqOrDzqPDwcBw7dgzHjx/XyUALEWlPVcm42s63ADOuNjDjVm/MuMy4/6Ym5VvA8DIuB21JTZ8+fbB9+3bVuxHLli3D5MmTVetS3bhxA126dMH58+f12MvqKSUlRbVBw/Hjx3Hr1i20adMGAQEB+PDDD6XWMjMzw88//1xuk42srCz4+Pjg3r17UuvNnj0bP/74I77++ms0b94cycnJuHr1KoKCghAUFIQFCxZIracPeXl5T3xc2+uAnTx5EidOnEDTpk21MnWzUaNGOHr0qM42ZcjOzkZ4eDgyMjKgUCjg6emJ4OBgre2UrOv10ywtLREdHY2+fftKPe/j+Pr6qn1dXFyM3NxcGBsbw93dHcnJyVLrCSGQkJCAdevWIScnB19//TUaN26Mr776Cq6urjpbL1y2R6eM6fs5r0vp6emIj4/HkSNH8O2336JBgwbSdn0nqiqYcbVDl/kWYMbVBn2/3jHjaoYZlxn339TUfAsYSMYVRI9QKpXi6tWrqq8tLS1Fdna26usrV64IpVKpj65JtWnTJrFz585y7Tt37hQRERHS61lbWwtjY2PRtm1bERISIr799lvx559/Sq9TxtvbWyxbtqxc+5IlS0TLli2l17t//74YNWqUUCqVQqFQiFq1agmlUilGjx4tHjx4IL0eybdq1SoxadIkUVpaqvVaMTExwsTERLRv315Mnz5dTJs2TbRv316YmpqKQ4cOaaVm7dq1RV5enhBCiIYNG4ozZ84IIYTIzs4WVlZW0us5OTmJjIwM6eetjD///FMMHjxYREVFST/3rl27hLm5uZgwYYIwNTVVvU589tln4uWXX5ZeT9fu378vxo4dq/b6Z6iSk5PFRx99JPr37y+sra2FkZGRaNeunb67RSQdM678jKvrfCsEMy5VHjOuXMy41VdNyrdCGE7G5aAtqVEoFGqB1sLCwiADbfPmzUVcXFy59qNHj4rmzZtLr6eLEPuoXbt2CSMjI9GrVy+xePFisWTJEtGrVy9hbGwsdu/eLbVWaWmpuHTpkigqKhLZ2dni66+/Fjt27BCZmZlS61QFUVFRonPnzsLBwUFcunRJCCHE6tWrxd69e6t9vUGDBom6desKV1dX0a9fPzF48GC1D5natGkjQkNDy7WHhoYKX19fqbXKNG/eXJw8eVIIIcTzzz8vVqxYIYQQIjo6Wtja2kqvt2nTJjF8+HBRVFQk/dyVkZ6eLpydnaWft02bNiIyMlIIof46kZKSIuzt7aXX04e6desadKjt37+/qFevnjAyMtLpgAuRvjDjys+4+vibwYyrHcy4cjDj6g4z7rMx9HwrhOFlXG5ERjVSXl4eXF1dy7U7OzsjPz9fer1+/fpJP+eTDB06FElJSfjoo4+wd+9eCCHg5eWFpKSkclNMNCWEQLNmzXDu3Dk0a9YMbm5uUs9fVaxduxbz58/HtGnTsGzZMtV6P9bW1ggPD8fAgQOrdT1ra2sMHjxY6jkfJyMjAzt37izXPn78eK3tRDt48GDExsaiQ4cOCA4OxquvvoqNGzeq1k+T7ZNPPkF2djbs7e3h4uJSbpMG2VO5HufmzZvSd2EGgIsXL6Jr167l2q2srHDz5k3p9fRh8ODB2Lt377/u6FtdNW/eHG+++Sa6du0qdTd5ItIvXWZcXedbgBlXG5hx5WHGZcat6gw93wKGl3E5aEtqFApFucXEZe+wWRXY2dkhLS2t3C6QqampaNCggX46JUlxcTHefPNNzJs3D1u2bNF6PaVSiWbNmuHGjRto1qyZ1uvpy5o1a/Dll19i0KBBahsktGvXDjNnzqz29WRvGvAktra2OHv2bLnfl7Nnz8LOzk4rNR/9Gb7yyitwdHREYmKi1tZPGzRokPRzPsknn3yi9rUQApcvX8ZXX32l2r1VJgcHB/zyyy/l/oYmJCQYzEVt06ZNsWTJEpw4caLC3bRlb+yha61atULPnj3L7dR9//59REdHl9vkh6i6Y8Zlxq0sZlxm3MpixpWPGVcuQ8+3gAFmXH3e5ktVj0KhEH369FFNFzE2NhYvvfSS6us+ffoYxNSxWbNmCWdnZxEXFycePHggHjx4IGJjY4Wzs7MICQnRd/c0putpD//973/F888/L9LT03VWU9fMzMxU07cenSqTmZkpzMzMqn09IYQoLi4Whw8fFl988YW4deuWEEKI33//Xfz1119S6yxatEhYW1uL999/Xxw7dkwcP35crFixQlhbW4slS5ZIrSWE4a7flJqaKkpKSoQQQri4uKh9uLm5iQ4dOoh3331X9f9Spg8++EB4eXmJkydPCktLS3H8+HGxZcsWYWtrK9asWSO9nj7882f66Ierq6u+u6exf67vWeb69esG8TpP9E/MuMy4z4IZlxm3Mphx5WDG1R5Dz7dCGF7G5Z22pOa1115T+3r06NHljql270xUYOnSpcjLy8MLL7wAY+OHT4PS0lIEBQVh+fLleu6d5nQ97WH06NG4c+cOWrduDRMTE5ibm6s9XlhYqJN+aJOrqyvOnj1bbkfNAwcOwMvLq9rXy8vLQ+/evZGfn4+///4bPXv2hKWlJVauXIl79+7hiy++kFZr3rx5sLS0RFhYGN59910AD3f2XbhwoVbe3a1Vqxb27NmDefPmST/3k9y8eRO7du1CdnY2Zs2ahfr16yM5ORn29vZo3Lixxuf39fXF5cuXVXdu/PTTT7CxsdH4vE9j9uzZ+PPPPxEQEIB79+6ha9euMDU1xcyZMzFlyhSd9EHbcnNz9d0FrRJCVHiX4W+//Ya6devqoUdE2sWMy4z7LJhxmXErgxmXGbeqM/R8CxhexuWgLanR5fQRfTIxMcGOHTuwZMkSpKamwtzcHD4+PuXCQ3Wl62kP2lqjqSqZNWsWJk+ejHv37kEIgaSkJGzfvh0rVqzAhg0bqn294OBgtGvXrtz0ycGDB2PChAlSaykUCkyfPh3Tp0/HX3/9BQCwtLSUWuOfdH2Rl5aWhhdffBF169bFpUuX8MYbb6B+/frYs2cP8vLyEBUVpXENa2tr5Obmws7ODvn5+RBCSOj501u2bBnee+89nD9/HqWlpfDy8oKFhYVO+6ArZT9bQ5hK7evrq5om/uigDgCUlJQgNzdXK9MNifSNGZcZ91kw4zLjVgYzLjNudWJI+RYw3IyrELp+BhCR1lW0AUUZhUKBnJwcHfbGcHz55ZdYunQpfv31VwBA48aNsXDhQrz++uvVvp6NjQ0SExPh4eEBS0tLpKamws3NDZcuXYKXlxfu3LkjvaYuLVu2DKtWrcILL7ygk4u8F198EX5+fli5cqXaz/PEiRMYNWoULl26pHGNN998E1FRUXBwcEB+fj6aNGkCIyOjCo/lc/7ZREVF4cMPP0RWVhaAhxsbzJo1C2PGjNFzz57dokWLVP8NCQlRuwgxMTGBi4sLhg4dChMTE311kYjosZhxtYMZt/pixuVzvrIMMd8ChptxOWhLNcaMGTOwZMkS1KlT51/fifzoo4901Cvt09U7aNnZ2di8eTOys7Px8ccfw87ODjExMXB0dIS3t7dWa+va9evXUVpaqrUNBfRRr379+khISICXl5daAEtISMDQoUNx9epVabWuXr2KmTNnIjY2FteuXSv37nnZLsIy6foir27dukhOToa7u7vazzMvLw8eHh64d++elDoxMTH45ZdfMHXqVCxevPixd3MEBwdLqVeTfPTRR5g3bx6mTJkCf39/CCGQmJiIzz77DEuXLtXKjsy6FBkZiREjRsDMzEzfXSEiDTHjMuPKwoyrGWZcZtyqztDzLWB4GZfLI1CNkZKSguLiYtXnhm7jxo1YvXq16h20Zs2aYdq0adKnAQFAfHw8Xn75Zfj7++PYsWNYtmyZavfiDRs2YNeuXdJr6tqiRYswevRouLu762RNpbt370IIgdq1a8PGxgZ5eXkIDw+Hl5cXXnrpJen1evbsifDwcKxfvx7Aw5B3+/ZtLFiwAH369JFaa+zYscjPz8e8efPg4OCgkyk5ul6/yczMDLdu3SrXfvHiRdja2kqrUzbF58yZMwgODtb6FLyaZM2aNVi7dq3aGpcDBw6Et7c3Fi5cWO1D7WuvvYabN29iy5YtWluTjoh0gxmXGVcTzLjyMOMy41Z1hp5vAQPMuLrc9YyIdGPu3LmiTp06Ys6cOWLfvn1i3759Ys6cOcLCwkK899570ut17NhRhIWFCSHUd4FNSkoSjRo1kl5PH3x8fIRSqRQdOnQQa9asEdeuXdNqvZ49e4q1a9cKIYT43//+J+zs7ESTJk2EmZmZ+Pzzz6XX+/3330Xz5s2Fp6enMDY2Fh07dhQNGjQQHh4eFe6+qQkLCwuRkpIi9ZyVUVpaKkpLS7Va44033hCDBg0S9+/fFxYWFiInJ0fk5eUJX19fERwcrNXaJIepqanIysoq156ZmSlMTU310CO5UlNTha2trWjatKkwNjZW/d2eO3euGDNmjJ57R0RUMWZc+Zhx5WHGDdZqbdKcoedbIQwv43J5BKpRxo8f/6/HKBQKbNy4UQe90R4bGxusWbMGr776qlr79u3b8c477+D69etS61lYWCA9PR2urq7l1opq0aKFtGky+nbu3Dls3boV0dHR+O233/Diiy9i9OjRGDRoEGrXri21lo2NDeLj4+Ht7Y0NGzZgzZo1SElJwTfffIP58+cjIyNDaj3g4Z0P0dHROHPmDEpLS+Hn54fAwMByOyVrysvLC1u3boWvr6/U8/4bXa7fdOvWLfTp0wfnzp3DX3/9hUaNGuHKlSvo1KkTvv/++3LrjVHV07JlS4waNQr/+c9/1NqXLl2KHTt2ID09XU89k6Ns7TttrklHRLrDjMuMqwlmXDmYcZlxqzpDz7eA4WVcLo9ANUpERAScnZ3h6+ur810odamkpATt2rUr1962bVs8ePBAej1ra2tcvny53JpKKSkp1W/6wRN4e3tj+fLlWL58ORITE7Ft2zZMmzYNEydOrHCakCbu3LmjmgZ06NAhDBkyBEqlEh07dkReXp7UWgBw7NgxdO7cGePGjcO4ceNU7Q8ePMCxY8fQtWtXabXCw8MxZ84crFu3Di4uLtLO+ySPW79p4sSJuH79uvSpQFZWVkhISEBcXBySk5NVFwgvvvii1DqkPYsWLcKIESNw7Ngx+Pv7Q6FQICEhAbGxsdi5c6e+u6ex06dPq6aKPqpx48a4cuWKHnpERJpgxmXG1QQzrhzMuFTVGXq+BQww4+rzNl8iXXv77bdFvXr1ROvWrcXHH38sbty4oe8uacWUKVPE9OnTy7WHhISISZMmSa83a9Ys8fzzz4vLly8LS0tLkZWVJRISEoSbm5tYuHCh9HpVQUpKiggJCRGNGzcWZmZm0s/v4+MjPv74Y5Gfny+srKzEiRMnhBBCnD59Wtjb20uvp1QqK5widv36daFUKqXWsra2FiYmJkKpVAoLCwtRr149tQ9tcHFxEZGRkeXaIyIihIuLi1ZqUvV3+vRpERgYKPz8/ISvr68IDAwUycnJ+u6WFHZ2dqrv5dEpvwcPHhRNmjTRZ9eI6Bkw4zLjysKM++yYcak6MOR8K4ThZVwuj0A1zt9//43du3dj06ZNOHHiBPr27YvXX38dL730kk4Wi9eFd955B1FRUXB0dETHjh0BACdPnsSvv/6KoKAg1KpVS3WsjF2Ei4uLMXbsWERHR0MIAWNjY5SUlGDUqFGIiIiAkZGRxjWqgtzcXGzbtg1bt25FZmYmunbtilGjRmHYsGGoW7eu1Fq7du3CqFGjUFJSgh49euDw4cMAgBUrVuDYsWM4cOCA1HpKpRJXr14tt4FAZmYm2rVrJ/Uui8jIyCc+/tprr0mrVcbMzAw///wzmjZtqtaelZUFHx8f6dMbp06diqZNm2Lq1Klq7Z9++il++eUXhIeHS61HVFlvvvkmCgoKsHPnTtSvXx9paWkwMjLCoEGD0LVrV/6OElVDzLjMuM+KGVcOZlxmXNI/Q8u4HLSlGi0vLw8RERGIiopCcXExzp8/DwsLC313S2MBAQFPdZxCoUBcXNwz1bh16xasrKzU2nJyclTTZHx9fdGsWbNnOndV1KlTJyQlJcHHxweBgYEYNWqU1qfFXblyBZcvX0br1q2hVCoBAElJSbCyskKLFi2k1BgyZAgAYN++fejduzdMTU1Vj5WUlCAtLQ0eHh6IiYmRUk9fdL1+U+PGjbF//360bdtWrT05ORkDBgzAb7/9JrUeyfe4iziFQgFTU1OYmJjouEdyPW5Nuo4dO+LAgQNck46ommPGZcZ9Wsy4zLiVwYxbvRl6vgUML+NyTVuq0RQKBRQKBYQQKC0t1Xd3pDly5IjWa9SrVw+XL1+GnZ0devTogd27d8PNzQ1ubm5ar60PAQEB2LBhA7y9vXVWs2HDhrh9+zYOHz6Mrl27wtzcHM8995zUu2XK7p4QQsDS0lJtQwYTExN07NgRb7zxhrR6ZUpLS/HLL7/g2rVr5Z57MtcWK6Pr9Ztu3LhR4Z0pVlZW0jdJIe2wtrZ+4nOtSZMmGDt2LBYsWKC64KxOytakO3LkiNrGLFyTjsgwMOM+O2Zc7WPGlYcZlyrD0PMtYHgZl4O2VOM8OnUsISEB/fr1w6efforevXtX2z9M+mBhYYEbN27Azs4OR48eRXFxsb67pFXLly/Xab0bN25g+PDhOHLkCBQKBbKysuDm5oYJEybA2toaYWFhUups3rwZAODi4oJZs2ZJ3yG4IidPnsSoUaOQl5dXbrMUhUKBkpIS6TWHDh2KU6dOYfXq1di7dy+EEPDy8kJSUpJWdvht2rQpYmJiMGXKFLX2AwcOGOxFn6GJiIjAe++9h7Fjx6J9+/YQQuCnn35CZGQk5s6di4KCAqxatQqmpqbl7m6pLmJjYxEbG6u6sLxw4QK2bdsGANi0aZOee0dElcWMKwczrnYx48rFjEuVURPyLWBYGZeDtlSjTJo0CdHR0XBycsK4ceMQHR2NBg0a6Ltb1dKLL76IgIAAeHp6AgAGDx782OkUzzo9Td9mzJiBJUuWoE6dOpgxY8YTj5Wxbtqjpk+fjlq1aiE/P1/1MwaAESNGYPr06dICbZn4+HgEBweXC7S3bt3CoEGDpP4/nDhxItq1a4fvvvsODg4OOltnr23bttiyZYtOas2YMQNTpkxBQUEBevToAeBheAgLC6t26yjVVJGRkQgLC8Pw4cNVbQMGDICPjw/WrVuH2NhYODk5YdmyZdUy1C5atAiLFy9Gu3btdPo8JCLtYMaVhxlXHTPu02PGDddJH+jZGXq+BQwv43JNW6pRlEolnJyc4Ovr+8Qn7+7du3XYq+rp7t27iIyMRHZ2NsLCwvDGG2889h3s1atX67h3cgQEBGDPnj2wtrZ+4hpqmqyb9jgNGzbEwYMH0bp1a1haWiI1NRVubm7Izc2Fj48Pbt++LbWekZGRairgo65du4bGjRtLvcukTp06SE1NLbdhgraVlJRgz549yMjIgEKhgKenJwYOHAhjY+28f7l27VosW7YMf/zxB4CHd3osXLgQQUFBWqlHctWuXRupqanl1i3MyspC69atcefOHeTm5sLb2xt37tzRUy+fnYODA1auXIkxY8bouytEJAEzrjzMuP+PGbdymHGZcas6Q8+3gOFlXN5pSzVKUFBQtX+npaowNzfHxIkTAQCnT5/GBx98AGtra/12SrJH103TxRpqjyoqKqrwAuH69etqGyloKi0tDcDD9b7Onz+PK1euqB4rKSlBTEyM9M0oOnTogF9++UWngfbnn3/GwIEDceXKFXh4eAB4uGuwra0t9u/fDx8fH+k13377bbz99tsoKCiAubm5QWwAU5M0adIEGzduxPvvv6/WvnHjRjg6OgJ4OMWzXr16+uiexu7fv4/OnTvruxtEJAkzrjzMuNrFjCsXMy5VhqHnW8DwMi7vtCUiqoL69u0LPz8/LFmyBJaWlkhLS4OzszNGjhyJ0tJS7Nq1S0odpVKpusir6OXA3Nwca9aswfjx4zWqUxacASA7Oxtz587FrFmz4OPjg1q1aqkd26pVK41qVaRjx46ws7NDZGSkKoT873//w9ixY3Ht2jX8+OOP0mtS9bZ//34MGzYMLVq0UG2O8tNPP+HChQvYtWsX+vXrh7Vr1yIrK0v61FFdCA0NhYWFBebNm6fvrhARUQ3CjCsXMy5VhqHnW8DwMi4HbYlIYyUlJYiIiFBb7PtR1XW9r0cVFRXh/ffff+z3mJOTI7VeRkYGunXrhrZt2yIuLg4DBgzAuXPnUFhYiMTERLi7u0upU7ZRgpubG5KSkmBra6t6zMTEBHZ2djAyMtK4TllwftxLTtlj2tqkwdzcHKdPny63M/LPP/+M5557Dnfv3pVa7+rVq5g5c6bq9+Wf37c2vkeS79KlS/jiiy+QmZkJIQRatGiBt956Cy4uLvrumsaCg4MRFRWFVq1aoVWrVuUuLKtrUCcikokZlxn33zDjMuNWN4acbwHDy7hcHoGINBYcHIyIiAj07dsXLVu2NMjpeRMmTEB8fDzGjBmj9QXNi4uLMWnSJOzfvx8HDhyAkZERioqKMGTIEEyePBkODg7Sajk7OwOAKqCfP38e+fn5uH//vtpxAwYM0KhObm6uRv9eUx4eHrh69Wq5QHvt2jWtTGEbO3Ys8vPzMW/ePINYAL+mcnFxKTd9zFCkpaWhTZs2AB5e2D2Kv69ERA8x48rFjCsfMy5VliHnW8DwMi7vtCUijdnY2CAqKgp9+vTRd1e0xtraGt999x38/f11Us/W1hYnTpwot0i8tuTm5mLw4MFIS0tTu1ug7IWtOr5rfuvWLdXnCQkJmD17NhYuXIiOHTsCAE6ePInFixfj/fffl/67a2lpiePHj6sCA1UPj05x/DfamOJIRERVCzOufMy4mmPGpcpgvq3eeKctEWnMxMRE57uk6lq9evVQv359ndULCgqqcJF4bZk6dSpcXFxw+PBhuLm54dSpUygsLERISAhWrVoltdaKFStgb29fbg2xTZs2oaCgAKGhoVLqWFtbq72bKoTA8OHDy61v1r9/f+mB3dHR8bHT5KjqatOmzROnOJbR1hRHIiKqWphx5WPG1RwzLlUG8231xjttiUhjYWFhyMnJwaefflotpxw8jS1btmDfvn2IjIyscMdb2d555x1ERUWhadOmaNeuHerUqaP2uOy1eGxsbBAXF4dWrVqhbt26SEpKgoeHB+Li4hASEoKUlBRptVxcXLBt27Zyu3qeOnUKI0eOlDbNLD4+/qmP7datm5SaZQ4dOoSwsDCsW7fOYNaHqgny8vKe+tiyaZdERGS4mHHlY8bVHDMuVQbzbfXGO22JSGMJCQk4cuQIDhw4AG9v73KLfe/evVtPPZMnLCwM2dnZsLe3h4uLS7nvMTk5WWq9n3/+GX5+fgCAzMxMtce0cdFQUlICCwsLAA/D7R9//AEPDw84Ozvj4sWLUmtduXKlwjXLbG1tcfnyZWl1ZIfUyhgxYgTu3LkDd3d31K5du9zvS2FhoZ56Rk9SUVCtaA08hULBUEtEVAMw4zLjVgYzLjNuVcR8W71x0JaINGZtbY3BgwfruxtaNXDgQJ3eYXHkyBGd1QKAli1bIi0tDW5ubujQoQNWrlwJExMTrF+/Hm5ublJrOTo6IjExEa6urmrtiYmJaNSokdRa/3Tnzp0KN6GQvX5TeHi41POR7uXk5GDw4MFIT083mDXwiIiocphx5WPG1Q5mXHoazLfVD5dHICIiHDx4ULV7b05ODvr164cLFy6gQYMG2LFjB3r06CGt1gcffIAPP/wQH374oeq8sbGxmD17NkJCQvDuu+9Kq1WmoKAA48aNw4EDByp8nAGF/ql///4wMjLCl19+WeEaeF26dNF3F4mIiOhfMOMy49L/Y76tfjhoS0TSFBQU4OLFi1AoFGjevDlsbW313SWNKZXKCu8+sLKygoeHB2bPno0hQ4booWfaV1hYiHr16km/+0IIgTlz5uCTTz5R3Q1gZmaG0NBQzJ8/X2qtMoGBgbh06RLCw8MREBCAPXv24OrVq1i6dCnCwsLQt29frdQFgLt376K4uFitzcrKSmv1SA5droFHRERVGzOuYWHGlYMZt/phvq1+OGhLRBorKipSbSpQWloKADAyMkJQUBDWrFmjk00NtGXfvn0Vtt+8eRNJSUnYvHkzIiMjMWzYMB33rPq7ffs2MjIyYG5ujmbNmsHU1FRrtRwcHLBv3z60b98eVlZWOH36NJo3b479+/dj5cqVSEhIkFqvqKgIoaGh2LlzJ27cuFHucd71UPXVq1cPZ86cgZubG9zd3bFhwwYEBAQgOzsbPj4+uHPnjr67SEREWsaMy4z7LJhxqapivq1+uKYtEWlsxowZiI+Px7fffgt/f38ADzdumDp1KkJCQrB27Vo99/DZDRw48LGPvfbaa/Dy8sKqVasYaJ/BlStXUFhYiK5du8LU1BRCCK2tqVZUVAQ7OzsAQP369VFQUIDmzZvDx8dH+gYbADB79mwcOXIEn3/+OYKCgvDZZ5/h999/x7p16/D+++9Lr0fy6XINPCIiqpqYcZlxnwUzLlVVzLfVkCAi0lCDBg3EkSNHyrXHxcUJGxsb3XdIhzIzM4W1tbW+u1GtXL9+XfTo0UMoFAqhVCpFdna2EEKI8ePHixkzZmilZrt27URMTIwQQoiBAweKMWPGiN9++03Mnj1buLm5Sa/n6Oioek5YWlqKrKwsIYQQUVFR4uWXX5Zej+SLiYkR33zzjRBCiOzsbOHp6SkUCoWwsbERsbGxeu4dERHpAjMuM25lMOMy41Z1zLfVj1Lfg8ZEVP3duXMH9vb25drt7OwMforF3bt3YWZmpu9uVCvTp09HrVq1kJ+frzatcMSIEYiJidFKzWnTpuHy5csAgAULFiAmJgZOTk745JNPsHz5cun1CgsLVTsHW1lZobCwEADw/PPP49ixY9LrkXy9evVSreXn5uaG8+fP4/r167h27ZrUTUuIiKjqYsZlxq0MZlxm3KqO+bb64fIIRKSxTp06YcGCBYiKilKFu7t372LRokXo1KmTnnunXV9++SV8fX313Y1q5dChQzh48CCaNGmi1t6sWTPk5eVppWZgYKDqc19fX1y6dAkXLlyAk5MTbGxspNdzc3PDpUuX4OzsDC8vL+zcuRPt27fHt99+C2tra+n1SDfq16+v7y4QEZEOMeMy41YGM6619Hqkfcy3VRsHbYlIY+Hh4Xj55ZfRpEkTtG7dGgqFAmfPnoWpqSkOHTqk7+5pZMaMGRW2//nnnzh9+jSys7Nx/PhxHfeqeisqKqpw447r169rdaOGR9WuXRt+fn5aO/+4ceOQmpqKbt264d1330Xfvn2xZs0aPHjwAB999JHW6hIREZE8zLjMuJXBjMuMSySbQggh9N0JIqr+7t69iy1btuDChQsQQsDLywuBgYEwNzfXd9c0EhAQUGG7lZUVWrRogUmTJsHZ2VnHvare+vbtCz8/PyxZsgSWlpZIS0uDs7MzRo4cidLSUuzatUtKncddjFRE2yEzPz8fp0+fhru7O1q3bq3VWkRERCQPMy49LWZcZlwi2ThoS0QaW7FiBezt7TF+/Hi19k2bNqGgoAChoaF66hlVRefPn0f37t3Rtm1bxMXFYcCAATh37hwKCwuRmJgId3d3KXUedzHyTwqFAnFxcVJqlrl06RJcXFyknpOIiIh0ixmXKoMZl4hk46AtEWnMxcUF27ZtQ+fOndXaT506hZEjRyI3N1dPPaOqKD8/H8bGxli3bh3OnDmD0tJS+Pn5YfLkySguLoaTk5O+u6gxpVKJzp07Y8yYMRg2bBjXiiIiIqqGmHGpMphxiUg2DtoSkcbMzMyQkZGh2km0TE5ODry8vHDv3j099YyqIiMjI1y+fBl2dnZq7Tdu3ICdnR1KSkr01DN5kpOTsX37dkRHR6OgoAC9evXC6NGjMWDAAJ2taUZERESaYcalymDGZcYlko0bkRGRxhwdHZGYmFgu0CYmJqJRo0Z66hVVVY97r/D27duqnZllGDJkyFMfu3v3bml1AcDPzw9+fn5YuXIljh49im3btuGtt97ChAkTMHToUGzatElqPSIiIpKPGZcqgxmXGZdINg7aEpHGJkyYgGnTpqG4uBg9evQAAMTGxmL27NkICQnRc++oqijbNEGhUGD+/Plqu+uWlJTg1KlTaNOmjbR6devWlXauZ6VQKBAQEICAgAC8/fbbeP311xEZGclAS0REVA0w49LTYMZlxiXSFg7aEpHGZs+ejcLCQkyaNAn3798H8HA6WWhoKN599109946qipSUFAAP70JIT0+HiYmJ6jETExO0bt0aM2fOlFZv8+bN0s71rH799Vds374d27ZtQ3p6Ojp16oRPP/1U390iIiKip8CMS0+DGZcZl0hbuKYtEUlz+/ZtZGRkwNzcHM2aNeO6RlShcePG4eOPP4aVlZXOaxcUFODixYtQKBRo3rw5bG1ttVJn/fr12Lp1KxITE+Hh4YHAwECMGjWKu+0SERFVQ8y49DSYcYlINg7aEhGRwSsqKsI777yDqKgolJaWAni4WURQUBDWrFmjNo1NBkdHR4wcORKBgYFSp8MREREREZVhxiUybBy0JSIig/fWW2/hhx9+wKeffgp/f38AQEJCAqZOnYqePXti7dq1UusJIaBQKKSek4iIiIjoUcy4RIaNg7ZERGTwbGxssGvXLnTv3l2t/ciRIxg+fDgKCgo0rpGWlvbUx7Zq1UrjekRERERUszHjEhk2bkRGREQG786dO7C3ty/Xbmdnhzt37kip0aZNGygUCpS9F/qkuxBKSkqk1CQiIiKimosZl8iwKfXdASIiIm3r1KkTFixYgHv37qna7t69i0WLFqFTp05SauTm5iInJwe5ubnYvXs3XF1d8fnnnyMlJQUpKSn4/PPP4e7ujm+++UZKPSIiIiKq2ZhxiQwbl0cgIiKDl56ejpdffhn37t1D69atoVAocPbsWZiamuLQoUPw9vaWWq99+/ZYuHAh+vTpo9b+/fffY968eThz5ozUekRERERU8zDjEhk2DtoSEVGNcPfuXWzZsgUXLlyAEAJeXl4IDAyEubm59Frm5uZITk6Gp6enWntGRgb8/Pxw9+5d6TWJiIiIqOZhxiUyXBy0JSIig7dixQrY29tj/Pjxau2bNm1CQUEBQkNDpdbz8/ODp6cnNm7cCDMzMwDA33//jfHjxyMjIwPJyclS6xERERFRzcOMS2TYOGhLREQGz8XFBdu2bUPnzp3V2k+dOoWRI0ciNzdXar2kpCT0798fpaWlaN26NQAgNTUVCoUC//3vf9G+fXup9YiIiIio5mHGJTJsHLQlIiKDZ2ZmhoyMDLi6uqq15+TkwMvLS23zBlnu3LlTbqraqFGjUKdOHem1iIiIiKjmYcYlMmzG+u4AERGRtjk6OiIxMbFcoE1MTESjRo20UrN27dp4/vnn4eTkhPv37wMAYmNjAQADBgzQSk0iIiIiqjmYcYkMGwdtiYjI4E2YMAHTpk1DcXExevToAeBhuJw9ezZCQkKk18vJycHgwYORnp4OhUIBIQQUCoXq8ZKSEuk1iYiIiKhmYcYlMmwctCUiIoM3e/ZsFBYWYtKkSao7AszMzBAaGop3331Xer3g4GC4urrihx9+gJubG06dOoXCwkKEhIRg1apV0usRERERUc3DjEtk2LimLRER1Ri3b99GRkYGzM3N0axZM5iammqljo2NDeLi4tCqVSvUrVsXSUlJ8PDwQFxcHEJCQpCSkqKVukRERERU8zDjEhkm3mlLREQ1hoWFBZ577jmt1ykpKYGFhQWAh+H2jz/+gIeHB5ydnXHx4kWt1yciIiKimoMZl8gwcdCWiIhIspYtWyItLQ1ubm7o0KEDVq5cCRMTE6xfvx5ubm767h4RERERUaUx4xLpFpdHICIikuzgwYMoKirCkCFDkJOTg379+uHChQto0KABduzYodoogoiIiIioumDGJdItDtoSERHpQGFhIerVq6e2wy4RERERUXXGjEukPRy0JSIiIiIiIiIiIqpClPruABERERERERERERH9Pw7aEhEREREREREREVUhHLQlIiIiIiIiIiIiqkI4aEtERERERERERERUhXDQloioGlMoFNi7d6++u0FEREREJA0zLhERB22JiPRKoVA88WPs2LH67iIRERERUaUw4xIRac5Y3x0gIqrJLl++rPp8x44dmD9/Pi5evKhqMzc310e3iIiIiIieGTMuEZHmeKctEZEeNWzYUPVRt25dKBQKtbZt27bB3d0dJiYm8PDwwFdfffXE8y1evBj29vY4e/YsAODEiRPo2rUrzM3N4ejoiKlTp6KoqEh1vIuLC5YvX47x48fD0tISTk5OWL9+verx+/fvY8qUKXBwcICZmRlcXFywYsUKrfwsiIiIiMgwMOMSEWmOg7ZERFXUnj17EBwcjJCQEPz888946623MG7cOBw5cqTcsUIIBAcHY+PGjUhISECbNm2Qnp6OXr16YciQIUhLS8OOHTuQkJCAKVOmqP3bsLAwtGvXDikpKZg0aRLefvttXLhwAQDwySefYP/+/di5cycuXryILVu2wMXFRRffPhEREREZIGZcIqKnoxBCCH13goiIgIiICEybNg03b94EAPj7+8Pb21vtroDhw4ejqKgI3333HYCH64V9/fXX2LdvH06fPo3Dhw+jSZMmAICgoCCYm5tj3bp1qn+fkJCAbt26oaioSHVXQZcuXVR3Nwgh0LBhQyxatAgTJ07E1KlTce7cOfzwww9QKBQ6+kkQERERkaFgxiUieja805aIqIrKyMiAv7+/Wpu/vz8yMjLU2qZPn44ff/wRx48fV4VZADhz5gwiIiJgYWGh+ujVqxdKS0uRm5urOq5Vq1aqz8umrl27dg0AMHbsWJw9exYeHh6YOnUqDh06pI1vlYiIiIhqCGZcIqKnw0FbIqIq7J/v/AshyrX17NkTv//+Ow4ePKjWXlpairfeegtnz55VfaSmpiIrKwvu7u6q42rVqlWuZmlpKQDAz88Pubm5WLJkCe7evYvhw4fjlVdekfktEhEREVENw4xLRPTvjPXdASIiqpinpycSEhIQFBSkajtx4gQ8PT3VjhswYAD69++PUaNGwcjICCNHjgTwMIyeO3cOTZs21agfVlZWGDFiBEaMGIFXXnkFvXv3RmFhIerXr6/ReYmIiIio5mHGJSJ6Ohy0JSKqombNmoXhw4fDz88PL7zwAr799lvs3r0bP/zwQ7ljBw8ejK+++gpjxoyBsbExXnnlFYSGhqJjx46YPHky3njjDdSpUwcZGRk4fPgw1qxZ81R9WL16NRwcHNCmTRsolUp8/fXXaNiwIaytrSV/t0RERERUEzDjEhE9HQ7aEhFVUYMGDcLHH3+MDz/8EFOnToWrqys2b96M7t27V3j8K6+8gtLSUowZMwZKpRJDhgxBfHw83nvvPXTp0gVCCLi7u2PEiBFP3QcLCwt88MEHyMrKgpGREZ577jl8//33UCq5ug4RERERVR4zLhHR01EIIYS+O0FERERERERERERED/FtJCIiIiIiIiIiIqIqhIO2RERERERERERERFUIB22JiIiIiIiIiIiIqhAO2hIRERERERERERFVIRy0JSIiIiIiIiIiIqpCOGhLREREREREREREVIVw0JaIiIiIiIiIiIioCuGgLREREREREREREVEVwkFbIiIiIiIiIiIioiqEg7ZEREREREREREREVQgHbYmIiIiIiIiIiIiqEA7aEhEREREREREREVUh/wft0bzeQONovAAAAABJRU5ErkJggg==",
2382
- "text/plain": [
2383
- "<Figure size 1400x600 with 2 Axes>"
2384
- ]
2385
- },
2386
- "metadata": {},
2387
- "output_type": "display_data"
2388
- }
2389
- ],
2390
- "source": [
2391
- "import matplotlib.pyplot as plt# Plotting the frequency and probability distributions\n",
2392
- "def plot_freq_and_prob_dist(freq_dist, total_tokens, title):\n",
2393
- " plt.figure(figsize=(14, 6))\n",
2394
- "\n",
2395
- " # Plot Frequency Distribution\n",
2396
- " plt.subplot(1, 2, 1)\n",
2397
- " words, frequencies = zip(*freq_dist.most_common(20)) # Top 20 most common words\n",
2398
- " plt.bar(words, frequencies, color='skyblue')\n",
2399
- " plt.xlabel('Tokens')\n",
2400
- " plt.ylabel('Frequency')\n",
2401
- " plt.title('Frequency Distribution')\n",
2402
- " plt.xticks(rotation=90)\n",
2403
- "\n",
2404
- " # Plot Probability Distribution\n",
2405
- " plt.subplot(1, 2, 2)\n",
2406
- " probabilities = [frequency / total_tokens for _, frequency in freq_dist.most_common(20)]\n",
2407
- " plt.bar(words, probabilities, color='salmon')\n",
2408
- " plt.xlabel('Tokens')\n",
2409
- " plt.ylabel('Probability')\n",
2410
- " plt.title('Probability Distribution')\n",
2411
- " plt.xticks(rotation=90)\n",
2412
- "\n",
2413
- " plt.tight_layout()\n",
2414
- " plt.show()\n",
2415
- "\n",
2416
- "# Plot frequency and probability distributions\n",
2417
- "plot_freq_and_prob_dist(freq_dist_original, total_original_tokens, 'Original Tokens')\n",
2418
- "plot_freq_and_prob_dist(freq_dist_stemmed, total_stemmed_tokens, 'Stemmed Tokens')\n",
2419
- "plot_freq_and_prob_dist(freq_dist_lemmatized, total_lemmatized_tokens, 'Lemmatized Tokens')"
2420
- ]
2421
- },
2422
- {
2423
- "cell_type": "code",
2424
- "execution_count": 92,
2425
- "id": "1844a467-c338-4310-a08f-928f4cf96478",
2426
- "metadata": {},
2427
- "outputs": [
2428
- {
2429
- "name": "stdout",
2430
- "output_type": "stream",
2431
- "text": [
2432
- "\n",
2433
- "Named Entities:\n",
2434
- "(S\n",
2435
- " bustling/VBG\n",
2436
- " city/NN\n",
2437
- " (PERSON San/NNP Francisco/NNP)\n",
2438
- " tech/NN\n",
2439
- " enthusiasts/VBZ\n",
2440
- " world/NN\n",
2441
- " gathered/VBD\n",
2442
- " annual/JJ\n",
2443
- " (ORGANIZATION Tech/NNP Innovators/NNP Conference/NNP)\n",
2444
- " event/NN\n",
2445
- " melting/VBG\n",
2446
- " pot/NN\n",
2447
- " ideas/NNS\n",
2448
- " innovations/NNS\n",
2449
- " collaborations/NNS\n",
2450
- " Among/IN\n",
2451
- " attendees/NNS\n",
2452
- " Emily/RB\n",
2453
- " (PERSON Chen/NNP)\n",
2454
- " renowned/VBD\n",
2455
- " AI/NNP\n",
2456
- " researcher/NN\n",
2457
- " (ORGANIZATION MIT/NNP)\n",
2458
- " eager/JJ\n",
2459
- " present/JJ\n",
2460
- " latest/JJS\n",
2461
- " findings/NNS\n",
2462
- " machine/NN\n",
2463
- " learning/VBG\n",
2464
- " algorithms/JJ\n",
2465
- " (PERSON Emily/NNP)\n",
2466
- " colleague/NN\n",
2467
- " Dr./NNP\n",
2468
- " (PERSON Michael/NNP Thompson/NNP)\n",
2469
- " also/RB\n",
2470
- " well-respected/JJ\n",
2471
- " figure/NN\n",
2472
- " field/NN\n",
2473
- " artificial/JJ\n",
2474
- " intelligence/NN\n",
2475
- " accompanied/VBN\n",
2476
- " duo/NN\n",
2477
- " working/VBG\n",
2478
- " groundbreaking/VBG\n",
2479
- " project/NN\n",
2480
- " aimed/VBN\n",
2481
- " revolutionize/VB\n",
2482
- " way/NN\n",
2483
- " neural/JJ\n",
2484
- " networks/NNS\n",
2485
- " process/NN\n",
2486
- " information/NN\n",
2487
- " conference/NN\n",
2488
- " commenced/VBD\n",
2489
- " (PERSON Emily/RB Michael/NNP)\n",
2490
- " greeted/VBD\n",
2491
- " host/NN\n",
2492
- " familiar/JJ\n",
2493
- " faces/VBZ\n",
2494
- " (PERSON Jennifer/NNP Lee/NNP)\n",
2495
- " data/NNS\n",
2496
- " scientist/NN\n",
2497
- " (PERSON Google/NNP)\n",
2498
- " showcase/NN\n",
2499
- " team/NN\n",
2500
- " advancements/NNS\n",
2501
- " quantum/VBP\n",
2502
- " computing/VBG\n",
2503
- " joined/VBD\n",
2504
- " mentor/NN\n",
2505
- " Dr./NNP\n",
2506
- " (PERSON Robert/NNP Lang/NNP)\n",
2507
- " pioneer/VBD\n",
2508
- " field/NN\n",
2509
- " computational/JJ\n",
2510
- " neuroscience/NN\n",
2511
- " (PERSON Jennifer/NNP)\n",
2512
- " introduced/VBD\n",
2513
- " (PERSON Emily/RB Michael/NNP)\n",
2514
- " friend/VBP\n",
2515
- " (PERSON Carlos/NNP Mendez/NNP)\n",
2516
- " software/NN\n",
2517
- " engineer/NN\n",
2518
- " (PERSON Facebook/NNP)\n",
2519
- " specialized/VBD\n",
2520
- " developing/VBG\n",
2521
- " algorithms/JJ\n",
2522
- " social/JJ\n",
2523
- " media/NNS\n",
2524
- " analytics/NNS\n",
2525
- " keynote/VBP\n",
2526
- " speaker/NN\n",
2527
- " event/NN\n",
2528
- " none/NN\n",
2529
- " Dr./NNP\n",
2530
- " (PERSON Elizabeth/NNP Warren/NNP)\n",
2531
- " distinguished/VBD\n",
2532
- " professor/NN\n",
2533
- " (PERSON Stanford/NNP University/NNP)\n",
2534
- " Dr./NNP\n",
2535
- " Warren/NNP\n",
2536
- " speech/NN\n",
2537
- " focused/VBD\n",
2538
- " ethical/JJ\n",
2539
- " implications/NNS\n",
2540
- " AI/VBP\n",
2541
- " importance/NN\n",
2542
- " developing/VBG\n",
2543
- " technologies/NNS\n",
2544
- " benefit/VBP\n",
2545
- " humanity/NN\n",
2546
- " whole/JJ\n",
2547
- " insights/NNS\n",
2548
- " sparked/VBD\n",
2549
- " lively/JJ\n",
2550
- " discussion/NN\n",
2551
- " among/IN\n",
2552
- " attendees/NNS\n",
2553
- " including/VBG\n",
2554
- " (PERSON Sarah/NNP Johnson/NNP)\n",
2555
- " policy/NN\n",
2556
- " advisor/NN\n",
2557
- " (ORGANIZATION United/NNP Nations/NNP Ahmed/NNP Khan/NNP)\n",
2558
- " cybersecurity/NN\n",
2559
- " expert/NN\n",
2560
- " (ORGANIZATION Microsoft/NNP)\n",
2561
- " breaks/NNS\n",
2562
- " sessions/NNS\n",
2563
- " attendees/NNS\n",
2564
- " mingled/VBD\n",
2565
- " exchanged/VBN\n",
2566
- " ideas/NNS\n",
2567
- " Emily/RB\n",
2568
- " caught/VBD\n",
2569
- " former/JJ\n",
2570
- " classmate/NN\n",
2571
- " (PERSON David/NNP Kim/NNP)\n",
2572
- " works/VBZ\n",
2573
- " data/NNS\n",
2574
- " analyst/NN\n",
2575
- " (PERSON Amazon/NNP David/NNP)\n",
2576
- " introduced/VBD\n",
2577
- " colleague/NN\n",
2578
- " (PERSON Jessica/NNP Brown/NNP)\n",
2579
- " machine/NN\n",
2580
- " learning/VBG\n",
2581
- " engineer/JJ\n",
2582
- " knack/NN\n",
2583
- " developing/VBG\n",
2584
- " innovative/JJ\n",
2585
- " solutions/NNS\n",
2586
- " complex/JJ\n",
2587
- " problems/NNS\n",
2588
- " Emily/RB\n",
2589
- " particularly/RB\n",
2590
- " interested/JJ\n",
2591
- " (ORGANIZATION Jessica/NNP)\n",
2592
- " work/NN\n",
2593
- " natural/JJ\n",
2594
- " language/NN\n",
2595
- " processing/NN\n",
2596
- " invited/JJ\n",
2597
- " collaborate/NN\n",
2598
- " future/NN\n",
2599
- " project/NN\n",
2600
- " another/DT\n",
2601
- " corner/NN\n",
2602
- " room/NN\n",
2603
- " (PERSON Michael/NNP)\n",
2604
- " deep/JJ\n",
2605
- " conversation/NN\n",
2606
- " (PERSON Raj/NNP Patel/NNP)\n",
2607
- " roboticist/NN\n",
2608
- " (PERSON Carnegie/NNP Mellon/NNP University/NNP Raj/NNP)\n",
2609
- " recently/RB\n",
2610
- " developed/VBD\n",
2611
- " new/JJ\n",
2612
- " type/NN\n",
2613
- " robotic/JJ\n",
2614
- " arm/NN\n",
2615
- " could/MD\n",
2616
- " perform/VB\n",
2617
- " delicate/JJ\n",
2618
- " surgical/JJ\n",
2619
- " procedures/NNS\n",
2620
- " unprecedented/JJ\n",
2621
- " precision/NN\n",
2622
- " accompanied/VBN\n",
2623
- " research/NN\n",
2624
- " assistant/NN\n",
2625
- " (PERSON Maria/NNP Gonzalez/NNP)\n",
2626
- " instrumental/JJ\n",
2627
- " project/NN\n",
2628
- " success/NN\n",
2629
- " (PERSON Michael/NNP)\n",
2630
- " fascinated/VBD\n",
2631
- " work/NN\n",
2632
- " proposed/VBN\n",
2633
- " partnership/NN\n",
2634
- " integrate/NN\n",
2635
- " technology/NN\n",
2636
- " AI/NNP\n",
2637
- " algorithms/VBD\n",
2638
- " day/NN\n",
2639
- " progressed/VBD\n",
2640
- " conference/NN\n",
2641
- " attendees/NNS\n",
2642
- " treated/VBD\n",
2643
- " series/NN\n",
2644
- " insightful/JJ\n",
2645
- " presentations/NNS\n",
2646
- " Dr./NNP\n",
2647
- " (PERSON James/NNP Clark/NNP Harvard/NNP University/NNP)\n",
2648
- " shared/VBD\n",
2649
- " research/NN\n",
2650
- " deep/NN\n",
2651
- " learning/NN\n",
2652
- " applications/NNS\n",
2653
- " healthcare/VBP\n",
2654
- " followed/VBN\n",
2655
- " (PERSON Lisa/NNP Robinson/NNP)\n",
2656
- " computer/NN\n",
2657
- " vision/NN\n",
2658
- " expert/JJ\n",
2659
- " (PERSON Nvidia/NNP)\n",
2660
- " demonstrated/VBD\n",
2661
- " latest/JJS\n",
2662
- " advancements/NNS\n",
2663
- " image/NN\n",
2664
- " recognition/NN\n",
2665
- " technology/NN\n",
2666
- " audience/NN\n",
2667
- " particularly/RB\n",
2668
- " impressed/JJ\n",
2669
- " presentation/NN\n",
2670
- " Dr./NNP\n",
2671
- " (PERSON Ananya/NNP Singh/NNP AI/NNP)\n",
2672
- " ethicist/NN\n",
2673
- " (PERSON Oxford/NNP University/NNP)\n",
2674
- " discussed/VBD\n",
2675
- " societal/JJ\n",
2676
- " impacts/NNS\n",
2677
- " AI/NNP\n",
2678
- " importance/NN\n",
2679
- " responsible/JJ\n",
2680
- " innovation/NN\n",
2681
- " evening/VBG\n",
2682
- " attendees/NNS\n",
2683
- " gathered/VBN\n",
2684
- " gala/NN\n",
2685
- " dinner/NN\n",
2686
- " (PERSON Grand/NNP Hyatt/NNP Hotel/NNP)\n",
2687
- " event/NN\n",
2688
- " perfect/JJ\n",
2689
- " opportunity/NN\n",
2690
- " networking/VBG\n",
2691
- " fostering/VBG\n",
2692
- " new/JJ\n",
2693
- " collaborations/NNS\n",
2694
- " Emily/RB\n",
2695
- " found/VBD\n",
2696
- " seated/VBN\n",
2697
- " next/JJ\n",
2698
- " (PERSON Henry/NNP Zhang/NNP)\n",
2699
- " venture/NN\n",
2700
- " capitalist/NN\n",
2701
- " (PERSON Sequoia/NNP Capital/NNP)\n",
2702
- " keen/JJ\n",
2703
- " invest/JJS\n",
2704
- " promising/VBG\n",
2705
- " AI/NNP\n",
2706
- " startups/NNS\n",
2707
- " joined/VBD\n",
2708
- " (PERSON Priya/NNP Sharma/NNP)\n",
2709
- " legal/JJ\n",
2710
- " expert/NN\n",
2711
- " (PERSON Electronic/NNP Frontier/NNP Foundation/NNP)\n",
2712
- " provided/VBD\n",
2713
- " valuable/JJ\n",
2714
- " insights/NNS\n",
2715
- " regulatory/JJ\n",
2716
- " landscape/NN\n",
2717
- " emerging/VBG\n",
2718
- " technologies/NNS\n",
2719
- " table/JJ\n",
2720
- " (PERSON Michael/NNP)\n",
2721
- " struck/VBD\n",
2722
- " conversation/NN\n",
2723
- " (PERSON Laura/NNP Martinez/NNP)\n",
2724
- " bioinformatics/NNS\n",
2725
- " researcher/VBP\n",
2726
- " (ORGANIZATION University/NNP California/NNP Berkeley/NNP)\n",
2727
- " Laura/NNP\n",
2728
- " working/VBG\n",
2729
- " project/NN\n",
2730
- " use/NN\n",
2731
- " AI/NNP\n",
2732
- " predicting/VBG\n",
2733
- " genetic/JJ\n",
2734
- " disorders/NNS\n",
2735
- " interested/JJ\n",
2736
- " (PERSON Michael/NNP)\n",
2737
- " expertise/NN\n",
2738
- " neural/JJ\n",
2739
- " networks/NNS\n",
2740
- " exchanged/VBD\n",
2741
- " contact/JJ\n",
2742
- " information/NN\n",
2743
- " planned/VBN\n",
2744
- " meet/NN\n",
2745
- " conference/NN\n",
2746
- " discuss/VBP\n",
2747
- " potential/JJ\n",
2748
- " collaborations/NNS\n",
2749
- " Meanwhile/RB\n",
2750
- " (PERSON Jennifer/NNP Carlos/NNP)\n",
2751
- " deep/JJ\n",
2752
- " discussion/NN\n",
2753
- " (PERSON Ethan/NNP Liu/NNP)\n",
2754
- " blockchain/VBP\n",
2755
- " developer/NN\n",
2756
- " (ORGANIZATION IBM/NNP)\n",
2757
- " potential/JJ\n",
2758
- " combining/NN\n",
2759
- " AI/NNP\n",
2760
- " blockchain/NN\n",
2761
- " technology/NN\n",
2762
- " enhance/NN\n",
2763
- " data/NNS\n",
2764
- " security/NN\n",
2765
- " (PERSON Ethan/NNP)\n",
2766
- " colleague/NN\n",
2767
- " Dr./NNP\n",
2768
- " (PERSON Olivia/NNP Parker/NNP)\n",
2769
- " joined/VBD\n",
2770
- " conversation/NN\n",
2771
- " bringing/VBG\n",
2772
- " expertise/NN\n",
2773
- " cryptography/NN\n",
2774
- " table/NN\n",
2775
- " group/NN\n",
2776
- " brainstormed/VBD\n",
2777
- " various/JJ\n",
2778
- " applications/NNS\n",
2779
- " decided/VBD\n",
2780
- " form/NN\n",
2781
- " working/VBG\n",
2782
- " group/NN\n",
2783
- " explore/VBD\n",
2784
- " ideas/NNS\n",
2785
- " next/IN\n",
2786
- " morning/NN\n",
2787
- " conference/NN\n",
2788
- " resumed/VBD\n",
2789
- " panel/NN\n",
2790
- " discussion/NN\n",
2791
- " featuring/VBG\n",
2792
- " several/JJ\n",
2793
- " industry/NN\n",
2794
- " leaders/NNS\n",
2795
- " Among/IN\n",
2796
- " Dr./NNP\n",
2797
- " (PERSON William/NNP Harris/NNP)\n",
2798
- " CEO/NNP\n",
2799
- " AI/NNP\n",
2800
- " Inc./NNP\n",
2801
- " Dr./NNP\n",
2802
- " (PERSON Katherine/NNP Adams/NNP)\n",
2803
- " senior/JJ\n",
2804
- " researcher/NN\n",
2805
- " (ORGANIZATION OpenAI/NNP)\n",
2806
- " discussed/VBD\n",
2807
- " future/JJ\n",
2808
- " AI/NNP\n",
2809
- " potential/JJ\n",
2810
- " transform/NN\n",
2811
- " industries/NNS\n",
2812
- " ranging/VBG\n",
2813
- " healthcare/NN\n",
2814
- " finance/NN\n",
2815
- " panel/NN\n",
2816
- " also/RB\n",
2817
- " included/VBD\n",
2818
- " Dr./NNP\n",
2819
- " Mei/NNP\n",
2820
- " Ling/NNP\n",
2821
- " professor/NN\n",
2822
- " (ORGANIZATION University/NNP Tokyo/NNP)\n",
2823
- " highlighted/VBD\n",
2824
- " advancements/NNS\n",
2825
- " AI/NNP\n",
2826
- " research/NN\n",
2827
- " (GPE Asia/NNP)\n",
2828
- " audience/NN\n",
2829
- " Emily/RB\n",
2830
- " (PERSON Michael/NNP)\n",
2831
- " sat/VBD\n",
2832
- " new/JJ\n",
2833
- " acquaintances/NNS\n",
2834
- " eager/JJ\n",
2835
- " absorb/JJ\n",
2836
- " wealth/NN\n",
2837
- " knowledge/NN\n",
2838
- " shared/VBD\n",
2839
- " particularly/RB\n",
2840
- " inspired/JJ\n",
2841
- " talk/NN\n",
2842
- " Dr./NNP\n",
2843
- " (PERSON Samuel/NNP Green/NNP)\n",
2844
- " cognitive/JJ\n",
2845
- " scientist/NN\n",
2846
- " (ORGANIZATION Yale/NNP University/NNP)\n",
2847
- " discussed/VBD\n",
2848
- " intersection/NN\n",
2849
- " AI/NNP\n",
2850
- " human/JJ\n",
2851
- " cognition/NN\n",
2852
- " research/NN\n",
2853
- " AI/NNP\n",
2854
- " augment/JJ\n",
2855
- " human/JJ\n",
2856
- " decision-making/NN\n",
2857
- " resonated/VBD\n",
2858
- " deeply/RB\n",
2859
- " audience/NN\n",
2860
- " conference/NN\n",
2861
- " drew/VBD\n",
2862
- " close/JJ\n",
2863
- " attendees/NNS\n",
2864
- " reflected/VBD\n",
2865
- " valuable/JJ\n",
2866
- " connections/NNS\n",
2867
- " made/VBD\n",
2868
- " new/JJ\n",
2869
- " knowledge/NN\n",
2870
- " gained/VBN\n",
2871
- " (PERSON Emily/RB Michael/NNP)\n",
2872
- " felt/VBD\n",
2873
- " energized/VBN\n",
2874
- " excited/JJ\n",
2875
- " future/JJ\n",
2876
- " research/NN\n",
2877
- " formed/VBD\n",
2878
- " new/JJ\n",
2879
- " collaborations/NNS\n",
2880
- " (PERSON Jessica/NNP Raj/NNP Laura/NNP)\n",
2881
- " eager/JJ\n",
2882
- " start/VBP\n",
2883
- " working/VBG\n",
2884
- " joint/JJ\n",
2885
- " projects/NNS\n",
2886
- " leaving/VBG\n",
2887
- " took/VBD\n",
2888
- " moment/NN\n",
2889
- " thank/NN\n",
2890
- " conference/NN\n",
2891
- " organizers/NNS\n",
2892
- " including/VBG\n",
2893
- " Dr./NNP\n",
2894
- " (PERSON Karen/NNP Wilson/NNP)\n",
2895
- " director/NN\n",
2896
- " (PERSON Tech/NNP Innovators/NNP Network/NNP)\n",
2897
- " team/NN\n",
2898
- " event/NN\n",
2899
- " resounding/VBG\n",
2900
- " success/NN\n",
2901
- " bringing/VBG\n",
2902
- " together/RB\n",
2903
- " brightest/JJS\n",
2904
- " minds/NNS\n",
2905
- " field/NN\n",
2906
- " AI/NNP\n",
2907
- " fostering/VBG\n",
2908
- " spirit/JJ\n",
2909
- " innovation/NN\n",
2910
- " collaboration/NN\n",
2911
- " boarded/VBD\n",
2912
- " flight/NN\n",
2913
- " back/RB\n",
2914
- " (PERSON Boston/NNP Emily/NNP Michael/NNP)\n",
2915
- " could/MD\n",
2916
- " n't/RB\n",
2917
- " help/VB\n",
2918
- " feel/VB\n",
2919
- " optimistic/JJ\n",
2920
- " future/NN\n",
2921
- " knew/VBD\n",
2922
- " connections/NNS\n",
2923
- " made/VBN\n",
2924
- " conference/NN\n",
2925
- " would/MD\n",
2926
- " lead/VB\n",
2927
- " exciting/VBG\n",
2928
- " new/JJ\n",
2929
- " opportunities/NNS\n",
2930
- " advancements/NNS\n",
2931
- " research/NN\n",
2932
- " determined/VBD\n",
2933
- " ever/RB\n",
2934
- " push/JJ\n",
2935
- " boundaries/NNS\n",
2936
- " AI/NNP\n",
2937
- " could/MD\n",
2938
- " achieve/VB\n",
2939
- " ensure/VB\n",
2940
- " work/NN\n",
2941
- " would/MD\n",
2942
- " positive/JJ\n",
2943
- " impact/NN\n",
2944
- " world/NN\n",
2945
- " weeks/NNS\n",
2946
- " followed/VBD\n",
2947
- " (PERSON Emily/RB Michael/NNP)\n",
2948
- " stayed/VBD\n",
2949
- " touch/JJ\n",
2950
- " new/JJ\n",
2951
- " collaborators/NNS\n",
2952
- " began/VBD\n",
2953
- " working/VBG\n",
2954
- " joint/JJ\n",
2955
- " projects/NNS\n",
2956
- " sharing/VBG\n",
2957
- " ideas/JJ\n",
2958
- " resources/NNS\n",
2959
- " push/NN\n",
2960
- " boundaries/NNS\n",
2961
- " AI/NNP\n",
2962
- " research/NN\n",
2963
- " (PERSON Emily/NNP)\n",
2964
- " collaborated/VBD\n",
2965
- " (PERSON Jessica/NNP)\n",
2966
- " project/NN\n",
2967
- " enhance/NN\n",
2968
- " natural/JJ\n",
2969
- " language/NN\n",
2970
- " processing/NN\n",
2971
- " algorithms/NN\n",
2972
- " (PERSON Michael/NNP)\n",
2973
- " worked/VBD\n",
2974
- " (PERSON Raj/NNP Maria/NNP)\n",
2975
- " integrate/VBP\n",
2976
- " robotic/JJ\n",
2977
- " technology/NN\n",
2978
- " neural/JJ\n",
2979
- " networks/NNS\n",
2980
- " (PERSON Laura/NNP Emily/NNP)\n",
2981
- " started/VBD\n",
2982
- " project/NN\n",
2983
- " using/VBG\n",
2984
- " (ORGANIZATION AI/NNP)\n",
2985
- " predict/JJ\n",
2986
- " genetic/JJ\n",
2987
- " disorders/NNS\n",
2988
- " combining/VBG\n",
2989
- " expertise/NN\n",
2990
- " tackle/NN\n",
2991
- " complex/JJ\n",
2992
- " biological/JJ\n",
2993
- " problems/NNS\n",
2994
- " conference/NN\n",
2995
- " expanded/VBD\n",
2996
- " professional/JJ\n",
2997
- " networks/NNS\n",
2998
- " also/RB\n",
2999
- " enriched/VBD\n",
3000
- " understanding/JJ\n",
3001
- " diverse/JJ\n",
3002
- " applications/NNS\n",
3003
- " AI/VBP\n",
3004
- " grateful/JJ\n",
3005
- " opportunity/NN\n",
3006
- " connect/VBP\n",
3007
- " many/JJ\n",
3008
- " talented/JJ\n",
3009
- " individuals/NNS\n",
3010
- " looked/VBD\n",
3011
- " forward/RB\n",
3012
- " future/JJ\n",
3013
- " renewed/VBN\n",
3014
- " enthusiasm/NN\n",
3015
- " sense/NN\n",
3016
- " purpose/NN\n",
3017
- " (PERSON Tech/NNP Innovators/NNP Conference/NNP)\n",
3018
- " transformative/JJ\n",
3019
- " experience/NN\n",
3020
- " setting/VBG\n",
3021
- " stage/NN\n",
3022
- " new/JJ\n",
3023
- " discoveries/NNS\n",
3024
- " groundbreaking/VBG\n",
3025
- " advancements/NNS\n",
3026
- " field/NN\n",
3027
- " artificial/JJ\n",
3028
- " intelligence/NN)\n"
3029
- ]
3030
- }
3031
- ],
3032
- "source": [
3033
- "from nltk import ne_chunk\n",
3034
- "\n",
3035
- "# Perform Named Entity Recognition (NER)\n",
3036
- "named_entities = ne_chunk(tagged_tokens)\n",
3037
- "\n",
3038
- "print(\"\\nNamed Entities:\")\n",
3039
- "print(named_entities)"
3040
- ]
3041
- },
3042
- {
3043
- "cell_type": "code",
3044
- "execution_count": 93,
3045
- "id": "3e569e76-e1b7-4284-a029-e2ca46bf0c15",
3046
- "metadata": {},
3047
- "outputs": [
3048
- {
3049
- "name": "stdout",
3050
- "output_type": "stream",
3051
- "text": [
3052
- "\n",
3053
- "Faculty:\n",
3054
- "{'Ethan Liu', 'San Francisco', 'James Clark Harvard University', 'Boston Emily Michael', 'Electronic Frontier Foundation', 'Jennifer', 'Michael', 'Karen Wilson', 'Nvidia', 'Grand Hyatt Hotel', 'Carlos Mendez', 'Jessica Raj Laura', 'Laura Martinez', 'Ethan', 'Raj Patel', 'Tech Innovators Network', 'David Kim', 'Chen', 'Oxford University', 'Jennifer Carlos', 'Michael Thompson', 'Google', 'Carnegie Mellon University Raj', 'Samuel Green', 'Katherine Adams', 'Henry Zhang', 'Sequoia Capital', 'Stanford University', 'Facebook', 'Ananya Singh AI', 'Tech Innovators Conference', 'Maria Gonzalez', 'Jessica', 'Emily', 'Emily Michael', 'Lisa Robinson', 'Jennifer Lee', 'Jessica Brown', 'Laura Emily', 'Robert Lang', 'Priya Sharma', 'William Harris', 'Sarah Johnson', 'Elizabeth Warren', 'Amazon David', 'Olivia Parker', 'Raj Maria'}\n"
3055
- ]
3056
- }
3057
- ],
3058
- "source": [
3059
- "# Extract names (proper nouns identified by NE chunking)\n",
3060
- "names = []\n",
3061
- "for subtree in named_entities:\n",
3062
- " if isinstance(subtree, nltk.Tree) and subtree.label() == 'PERSON':\n",
3063
- " name = \" \".join([leaf[0] for leaf in subtree.leaves()])\n",
3064
- " names.append(name)\n",
3065
- "\n",
3066
- "# Group names as \"faculty\"\n",
3067
- "faculty = set(names)\n",
3068
- "\n",
3069
- "print(\"\\nFaculty:\")\n",
3070
- "print(faculty)"
3071
- ]
3072
- }
3073
- ],
3074
- "metadata": {
3075
- "kernelspec": {
3076
- "display_name": "Python 3 (ipykernel)",
3077
- "language": "python",
3078
- "name": "python3"
3079
- },
3080
- "language_info": {
3081
- "codemirror_mode": {
3082
- "name": "ipython",
3083
- "version": 3
3084
- },
3085
- "file_extension": ".py",
3086
- "mimetype": "text/x-python",
3087
- "name": "python",
3088
- "nbconvert_exporter": "python",
3089
- "pygments_lexer": "ipython3",
3090
- "version": "3.11.7"
3091
- }
3092
- },
3093
- "nbformat": 4,
3094
- "nbformat_minor": 5
3095
- }