multipers 2.2.3__cp312-cp312-win_amd64.whl → 2.3.0__cp312-cp312-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of multipers might be problematic. Click here for more details.

Files changed (182) hide show
  1. multipers/__init__.py +33 -31
  2. multipers/_signed_measure_meta.py +430 -430
  3. multipers/_slicer_meta.py +211 -212
  4. multipers/data/MOL2.py +458 -458
  5. multipers/data/UCR.py +18 -18
  6. multipers/data/graphs.py +466 -466
  7. multipers/data/immuno_regions.py +27 -27
  8. multipers/data/pytorch2simplextree.py +90 -90
  9. multipers/data/shape3d.py +101 -101
  10. multipers/data/synthetic.py +113 -111
  11. multipers/distances.py +198 -198
  12. multipers/filtration_conversions.pxd.tp +84 -84
  13. multipers/filtrations/__init__.py +18 -0
  14. multipers/filtrations/filtrations.py +289 -0
  15. multipers/filtrations.pxd +224 -224
  16. multipers/function_rips.cp312-win_amd64.pyd +0 -0
  17. multipers/function_rips.pyx +105 -105
  18. multipers/grids.cp312-win_amd64.pyd +0 -0
  19. multipers/grids.pyx +350 -350
  20. multipers/gudhi/Persistence_slices_interface.h +132 -132
  21. multipers/gudhi/Simplex_tree_interface.h +239 -245
  22. multipers/gudhi/Simplex_tree_multi_interface.h +516 -561
  23. multipers/gudhi/cubical_to_boundary.h +59 -59
  24. multipers/gudhi/gudhi/Bitmap_cubical_complex.h +450 -450
  25. multipers/gudhi/gudhi/Bitmap_cubical_complex_base.h +1070 -1070
  26. multipers/gudhi/gudhi/Bitmap_cubical_complex_periodic_boundary_conditions_base.h +579 -579
  27. multipers/gudhi/gudhi/Debug_utils.h +45 -45
  28. multipers/gudhi/gudhi/Fields/Multi_field.h +484 -484
  29. multipers/gudhi/gudhi/Fields/Multi_field_operators.h +455 -455
  30. multipers/gudhi/gudhi/Fields/Multi_field_shared.h +450 -450
  31. multipers/gudhi/gudhi/Fields/Multi_field_small.h +531 -531
  32. multipers/gudhi/gudhi/Fields/Multi_field_small_operators.h +507 -507
  33. multipers/gudhi/gudhi/Fields/Multi_field_small_shared.h +531 -531
  34. multipers/gudhi/gudhi/Fields/Z2_field.h +355 -355
  35. multipers/gudhi/gudhi/Fields/Z2_field_operators.h +376 -376
  36. multipers/gudhi/gudhi/Fields/Zp_field.h +420 -420
  37. multipers/gudhi/gudhi/Fields/Zp_field_operators.h +400 -400
  38. multipers/gudhi/gudhi/Fields/Zp_field_shared.h +418 -418
  39. multipers/gudhi/gudhi/Flag_complex_edge_collapser.h +337 -337
  40. multipers/gudhi/gudhi/Matrix.h +2107 -2107
  41. multipers/gudhi/gudhi/Multi_critical_filtration.h +1038 -1038
  42. multipers/gudhi/gudhi/Multi_persistence/Box.h +171 -171
  43. multipers/gudhi/gudhi/Multi_persistence/Line.h +282 -282
  44. multipers/gudhi/gudhi/Off_reader.h +173 -173
  45. multipers/gudhi/gudhi/One_critical_filtration.h +1432 -1431
  46. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix.h +769 -769
  47. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix_with_column_compression.h +686 -686
  48. multipers/gudhi/gudhi/Persistence_matrix/Boundary_matrix.h +842 -842
  49. multipers/gudhi/gudhi/Persistence_matrix/Chain_matrix.h +1350 -1350
  50. multipers/gudhi/gudhi/Persistence_matrix/Id_to_index_overlay.h +1105 -1105
  51. multipers/gudhi/gudhi/Persistence_matrix/Position_to_index_overlay.h +859 -859
  52. multipers/gudhi/gudhi/Persistence_matrix/RU_matrix.h +910 -910
  53. multipers/gudhi/gudhi/Persistence_matrix/allocators/entry_constructors.h +139 -139
  54. multipers/gudhi/gudhi/Persistence_matrix/base_pairing.h +230 -230
  55. multipers/gudhi/gudhi/Persistence_matrix/base_swap.h +211 -211
  56. multipers/gudhi/gudhi/Persistence_matrix/boundary_cell_position_to_id_mapper.h +60 -60
  57. multipers/gudhi/gudhi/Persistence_matrix/boundary_face_position_to_id_mapper.h +60 -60
  58. multipers/gudhi/gudhi/Persistence_matrix/chain_pairing.h +136 -136
  59. multipers/gudhi/gudhi/Persistence_matrix/chain_rep_cycles.h +190 -190
  60. multipers/gudhi/gudhi/Persistence_matrix/chain_vine_swap.h +616 -616
  61. multipers/gudhi/gudhi/Persistence_matrix/columns/chain_column_extra_properties.h +150 -150
  62. multipers/gudhi/gudhi/Persistence_matrix/columns/column_dimension_holder.h +106 -106
  63. multipers/gudhi/gudhi/Persistence_matrix/columns/column_utilities.h +219 -219
  64. multipers/gudhi/gudhi/Persistence_matrix/columns/entry_types.h +327 -327
  65. multipers/gudhi/gudhi/Persistence_matrix/columns/heap_column.h +1140 -1140
  66. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_list_column.h +934 -934
  67. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_set_column.h +934 -934
  68. multipers/gudhi/gudhi/Persistence_matrix/columns/list_column.h +980 -980
  69. multipers/gudhi/gudhi/Persistence_matrix/columns/naive_vector_column.h +1092 -1092
  70. multipers/gudhi/gudhi/Persistence_matrix/columns/row_access.h +192 -192
  71. multipers/gudhi/gudhi/Persistence_matrix/columns/set_column.h +921 -921
  72. multipers/gudhi/gudhi/Persistence_matrix/columns/small_vector_column.h +1093 -1093
  73. multipers/gudhi/gudhi/Persistence_matrix/columns/unordered_set_column.h +1012 -1012
  74. multipers/gudhi/gudhi/Persistence_matrix/columns/vector_column.h +1244 -1244
  75. multipers/gudhi/gudhi/Persistence_matrix/matrix_dimension_holders.h +186 -186
  76. multipers/gudhi/gudhi/Persistence_matrix/matrix_row_access.h +164 -164
  77. multipers/gudhi/gudhi/Persistence_matrix/ru_pairing.h +156 -156
  78. multipers/gudhi/gudhi/Persistence_matrix/ru_rep_cycles.h +376 -376
  79. multipers/gudhi/gudhi/Persistence_matrix/ru_vine_swap.h +540 -540
  80. multipers/gudhi/gudhi/Persistent_cohomology/Field_Zp.h +118 -118
  81. multipers/gudhi/gudhi/Persistent_cohomology/Multi_field.h +173 -173
  82. multipers/gudhi/gudhi/Persistent_cohomology/Persistent_cohomology_column.h +128 -128
  83. multipers/gudhi/gudhi/Persistent_cohomology.h +745 -745
  84. multipers/gudhi/gudhi/Points_off_io.h +171 -171
  85. multipers/gudhi/gudhi/Simple_object_pool.h +69 -69
  86. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_iterators.h +463 -463
  87. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_node_explicit_storage.h +83 -83
  88. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_siblings.h +106 -106
  89. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_star_simplex_iterators.h +277 -277
  90. multipers/gudhi/gudhi/Simplex_tree/hooks_simplex_base.h +62 -62
  91. multipers/gudhi/gudhi/Simplex_tree/indexing_tag.h +27 -27
  92. multipers/gudhi/gudhi/Simplex_tree/serialization_utils.h +62 -62
  93. multipers/gudhi/gudhi/Simplex_tree/simplex_tree_options.h +157 -157
  94. multipers/gudhi/gudhi/Simplex_tree.h +2794 -2794
  95. multipers/gudhi/gudhi/Simplex_tree_multi.h +152 -163
  96. multipers/gudhi/gudhi/distance_functions.h +62 -62
  97. multipers/gudhi/gudhi/graph_simplicial_complex.h +104 -104
  98. multipers/gudhi/gudhi/persistence_interval.h +253 -253
  99. multipers/gudhi/gudhi/persistence_matrix_options.h +170 -170
  100. multipers/gudhi/gudhi/reader_utils.h +367 -367
  101. multipers/gudhi/mma_interface_coh.h +256 -255
  102. multipers/gudhi/mma_interface_h0.h +223 -231
  103. multipers/gudhi/mma_interface_matrix.h +284 -282
  104. multipers/gudhi/naive_merge_tree.h +536 -575
  105. multipers/gudhi/scc_io.h +310 -289
  106. multipers/gudhi/truc.h +890 -888
  107. multipers/io.cp312-win_amd64.pyd +0 -0
  108. multipers/io.pyx +711 -711
  109. multipers/ml/accuracies.py +90 -90
  110. multipers/ml/convolutions.py +520 -520
  111. multipers/ml/invariants_with_persistable.py +79 -79
  112. multipers/ml/kernels.py +176 -176
  113. multipers/ml/mma.py +713 -714
  114. multipers/ml/one.py +472 -472
  115. multipers/ml/point_clouds.py +352 -346
  116. multipers/ml/signed_measures.py +1589 -1589
  117. multipers/ml/sliced_wasserstein.py +461 -461
  118. multipers/ml/tools.py +113 -113
  119. multipers/mma_structures.cp312-win_amd64.pyd +0 -0
  120. multipers/mma_structures.pxd +127 -127
  121. multipers/mma_structures.pyx +4 -4
  122. multipers/mma_structures.pyx.tp +1085 -1085
  123. multipers/multi_parameter_rank_invariant/diff_helpers.h +84 -93
  124. multipers/multi_parameter_rank_invariant/euler_characteristic.h +97 -97
  125. multipers/multi_parameter_rank_invariant/function_rips.h +322 -322
  126. multipers/multi_parameter_rank_invariant/hilbert_function.h +769 -769
  127. multipers/multi_parameter_rank_invariant/persistence_slices.h +148 -148
  128. multipers/multi_parameter_rank_invariant/rank_invariant.h +369 -369
  129. multipers/multiparameter_edge_collapse.py +41 -41
  130. multipers/multiparameter_module_approximation/approximation.h +2296 -2295
  131. multipers/multiparameter_module_approximation/combinatory.h +129 -129
  132. multipers/multiparameter_module_approximation/debug.h +107 -107
  133. multipers/multiparameter_module_approximation/format_python-cpp.h +286 -286
  134. multipers/multiparameter_module_approximation/heap_column.h +238 -238
  135. multipers/multiparameter_module_approximation/images.h +79 -79
  136. multipers/multiparameter_module_approximation/list_column.h +174 -174
  137. multipers/multiparameter_module_approximation/list_column_2.h +232 -232
  138. multipers/multiparameter_module_approximation/ru_matrix.h +347 -347
  139. multipers/multiparameter_module_approximation/set_column.h +135 -135
  140. multipers/multiparameter_module_approximation/structure_higher_dim_barcode.h +36 -36
  141. multipers/multiparameter_module_approximation/unordered_set_column.h +166 -166
  142. multipers/multiparameter_module_approximation/utilities.h +403 -419
  143. multipers/multiparameter_module_approximation/vector_column.h +223 -223
  144. multipers/multiparameter_module_approximation/vector_matrix.h +331 -331
  145. multipers/multiparameter_module_approximation/vineyards.h +464 -464
  146. multipers/multiparameter_module_approximation/vineyards_trajectories.h +649 -649
  147. multipers/multiparameter_module_approximation.cp312-win_amd64.pyd +0 -0
  148. multipers/multiparameter_module_approximation.pyx +216 -217
  149. multipers/pickle.py +90 -53
  150. multipers/plots.py +342 -334
  151. multipers/point_measure.cp312-win_amd64.pyd +0 -0
  152. multipers/point_measure.pyx +322 -320
  153. multipers/simplex_tree_multi.cp312-win_amd64.pyd +0 -0
  154. multipers/simplex_tree_multi.pxd +133 -133
  155. multipers/simplex_tree_multi.pyx +18 -15
  156. multipers/simplex_tree_multi.pyx.tp +1939 -1935
  157. multipers/slicer.cp312-win_amd64.pyd +0 -0
  158. multipers/slicer.pxd +81 -20
  159. multipers/slicer.pxd.tp +215 -214
  160. multipers/slicer.pyx +1091 -308
  161. multipers/slicer.pyx.tp +924 -914
  162. multipers/tensor/tensor.h +672 -672
  163. multipers/tensor.pxd +13 -13
  164. multipers/test.pyx +44 -44
  165. multipers/tests/__init__.py +57 -57
  166. multipers/torch/diff_grids.py +217 -217
  167. multipers/torch/rips_density.py +310 -304
  168. {multipers-2.2.3.dist-info → multipers-2.3.0.dist-info}/LICENSE +21 -21
  169. {multipers-2.2.3.dist-info → multipers-2.3.0.dist-info}/METADATA +21 -11
  170. multipers-2.3.0.dist-info/RECORD +182 -0
  171. multipers/tests/test_diff_helper.py +0 -73
  172. multipers/tests/test_hilbert_function.py +0 -82
  173. multipers/tests/test_mma.py +0 -83
  174. multipers/tests/test_point_clouds.py +0 -49
  175. multipers/tests/test_python-cpp_conversion.py +0 -82
  176. multipers/tests/test_signed_betti.py +0 -181
  177. multipers/tests/test_signed_measure.py +0 -89
  178. multipers/tests/test_simplextreemulti.py +0 -221
  179. multipers/tests/test_slicer.py +0 -221
  180. multipers-2.2.3.dist-info/RECORD +0 -189
  181. {multipers-2.2.3.dist-info → multipers-2.3.0.dist-info}/WHEEL +0 -0
  182. {multipers-2.2.3.dist-info → multipers-2.3.0.dist-info}/top_level.txt +0 -0
@@ -1,79 +1,79 @@
1
- import persistable
2
-
3
-
4
- # requires installing ripser (pip install ripser) as well as persistable from the higher-homology branch,
5
- # which can be done as follows:
6
- # pip install git+https://github.com/LuisScoccola/persistable.git@higher-homology
7
- # NOTE: only accepts as input a distance matrix
8
- def hf_degree_rips(
9
- distance_matrix,
10
- min_rips_value,
11
- max_rips_value,
12
- max_normalized_degree,
13
- min_normalized_degree,
14
- grid_granularity,
15
- max_homological_dimension,
16
- subsample_size = None,
17
- ):
18
- if subsample_size == None:
19
- p = persistable.Persistable(distance_matrix, metric="precomputed")
20
- else:
21
- p = persistable.Persistable(distance_matrix, metric="precomputed", subsample=subsample_size)
22
-
23
- rips_values, normalized_degree_values, hilbert_functions, minimal_hilbert_decompositions = p._hilbert_function(
24
- min_rips_value,
25
- max_rips_value,
26
- max_normalized_degree,
27
- min_normalized_degree,
28
- grid_granularity,
29
- homological_dimension=max_homological_dimension,
30
- )
31
-
32
- return rips_values, normalized_degree_values, hilbert_functions, minimal_hilbert_decompositions
33
-
34
-
35
-
36
- def hf_h0_degree_rips(
37
- point_cloud,
38
- min_rips_value,
39
- max_rips_value,
40
- max_normalized_degree,
41
- min_normalized_degree,
42
- grid_granularity,
43
- ):
44
- p = persistable.Persistable(point_cloud, n_neighbors="all")
45
-
46
- rips_values, normalized_degree_values, hilbert_functions, minimal_hilbert_decompositions = p._hilbert_function(
47
- min_rips_value,
48
- max_rips_value,
49
- max_normalized_degree,
50
- min_normalized_degree,
51
- grid_granularity,
52
- )
53
-
54
- return rips_values, normalized_degree_values, hilbert_functions[0], minimal_hilbert_decompositions[0]
55
-
56
-
57
- def ri_h0_degree_rips(
58
- point_cloud,
59
- min_rips_value,
60
- max_rips_value,
61
- max_normalized_degree,
62
- min_normalized_degree,
63
- grid_granularity,
64
- ):
65
- p = persistable.Persistable(point_cloud, n_neighbors="all")
66
-
67
- rips_values, normalized_degree_values, rank_invariant, _, _ = p._rank_invariant(
68
- min_rips_value,
69
- max_rips_value,
70
- max_normalized_degree,
71
- min_normalized_degree,
72
- grid_granularity,
73
- )
74
-
75
- return rips_values, normalized_degree_values, rank_invariant
76
-
77
-
78
-
79
-
1
+ import persistable
2
+
3
+
4
+ # requires installing ripser (pip install ripser) as well as persistable from the higher-homology branch,
5
+ # which can be done as follows:
6
+ # pip install git+https://github.com/LuisScoccola/persistable.git@higher-homology
7
+ # NOTE: only accepts as input a distance matrix
8
+ def hf_degree_rips(
9
+ distance_matrix,
10
+ min_rips_value,
11
+ max_rips_value,
12
+ max_normalized_degree,
13
+ min_normalized_degree,
14
+ grid_granularity,
15
+ max_homological_dimension,
16
+ subsample_size = None,
17
+ ):
18
+ if subsample_size == None:
19
+ p = persistable.Persistable(distance_matrix, metric="precomputed")
20
+ else:
21
+ p = persistable.Persistable(distance_matrix, metric="precomputed", subsample=subsample_size)
22
+
23
+ rips_values, normalized_degree_values, hilbert_functions, minimal_hilbert_decompositions = p._hilbert_function(
24
+ min_rips_value,
25
+ max_rips_value,
26
+ max_normalized_degree,
27
+ min_normalized_degree,
28
+ grid_granularity,
29
+ homological_dimension=max_homological_dimension,
30
+ )
31
+
32
+ return rips_values, normalized_degree_values, hilbert_functions, minimal_hilbert_decompositions
33
+
34
+
35
+
36
+ def hf_h0_degree_rips(
37
+ point_cloud,
38
+ min_rips_value,
39
+ max_rips_value,
40
+ max_normalized_degree,
41
+ min_normalized_degree,
42
+ grid_granularity,
43
+ ):
44
+ p = persistable.Persistable(point_cloud, n_neighbors="all")
45
+
46
+ rips_values, normalized_degree_values, hilbert_functions, minimal_hilbert_decompositions = p._hilbert_function(
47
+ min_rips_value,
48
+ max_rips_value,
49
+ max_normalized_degree,
50
+ min_normalized_degree,
51
+ grid_granularity,
52
+ )
53
+
54
+ return rips_values, normalized_degree_values, hilbert_functions[0], minimal_hilbert_decompositions[0]
55
+
56
+
57
+ def ri_h0_degree_rips(
58
+ point_cloud,
59
+ min_rips_value,
60
+ max_rips_value,
61
+ max_normalized_degree,
62
+ min_normalized_degree,
63
+ grid_granularity,
64
+ ):
65
+ p = persistable.Persistable(point_cloud, n_neighbors="all")
66
+
67
+ rips_values, normalized_degree_values, rank_invariant, _, _ = p._rank_invariant(
68
+ min_rips_value,
69
+ max_rips_value,
70
+ max_normalized_degree,
71
+ min_normalized_degree,
72
+ grid_granularity,
73
+ )
74
+
75
+ return rips_values, normalized_degree_values, rank_invariant
76
+
77
+
78
+
79
+
multipers/ml/kernels.py CHANGED
@@ -1,176 +1,176 @@
1
- from sklearn.base import BaseEstimator, TransformerMixin, clone
2
- import numpy as np
3
- from typing import Iterable
4
-
5
-
6
- # To do k folds with a distance matrix, we need to slice it into list of distances.
7
- # k-fold usually shuffles the lists, so we need to add an identifier to each entry,
8
- #
9
- class DistanceMatrix2DistanceList(BaseEstimator, TransformerMixin):
10
- def __init__(self) -> None:
11
- super().__init__()
12
-
13
- def fit(self, X, y=None):
14
- return self
15
-
16
- def transform(self, X):
17
- X = np.asarray(X)
18
- assert X.ndim == 2 # Its a matrix
19
- return np.asarray([[i, *distance_to_pt] for i, distance_to_pt in enumerate(X)])
20
-
21
-
22
- class DistanceList2DistanceMatrix(BaseEstimator, TransformerMixin):
23
- def __init__(self) -> None:
24
- super().__init__()
25
-
26
- def fit(self, X, y=None):
27
- return self
28
-
29
- def transform(self, X):
30
- index_list = (
31
- np.asarray(X[:, 0], dtype=int) + 1
32
- ) # shift of 1, because the first index is for indexing the pts
33
- return X[:, index_list] # The distance matrix of the index_list
34
-
35
-
36
- class DistanceMatrices2DistancesList(BaseEstimator, TransformerMixin):
37
- """
38
- Input (degree) x (distance matrix) or (axis) x (degree) x (distance matrix D)
39
- Output _ (D1) x opt (axis) x (degree) x (D2, , with indices first)
40
- """
41
-
42
- def __init__(self) -> None:
43
- super().__init__()
44
- self._axes = None
45
-
46
- def fit(self, X, y=None):
47
- X = np.asarray(X)
48
- self._axes = X.ndim == 4
49
- assert (
50
- self._axes or X.ndim == 3
51
- ), " Bad input shape. Input is either (degree) x (distance matrix) or (axis) x (degree) x (distance matrix) "
52
-
53
- return self
54
-
55
- def transform(self, X):
56
- X = np.asarray(X)
57
- assert (X.ndim == 3 and not self._axes) or (
58
- X.ndim == 4 and self._axes
59
- ), f"X shape ({X.shape}) is not valid"
60
- if self._axes:
61
- out = np.asarray(
62
- [
63
- [
64
- DistanceMatrix2DistanceList().fit_transform(M)
65
- for M in matrices_in_axes
66
- ]
67
- for matrices_in_axes in X
68
- ]
69
- )
70
- return np.moveaxis(out, [2, 0, 1, 3], [0, 1, 2, 3])
71
- else:
72
- out = np.array(
73
- [DistanceMatrix2DistanceList().fit_transform(M) for M in X]
74
- ) # indices are at [:,0,Any_coord]
75
- # return np.moveaxis(out, 0, -1) ## indices are at [:,0,any_coord], degree axis is the last
76
- return np.moveaxis(out, [1, 0, 2], [0, 1, 2])
77
-
78
- def predict(self, X):
79
- return self.transform(X)
80
-
81
-
82
- class DistancesLists2DistanceMatrices(BaseEstimator, TransformerMixin):
83
- """
84
- Input (D1) x opt (axis) x (degree) x (D2 with indices first)
85
- Output opt (axis) x (degree) x (distance matrix (D1,D2))
86
- """
87
-
88
- def __init__(self) -> None:
89
- super().__init__()
90
- self.train_indices = None
91
- self._axes = None
92
-
93
- def fit(self, X: np.ndarray, y=None):
94
- X = np.asarray(X)
95
- assert X.ndim in [3, 4]
96
- self._axes = X.ndim == 4
97
- if self._axes:
98
- self.train_indices = np.asarray(X[:, 0, 0, 0], dtype=int)
99
- else:
100
- self.train_indices = np.asarray(X[:, 0, 0], dtype=int)
101
- return self
102
-
103
- def transform(self, X):
104
- X = np.asarray(X)
105
- assert X.ndim in [3, 4]
106
- # test_indices = np.asarray(X[:,0,0], dtype=int)
107
- # print(X.shape, self.train_indices, test_indices, flush=1)
108
- # First coord of X is test indices by design, train indices have to be selected in the second coord, last one is the degree
109
- if self._axes:
110
- Y = X[:, :, :, self.train_indices + 1]
111
- return np.moveaxis(Y, [0, 1, 2, 3], [2, 0, 1, 3])
112
- else:
113
- Y = X[
114
- :, :, self.train_indices + 1
115
- ] # we only keep the good indices # shift of 1, because the first index is for indexing the pts
116
- return np.moveaxis(
117
- Y, [0, 1, 2], [1, 0, 2]
118
- ) # we put back the degree axis first
119
-
120
- # # out = np.moveaxis(Y,-1,0) ## we put back the degree axis first
121
- # return out
122
-
123
-
124
- class DistanceMatrix2Kernel(BaseEstimator, TransformerMixin):
125
- """
126
- Input : (degree) x (distance matrix) or (axis) x (degree) x (distance matrix) in the second case, axis HAS to be specified (meant for cross validation)
127
- Output : kernel of the same shape of distance matrix
128
- """
129
-
130
- def __init__(
131
- self,
132
- sigma: float | Iterable[float] = 1,
133
- axis: int | None = None,
134
- weights: Iterable[float] | float = 1,
135
- ) -> None:
136
- super().__init__()
137
- self.sigma = sigma
138
- self.axis = axis
139
- self.weights = weights
140
- # self._num_axes=None
141
- self._num_degrees = None
142
-
143
- def fit(self, X, y=None):
144
- if len(X) == 0:
145
- return self
146
- assert X.ndim in [3, 4], "Bad input."
147
- if self.axis is None:
148
- assert X.ndim == 3 or X.shape[0] == 1, "Set an axis for data with axis !"
149
- if X.shape[0] == 1 and X.ndim == 4:
150
- self.axis = 0
151
- self._num_degrees = len(X[0])
152
- else:
153
- self._num_degrees = len(X)
154
- else:
155
- assert X.ndim == 4, "Cannot choose axis from data with no axis !"
156
- self._num_degrees = len(X[self.axis])
157
- if isinstance(self.weights, float) or isinstance(self.weights, int):
158
- self.weights = [self.weights] * self._num_degrees
159
- assert (
160
- len(self.weights) == self._num_degrees
161
- ), f"Number of weights ({len(self.weights)}) has to be the same as the number of degrees ({self._num_degrees})"
162
- return self
163
-
164
- def transform(self, X) -> np.ndarray:
165
- if self.axis is not None:
166
- X = X[self.axis]
167
- # TODO : pykeops, and full pipeline w/ pykeops
168
- kernels = np.asarray(
169
- [
170
- np.exp(-distance_matrix / (2 * self.sigma**2)) * weight
171
- for distance_matrix, weight in zip(X, self.weights)
172
- ]
173
- )
174
- out = np.mean(kernels, axis=0)
175
-
176
- return out
1
+ from sklearn.base import BaseEstimator, TransformerMixin, clone
2
+ import numpy as np
3
+ from typing import Iterable
4
+
5
+
6
+ # To do k folds with a distance matrix, we need to slice it into list of distances.
7
+ # k-fold usually shuffles the lists, so we need to add an identifier to each entry,
8
+ #
9
+ class DistanceMatrix2DistanceList(BaseEstimator, TransformerMixin):
10
+ def __init__(self) -> None:
11
+ super().__init__()
12
+
13
+ def fit(self, X, y=None):
14
+ return self
15
+
16
+ def transform(self, X):
17
+ X = np.asarray(X)
18
+ assert X.ndim == 2 # Its a matrix
19
+ return np.asarray([[i, *distance_to_pt] for i, distance_to_pt in enumerate(X)])
20
+
21
+
22
+ class DistanceList2DistanceMatrix(BaseEstimator, TransformerMixin):
23
+ def __init__(self) -> None:
24
+ super().__init__()
25
+
26
+ def fit(self, X, y=None):
27
+ return self
28
+
29
+ def transform(self, X):
30
+ index_list = (
31
+ np.asarray(X[:, 0], dtype=int) + 1
32
+ ) # shift of 1, because the first index is for indexing the pts
33
+ return X[:, index_list] # The distance matrix of the index_list
34
+
35
+
36
+ class DistanceMatrices2DistancesList(BaseEstimator, TransformerMixin):
37
+ """
38
+ Input (degree) x (distance matrix) or (axis) x (degree) x (distance matrix D)
39
+ Output _ (D1) x opt (axis) x (degree) x (D2, , with indices first)
40
+ """
41
+
42
+ def __init__(self) -> None:
43
+ super().__init__()
44
+ self._axes = None
45
+
46
+ def fit(self, X, y=None):
47
+ X = np.asarray(X)
48
+ self._axes = X.ndim == 4
49
+ assert (
50
+ self._axes or X.ndim == 3
51
+ ), " Bad input shape. Input is either (degree) x (distance matrix) or (axis) x (degree) x (distance matrix) "
52
+
53
+ return self
54
+
55
+ def transform(self, X):
56
+ X = np.asarray(X)
57
+ assert (X.ndim == 3 and not self._axes) or (
58
+ X.ndim == 4 and self._axes
59
+ ), f"X shape ({X.shape}) is not valid"
60
+ if self._axes:
61
+ out = np.asarray(
62
+ [
63
+ [
64
+ DistanceMatrix2DistanceList().fit_transform(M)
65
+ for M in matrices_in_axes
66
+ ]
67
+ for matrices_in_axes in X
68
+ ]
69
+ )
70
+ return np.moveaxis(out, [2, 0, 1, 3], [0, 1, 2, 3])
71
+ else:
72
+ out = np.array(
73
+ [DistanceMatrix2DistanceList().fit_transform(M) for M in X]
74
+ ) # indices are at [:,0,Any_coord]
75
+ # return np.moveaxis(out, 0, -1) ## indices are at [:,0,any_coord], degree axis is the last
76
+ return np.moveaxis(out, [1, 0, 2], [0, 1, 2])
77
+
78
+ def predict(self, X):
79
+ return self.transform(X)
80
+
81
+
82
+ class DistancesLists2DistanceMatrices(BaseEstimator, TransformerMixin):
83
+ """
84
+ Input (D1) x opt (axis) x (degree) x (D2 with indices first)
85
+ Output opt (axis) x (degree) x (distance matrix (D1,D2))
86
+ """
87
+
88
+ def __init__(self) -> None:
89
+ super().__init__()
90
+ self.train_indices = None
91
+ self._axes = None
92
+
93
+ def fit(self, X: np.ndarray, y=None):
94
+ X = np.asarray(X)
95
+ assert X.ndim in [3, 4]
96
+ self._axes = X.ndim == 4
97
+ if self._axes:
98
+ self.train_indices = np.asarray(X[:, 0, 0, 0], dtype=int)
99
+ else:
100
+ self.train_indices = np.asarray(X[:, 0, 0], dtype=int)
101
+ return self
102
+
103
+ def transform(self, X):
104
+ X = np.asarray(X)
105
+ assert X.ndim in [3, 4]
106
+ # test_indices = np.asarray(X[:,0,0], dtype=int)
107
+ # print(X.shape, self.train_indices, test_indices, flush=1)
108
+ # First coord of X is test indices by design, train indices have to be selected in the second coord, last one is the degree
109
+ if self._axes:
110
+ Y = X[:, :, :, self.train_indices + 1]
111
+ return np.moveaxis(Y, [0, 1, 2, 3], [2, 0, 1, 3])
112
+ else:
113
+ Y = X[
114
+ :, :, self.train_indices + 1
115
+ ] # we only keep the good indices # shift of 1, because the first index is for indexing the pts
116
+ return np.moveaxis(
117
+ Y, [0, 1, 2], [1, 0, 2]
118
+ ) # we put back the degree axis first
119
+
120
+ # # out = np.moveaxis(Y,-1,0) ## we put back the degree axis first
121
+ # return out
122
+
123
+
124
+ class DistanceMatrix2Kernel(BaseEstimator, TransformerMixin):
125
+ """
126
+ Input : (degree) x (distance matrix) or (axis) x (degree) x (distance matrix) in the second case, axis HAS to be specified (meant for cross validation)
127
+ Output : kernel of the same shape of distance matrix
128
+ """
129
+
130
+ def __init__(
131
+ self,
132
+ sigma: float | Iterable[float] = 1,
133
+ axis: int | None = None,
134
+ weights: Iterable[float] | float = 1,
135
+ ) -> None:
136
+ super().__init__()
137
+ self.sigma = sigma
138
+ self.axis = axis
139
+ self.weights = weights
140
+ # self._num_axes=None
141
+ self._num_degrees = None
142
+
143
+ def fit(self, X, y=None):
144
+ if len(X) == 0:
145
+ return self
146
+ assert X.ndim in [3, 4], "Bad input."
147
+ if self.axis is None:
148
+ assert X.ndim == 3 or X.shape[0] == 1, "Set an axis for data with axis !"
149
+ if X.shape[0] == 1 and X.ndim == 4:
150
+ self.axis = 0
151
+ self._num_degrees = len(X[0])
152
+ else:
153
+ self._num_degrees = len(X)
154
+ else:
155
+ assert X.ndim == 4, "Cannot choose axis from data with no axis !"
156
+ self._num_degrees = len(X[self.axis])
157
+ if isinstance(self.weights, float) or isinstance(self.weights, int):
158
+ self.weights = [self.weights] * self._num_degrees
159
+ assert (
160
+ len(self.weights) == self._num_degrees
161
+ ), f"Number of weights ({len(self.weights)}) has to be the same as the number of degrees ({self._num_degrees})"
162
+ return self
163
+
164
+ def transform(self, X) -> np.ndarray:
165
+ if self.axis is not None:
166
+ X = X[self.axis]
167
+ # TODO : pykeops, and full pipeline w/ pykeops
168
+ kernels = np.asarray(
169
+ [
170
+ np.exp(-distance_matrix / (2 * self.sigma**2)) * weight
171
+ for distance_matrix, weight in zip(X, self.weights)
172
+ ]
173
+ )
174
+ out = np.mean(kernels, axis=0)
175
+
176
+ return out