multipers 2.2.3__cp312-cp312-win_amd64.whl → 2.3.0__cp312-cp312-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of multipers might be problematic. Click here for more details.

Files changed (182) hide show
  1. multipers/__init__.py +33 -31
  2. multipers/_signed_measure_meta.py +430 -430
  3. multipers/_slicer_meta.py +211 -212
  4. multipers/data/MOL2.py +458 -458
  5. multipers/data/UCR.py +18 -18
  6. multipers/data/graphs.py +466 -466
  7. multipers/data/immuno_regions.py +27 -27
  8. multipers/data/pytorch2simplextree.py +90 -90
  9. multipers/data/shape3d.py +101 -101
  10. multipers/data/synthetic.py +113 -111
  11. multipers/distances.py +198 -198
  12. multipers/filtration_conversions.pxd.tp +84 -84
  13. multipers/filtrations/__init__.py +18 -0
  14. multipers/filtrations/filtrations.py +289 -0
  15. multipers/filtrations.pxd +224 -224
  16. multipers/function_rips.cp312-win_amd64.pyd +0 -0
  17. multipers/function_rips.pyx +105 -105
  18. multipers/grids.cp312-win_amd64.pyd +0 -0
  19. multipers/grids.pyx +350 -350
  20. multipers/gudhi/Persistence_slices_interface.h +132 -132
  21. multipers/gudhi/Simplex_tree_interface.h +239 -245
  22. multipers/gudhi/Simplex_tree_multi_interface.h +516 -561
  23. multipers/gudhi/cubical_to_boundary.h +59 -59
  24. multipers/gudhi/gudhi/Bitmap_cubical_complex.h +450 -450
  25. multipers/gudhi/gudhi/Bitmap_cubical_complex_base.h +1070 -1070
  26. multipers/gudhi/gudhi/Bitmap_cubical_complex_periodic_boundary_conditions_base.h +579 -579
  27. multipers/gudhi/gudhi/Debug_utils.h +45 -45
  28. multipers/gudhi/gudhi/Fields/Multi_field.h +484 -484
  29. multipers/gudhi/gudhi/Fields/Multi_field_operators.h +455 -455
  30. multipers/gudhi/gudhi/Fields/Multi_field_shared.h +450 -450
  31. multipers/gudhi/gudhi/Fields/Multi_field_small.h +531 -531
  32. multipers/gudhi/gudhi/Fields/Multi_field_small_operators.h +507 -507
  33. multipers/gudhi/gudhi/Fields/Multi_field_small_shared.h +531 -531
  34. multipers/gudhi/gudhi/Fields/Z2_field.h +355 -355
  35. multipers/gudhi/gudhi/Fields/Z2_field_operators.h +376 -376
  36. multipers/gudhi/gudhi/Fields/Zp_field.h +420 -420
  37. multipers/gudhi/gudhi/Fields/Zp_field_operators.h +400 -400
  38. multipers/gudhi/gudhi/Fields/Zp_field_shared.h +418 -418
  39. multipers/gudhi/gudhi/Flag_complex_edge_collapser.h +337 -337
  40. multipers/gudhi/gudhi/Matrix.h +2107 -2107
  41. multipers/gudhi/gudhi/Multi_critical_filtration.h +1038 -1038
  42. multipers/gudhi/gudhi/Multi_persistence/Box.h +171 -171
  43. multipers/gudhi/gudhi/Multi_persistence/Line.h +282 -282
  44. multipers/gudhi/gudhi/Off_reader.h +173 -173
  45. multipers/gudhi/gudhi/One_critical_filtration.h +1432 -1431
  46. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix.h +769 -769
  47. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix_with_column_compression.h +686 -686
  48. multipers/gudhi/gudhi/Persistence_matrix/Boundary_matrix.h +842 -842
  49. multipers/gudhi/gudhi/Persistence_matrix/Chain_matrix.h +1350 -1350
  50. multipers/gudhi/gudhi/Persistence_matrix/Id_to_index_overlay.h +1105 -1105
  51. multipers/gudhi/gudhi/Persistence_matrix/Position_to_index_overlay.h +859 -859
  52. multipers/gudhi/gudhi/Persistence_matrix/RU_matrix.h +910 -910
  53. multipers/gudhi/gudhi/Persistence_matrix/allocators/entry_constructors.h +139 -139
  54. multipers/gudhi/gudhi/Persistence_matrix/base_pairing.h +230 -230
  55. multipers/gudhi/gudhi/Persistence_matrix/base_swap.h +211 -211
  56. multipers/gudhi/gudhi/Persistence_matrix/boundary_cell_position_to_id_mapper.h +60 -60
  57. multipers/gudhi/gudhi/Persistence_matrix/boundary_face_position_to_id_mapper.h +60 -60
  58. multipers/gudhi/gudhi/Persistence_matrix/chain_pairing.h +136 -136
  59. multipers/gudhi/gudhi/Persistence_matrix/chain_rep_cycles.h +190 -190
  60. multipers/gudhi/gudhi/Persistence_matrix/chain_vine_swap.h +616 -616
  61. multipers/gudhi/gudhi/Persistence_matrix/columns/chain_column_extra_properties.h +150 -150
  62. multipers/gudhi/gudhi/Persistence_matrix/columns/column_dimension_holder.h +106 -106
  63. multipers/gudhi/gudhi/Persistence_matrix/columns/column_utilities.h +219 -219
  64. multipers/gudhi/gudhi/Persistence_matrix/columns/entry_types.h +327 -327
  65. multipers/gudhi/gudhi/Persistence_matrix/columns/heap_column.h +1140 -1140
  66. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_list_column.h +934 -934
  67. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_set_column.h +934 -934
  68. multipers/gudhi/gudhi/Persistence_matrix/columns/list_column.h +980 -980
  69. multipers/gudhi/gudhi/Persistence_matrix/columns/naive_vector_column.h +1092 -1092
  70. multipers/gudhi/gudhi/Persistence_matrix/columns/row_access.h +192 -192
  71. multipers/gudhi/gudhi/Persistence_matrix/columns/set_column.h +921 -921
  72. multipers/gudhi/gudhi/Persistence_matrix/columns/small_vector_column.h +1093 -1093
  73. multipers/gudhi/gudhi/Persistence_matrix/columns/unordered_set_column.h +1012 -1012
  74. multipers/gudhi/gudhi/Persistence_matrix/columns/vector_column.h +1244 -1244
  75. multipers/gudhi/gudhi/Persistence_matrix/matrix_dimension_holders.h +186 -186
  76. multipers/gudhi/gudhi/Persistence_matrix/matrix_row_access.h +164 -164
  77. multipers/gudhi/gudhi/Persistence_matrix/ru_pairing.h +156 -156
  78. multipers/gudhi/gudhi/Persistence_matrix/ru_rep_cycles.h +376 -376
  79. multipers/gudhi/gudhi/Persistence_matrix/ru_vine_swap.h +540 -540
  80. multipers/gudhi/gudhi/Persistent_cohomology/Field_Zp.h +118 -118
  81. multipers/gudhi/gudhi/Persistent_cohomology/Multi_field.h +173 -173
  82. multipers/gudhi/gudhi/Persistent_cohomology/Persistent_cohomology_column.h +128 -128
  83. multipers/gudhi/gudhi/Persistent_cohomology.h +745 -745
  84. multipers/gudhi/gudhi/Points_off_io.h +171 -171
  85. multipers/gudhi/gudhi/Simple_object_pool.h +69 -69
  86. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_iterators.h +463 -463
  87. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_node_explicit_storage.h +83 -83
  88. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_siblings.h +106 -106
  89. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_star_simplex_iterators.h +277 -277
  90. multipers/gudhi/gudhi/Simplex_tree/hooks_simplex_base.h +62 -62
  91. multipers/gudhi/gudhi/Simplex_tree/indexing_tag.h +27 -27
  92. multipers/gudhi/gudhi/Simplex_tree/serialization_utils.h +62 -62
  93. multipers/gudhi/gudhi/Simplex_tree/simplex_tree_options.h +157 -157
  94. multipers/gudhi/gudhi/Simplex_tree.h +2794 -2794
  95. multipers/gudhi/gudhi/Simplex_tree_multi.h +152 -163
  96. multipers/gudhi/gudhi/distance_functions.h +62 -62
  97. multipers/gudhi/gudhi/graph_simplicial_complex.h +104 -104
  98. multipers/gudhi/gudhi/persistence_interval.h +253 -253
  99. multipers/gudhi/gudhi/persistence_matrix_options.h +170 -170
  100. multipers/gudhi/gudhi/reader_utils.h +367 -367
  101. multipers/gudhi/mma_interface_coh.h +256 -255
  102. multipers/gudhi/mma_interface_h0.h +223 -231
  103. multipers/gudhi/mma_interface_matrix.h +284 -282
  104. multipers/gudhi/naive_merge_tree.h +536 -575
  105. multipers/gudhi/scc_io.h +310 -289
  106. multipers/gudhi/truc.h +890 -888
  107. multipers/io.cp312-win_amd64.pyd +0 -0
  108. multipers/io.pyx +711 -711
  109. multipers/ml/accuracies.py +90 -90
  110. multipers/ml/convolutions.py +520 -520
  111. multipers/ml/invariants_with_persistable.py +79 -79
  112. multipers/ml/kernels.py +176 -176
  113. multipers/ml/mma.py +713 -714
  114. multipers/ml/one.py +472 -472
  115. multipers/ml/point_clouds.py +352 -346
  116. multipers/ml/signed_measures.py +1589 -1589
  117. multipers/ml/sliced_wasserstein.py +461 -461
  118. multipers/ml/tools.py +113 -113
  119. multipers/mma_structures.cp312-win_amd64.pyd +0 -0
  120. multipers/mma_structures.pxd +127 -127
  121. multipers/mma_structures.pyx +4 -4
  122. multipers/mma_structures.pyx.tp +1085 -1085
  123. multipers/multi_parameter_rank_invariant/diff_helpers.h +84 -93
  124. multipers/multi_parameter_rank_invariant/euler_characteristic.h +97 -97
  125. multipers/multi_parameter_rank_invariant/function_rips.h +322 -322
  126. multipers/multi_parameter_rank_invariant/hilbert_function.h +769 -769
  127. multipers/multi_parameter_rank_invariant/persistence_slices.h +148 -148
  128. multipers/multi_parameter_rank_invariant/rank_invariant.h +369 -369
  129. multipers/multiparameter_edge_collapse.py +41 -41
  130. multipers/multiparameter_module_approximation/approximation.h +2296 -2295
  131. multipers/multiparameter_module_approximation/combinatory.h +129 -129
  132. multipers/multiparameter_module_approximation/debug.h +107 -107
  133. multipers/multiparameter_module_approximation/format_python-cpp.h +286 -286
  134. multipers/multiparameter_module_approximation/heap_column.h +238 -238
  135. multipers/multiparameter_module_approximation/images.h +79 -79
  136. multipers/multiparameter_module_approximation/list_column.h +174 -174
  137. multipers/multiparameter_module_approximation/list_column_2.h +232 -232
  138. multipers/multiparameter_module_approximation/ru_matrix.h +347 -347
  139. multipers/multiparameter_module_approximation/set_column.h +135 -135
  140. multipers/multiparameter_module_approximation/structure_higher_dim_barcode.h +36 -36
  141. multipers/multiparameter_module_approximation/unordered_set_column.h +166 -166
  142. multipers/multiparameter_module_approximation/utilities.h +403 -419
  143. multipers/multiparameter_module_approximation/vector_column.h +223 -223
  144. multipers/multiparameter_module_approximation/vector_matrix.h +331 -331
  145. multipers/multiparameter_module_approximation/vineyards.h +464 -464
  146. multipers/multiparameter_module_approximation/vineyards_trajectories.h +649 -649
  147. multipers/multiparameter_module_approximation.cp312-win_amd64.pyd +0 -0
  148. multipers/multiparameter_module_approximation.pyx +216 -217
  149. multipers/pickle.py +90 -53
  150. multipers/plots.py +342 -334
  151. multipers/point_measure.cp312-win_amd64.pyd +0 -0
  152. multipers/point_measure.pyx +322 -320
  153. multipers/simplex_tree_multi.cp312-win_amd64.pyd +0 -0
  154. multipers/simplex_tree_multi.pxd +133 -133
  155. multipers/simplex_tree_multi.pyx +18 -15
  156. multipers/simplex_tree_multi.pyx.tp +1939 -1935
  157. multipers/slicer.cp312-win_amd64.pyd +0 -0
  158. multipers/slicer.pxd +81 -20
  159. multipers/slicer.pxd.tp +215 -214
  160. multipers/slicer.pyx +1091 -308
  161. multipers/slicer.pyx.tp +924 -914
  162. multipers/tensor/tensor.h +672 -672
  163. multipers/tensor.pxd +13 -13
  164. multipers/test.pyx +44 -44
  165. multipers/tests/__init__.py +57 -57
  166. multipers/torch/diff_grids.py +217 -217
  167. multipers/torch/rips_density.py +310 -304
  168. {multipers-2.2.3.dist-info → multipers-2.3.0.dist-info}/LICENSE +21 -21
  169. {multipers-2.2.3.dist-info → multipers-2.3.0.dist-info}/METADATA +21 -11
  170. multipers-2.3.0.dist-info/RECORD +182 -0
  171. multipers/tests/test_diff_helper.py +0 -73
  172. multipers/tests/test_hilbert_function.py +0 -82
  173. multipers/tests/test_mma.py +0 -83
  174. multipers/tests/test_point_clouds.py +0 -49
  175. multipers/tests/test_python-cpp_conversion.py +0 -82
  176. multipers/tests/test_signed_betti.py +0 -181
  177. multipers/tests/test_signed_measure.py +0 -89
  178. multipers/tests/test_simplextreemulti.py +0 -221
  179. multipers/tests/test_slicer.py +0 -221
  180. multipers-2.2.3.dist-info/RECORD +0 -189
  181. {multipers-2.2.3.dist-info → multipers-2.3.0.dist-info}/WHEEL +0 -0
  182. {multipers-2.2.3.dist-info → multipers-2.3.0.dist-info}/top_level.txt +0 -0
multipers/grids.pyx CHANGED
@@ -1,350 +1,350 @@
1
-
2
- from libc.stdint cimport intptr_t, int32_t, int64_t
3
- from libcpp cimport bool,int,long, float
4
-
5
- cimport numpy as cnp
6
- import numpy as np
7
- cnp.import_array()
8
-
9
-
10
- from typing import Iterable,Literal,Optional
11
- from itertools import product
12
-
13
-
14
- available_strategies = ["regular","regular_closest", "regular_left", "partition", "quantile", "precomputed"]
15
- Lstrategies = Literal["regular","regular_closest", "regular_left", "partition", "quantile", "precomputed"]
16
-
17
- ctypedef fused some_int:
18
- int32_t
19
- int64_t
20
- int
21
- long
22
-
23
- ctypedef fused some_float:
24
- float
25
- double
26
-
27
-
28
- def compute_grid(
29
- x,
30
- resolution:Optional[int|Iterable[int]]=None,
31
- strategy:Lstrategies="exact",
32
- bool unique=True,
33
- some_float _q_factor=1.,
34
- drop_quantiles=[0,0],
35
- bool dense = False,
36
- ):
37
- """
38
- Computes a grid from filtration values, using some strategy.
39
-
40
- Input
41
- -----
42
-
43
- - `filtrations_values`: `Iterable[filtration of parameter for parameter]`
44
- where `filtration_of_parameter` is a array[float, ndim=1]
45
- - `resolution`:Optional[int|tuple[int]]
46
- - `strategy`: either exact, regular, regular_closest, regular_left, partition, quantile, or precomputed.
47
- - `unique`: if true, doesn't repeat values in the output grid.
48
- - `drop_quantiles` : drop some filtration values according to these quantiles
49
- Output
50
- ------
51
-
52
- Iterable[array[float, ndim=1]] : the 1d-grid for each parameter.
53
- """
54
-
55
- from multipers.slicer import is_slicer
56
- from multipers.simplex_tree_multi import is_simplextree_multi
57
- from multipers.mma_structures import is_mma
58
-
59
- if resolution is not None and strategy == "exact":
60
- raise ValueError("The 'exact' strategy does not support resolution.")
61
- if strategy != "exact":
62
- assert resolution is not None, "A resolution is required for non-exact strategies"
63
-
64
-
65
- cdef bool is_numpy_compatible = True
66
- if is_slicer(x):
67
- initial_grid = x.get_filtrations_values().T
68
- elif is_simplextree_multi(x):
69
- initial_grid = x.get_filtration_grid()
70
- elif is_mma(x):
71
- initial_grid = x.get_filtration_values()
72
- elif isinstance(x, np.ndarray):
73
- initial_grid = x
74
- else:
75
- x = tuple(x)
76
- if len(x) == 0: return []
77
- first = x[0]
78
- ## is_sm, i.e., iterable tuple(pts,weights)
79
- if isinstance(x[0], tuple) and getattr(x[0][0], "shape", None) is not None:
80
- initial_grid = tuple(f[0].T for f in x)
81
- if isinstance(initial_grid[0], np.ndarray):
82
- initial_grid = np.concatenate(initial_grid, axis=1)
83
- else:
84
- is_numpy_compatbile = False
85
- import torch
86
- assert isinstance(first[0], torch.Tensor), "Only numpy and torch are supported ftm."
87
- initial_grid = torch.cat(initial_grid, axis=1)
88
- ## is grid-like (num_params, num_pts)
89
- elif isinstance(first,list) or isinstance(first, tuple) or isinstance(first, np.ndarray):
90
- initial_grid = tuple(f for f in x)
91
- else:
92
- is_numpy_compatible = False
93
- import torch
94
- assert isinstance(first, torch.Tensor), "Only numpy and torch are supported ftm."
95
- initial_grid = x
96
- if is_numpy_compatible:
97
- return _compute_grid_numpy(
98
- initial_grid,
99
- resolution=resolution,
100
- strategy = strategy,
101
- unique = unique,
102
- _q_factor=_q_factor,
103
- drop_quantiles=drop_quantiles,
104
- dense = dense,
105
- )
106
- from multipers.torch.diff_grids import get_grid
107
- return get_grid(strategy)(initial_grid,resolution)
108
-
109
-
110
-
111
-
112
-
113
-
114
- def _compute_grid_numpy(
115
- filtrations_values,
116
- resolution=None,
117
- strategy:Lstrategies="exact",
118
- bool unique=True,
119
- some_float _q_factor=1.,
120
- drop_quantiles=[0,0],
121
- bool dense = False,
122
- ):
123
- """
124
- Computes a grid from filtration values, using some strategy.
125
-
126
- Input
127
- -----
128
- - `filtrations_values`: `Iterable[filtration of parameter for parameter]`
129
- where `filtration_of_parameter` is a array[float, ndim=1]
130
- - `resolution`:Optional[int|tuple[int]]
131
- - `strategy`: either exact, regular, regular_closest, regular_left, partition, quantile, or precomputed.
132
- - `unique`: if true, doesn't repeat values in the output grid.
133
- - `drop_quantiles` : drop some filtration values according to these quantiles
134
- Output
135
- ------
136
- Iterable[array[float, ndim=1]] : the 1d-grid for each parameter.
137
- """
138
- num_parameters = len(filtrations_values)
139
- if resolution is None and strategy not in ["exact", "precomputed"]:
140
- raise ValueError("Resolution must be provided for this strategy.")
141
- elif resolution is not None:
142
- try:
143
- int(resolution)
144
- resolution = [resolution]*num_parameters
145
- except:
146
- pass
147
- try:
148
- a,b=drop_quantiles
149
- except:
150
- a,b=drop_quantiles,drop_quantiles
151
-
152
- if a != 0 or b != 0:
153
- boxes = np.asarray([np.quantile(filtration, [a, b], axis=1, method='closest_observation') for filtration in filtrations_values])
154
- min_filtration, max_filtration = np.min(boxes, axis=(0,1)), np.max(boxes, axis=(0,1)) # box, birth/death, filtration
155
- filtrations_values = [
156
- filtration[(m<filtration) * (filtration <M)]
157
- for filtration, m,M in zip(filtrations_values, min_filtration, max_filtration)
158
- ]
159
-
160
- to_unique = lambda f : np.unique(f) if isinstance(f,np.ndarray) else f.unique()
161
- ## match doesn't work with cython BUG
162
- if strategy == "exact":
163
- F=tuple(to_unique(f) for f in filtrations_values)
164
- elif strategy == "quantile":
165
- F = tuple(to_unique(f) for f in filtrations_values)
166
- max_resolution = [min(len(f),r) for f,r in zip(F,resolution)]
167
- F = tuple( np.quantile(f, q=np.linspace(0,1,num=int(r*_q_factor)), axis=0, method='closest_observation') for f,r in zip(F, resolution) )
168
- if unique:
169
- F = tuple(to_unique(f) for f in F)
170
- if np.all(np.asarray(max_resolution) > np.asarray([len(f) for f in F])):
171
- return _compute_grid_numpy(filtrations_values=filtrations_values, resolution=resolution, strategy="quantile",_q_factor=1.5*_q_factor)
172
- elif strategy == "regular":
173
- F = tuple(np.linspace(np.min(f),np.max(f),num=r, dtype=np.asarray(f).dtype) for f,r in zip(filtrations_values, resolution))
174
- elif strategy == "regular_closest":
175
- F = tuple(_todo_regular_closest(f,r, unique) for f,r in zip(filtrations_values, resolution))
176
- elif strategy == "regular_left":
177
- F = tuple(_todo_regular_left(f,r, unique) for f,r in zip(filtrations_values, resolution))
178
- elif strategy == "torch_regular_closest":
179
- F = tuple(_torch_regular_closest(f,r, unique) for f,r in zip(filtrations_values, resolution))
180
- elif strategy == "partition":
181
- F = tuple(_todo_partition(f,r, unique) for f,r in zip(filtrations_values, resolution))
182
- elif strategy == "precomputed":
183
- F=filtrations_values
184
- else:
185
- raise ValueError(f"Invalid strategy {strategy}. Pick something in {available_strategies}.")
186
- if dense:
187
- return todense(F)
188
- return F
189
-
190
- def todense(grid, bool product_order=False):
191
- if len(grid) == 0:
192
- return np.empty(0)
193
- if not isinstance(grid[0], np.ndarray):
194
- import torch
195
- assert isinstance(grid[0], torch.Tensor)
196
- from multipers.torch.diff_grids import todense
197
- return todense(grid)
198
- dtype = grid[0].dtype
199
- if product_order:
200
- return np.fromiter(product(*grid), dtype=np.dtype((dtype, len(grid))), count=np.prod([len(f) for f in grid]))
201
- mesh = np.meshgrid(*grid)
202
- coordinates = np.concatenate(tuple(stuff.ravel()[:,None] for stuff in mesh), axis=1, dtype=dtype)
203
- return coordinates
204
-
205
-
206
-
207
- ## TODO : optimize. Pykeops ?
208
- def _todo_regular_closest(some_float[:] f, int r, bool unique):
209
- f_array = np.asarray(f)
210
- f_regular = np.linspace(np.min(f), np.max(f),num=r, dtype=f_array.dtype)
211
- f_regular_closest = np.asarray([f[<long>np.argmin(np.abs(f_array-f_regular[i]))] for i in range(r)])
212
- if unique: f_regular_closest = np.unique(f_regular_closest)
213
- return f_regular_closest
214
-
215
- def _todo_regular_left(some_float[:] f, int r, bool unique):
216
- sorted_f = np.sort(f)
217
- f_regular = np.linspace(sorted_f[0],sorted_f[-1],num=r, dtype=sorted_f.dtype)
218
- f_regular_closest = sorted_f[np.searchsorted(sorted_f,f_regular)]
219
- if unique: f_regular_closest = np.unique(f_regular_closest)
220
- return f_regular_closest
221
-
222
- def _torch_regular_closest(f, int r, bool unique=True):
223
- import torch
224
- f_regular = torch.linspace(f.min(),f.max(), r, dtype=f.dtype)
225
- f_regular_closest =torch.tensor([f[(f-x).abs().argmin()] for x in f_regular])
226
- if unique: f_regular_closest = f_regular_closest.unique()
227
- return f_regular_closest
228
-
229
- def _todo_partition(some_float[:] data,int resolution, bool unique):
230
- if data.shape[0] < resolution: resolution=data.shape[0]
231
- k = data.shape[0] // resolution
232
- partitions = np.partition(data, k)
233
- f = partitions[[i*k for i in range(resolution)]]
234
- if unique: f= np.unique(f)
235
- return f
236
-
237
-
238
- def compute_bounding_box(stuff, inflate = 0.):
239
- r"""
240
- Returns a array of shape (2, num_parameters)
241
- such that for any filtration value $y$ of something in stuff,
242
- then if (x,z) is the output of this function, we have
243
- $x\le y \le z$.
244
- """
245
- box = np.array(compute_grid(stuff,strategy="regular",resolution=2)).T
246
- if inflate:
247
- box[0] -= inflate
248
- box[1] += inflate
249
- return box
250
-
251
- def push_to_grid(some_float[:,:] points, grid, bool return_coordinate=False):
252
- """
253
- Given points and a grid (list of one parameter grids),
254
- pushes the points onto the grid.
255
- """
256
- num_points, num_parameters = points.shape[0], points.shape[1]
257
- cdef cnp.ndarray[long,ndim=2] coordinates = np.empty((num_points, num_parameters),dtype=np.int64)
258
- for parameter in range(num_parameters):
259
- coordinates[:,parameter] = np.searchsorted(grid[parameter],points[:,parameter])
260
- if return_coordinate:
261
- return coordinates
262
- out = np.empty((num_points,num_parameters), grid[0].dtype)
263
- for parameter in range(num_parameters):
264
- out[:,parameter] = grid[parameter][coordinates[:,parameter]]
265
- return out
266
-
267
-
268
- def coarsen_points(some_float[:,:] points, strategy="exact", int resolution=-1, bool coordinate=False):
269
- grid = _compute_grid_numpy(points.T, strategy=strategy, resolution=resolution)
270
- if coordinate:
271
- return push_to_grid(points, grid, coordinate), grid
272
- return push_to_grid(points, grid, coordinate)
273
-
274
-
275
-
276
- def evaluate_in_grid(pts, grid, mass_default=None):
277
- """
278
- Input
279
- -----
280
- - pts: of the form array[int, ndim=2]
281
- - grid of the form Iterable[array[float, ndim=1]]
282
- """
283
- first_filtration = grid[0]
284
- dtype = first_filtration.dtype
285
- if isinstance(first_filtration, np.ndarray):
286
- if mass_default is not None:
287
- grid = tuple(np.concatenate([g, [m]]) for g,m in zip(grid, mass_default))
288
- def empty_like(x):
289
- return np.empty_like(x, dtype=dtype)
290
- else:
291
- import torch
292
- # assert isinstance(first_filtration, torch.Tensor), f"Invalid grid type. Got {type(grid[0])}, expected numpy or torch array."
293
- if mass_default is not None:
294
- grid = tuple(torch.cat([g, torch.tensor(m)[None]]) for g,m in zip(grid, mass_default))
295
- def empty_like(x):
296
- return torch.empty(x.shape,dtype=dtype)
297
-
298
- coords= empty_like(pts)
299
- for i in range(coords.shape[1]):
300
- coords[:,i] = grid[i][pts[:,i]]
301
- return coords
302
-
303
- def sm_in_grid(pts, weights, grid, int num_parameters=-1, mass_default=None):
304
- """Given a measure whose points are coordinates,
305
- pushes this measure in this grid.
306
- Input
307
- -----
308
- - pts: of the form array[int, ndim=2]
309
- - weights: array[int, ndim=1]
310
- - grid of the form Iterable[array[float, ndim=1]]
311
- - num_parameters: number of parameters
312
- """
313
- first_filtration = grid[0]
314
- dtype = first_filtration.dtype
315
- def to_int(x):
316
- return np.asarray(x,dtype=np.int64)
317
- if isinstance(first_filtration, np.ndarray):
318
- if mass_default is not None:
319
- grid = tuple(np.concatenate([g, [m]]) for g,m in zip(grid, mass_default))
320
- def empty_like(x, weights):
321
- return np.empty_like(x, dtype=dtype), np.asarray(weights)
322
- else:
323
- import torch
324
- # assert isinstance(first_filtration, torch.Tensor), f"Invalid grid type. Got {type(grid[0])}, expected numpy or torch array."
325
- if mass_default is not None:
326
- grid = tuple(torch.cat([g, torch.tensor(m)[None]]) for g,m in zip(grid, mass_default))
327
- def empty_like(x, weights):
328
- return torch.empty(x.shape,dtype=dtype), torch.from_numpy(weights)
329
-
330
- pts = to_int(pts)
331
- coords,weights = empty_like(pts,weights)
332
- for i in range(coords.shape[1]):
333
- if num_parameters > 0:
334
- coords[:,i] = grid[i%num_parameters][pts[:,i]]
335
- else:
336
- coords[:,i] = grid[i][pts[:,i]]
337
- return (coords, weights)
338
-
339
- # TODO : optimize with memoryviews / typing
340
- def sms_in_grid(sms, grid, int num_parameters=-1, mass_default=None):
341
- """Given a measure whose points are coordinates,
342
- pushes this measure in this grid.
343
- Input
344
- -----
345
- - sms: of the form (signed_measure_like for num_measures)
346
- where signed_measure_like = tuple(array[int, ndim=2], array[int])
347
- - grid of the form Iterable[array[float, ndim=1]]
348
- """
349
- sms = tuple(sm_in_grid(pts,weights,grid=grid,num_parameters=num_parameters, mass_default=mass_default) for pts,weights in sms)
350
- return sms
1
+
2
+ from libc.stdint cimport intptr_t, int32_t, int64_t
3
+ from libcpp cimport bool,int,long, float
4
+
5
+ cimport numpy as cnp
6
+ import numpy as np
7
+ cnp.import_array()
8
+
9
+
10
+ from typing import Iterable,Literal,Optional
11
+ from itertools import product
12
+
13
+
14
+ available_strategies = ["regular","regular_closest", "regular_left", "partition", "quantile", "precomputed"]
15
+ Lstrategies = Literal["regular","regular_closest", "regular_left", "partition", "quantile", "precomputed"]
16
+
17
+ ctypedef fused some_int:
18
+ int32_t
19
+ int64_t
20
+ int
21
+ long
22
+
23
+ ctypedef fused some_float:
24
+ float
25
+ double
26
+
27
+
28
+ def compute_grid(
29
+ x,
30
+ resolution:Optional[int|Iterable[int]]=None,
31
+ strategy:Lstrategies="exact",
32
+ bool unique=True,
33
+ some_float _q_factor=1.,
34
+ drop_quantiles=[0,0],
35
+ bool dense = False,
36
+ ):
37
+ """
38
+ Computes a grid from filtration values, using some strategy.
39
+
40
+ Input
41
+ -----
42
+
43
+ - `filtrations_values`: `Iterable[filtration of parameter for parameter]`
44
+ where `filtration_of_parameter` is a array[float, ndim=1]
45
+ - `resolution`:Optional[int|tuple[int]]
46
+ - `strategy`: either exact, regular, regular_closest, regular_left, partition, quantile, or precomputed.
47
+ - `unique`: if true, doesn't repeat values in the output grid.
48
+ - `drop_quantiles` : drop some filtration values according to these quantiles
49
+ Output
50
+ ------
51
+
52
+ Iterable[array[float, ndim=1]] : the 1d-grid for each parameter.
53
+ """
54
+
55
+ from multipers.slicer import is_slicer
56
+ from multipers.simplex_tree_multi import is_simplextree_multi
57
+ from multipers.mma_structures import is_mma
58
+
59
+ if resolution is not None and strategy == "exact":
60
+ raise ValueError("The 'exact' strategy does not support resolution.")
61
+ if strategy != "exact":
62
+ assert resolution is not None, "A resolution is required for non-exact strategies"
63
+
64
+
65
+ cdef bool is_numpy_compatible = True
66
+ if is_slicer(x):
67
+ initial_grid = x.get_filtrations_values().T
68
+ elif is_simplextree_multi(x):
69
+ initial_grid = x.get_filtration_grid()
70
+ elif is_mma(x):
71
+ initial_grid = x.get_filtration_values()
72
+ elif isinstance(x, np.ndarray):
73
+ initial_grid = x
74
+ else:
75
+ x = tuple(x)
76
+ if len(x) == 0: return []
77
+ first = x[0]
78
+ ## is_sm, i.e., iterable tuple(pts,weights)
79
+ if isinstance(x[0], tuple) and getattr(x[0][0], "shape", None) is not None:
80
+ initial_grid = tuple(f[0].T for f in x)
81
+ if isinstance(initial_grid[0], np.ndarray):
82
+ initial_grid = np.concatenate(initial_grid, axis=1)
83
+ else:
84
+ is_numpy_compatbile = False
85
+ import torch
86
+ assert isinstance(first[0], torch.Tensor), "Only numpy and torch are supported ftm."
87
+ initial_grid = torch.cat(initial_grid, axis=1)
88
+ ## is grid-like (num_params, num_pts)
89
+ elif isinstance(first,list) or isinstance(first, tuple) or isinstance(first, np.ndarray):
90
+ initial_grid = tuple(f for f in x)
91
+ else:
92
+ is_numpy_compatible = False
93
+ import torch
94
+ assert isinstance(first, torch.Tensor), "Only numpy and torch are supported ftm."
95
+ initial_grid = x
96
+ if is_numpy_compatible:
97
+ return _compute_grid_numpy(
98
+ initial_grid,
99
+ resolution=resolution,
100
+ strategy = strategy,
101
+ unique = unique,
102
+ _q_factor=_q_factor,
103
+ drop_quantiles=drop_quantiles,
104
+ dense = dense,
105
+ )
106
+ from multipers.torch.diff_grids import get_grid
107
+ return get_grid(strategy)(initial_grid,resolution)
108
+
109
+
110
+
111
+
112
+
113
+
114
+ def _compute_grid_numpy(
115
+ filtrations_values,
116
+ resolution=None,
117
+ strategy:Lstrategies="exact",
118
+ bool unique=True,
119
+ some_float _q_factor=1.,
120
+ drop_quantiles=[0,0],
121
+ bool dense = False,
122
+ ):
123
+ """
124
+ Computes a grid from filtration values, using some strategy.
125
+
126
+ Input
127
+ -----
128
+ - `filtrations_values`: `Iterable[filtration of parameter for parameter]`
129
+ where `filtration_of_parameter` is a array[float, ndim=1]
130
+ - `resolution`:Optional[int|tuple[int]]
131
+ - `strategy`: either exact, regular, regular_closest, regular_left, partition, quantile, or precomputed.
132
+ - `unique`: if true, doesn't repeat values in the output grid.
133
+ - `drop_quantiles` : drop some filtration values according to these quantiles
134
+ Output
135
+ ------
136
+ Iterable[array[float, ndim=1]] : the 1d-grid for each parameter.
137
+ """
138
+ num_parameters = len(filtrations_values)
139
+ if resolution is None and strategy not in ["exact", "precomputed"]:
140
+ raise ValueError("Resolution must be provided for this strategy.")
141
+ elif resolution is not None:
142
+ try:
143
+ int(resolution)
144
+ resolution = [resolution]*num_parameters
145
+ except:
146
+ pass
147
+ try:
148
+ a,b=drop_quantiles
149
+ except:
150
+ a,b=drop_quantiles,drop_quantiles
151
+
152
+ if a != 0 or b != 0:
153
+ boxes = np.asarray([np.quantile(filtration, [a, b], axis=1, method='closest_observation') for filtration in filtrations_values])
154
+ min_filtration, max_filtration = np.min(boxes, axis=(0,1)), np.max(boxes, axis=(0,1)) # box, birth/death, filtration
155
+ filtrations_values = [
156
+ filtration[(m<filtration) * (filtration <M)]
157
+ for filtration, m,M in zip(filtrations_values, min_filtration, max_filtration)
158
+ ]
159
+
160
+ to_unique = lambda f : np.unique(f) if isinstance(f,np.ndarray) else f.unique()
161
+ ## match doesn't work with cython BUG
162
+ if strategy == "exact":
163
+ F=tuple(to_unique(f) for f in filtrations_values)
164
+ elif strategy == "quantile":
165
+ F = tuple(to_unique(f) for f in filtrations_values)
166
+ max_resolution = [min(len(f),r) for f,r in zip(F,resolution)]
167
+ F = tuple( np.quantile(f, q=np.linspace(0,1,num=int(r*_q_factor)), axis=0, method='closest_observation') for f,r in zip(F, resolution) )
168
+ if unique:
169
+ F = tuple(to_unique(f) for f in F)
170
+ if np.all(np.asarray(max_resolution) > np.asarray([len(f) for f in F])):
171
+ return _compute_grid_numpy(filtrations_values=filtrations_values, resolution=resolution, strategy="quantile",_q_factor=1.5*_q_factor)
172
+ elif strategy == "regular":
173
+ F = tuple(np.linspace(np.min(f),np.max(f),num=r, dtype=np.asarray(f).dtype) for f,r in zip(filtrations_values, resolution))
174
+ elif strategy == "regular_closest":
175
+ F = tuple(_todo_regular_closest(f,r, unique) for f,r in zip(filtrations_values, resolution))
176
+ elif strategy == "regular_left":
177
+ F = tuple(_todo_regular_left(f,r, unique) for f,r in zip(filtrations_values, resolution))
178
+ elif strategy == "torch_regular_closest":
179
+ F = tuple(_torch_regular_closest(f,r, unique) for f,r in zip(filtrations_values, resolution))
180
+ elif strategy == "partition":
181
+ F = tuple(_todo_partition(f,r, unique) for f,r in zip(filtrations_values, resolution))
182
+ elif strategy == "precomputed":
183
+ F=filtrations_values
184
+ else:
185
+ raise ValueError(f"Invalid strategy {strategy}. Pick something in {available_strategies}.")
186
+ if dense:
187
+ return todense(F)
188
+ return F
189
+
190
+ def todense(grid, bool product_order=False):
191
+ if len(grid) == 0:
192
+ return np.empty(0)
193
+ if not isinstance(grid[0], np.ndarray):
194
+ import torch
195
+ assert isinstance(grid[0], torch.Tensor)
196
+ from multipers.torch.diff_grids import todense
197
+ return todense(grid)
198
+ dtype = grid[0].dtype
199
+ if product_order:
200
+ return np.fromiter(product(*grid), dtype=np.dtype((dtype, len(grid))), count=np.prod([len(f) for f in grid]))
201
+ mesh = np.meshgrid(*grid)
202
+ coordinates = np.concatenate(tuple(stuff.ravel()[:,None] for stuff in mesh), axis=1, dtype=dtype)
203
+ return coordinates
204
+
205
+
206
+
207
+ ## TODO : optimize. Pykeops ?
208
+ def _todo_regular_closest(some_float[:] f, int r, bool unique):
209
+ f_array = np.asarray(f)
210
+ f_regular = np.linspace(np.min(f), np.max(f),num=r, dtype=f_array.dtype)
211
+ f_regular_closest = np.asarray([f[<long>np.argmin(np.abs(f_array-f_regular[i]))] for i in range(r)])
212
+ if unique: f_regular_closest = np.unique(f_regular_closest)
213
+ return f_regular_closest
214
+
215
+ def _todo_regular_left(some_float[:] f, int r, bool unique):
216
+ sorted_f = np.sort(f)
217
+ f_regular = np.linspace(sorted_f[0],sorted_f[-1],num=r, dtype=sorted_f.dtype)
218
+ f_regular_closest = sorted_f[np.searchsorted(sorted_f,f_regular)]
219
+ if unique: f_regular_closest = np.unique(f_regular_closest)
220
+ return f_regular_closest
221
+
222
+ def _torch_regular_closest(f, int r, bool unique=True):
223
+ import torch
224
+ f_regular = torch.linspace(f.min(),f.max(), r, dtype=f.dtype)
225
+ f_regular_closest =torch.tensor([f[(f-x).abs().argmin()] for x in f_regular])
226
+ if unique: f_regular_closest = f_regular_closest.unique()
227
+ return f_regular_closest
228
+
229
+ def _todo_partition(some_float[:] data,int resolution, bool unique):
230
+ if data.shape[0] < resolution: resolution=data.shape[0]
231
+ k = data.shape[0] // resolution
232
+ partitions = np.partition(data, k)
233
+ f = partitions[[i*k for i in range(resolution)]]
234
+ if unique: f= np.unique(f)
235
+ return f
236
+
237
+
238
+ def compute_bounding_box(stuff, inflate = 0.):
239
+ r"""
240
+ Returns a array of shape (2, num_parameters)
241
+ such that for any filtration value $y$ of something in stuff,
242
+ then if (x,z) is the output of this function, we have
243
+ $x\le y \le z$.
244
+ """
245
+ box = np.array(compute_grid(stuff,strategy="regular",resolution=2)).T
246
+ if inflate:
247
+ box[0] -= inflate
248
+ box[1] += inflate
249
+ return box
250
+
251
+ def push_to_grid(some_float[:,:] points, grid, bool return_coordinate=False):
252
+ """
253
+ Given points and a grid (list of one parameter grids),
254
+ pushes the points onto the grid.
255
+ """
256
+ num_points, num_parameters = points.shape[0], points.shape[1]
257
+ cdef cnp.ndarray[long,ndim=2] coordinates = np.empty((num_points, num_parameters),dtype=np.int64)
258
+ for parameter in range(num_parameters):
259
+ coordinates[:,parameter] = np.searchsorted(grid[parameter],points[:,parameter])
260
+ if return_coordinate:
261
+ return coordinates
262
+ out = np.empty((num_points,num_parameters), grid[0].dtype)
263
+ for parameter in range(num_parameters):
264
+ out[:,parameter] = grid[parameter][coordinates[:,parameter]]
265
+ return out
266
+
267
+
268
+ def coarsen_points(some_float[:,:] points, strategy="exact", int resolution=-1, bool coordinate=False):
269
+ grid = _compute_grid_numpy(points.T, strategy=strategy, resolution=resolution)
270
+ if coordinate:
271
+ return push_to_grid(points, grid, coordinate), grid
272
+ return push_to_grid(points, grid, coordinate)
273
+
274
+
275
+
276
+ def evaluate_in_grid(pts, grid, mass_default=None):
277
+ """
278
+ Input
279
+ -----
280
+ - pts: of the form array[int, ndim=2]
281
+ - grid of the form Iterable[array[float, ndim=1]]
282
+ """
283
+ first_filtration = grid[0]
284
+ dtype = first_filtration.dtype
285
+ if isinstance(first_filtration, np.ndarray):
286
+ if mass_default is not None:
287
+ grid = tuple(np.concatenate([g, [m]]) for g,m in zip(grid, mass_default))
288
+ def empty_like(x):
289
+ return np.empty_like(x, dtype=dtype)
290
+ else:
291
+ import torch
292
+ # assert isinstance(first_filtration, torch.Tensor), f"Invalid grid type. Got {type(grid[0])}, expected numpy or torch array."
293
+ if mass_default is not None:
294
+ grid = tuple(torch.cat([g, torch.tensor(m)[None]]) for g,m in zip(grid, mass_default))
295
+ def empty_like(x):
296
+ return torch.empty(x.shape,dtype=dtype)
297
+
298
+ coords= empty_like(pts)
299
+ for i in range(coords.shape[1]):
300
+ coords[:,i] = grid[i][pts[:,i]]
301
+ return coords
302
+
303
+ def sm_in_grid(pts, weights, grid, int num_parameters=-1, mass_default=None):
304
+ """Given a measure whose points are coordinates,
305
+ pushes this measure in this grid.
306
+ Input
307
+ -----
308
+ - pts: of the form array[int, ndim=2]
309
+ - weights: array[int, ndim=1]
310
+ - grid of the form Iterable[array[float, ndim=1]]
311
+ - num_parameters: number of parameters
312
+ """
313
+ first_filtration = grid[0]
314
+ dtype = first_filtration.dtype
315
+ def to_int(x):
316
+ return np.asarray(x,dtype=np.int64)
317
+ if isinstance(first_filtration, np.ndarray):
318
+ if mass_default is not None:
319
+ grid = tuple(np.concatenate([g, [m]]) for g,m in zip(grid, mass_default))
320
+ def empty_like(x, weights):
321
+ return np.empty_like(x, dtype=dtype), np.asarray(weights)
322
+ else:
323
+ import torch
324
+ # assert isinstance(first_filtration, torch.Tensor), f"Invalid grid type. Got {type(grid[0])}, expected numpy or torch array."
325
+ if mass_default is not None:
326
+ grid = tuple(torch.cat([g, torch.tensor(m)[None]]) for g,m in zip(grid, mass_default))
327
+ def empty_like(x, weights):
328
+ return torch.empty(x.shape,dtype=dtype), torch.from_numpy(weights)
329
+
330
+ pts = to_int(pts)
331
+ coords,weights = empty_like(pts,weights)
332
+ for i in range(coords.shape[1]):
333
+ if num_parameters > 0:
334
+ coords[:,i] = grid[i%num_parameters][pts[:,i]]
335
+ else:
336
+ coords[:,i] = grid[i][pts[:,i]]
337
+ return (coords, weights)
338
+
339
+ # TODO : optimize with memoryviews / typing
340
+ def sms_in_grid(sms, grid, int num_parameters=-1, mass_default=None):
341
+ """Given a measure whose points are coordinates,
342
+ pushes this measure in this grid.
343
+ Input
344
+ -----
345
+ - sms: of the form (signed_measure_like for num_measures)
346
+ where signed_measure_like = tuple(array[int, ndim=2], array[int])
347
+ - grid of the form Iterable[array[float, ndim=1]]
348
+ """
349
+ sms = tuple(sm_in_grid(pts,weights,grid=grid,num_parameters=num_parameters, mass_default=mass_default) for pts,weights in sms)
350
+ return sms