multipers 2.2.3__cp312-cp312-win_amd64.whl → 2.3.0__cp312-cp312-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of multipers might be problematic. Click here for more details.

Files changed (182) hide show
  1. multipers/__init__.py +33 -31
  2. multipers/_signed_measure_meta.py +430 -430
  3. multipers/_slicer_meta.py +211 -212
  4. multipers/data/MOL2.py +458 -458
  5. multipers/data/UCR.py +18 -18
  6. multipers/data/graphs.py +466 -466
  7. multipers/data/immuno_regions.py +27 -27
  8. multipers/data/pytorch2simplextree.py +90 -90
  9. multipers/data/shape3d.py +101 -101
  10. multipers/data/synthetic.py +113 -111
  11. multipers/distances.py +198 -198
  12. multipers/filtration_conversions.pxd.tp +84 -84
  13. multipers/filtrations/__init__.py +18 -0
  14. multipers/filtrations/filtrations.py +289 -0
  15. multipers/filtrations.pxd +224 -224
  16. multipers/function_rips.cp312-win_amd64.pyd +0 -0
  17. multipers/function_rips.pyx +105 -105
  18. multipers/grids.cp312-win_amd64.pyd +0 -0
  19. multipers/grids.pyx +350 -350
  20. multipers/gudhi/Persistence_slices_interface.h +132 -132
  21. multipers/gudhi/Simplex_tree_interface.h +239 -245
  22. multipers/gudhi/Simplex_tree_multi_interface.h +516 -561
  23. multipers/gudhi/cubical_to_boundary.h +59 -59
  24. multipers/gudhi/gudhi/Bitmap_cubical_complex.h +450 -450
  25. multipers/gudhi/gudhi/Bitmap_cubical_complex_base.h +1070 -1070
  26. multipers/gudhi/gudhi/Bitmap_cubical_complex_periodic_boundary_conditions_base.h +579 -579
  27. multipers/gudhi/gudhi/Debug_utils.h +45 -45
  28. multipers/gudhi/gudhi/Fields/Multi_field.h +484 -484
  29. multipers/gudhi/gudhi/Fields/Multi_field_operators.h +455 -455
  30. multipers/gudhi/gudhi/Fields/Multi_field_shared.h +450 -450
  31. multipers/gudhi/gudhi/Fields/Multi_field_small.h +531 -531
  32. multipers/gudhi/gudhi/Fields/Multi_field_small_operators.h +507 -507
  33. multipers/gudhi/gudhi/Fields/Multi_field_small_shared.h +531 -531
  34. multipers/gudhi/gudhi/Fields/Z2_field.h +355 -355
  35. multipers/gudhi/gudhi/Fields/Z2_field_operators.h +376 -376
  36. multipers/gudhi/gudhi/Fields/Zp_field.h +420 -420
  37. multipers/gudhi/gudhi/Fields/Zp_field_operators.h +400 -400
  38. multipers/gudhi/gudhi/Fields/Zp_field_shared.h +418 -418
  39. multipers/gudhi/gudhi/Flag_complex_edge_collapser.h +337 -337
  40. multipers/gudhi/gudhi/Matrix.h +2107 -2107
  41. multipers/gudhi/gudhi/Multi_critical_filtration.h +1038 -1038
  42. multipers/gudhi/gudhi/Multi_persistence/Box.h +171 -171
  43. multipers/gudhi/gudhi/Multi_persistence/Line.h +282 -282
  44. multipers/gudhi/gudhi/Off_reader.h +173 -173
  45. multipers/gudhi/gudhi/One_critical_filtration.h +1432 -1431
  46. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix.h +769 -769
  47. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix_with_column_compression.h +686 -686
  48. multipers/gudhi/gudhi/Persistence_matrix/Boundary_matrix.h +842 -842
  49. multipers/gudhi/gudhi/Persistence_matrix/Chain_matrix.h +1350 -1350
  50. multipers/gudhi/gudhi/Persistence_matrix/Id_to_index_overlay.h +1105 -1105
  51. multipers/gudhi/gudhi/Persistence_matrix/Position_to_index_overlay.h +859 -859
  52. multipers/gudhi/gudhi/Persistence_matrix/RU_matrix.h +910 -910
  53. multipers/gudhi/gudhi/Persistence_matrix/allocators/entry_constructors.h +139 -139
  54. multipers/gudhi/gudhi/Persistence_matrix/base_pairing.h +230 -230
  55. multipers/gudhi/gudhi/Persistence_matrix/base_swap.h +211 -211
  56. multipers/gudhi/gudhi/Persistence_matrix/boundary_cell_position_to_id_mapper.h +60 -60
  57. multipers/gudhi/gudhi/Persistence_matrix/boundary_face_position_to_id_mapper.h +60 -60
  58. multipers/gudhi/gudhi/Persistence_matrix/chain_pairing.h +136 -136
  59. multipers/gudhi/gudhi/Persistence_matrix/chain_rep_cycles.h +190 -190
  60. multipers/gudhi/gudhi/Persistence_matrix/chain_vine_swap.h +616 -616
  61. multipers/gudhi/gudhi/Persistence_matrix/columns/chain_column_extra_properties.h +150 -150
  62. multipers/gudhi/gudhi/Persistence_matrix/columns/column_dimension_holder.h +106 -106
  63. multipers/gudhi/gudhi/Persistence_matrix/columns/column_utilities.h +219 -219
  64. multipers/gudhi/gudhi/Persistence_matrix/columns/entry_types.h +327 -327
  65. multipers/gudhi/gudhi/Persistence_matrix/columns/heap_column.h +1140 -1140
  66. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_list_column.h +934 -934
  67. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_set_column.h +934 -934
  68. multipers/gudhi/gudhi/Persistence_matrix/columns/list_column.h +980 -980
  69. multipers/gudhi/gudhi/Persistence_matrix/columns/naive_vector_column.h +1092 -1092
  70. multipers/gudhi/gudhi/Persistence_matrix/columns/row_access.h +192 -192
  71. multipers/gudhi/gudhi/Persistence_matrix/columns/set_column.h +921 -921
  72. multipers/gudhi/gudhi/Persistence_matrix/columns/small_vector_column.h +1093 -1093
  73. multipers/gudhi/gudhi/Persistence_matrix/columns/unordered_set_column.h +1012 -1012
  74. multipers/gudhi/gudhi/Persistence_matrix/columns/vector_column.h +1244 -1244
  75. multipers/gudhi/gudhi/Persistence_matrix/matrix_dimension_holders.h +186 -186
  76. multipers/gudhi/gudhi/Persistence_matrix/matrix_row_access.h +164 -164
  77. multipers/gudhi/gudhi/Persistence_matrix/ru_pairing.h +156 -156
  78. multipers/gudhi/gudhi/Persistence_matrix/ru_rep_cycles.h +376 -376
  79. multipers/gudhi/gudhi/Persistence_matrix/ru_vine_swap.h +540 -540
  80. multipers/gudhi/gudhi/Persistent_cohomology/Field_Zp.h +118 -118
  81. multipers/gudhi/gudhi/Persistent_cohomology/Multi_field.h +173 -173
  82. multipers/gudhi/gudhi/Persistent_cohomology/Persistent_cohomology_column.h +128 -128
  83. multipers/gudhi/gudhi/Persistent_cohomology.h +745 -745
  84. multipers/gudhi/gudhi/Points_off_io.h +171 -171
  85. multipers/gudhi/gudhi/Simple_object_pool.h +69 -69
  86. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_iterators.h +463 -463
  87. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_node_explicit_storage.h +83 -83
  88. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_siblings.h +106 -106
  89. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_star_simplex_iterators.h +277 -277
  90. multipers/gudhi/gudhi/Simplex_tree/hooks_simplex_base.h +62 -62
  91. multipers/gudhi/gudhi/Simplex_tree/indexing_tag.h +27 -27
  92. multipers/gudhi/gudhi/Simplex_tree/serialization_utils.h +62 -62
  93. multipers/gudhi/gudhi/Simplex_tree/simplex_tree_options.h +157 -157
  94. multipers/gudhi/gudhi/Simplex_tree.h +2794 -2794
  95. multipers/gudhi/gudhi/Simplex_tree_multi.h +152 -163
  96. multipers/gudhi/gudhi/distance_functions.h +62 -62
  97. multipers/gudhi/gudhi/graph_simplicial_complex.h +104 -104
  98. multipers/gudhi/gudhi/persistence_interval.h +253 -253
  99. multipers/gudhi/gudhi/persistence_matrix_options.h +170 -170
  100. multipers/gudhi/gudhi/reader_utils.h +367 -367
  101. multipers/gudhi/mma_interface_coh.h +256 -255
  102. multipers/gudhi/mma_interface_h0.h +223 -231
  103. multipers/gudhi/mma_interface_matrix.h +284 -282
  104. multipers/gudhi/naive_merge_tree.h +536 -575
  105. multipers/gudhi/scc_io.h +310 -289
  106. multipers/gudhi/truc.h +890 -888
  107. multipers/io.cp312-win_amd64.pyd +0 -0
  108. multipers/io.pyx +711 -711
  109. multipers/ml/accuracies.py +90 -90
  110. multipers/ml/convolutions.py +520 -520
  111. multipers/ml/invariants_with_persistable.py +79 -79
  112. multipers/ml/kernels.py +176 -176
  113. multipers/ml/mma.py +713 -714
  114. multipers/ml/one.py +472 -472
  115. multipers/ml/point_clouds.py +352 -346
  116. multipers/ml/signed_measures.py +1589 -1589
  117. multipers/ml/sliced_wasserstein.py +461 -461
  118. multipers/ml/tools.py +113 -113
  119. multipers/mma_structures.cp312-win_amd64.pyd +0 -0
  120. multipers/mma_structures.pxd +127 -127
  121. multipers/mma_structures.pyx +4 -4
  122. multipers/mma_structures.pyx.tp +1085 -1085
  123. multipers/multi_parameter_rank_invariant/diff_helpers.h +84 -93
  124. multipers/multi_parameter_rank_invariant/euler_characteristic.h +97 -97
  125. multipers/multi_parameter_rank_invariant/function_rips.h +322 -322
  126. multipers/multi_parameter_rank_invariant/hilbert_function.h +769 -769
  127. multipers/multi_parameter_rank_invariant/persistence_slices.h +148 -148
  128. multipers/multi_parameter_rank_invariant/rank_invariant.h +369 -369
  129. multipers/multiparameter_edge_collapse.py +41 -41
  130. multipers/multiparameter_module_approximation/approximation.h +2296 -2295
  131. multipers/multiparameter_module_approximation/combinatory.h +129 -129
  132. multipers/multiparameter_module_approximation/debug.h +107 -107
  133. multipers/multiparameter_module_approximation/format_python-cpp.h +286 -286
  134. multipers/multiparameter_module_approximation/heap_column.h +238 -238
  135. multipers/multiparameter_module_approximation/images.h +79 -79
  136. multipers/multiparameter_module_approximation/list_column.h +174 -174
  137. multipers/multiparameter_module_approximation/list_column_2.h +232 -232
  138. multipers/multiparameter_module_approximation/ru_matrix.h +347 -347
  139. multipers/multiparameter_module_approximation/set_column.h +135 -135
  140. multipers/multiparameter_module_approximation/structure_higher_dim_barcode.h +36 -36
  141. multipers/multiparameter_module_approximation/unordered_set_column.h +166 -166
  142. multipers/multiparameter_module_approximation/utilities.h +403 -419
  143. multipers/multiparameter_module_approximation/vector_column.h +223 -223
  144. multipers/multiparameter_module_approximation/vector_matrix.h +331 -331
  145. multipers/multiparameter_module_approximation/vineyards.h +464 -464
  146. multipers/multiparameter_module_approximation/vineyards_trajectories.h +649 -649
  147. multipers/multiparameter_module_approximation.cp312-win_amd64.pyd +0 -0
  148. multipers/multiparameter_module_approximation.pyx +216 -217
  149. multipers/pickle.py +90 -53
  150. multipers/plots.py +342 -334
  151. multipers/point_measure.cp312-win_amd64.pyd +0 -0
  152. multipers/point_measure.pyx +322 -320
  153. multipers/simplex_tree_multi.cp312-win_amd64.pyd +0 -0
  154. multipers/simplex_tree_multi.pxd +133 -133
  155. multipers/simplex_tree_multi.pyx +18 -15
  156. multipers/simplex_tree_multi.pyx.tp +1939 -1935
  157. multipers/slicer.cp312-win_amd64.pyd +0 -0
  158. multipers/slicer.pxd +81 -20
  159. multipers/slicer.pxd.tp +215 -214
  160. multipers/slicer.pyx +1091 -308
  161. multipers/slicer.pyx.tp +924 -914
  162. multipers/tensor/tensor.h +672 -672
  163. multipers/tensor.pxd +13 -13
  164. multipers/test.pyx +44 -44
  165. multipers/tests/__init__.py +57 -57
  166. multipers/torch/diff_grids.py +217 -217
  167. multipers/torch/rips_density.py +310 -304
  168. {multipers-2.2.3.dist-info → multipers-2.3.0.dist-info}/LICENSE +21 -21
  169. {multipers-2.2.3.dist-info → multipers-2.3.0.dist-info}/METADATA +21 -11
  170. multipers-2.3.0.dist-info/RECORD +182 -0
  171. multipers/tests/test_diff_helper.py +0 -73
  172. multipers/tests/test_hilbert_function.py +0 -82
  173. multipers/tests/test_mma.py +0 -83
  174. multipers/tests/test_point_clouds.py +0 -49
  175. multipers/tests/test_python-cpp_conversion.py +0 -82
  176. multipers/tests/test_signed_betti.py +0 -181
  177. multipers/tests/test_signed_measure.py +0 -89
  178. multipers/tests/test_simplextreemulti.py +0 -221
  179. multipers/tests/test_slicer.py +0 -221
  180. multipers-2.2.3.dist-info/RECORD +0 -189
  181. {multipers-2.2.3.dist-info → multipers-2.3.0.dist-info}/WHEEL +0 -0
  182. {multipers-2.2.3.dist-info → multipers-2.3.0.dist-info}/top_level.txt +0 -0
multipers/_slicer_meta.py CHANGED
@@ -1,212 +1,211 @@
1
- from copy import deepcopy
2
- from typing import Literal, Optional
3
-
4
- import numpy as np
5
-
6
- import multipers.io as mio
7
- import multipers.slicer as mps
8
- from multipers.simplex_tree_multi import is_simplextree_multi
9
- from multipers.slicer import _column_type, _valid_dtype, _valid_pers_backend, is_slicer
10
-
11
-
12
- ## TODO : maybe optimize this with cython
13
- def _blocks2boundary_dimension_grades(
14
- blocks,
15
- filtration_type=np.float64,
16
- num_parameters: int = -1,
17
- inplace: bool = False,
18
- is_kcritical: bool = False,
19
- ):
20
- """
21
- Turns blocks, aka scc, into the input of non-simplicial slicers.
22
- """
23
- if num_parameters < 0:
24
- for b in blocks:
25
- if len(b[0]) > 0:
26
- if is_kcritical:
27
- num_parameters = np.asarray(b[0][0]).shape[1]
28
- else:
29
- num_parameters = np.asarray(b[0]).shape[1]
30
- break
31
- if num_parameters < 0:
32
- raise ValueError("Empty Filtration")
33
- rblocks = blocks if inplace else deepcopy(blocks)
34
- rblocks.reverse()
35
- block_sizes = [len(b[0]) for b in rblocks]
36
- S = np.cumsum([0, 0] + block_sizes)
37
- if is_kcritical:
38
- multifiltration = tuple(
39
- stuff
40
- for b in rblocks
41
- for stuff in (b[0] if len(b[0]) > 0 else [np.empty((0, num_parameters))])
42
- )
43
-
44
- else:
45
- multifiltration = np.concatenate(
46
- tuple(
47
- b[0] if len(b[0]) > 0 else np.empty((0, num_parameters))
48
- for b in rblocks
49
- ),
50
- dtype=filtration_type,
51
- )
52
- boundary = tuple(x + S[i] for i, b in enumerate(rblocks) for x in b[1])
53
- dimensions = np.fromiter(
54
- (i for i, b in enumerate(rblocks) for _ in range(len(b[0]))), dtype=int
55
- )
56
- return boundary, dimensions, multifiltration
57
-
58
-
59
- def _slicer_from_simplextree(st, backend, vineyard):
60
- if vineyard:
61
- if backend == "matrix":
62
- slicer = mps._SlicerVineSimplicial(st)
63
- elif backend == "clement":
64
- raise ValueError("This one takes a minpres")
65
- elif backend == "graph":
66
- slicer = mps._SlicerVineGraph(st)
67
- else:
68
- raise ValueError(f"Inimplemented backend {backend}.")
69
- else:
70
- if backend == "matrix":
71
- slicer = mps._SlicerNoVineSimplicial(st)
72
- elif backend == "clement":
73
- raise ValueError("Clement is Vineyard")
74
- elif backend == "graph":
75
- raise ValueError("Graph is Vineyard")
76
- else:
77
- raise ValueError(f"Inimplemented backend {backend}.")
78
- return slicer
79
-
80
-
81
- def _slicer_from_blocks(
82
- blocks,
83
- pers_backend: _valid_pers_backend,
84
- vineyard: bool,
85
- is_kcritical: bool,
86
- dtype: type,
87
- col: _column_type,
88
- ):
89
- boundary, dimensions, multifiltrations = _blocks2boundary_dimension_grades(
90
- blocks,
91
- inplace=False,
92
- is_kcritical=is_kcritical,
93
- )
94
- slicer = mps.get_matrix_slicer(vineyard, is_kcritical, dtype, col, pers_backend)(
95
- boundary, dimensions, multifiltrations
96
- )
97
- return slicer
98
-
99
-
100
- def Slicer(
101
- st=None,
102
- vineyard: Optional[bool] = None,
103
- reduce: bool = False,
104
- reduce_backend: Optional[str] = None,
105
- dtype: Optional[_valid_dtype] = None,
106
- kcritical: Optional[bool] = None,
107
- column_type: Optional[_column_type] = None,
108
- backend: Optional[_valid_pers_backend] = None,
109
- max_dim: Optional[int] = None,
110
- return_type_only: bool = False,
111
- ) -> mps.Slicer_type:
112
- """
113
- Given a simplextree or blocks (a.k.a scc for python),
114
- returns a structure that can compute persistence on line (or more)
115
- slices, eventually vineyard update, etc.
116
-
117
- This can be used to compute interval-decomposable module approximations
118
- or signed measures, using, e.g.
119
- - `multipers.module_approximation(this, *args)`
120
- - `multipers.signed_measure(this, *args)`
121
-
122
- Note : it is recommended and sometime required to apply
123
- a minimal presentation before computing these functions !
124
- `mp.slicer.minimal_presentation(slicer, *args, **kwargs)`
125
-
126
- Input
127
- -----
128
- - st : SimplexTreeMulti or scc-like blocks or path to scc file
129
- - backend: slicer backend, e.g, "matrix", "clement", "graph"
130
- - vineyard: vineyard capable (may slow down computations if true)
131
- Output
132
- ------
133
- The corresponding slicer.
134
- """
135
-
136
- if is_slicer(st, allow_minpres=False) or is_simplextree_multi(st):
137
- dtype = st.dtype if dtype is None else dtype
138
- is_kcritical = st.is_kcritical if kcritical is None else kcritical
139
- else:
140
- dtype = np.float64 if dtype is None else dtype
141
- is_kcritical = False if kcritical is None else kcritical
142
-
143
- if is_slicer(st, allow_minpres=False):
144
- vineyard = st.is_vine if vineyard is None else vineyard
145
- column_type = st.col_type if column_type is None else column_type
146
- backend = st.pers_backend if backend is None else backend
147
- else:
148
- vineyard = False if vineyard is None else vineyard
149
- column_type = "INTRUSIVE_SET" if column_type is None else column_type
150
- backend = "Matrix" if backend is None else backend
151
-
152
- _Slicer = mps.get_matrix_slicer(
153
- is_vineyard=vineyard,
154
- is_k_critical=is_kcritical,
155
- dtype=dtype,
156
- col=column_type,
157
- pers_backend=backend,
158
- )
159
- if return_type_only:
160
- return _Slicer
161
- if st is None:
162
- return _Slicer()
163
- elif mps.is_slicer(st):
164
- max_dim_idx = (
165
- None
166
- if max_dim is None
167
- else np.searchsorted(st.get_dimensions(), max_dim + 1)
168
- )
169
- slicer = _Slicer(
170
- st.get_boundaries()[slice(None, max_dim_idx)],
171
- st.get_dimensions()[slice(None, max_dim_idx)],
172
- st.get_filtrations()[slice(None, max_dim_idx)],
173
- )
174
- if st.is_squeezed:
175
- slicer.filtration_grid = st.filtration_grid
176
- slicer.minpres_degree = st.minpres_degree
177
- elif is_simplextree_multi(st) and backend == "Graph":
178
- slicer = _slicer_from_simplextree(st, backend, vineyard)
179
- if st.is_squeezed:
180
- slicer.filtration_grid = st.filtration_grid
181
- elif backend == "Graph":
182
- raise ValueError(
183
- """
184
- Graph is simplicial, incompatible with minpres.
185
- You can try using `multipers.slicer.to_simplextree`."""
186
- )
187
- else:
188
- filtration_grid = None
189
- if max_dim is not None: # no test for simplex tree?
190
- st.prune_above_dimension(max_dim)
191
- if isinstance(st, str): # is_kcritical should be false
192
- slicer = _Slicer()._build_from_scc_file(st)
193
- else:
194
- if is_simplextree_multi(st):
195
- blocks = st._to_scc()
196
- if st.is_squeezed:
197
- filtration_grid = st.filtration_grid
198
- else:
199
- blocks = st
200
- slicer = _slicer_from_blocks(
201
- blocks, backend, vineyard, is_kcritical, dtype, column_type
202
- )
203
- if filtration_grid is not None:
204
- slicer.filtration_grid = filtration_grid
205
- if reduce:
206
- slicer = mps.minimal_presentation(
207
- slicer,
208
- backend=reduce_backend,
209
- slicer_backend=backend,
210
- vineyard=vineyard,
211
- )
212
- return slicer
1
+ from copy import deepcopy
2
+ from typing import Optional
3
+
4
+ import numpy as np
5
+
6
+ import multipers.slicer as mps
7
+ from multipers.simplex_tree_multi import is_simplextree_multi
8
+ from multipers.slicer import _column_type, _valid_dtype, _valid_pers_backend, is_slicer
9
+
10
+
11
+ ## TODO : maybe optimize this with cython
12
+ def _blocks2boundary_dimension_grades(
13
+ blocks,
14
+ filtration_type=np.float64,
15
+ num_parameters: int = -1,
16
+ inplace: bool = False,
17
+ is_kcritical: bool = False,
18
+ ):
19
+ """
20
+ Turns blocks, aka scc, into the input of non-simplicial slicers.
21
+ """
22
+ if num_parameters < 0:
23
+ for b in blocks:
24
+ if len(b[0]) > 0:
25
+ if is_kcritical:
26
+ num_parameters = np.asarray(b[0][0]).shape[1]
27
+ else:
28
+ num_parameters = np.asarray(b[0]).shape[1]
29
+ break
30
+ if num_parameters < 0:
31
+ raise ValueError("Empty Filtration")
32
+ rblocks = blocks if inplace else deepcopy(blocks)
33
+ rblocks.reverse()
34
+ block_sizes = [len(b[0]) for b in rblocks]
35
+ S = np.cumsum([0, 0] + block_sizes)
36
+ if is_kcritical:
37
+ multifiltration = tuple(
38
+ stuff
39
+ for b in rblocks
40
+ for stuff in (b[0] if len(b[0]) > 0 else [np.empty((0, num_parameters))])
41
+ )
42
+
43
+ else:
44
+ multifiltration = np.concatenate(
45
+ tuple(
46
+ b[0] if len(b[0]) > 0 else np.empty((0, num_parameters))
47
+ for b in rblocks
48
+ ),
49
+ dtype=filtration_type,
50
+ )
51
+ boundary = tuple(x + S[i] for i, b in enumerate(rblocks) for x in b[1])
52
+ dimensions = np.fromiter(
53
+ (i for i, b in enumerate(rblocks) for _ in range(len(b[0]))), dtype=int
54
+ )
55
+ return boundary, dimensions, multifiltration
56
+
57
+
58
+ def _slicer_from_simplextree(st, backend, vineyard):
59
+ if vineyard:
60
+ if backend == "matrix":
61
+ slicer = mps._SlicerVineSimplicial(st)
62
+ elif backend == "clement":
63
+ raise ValueError("This one takes a minpres")
64
+ elif backend == "graph":
65
+ slicer = mps._SlicerVineGraph(st)
66
+ else:
67
+ raise ValueError(f"Inimplemented backend {backend}.")
68
+ else:
69
+ if backend == "matrix":
70
+ slicer = mps._SlicerNoVineSimplicial(st)
71
+ elif backend == "clement":
72
+ raise ValueError("Clement is Vineyard")
73
+ elif backend == "graph":
74
+ raise ValueError("Graph is Vineyard")
75
+ else:
76
+ raise ValueError(f"Inimplemented backend {backend}.")
77
+ return slicer
78
+
79
+
80
+ def _slicer_from_blocks(
81
+ blocks,
82
+ pers_backend: _valid_pers_backend,
83
+ vineyard: bool,
84
+ is_kcritical: bool,
85
+ dtype: type,
86
+ col: _column_type,
87
+ ):
88
+ boundary, dimensions, multifiltrations = _blocks2boundary_dimension_grades(
89
+ blocks,
90
+ inplace=False,
91
+ is_kcritical=is_kcritical,
92
+ )
93
+ slicer = mps.get_matrix_slicer(vineyard, is_kcritical, dtype, col, pers_backend)(
94
+ boundary, dimensions, multifiltrations
95
+ )
96
+ return slicer
97
+
98
+
99
+ def Slicer(
100
+ st=None,
101
+ vineyard: Optional[bool] = None,
102
+ reduce: bool = False,
103
+ reduce_backend: Optional[str] = None,
104
+ dtype: Optional[_valid_dtype] = None,
105
+ kcritical: Optional[bool] = None,
106
+ column_type: Optional[_column_type] = None,
107
+ backend: Optional[_valid_pers_backend] = None,
108
+ max_dim: Optional[int] = None,
109
+ return_type_only: bool = False,
110
+ ) -> mps.Slicer_type:
111
+ """
112
+ Given a simplextree or blocks (a.k.a scc for python),
113
+ returns a structure that can compute persistence on line (or more)
114
+ slices, eventually vineyard update, etc.
115
+
116
+ This can be used to compute interval-decomposable module approximations
117
+ or signed measures, using, e.g.
118
+ - `multipers.module_approximation(this, *args)`
119
+ - `multipers.signed_measure(this, *args)`
120
+
121
+ Note : it is recommended and sometime required to apply
122
+ a minimal presentation before computing these functions !
123
+ `mp.slicer.minimal_presentation(slicer, *args, **kwargs)`
124
+
125
+ Input
126
+ -----
127
+ - st : SimplexTreeMulti or scc-like blocks or path to scc file
128
+ - backend: slicer backend, e.g, "matrix", "clement", "graph"
129
+ - vineyard: vineyard capable (may slow down computations if true)
130
+ Output
131
+ ------
132
+ The corresponding slicer.
133
+ """
134
+
135
+ if is_slicer(st, allow_minpres=False) or is_simplextree_multi(st):
136
+ dtype = st.dtype if dtype is None else dtype
137
+ is_kcritical = st.is_kcritical if kcritical is None else kcritical
138
+ else:
139
+ dtype = np.float64 if dtype is None else dtype
140
+ is_kcritical = False if kcritical is None else kcritical
141
+
142
+ if is_slicer(st, allow_minpres=False):
143
+ vineyard = st.is_vine if vineyard is None else vineyard
144
+ column_type = st.col_type if column_type is None else column_type
145
+ backend = st.pers_backend if backend is None else backend
146
+ else:
147
+ vineyard = False if vineyard is None else vineyard
148
+ column_type = "INTRUSIVE_SET" if column_type is None else column_type
149
+ backend = "Matrix" if backend is None else backend
150
+
151
+ _Slicer = mps.get_matrix_slicer(
152
+ is_vineyard=vineyard,
153
+ is_k_critical=is_kcritical,
154
+ dtype=dtype,
155
+ col=column_type,
156
+ pers_backend=backend,
157
+ )
158
+ if return_type_only:
159
+ return _Slicer
160
+ if st is None:
161
+ return _Slicer()
162
+ elif mps.is_slicer(st):
163
+ max_dim_idx = (
164
+ None
165
+ if max_dim is None
166
+ else np.searchsorted(st.get_dimensions(), max_dim + 1)
167
+ )
168
+ slicer = _Slicer(
169
+ st.get_boundaries()[slice(None, max_dim_idx)],
170
+ st.get_dimensions()[slice(None, max_dim_idx)],
171
+ st.get_filtrations()[slice(None, max_dim_idx)],
172
+ )
173
+ if st.is_squeezed:
174
+ slicer.filtration_grid = st.filtration_grid
175
+ slicer.minpres_degree = st.minpres_degree
176
+ elif is_simplextree_multi(st) and backend == "Graph":
177
+ slicer = _slicer_from_simplextree(st, backend, vineyard)
178
+ if st.is_squeezed:
179
+ slicer.filtration_grid = st.filtration_grid
180
+ elif backend == "Graph":
181
+ raise ValueError(
182
+ """
183
+ Graph is simplicial, incompatible with minpres.
184
+ You can try using `multipers.slicer.to_simplextree`."""
185
+ )
186
+ else:
187
+ filtration_grid = None
188
+ if max_dim is not None: # no test for simplex tree?
189
+ st.prune_above_dimension(max_dim)
190
+ if isinstance(st, str): # is_kcritical should be false
191
+ slicer = _Slicer()._build_from_scc_file(st)
192
+ else:
193
+ if is_simplextree_multi(st):
194
+ blocks = st._to_scc()
195
+ if st.is_squeezed:
196
+ filtration_grid = st.filtration_grid
197
+ else:
198
+ blocks = st
199
+ slicer = _slicer_from_blocks(
200
+ blocks, backend, vineyard, is_kcritical, dtype, column_type
201
+ )
202
+ if filtration_grid is not None:
203
+ slicer.filtration_grid = filtration_grid
204
+ if reduce:
205
+ slicer = mps.minimal_presentation(
206
+ slicer,
207
+ backend=reduce_backend,
208
+ slicer_backend=backend,
209
+ vineyard=vineyard,
210
+ )
211
+ return slicer