multipers 2.2.3__cp311-cp311-win_amd64.whl → 2.3.0__cp311-cp311-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of multipers might be problematic. Click here for more details.

Files changed (182) hide show
  1. multipers/__init__.py +33 -31
  2. multipers/_signed_measure_meta.py +430 -430
  3. multipers/_slicer_meta.py +211 -212
  4. multipers/data/MOL2.py +458 -458
  5. multipers/data/UCR.py +18 -18
  6. multipers/data/graphs.py +466 -466
  7. multipers/data/immuno_regions.py +27 -27
  8. multipers/data/pytorch2simplextree.py +90 -90
  9. multipers/data/shape3d.py +101 -101
  10. multipers/data/synthetic.py +113 -111
  11. multipers/distances.py +198 -198
  12. multipers/filtration_conversions.pxd.tp +84 -84
  13. multipers/filtrations/__init__.py +18 -0
  14. multipers/filtrations/filtrations.py +289 -0
  15. multipers/filtrations.pxd +224 -224
  16. multipers/function_rips.cp311-win_amd64.pyd +0 -0
  17. multipers/function_rips.pyx +105 -105
  18. multipers/grids.cp311-win_amd64.pyd +0 -0
  19. multipers/grids.pyx +350 -350
  20. multipers/gudhi/Persistence_slices_interface.h +132 -132
  21. multipers/gudhi/Simplex_tree_interface.h +239 -245
  22. multipers/gudhi/Simplex_tree_multi_interface.h +516 -561
  23. multipers/gudhi/cubical_to_boundary.h +59 -59
  24. multipers/gudhi/gudhi/Bitmap_cubical_complex.h +450 -450
  25. multipers/gudhi/gudhi/Bitmap_cubical_complex_base.h +1070 -1070
  26. multipers/gudhi/gudhi/Bitmap_cubical_complex_periodic_boundary_conditions_base.h +579 -579
  27. multipers/gudhi/gudhi/Debug_utils.h +45 -45
  28. multipers/gudhi/gudhi/Fields/Multi_field.h +484 -484
  29. multipers/gudhi/gudhi/Fields/Multi_field_operators.h +455 -455
  30. multipers/gudhi/gudhi/Fields/Multi_field_shared.h +450 -450
  31. multipers/gudhi/gudhi/Fields/Multi_field_small.h +531 -531
  32. multipers/gudhi/gudhi/Fields/Multi_field_small_operators.h +507 -507
  33. multipers/gudhi/gudhi/Fields/Multi_field_small_shared.h +531 -531
  34. multipers/gudhi/gudhi/Fields/Z2_field.h +355 -355
  35. multipers/gudhi/gudhi/Fields/Z2_field_operators.h +376 -376
  36. multipers/gudhi/gudhi/Fields/Zp_field.h +420 -420
  37. multipers/gudhi/gudhi/Fields/Zp_field_operators.h +400 -400
  38. multipers/gudhi/gudhi/Fields/Zp_field_shared.h +418 -418
  39. multipers/gudhi/gudhi/Flag_complex_edge_collapser.h +337 -337
  40. multipers/gudhi/gudhi/Matrix.h +2107 -2107
  41. multipers/gudhi/gudhi/Multi_critical_filtration.h +1038 -1038
  42. multipers/gudhi/gudhi/Multi_persistence/Box.h +171 -171
  43. multipers/gudhi/gudhi/Multi_persistence/Line.h +282 -282
  44. multipers/gudhi/gudhi/Off_reader.h +173 -173
  45. multipers/gudhi/gudhi/One_critical_filtration.h +1432 -1431
  46. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix.h +769 -769
  47. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix_with_column_compression.h +686 -686
  48. multipers/gudhi/gudhi/Persistence_matrix/Boundary_matrix.h +842 -842
  49. multipers/gudhi/gudhi/Persistence_matrix/Chain_matrix.h +1350 -1350
  50. multipers/gudhi/gudhi/Persistence_matrix/Id_to_index_overlay.h +1105 -1105
  51. multipers/gudhi/gudhi/Persistence_matrix/Position_to_index_overlay.h +859 -859
  52. multipers/gudhi/gudhi/Persistence_matrix/RU_matrix.h +910 -910
  53. multipers/gudhi/gudhi/Persistence_matrix/allocators/entry_constructors.h +139 -139
  54. multipers/gudhi/gudhi/Persistence_matrix/base_pairing.h +230 -230
  55. multipers/gudhi/gudhi/Persistence_matrix/base_swap.h +211 -211
  56. multipers/gudhi/gudhi/Persistence_matrix/boundary_cell_position_to_id_mapper.h +60 -60
  57. multipers/gudhi/gudhi/Persistence_matrix/boundary_face_position_to_id_mapper.h +60 -60
  58. multipers/gudhi/gudhi/Persistence_matrix/chain_pairing.h +136 -136
  59. multipers/gudhi/gudhi/Persistence_matrix/chain_rep_cycles.h +190 -190
  60. multipers/gudhi/gudhi/Persistence_matrix/chain_vine_swap.h +616 -616
  61. multipers/gudhi/gudhi/Persistence_matrix/columns/chain_column_extra_properties.h +150 -150
  62. multipers/gudhi/gudhi/Persistence_matrix/columns/column_dimension_holder.h +106 -106
  63. multipers/gudhi/gudhi/Persistence_matrix/columns/column_utilities.h +219 -219
  64. multipers/gudhi/gudhi/Persistence_matrix/columns/entry_types.h +327 -327
  65. multipers/gudhi/gudhi/Persistence_matrix/columns/heap_column.h +1140 -1140
  66. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_list_column.h +934 -934
  67. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_set_column.h +934 -934
  68. multipers/gudhi/gudhi/Persistence_matrix/columns/list_column.h +980 -980
  69. multipers/gudhi/gudhi/Persistence_matrix/columns/naive_vector_column.h +1092 -1092
  70. multipers/gudhi/gudhi/Persistence_matrix/columns/row_access.h +192 -192
  71. multipers/gudhi/gudhi/Persistence_matrix/columns/set_column.h +921 -921
  72. multipers/gudhi/gudhi/Persistence_matrix/columns/small_vector_column.h +1093 -1093
  73. multipers/gudhi/gudhi/Persistence_matrix/columns/unordered_set_column.h +1012 -1012
  74. multipers/gudhi/gudhi/Persistence_matrix/columns/vector_column.h +1244 -1244
  75. multipers/gudhi/gudhi/Persistence_matrix/matrix_dimension_holders.h +186 -186
  76. multipers/gudhi/gudhi/Persistence_matrix/matrix_row_access.h +164 -164
  77. multipers/gudhi/gudhi/Persistence_matrix/ru_pairing.h +156 -156
  78. multipers/gudhi/gudhi/Persistence_matrix/ru_rep_cycles.h +376 -376
  79. multipers/gudhi/gudhi/Persistence_matrix/ru_vine_swap.h +540 -540
  80. multipers/gudhi/gudhi/Persistent_cohomology/Field_Zp.h +118 -118
  81. multipers/gudhi/gudhi/Persistent_cohomology/Multi_field.h +173 -173
  82. multipers/gudhi/gudhi/Persistent_cohomology/Persistent_cohomology_column.h +128 -128
  83. multipers/gudhi/gudhi/Persistent_cohomology.h +745 -745
  84. multipers/gudhi/gudhi/Points_off_io.h +171 -171
  85. multipers/gudhi/gudhi/Simple_object_pool.h +69 -69
  86. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_iterators.h +463 -463
  87. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_node_explicit_storage.h +83 -83
  88. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_siblings.h +106 -106
  89. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_star_simplex_iterators.h +277 -277
  90. multipers/gudhi/gudhi/Simplex_tree/hooks_simplex_base.h +62 -62
  91. multipers/gudhi/gudhi/Simplex_tree/indexing_tag.h +27 -27
  92. multipers/gudhi/gudhi/Simplex_tree/serialization_utils.h +62 -62
  93. multipers/gudhi/gudhi/Simplex_tree/simplex_tree_options.h +157 -157
  94. multipers/gudhi/gudhi/Simplex_tree.h +2794 -2794
  95. multipers/gudhi/gudhi/Simplex_tree_multi.h +152 -163
  96. multipers/gudhi/gudhi/distance_functions.h +62 -62
  97. multipers/gudhi/gudhi/graph_simplicial_complex.h +104 -104
  98. multipers/gudhi/gudhi/persistence_interval.h +253 -253
  99. multipers/gudhi/gudhi/persistence_matrix_options.h +170 -170
  100. multipers/gudhi/gudhi/reader_utils.h +367 -367
  101. multipers/gudhi/mma_interface_coh.h +256 -255
  102. multipers/gudhi/mma_interface_h0.h +223 -231
  103. multipers/gudhi/mma_interface_matrix.h +284 -282
  104. multipers/gudhi/naive_merge_tree.h +536 -575
  105. multipers/gudhi/scc_io.h +310 -289
  106. multipers/gudhi/truc.h +890 -888
  107. multipers/io.cp311-win_amd64.pyd +0 -0
  108. multipers/io.pyx +711 -711
  109. multipers/ml/accuracies.py +90 -90
  110. multipers/ml/convolutions.py +520 -520
  111. multipers/ml/invariants_with_persistable.py +79 -79
  112. multipers/ml/kernels.py +176 -176
  113. multipers/ml/mma.py +713 -714
  114. multipers/ml/one.py +472 -472
  115. multipers/ml/point_clouds.py +352 -346
  116. multipers/ml/signed_measures.py +1589 -1589
  117. multipers/ml/sliced_wasserstein.py +461 -461
  118. multipers/ml/tools.py +113 -113
  119. multipers/mma_structures.cp311-win_amd64.pyd +0 -0
  120. multipers/mma_structures.pxd +127 -127
  121. multipers/mma_structures.pyx +4 -4
  122. multipers/mma_structures.pyx.tp +1085 -1085
  123. multipers/multi_parameter_rank_invariant/diff_helpers.h +84 -93
  124. multipers/multi_parameter_rank_invariant/euler_characteristic.h +97 -97
  125. multipers/multi_parameter_rank_invariant/function_rips.h +322 -322
  126. multipers/multi_parameter_rank_invariant/hilbert_function.h +769 -769
  127. multipers/multi_parameter_rank_invariant/persistence_slices.h +148 -148
  128. multipers/multi_parameter_rank_invariant/rank_invariant.h +369 -369
  129. multipers/multiparameter_edge_collapse.py +41 -41
  130. multipers/multiparameter_module_approximation/approximation.h +2296 -2295
  131. multipers/multiparameter_module_approximation/combinatory.h +129 -129
  132. multipers/multiparameter_module_approximation/debug.h +107 -107
  133. multipers/multiparameter_module_approximation/format_python-cpp.h +286 -286
  134. multipers/multiparameter_module_approximation/heap_column.h +238 -238
  135. multipers/multiparameter_module_approximation/images.h +79 -79
  136. multipers/multiparameter_module_approximation/list_column.h +174 -174
  137. multipers/multiparameter_module_approximation/list_column_2.h +232 -232
  138. multipers/multiparameter_module_approximation/ru_matrix.h +347 -347
  139. multipers/multiparameter_module_approximation/set_column.h +135 -135
  140. multipers/multiparameter_module_approximation/structure_higher_dim_barcode.h +36 -36
  141. multipers/multiparameter_module_approximation/unordered_set_column.h +166 -166
  142. multipers/multiparameter_module_approximation/utilities.h +403 -419
  143. multipers/multiparameter_module_approximation/vector_column.h +223 -223
  144. multipers/multiparameter_module_approximation/vector_matrix.h +331 -331
  145. multipers/multiparameter_module_approximation/vineyards.h +464 -464
  146. multipers/multiparameter_module_approximation/vineyards_trajectories.h +649 -649
  147. multipers/multiparameter_module_approximation.cp311-win_amd64.pyd +0 -0
  148. multipers/multiparameter_module_approximation.pyx +216 -217
  149. multipers/pickle.py +90 -53
  150. multipers/plots.py +342 -334
  151. multipers/point_measure.cp311-win_amd64.pyd +0 -0
  152. multipers/point_measure.pyx +322 -320
  153. multipers/simplex_tree_multi.cp311-win_amd64.pyd +0 -0
  154. multipers/simplex_tree_multi.pxd +133 -133
  155. multipers/simplex_tree_multi.pyx +18 -15
  156. multipers/simplex_tree_multi.pyx.tp +1939 -1935
  157. multipers/slicer.cp311-win_amd64.pyd +0 -0
  158. multipers/slicer.pxd +81 -20
  159. multipers/slicer.pxd.tp +215 -214
  160. multipers/slicer.pyx +1091 -308
  161. multipers/slicer.pyx.tp +924 -914
  162. multipers/tensor/tensor.h +672 -672
  163. multipers/tensor.pxd +13 -13
  164. multipers/test.pyx +44 -44
  165. multipers/tests/__init__.py +57 -57
  166. multipers/torch/diff_grids.py +217 -217
  167. multipers/torch/rips_density.py +310 -304
  168. {multipers-2.2.3.dist-info → multipers-2.3.0.dist-info}/LICENSE +21 -21
  169. {multipers-2.2.3.dist-info → multipers-2.3.0.dist-info}/METADATA +21 -11
  170. multipers-2.3.0.dist-info/RECORD +182 -0
  171. multipers/tests/test_diff_helper.py +0 -73
  172. multipers/tests/test_hilbert_function.py +0 -82
  173. multipers/tests/test_mma.py +0 -83
  174. multipers/tests/test_point_clouds.py +0 -49
  175. multipers/tests/test_python-cpp_conversion.py +0 -82
  176. multipers/tests/test_signed_betti.py +0 -181
  177. multipers/tests/test_signed_measure.py +0 -89
  178. multipers/tests/test_simplextreemulti.py +0 -221
  179. multipers/tests/test_slicer.py +0 -221
  180. multipers-2.2.3.dist-info/RECORD +0 -189
  181. {multipers-2.2.3.dist-info → multipers-2.3.0.dist-info}/WHEEL +0 -0
  182. {multipers-2.2.3.dist-info → multipers-2.3.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,289 @@
1
+ from collections.abc import Sequence
2
+ from typing import Optional
3
+
4
+ import gudhi as gd
5
+ import numpy as np
6
+ from numpy.typing import ArrayLike
7
+ from scipy.spatial import KDTree
8
+ from scipy.spatial.distance import cdist
9
+
10
+ from multipers.ml.convolutions import DTM, available_kernels
11
+ from multipers.simplex_tree_multi import SimplexTreeMulti, SimplexTreeMulti_type
12
+
13
+ try:
14
+ import pykeops
15
+
16
+ from multipers.ml.convolutions import KDE
17
+ except ImportError:
18
+ from sklearn.neighbors import KernelDensity
19
+ from warnings import warn
20
+ warn("pykeops not found. Falling back to sklearn.")
21
+
22
+ def KDE(bandwidth, kernel, return_log):
23
+ assert return_log, "Sklearn returns log-density."
24
+ return KernelDensity(bandwidth=bandwidth, kernel=kernel)
25
+
26
+
27
+ def RipsLowerstar(
28
+ *,
29
+ points: Optional[ArrayLike] = None,
30
+ distance_matrix: Optional[ArrayLike] = None,
31
+ function=None,
32
+ threshold_radius=None,
33
+ ):
34
+ """
35
+ Computes the Rips complex, with the usual rips filtration as a first parameter,
36
+ and the lower star multi filtration as other parameter.
37
+
38
+ Input:
39
+ - points or distance_matrix: ArrayLike
40
+ - function : ArrayLike of shape (num_data, num_parameters -1)
41
+ - threshold_radius: max edge length of the rips. Defaults at min(max(distance_matrix, axis=1)).
42
+ """
43
+ assert (
44
+ points is not None or distance_matrix is not None
45
+ ), "`points` or `distance_matrix` has to be given."
46
+ if distance_matrix is None:
47
+ distance_matrix = cdist(points, points) # this may be slow...
48
+ if threshold_radius is None:
49
+ threshold_radius = np.min(np.max(distance_matrix, axis=1))
50
+ st = gd.SimplexTree.create_from_array(
51
+ distance_matrix, max_filtration=threshold_radius
52
+ )
53
+ if function is None:
54
+ return SimplexTreeMulti(st, num_parameters=1)
55
+
56
+ function = np.asarray(function)
57
+ if function.ndim == 1:
58
+ function = function[:, None]
59
+ num_parameters = function.shape[1] + 1
60
+ st = SimplexTreeMulti(st, num_parameters=num_parameters)
61
+ for i in range(function.shape[1]):
62
+ st.fill_lowerstar(function[:, i], parameter=1 + i)
63
+ return st
64
+
65
+
66
+ def RipsCodensity(
67
+ points: ArrayLike,
68
+ bandwidth: Optional[float] = None,
69
+ *,
70
+ return_log: bool = True,
71
+ dtm_mass: Optional[float] = None,
72
+ kernel: available_kernels = "gaussian",
73
+ threshold_radius: Optional[float] = None,
74
+ ):
75
+ """
76
+ Computes the Rips density filtration.
77
+ """
78
+ assert (
79
+ bandwidth is None or dtm_mass is None
80
+ ), "Density estimation is either via kernels or dtm."
81
+ if bandwidth is not None:
82
+ kde = KDE(bandwidth=bandwidth, kernel=kernel, return_log=return_log)
83
+ f = -kde.fit(points).score_samples(points)
84
+ elif dtm_mass is not None:
85
+ f = DTM(masses=[dtm_mass]).fit(points).score_samples(points)[0]
86
+ else:
87
+ raise ValueError("Bandwidth or DTM mass has to be given.")
88
+ return RipsLowerstar(points=points, function=f, threshold_radius=threshold_radius)
89
+
90
+
91
+ def DelaunayLowerstar(
92
+ points: ArrayLike,
93
+ function: ArrayLike,
94
+ *,
95
+ distance_matrix: Optional[ArrayLike] = None,
96
+ threshold_radius: Optional[float] = None,
97
+ reduce_degree: int = -1,
98
+ vineyard: Optional[bool] = None,
99
+ dtype=np.float64,
100
+ verbose: bool = False,
101
+ clear: bool = True,
102
+ ):
103
+ """
104
+ Computes the Function Delaunay bifiltration. Similar to RipsLowerstar, but most suited for low-dimensional euclidean data.
105
+ See [Delaunay bifiltrations of functions on point clouds, Alonso et al] https://doi.org/10.1137/1.9781611977912.173
106
+
107
+ Input:
108
+ - points or distance_matrix: ArrayLike
109
+ - function : ArrayLike of shape (num_data, )
110
+ - threshold_radius: max edge length of the rips. Defaults at min(max(distance_matrix, axis=1)).
111
+ """
112
+ from multipers.slicer import from_function_delaunay
113
+ assert distance_matrix is None, "Delaunay cannot be built from distance matrices"
114
+ if threshold_radius is not None:
115
+ raise NotImplementedError("Delaunay with threshold not implemented yet.")
116
+ points = np.asarray(points)
117
+ function = np.asarray(function).squeeze()
118
+ assert (
119
+ function.ndim == 1
120
+ ), "Delaunay Lowerstar is only compatible with 1 additional parameter."
121
+ return from_function_delaunay(
122
+ points,
123
+ function,
124
+ degree=reduce_degree,
125
+ vineyard=vineyard,
126
+ dtype=dtype,
127
+ verbose=verbose,
128
+ clear=clear,
129
+ )
130
+
131
+
132
+ def DelaunayCodensity(
133
+ points: ArrayLike,
134
+ bandwidth: Optional[float] = None,
135
+ *,
136
+ return_log: bool = True,
137
+ dtm_mass: Optional[float] = None,
138
+ kernel: available_kernels = "gaussian",
139
+ threshold_radius: Optional[float] = None,
140
+ reduce_degree: int = -1,
141
+ vineyard: Optional[bool] = None,
142
+ dtype=np.float64,
143
+ verbose: bool = False,
144
+ clear: bool = True,
145
+ ):
146
+ """
147
+ TODO
148
+ """
149
+ assert (
150
+ bandwidth is None or dtm_mass is None
151
+ ), "Density estimation is either via kernels or dtm."
152
+ if bandwidth is not None:
153
+ kde = KDE(bandwidth=bandwidth, kernel=kernel, return_log=return_log)
154
+ f = kde.fit(points).score_samples(points)
155
+ elif dtm_mass is not None:
156
+ f = DTM(masses=[dtm_mass]).fit(points).score_samples(points)[0]
157
+ else:
158
+ raise ValueError("Bandwidth or DTM mass has to be given.")
159
+ return DelaunayLowerstar(
160
+ points=points,
161
+ function=f,
162
+ threshold_radius=threshold_radius,
163
+ reduce_degree=reduce_degree,
164
+ vineyard=vineyard,
165
+ dtype=dtype,
166
+ verbose=verbose,
167
+ clear=clear,
168
+ )
169
+
170
+
171
+ def Cubical(image: ArrayLike, **slicer_kwargs):
172
+ """
173
+ Computes the cubical filtration of an image.
174
+ The last axis dimention is interpreted as the number of parameters.
175
+
176
+ Input:
177
+ - image: ArrayLike of shape (*image_resolution, num_parameters)
178
+ - ** args : specify non-default slicer parameters
179
+ """
180
+ from multipers.slicer import from_bitmap
181
+ return from_bitmap(image, **slicer_kwargs)
182
+
183
+
184
+ def DegreeRips(*, points=None, distance_matrix=None, ks=None, threshold_radius=None):
185
+ """
186
+ The DegreeRips filtration.
187
+ """
188
+
189
+ raise NotImplementedError("Use the default implentation ftm.")
190
+
191
+
192
+ def CoreDelaunay(
193
+ points: ArrayLike,
194
+ *,
195
+ beta: float = 1.0,
196
+ ks: Optional[Sequence[int]] = None,
197
+ precision: str = "safe",
198
+ verbose: bool = False,
199
+ max_alpha_square: float = float("inf"),
200
+ ) -> SimplexTreeMulti_type:
201
+ """
202
+ Computes the Delaunay core bifiltration of a point cloud presented in the paper "Core Bifiltration" https://arxiv.org/abs/2405.01214, and returns the (multi-critical) bifiltration as a SimplexTreeMulti. The Delaunay core bifiltration is an alpha complex version of the core bifiltration which is smaller in size. Moreover, along the horizontal line k=1, the Delaunay core bifiltration is identical to the alpha complex.
203
+
204
+ Input:
205
+ - points: The point cloud as an ArrayLike of shape (n, d) where n is the number of points and d is the dimension of the points.
206
+ - beta: The beta parameter for the Delaunay Core Bifiltration (default 1.0).
207
+ - ks: The list of k-values to include in the bifiltration (default None). If None, the k-values are set to [1, 2, ..., n] where n is the number of points in the point cloud. For large point clouds, it is recommended to set ks to a smaller list of k-values to reduce computation time. The values in ks must all be integers, positive, and less than or equal to the number of points in the point cloud.
208
+ - precision: The precision of the computation of the AlphaComplex, one of ['safe', 'exact', 'fast'] (default 'safe'). See the GUDHI documentation for more information.
209
+ - verbose: Whether to print progress messages (default False).
210
+ - max_alpha_square: The maximum squared alpha value to consider when createing the alpha complex (default inf). See the GUDHI documentation for more information.
211
+ """
212
+ points = np.asarray(points)
213
+ if ks is None:
214
+ ks = np.arange(1, len(points) + 1)
215
+ else:
216
+ ks = np.asarray(ks, dtype=int)
217
+ ks:np.ndarray
218
+
219
+ assert len(ks) > 0, "The parameter ks must contain at least one value."
220
+ assert np.all(ks > 0), "All values in ks must be positive."
221
+ assert np.all(
222
+ ks <= len(points)
223
+ ), "All values in ks must be less than or equal to the number of points in the point cloud."
224
+ assert len(points) > 0, "The point cloud must contain at least one point."
225
+ assert points.ndim == 2, f"The point cloud must be a 2D array, got {points.ndim}D."
226
+ assert beta >= 0, f"The parameter beta must be positive, got {beta}."
227
+ assert precision in [
228
+ "safe",
229
+ "exact",
230
+ "fast",
231
+ ], f"The parameter precision must be one of ['safe', 'exact', 'fast'], got {precision}."
232
+
233
+ if verbose:
234
+ print(
235
+ f"Computing the Delaunay Core Bifiltration of {len(points)} points in dimension {points.shape[1]} with parameters:"
236
+ )
237
+ print(f"\tbeta = {beta}")
238
+ print(f"\tks = {ks}")
239
+
240
+ if verbose:
241
+ print("Building the alpha complex...")
242
+ alpha_complex = gd.AlphaComplex(
243
+ points=points, precision=precision
244
+ ).create_simplex_tree(max_alpha_square=max_alpha_square)
245
+
246
+ if verbose:
247
+ print("Computing the k-nearest neighbor distances...")
248
+ knn_distances = KDTree(points).query(points, k=ks)[0]
249
+
250
+ max_dim = alpha_complex.dimension()
251
+ vertex_arrays_in_dimension = [[] for _ in range(max_dim + 1)]
252
+ squared_alphas_in_dimension = [[] for _ in range(max_dim + 1)]
253
+ for simplex, alpha_squared in alpha_complex.get_simplices():
254
+ dim = len(simplex) - 1
255
+ squared_alphas_in_dimension[dim].append(alpha_squared)
256
+ vertex_arrays_in_dimension[dim].append(simplex)
257
+
258
+ alphas_in_dimension = [
259
+ np.sqrt(np.array(alpha_squared, dtype=np.float64))
260
+ for alpha_squared in squared_alphas_in_dimension
261
+ ]
262
+ vertex_arrays_in_dimension = [
263
+ np.array(vertex_array, dtype=np.int32)
264
+ for vertex_array in vertex_arrays_in_dimension
265
+ ]
266
+
267
+ simplex_tree_multi = SimplexTreeMulti(
268
+ num_parameters=2, kcritical=True, dtype=np.float64
269
+ )
270
+
271
+ for dim, (vertex_array, alphas) in enumerate(
272
+ zip(vertex_arrays_in_dimension, alphas_in_dimension)
273
+ ):
274
+ num_simplices = len(vertex_array)
275
+ if verbose:
276
+ print(
277
+ f"Inserting {num_simplices} simplices of dimension {dim} ({num_simplices * len(ks)} birth values)..."
278
+ )
279
+ max_knn_distances = np.max(knn_distances[vertex_array], axis=1)
280
+ critical_radii = np.maximum(alphas[:, None], beta * max_knn_distances)
281
+ filtrations = np.stack(
282
+ (critical_radii, -ks * np.ones_like(critical_radii)), axis=-1
283
+ )
284
+ simplex_tree_multi.insert_batch(vertex_array.T, filtrations)
285
+
286
+ if verbose:
287
+ print("Done computing the Delaunay Core Bifiltration.")
288
+
289
+ return simplex_tree_multi