multipers 2.2.3__cp311-cp311-win_amd64.whl → 2.3.0__cp311-cp311-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of multipers might be problematic. Click here for more details.

Files changed (182) hide show
  1. multipers/__init__.py +33 -31
  2. multipers/_signed_measure_meta.py +430 -430
  3. multipers/_slicer_meta.py +211 -212
  4. multipers/data/MOL2.py +458 -458
  5. multipers/data/UCR.py +18 -18
  6. multipers/data/graphs.py +466 -466
  7. multipers/data/immuno_regions.py +27 -27
  8. multipers/data/pytorch2simplextree.py +90 -90
  9. multipers/data/shape3d.py +101 -101
  10. multipers/data/synthetic.py +113 -111
  11. multipers/distances.py +198 -198
  12. multipers/filtration_conversions.pxd.tp +84 -84
  13. multipers/filtrations/__init__.py +18 -0
  14. multipers/filtrations/filtrations.py +289 -0
  15. multipers/filtrations.pxd +224 -224
  16. multipers/function_rips.cp311-win_amd64.pyd +0 -0
  17. multipers/function_rips.pyx +105 -105
  18. multipers/grids.cp311-win_amd64.pyd +0 -0
  19. multipers/grids.pyx +350 -350
  20. multipers/gudhi/Persistence_slices_interface.h +132 -132
  21. multipers/gudhi/Simplex_tree_interface.h +239 -245
  22. multipers/gudhi/Simplex_tree_multi_interface.h +516 -561
  23. multipers/gudhi/cubical_to_boundary.h +59 -59
  24. multipers/gudhi/gudhi/Bitmap_cubical_complex.h +450 -450
  25. multipers/gudhi/gudhi/Bitmap_cubical_complex_base.h +1070 -1070
  26. multipers/gudhi/gudhi/Bitmap_cubical_complex_periodic_boundary_conditions_base.h +579 -579
  27. multipers/gudhi/gudhi/Debug_utils.h +45 -45
  28. multipers/gudhi/gudhi/Fields/Multi_field.h +484 -484
  29. multipers/gudhi/gudhi/Fields/Multi_field_operators.h +455 -455
  30. multipers/gudhi/gudhi/Fields/Multi_field_shared.h +450 -450
  31. multipers/gudhi/gudhi/Fields/Multi_field_small.h +531 -531
  32. multipers/gudhi/gudhi/Fields/Multi_field_small_operators.h +507 -507
  33. multipers/gudhi/gudhi/Fields/Multi_field_small_shared.h +531 -531
  34. multipers/gudhi/gudhi/Fields/Z2_field.h +355 -355
  35. multipers/gudhi/gudhi/Fields/Z2_field_operators.h +376 -376
  36. multipers/gudhi/gudhi/Fields/Zp_field.h +420 -420
  37. multipers/gudhi/gudhi/Fields/Zp_field_operators.h +400 -400
  38. multipers/gudhi/gudhi/Fields/Zp_field_shared.h +418 -418
  39. multipers/gudhi/gudhi/Flag_complex_edge_collapser.h +337 -337
  40. multipers/gudhi/gudhi/Matrix.h +2107 -2107
  41. multipers/gudhi/gudhi/Multi_critical_filtration.h +1038 -1038
  42. multipers/gudhi/gudhi/Multi_persistence/Box.h +171 -171
  43. multipers/gudhi/gudhi/Multi_persistence/Line.h +282 -282
  44. multipers/gudhi/gudhi/Off_reader.h +173 -173
  45. multipers/gudhi/gudhi/One_critical_filtration.h +1432 -1431
  46. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix.h +769 -769
  47. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix_with_column_compression.h +686 -686
  48. multipers/gudhi/gudhi/Persistence_matrix/Boundary_matrix.h +842 -842
  49. multipers/gudhi/gudhi/Persistence_matrix/Chain_matrix.h +1350 -1350
  50. multipers/gudhi/gudhi/Persistence_matrix/Id_to_index_overlay.h +1105 -1105
  51. multipers/gudhi/gudhi/Persistence_matrix/Position_to_index_overlay.h +859 -859
  52. multipers/gudhi/gudhi/Persistence_matrix/RU_matrix.h +910 -910
  53. multipers/gudhi/gudhi/Persistence_matrix/allocators/entry_constructors.h +139 -139
  54. multipers/gudhi/gudhi/Persistence_matrix/base_pairing.h +230 -230
  55. multipers/gudhi/gudhi/Persistence_matrix/base_swap.h +211 -211
  56. multipers/gudhi/gudhi/Persistence_matrix/boundary_cell_position_to_id_mapper.h +60 -60
  57. multipers/gudhi/gudhi/Persistence_matrix/boundary_face_position_to_id_mapper.h +60 -60
  58. multipers/gudhi/gudhi/Persistence_matrix/chain_pairing.h +136 -136
  59. multipers/gudhi/gudhi/Persistence_matrix/chain_rep_cycles.h +190 -190
  60. multipers/gudhi/gudhi/Persistence_matrix/chain_vine_swap.h +616 -616
  61. multipers/gudhi/gudhi/Persistence_matrix/columns/chain_column_extra_properties.h +150 -150
  62. multipers/gudhi/gudhi/Persistence_matrix/columns/column_dimension_holder.h +106 -106
  63. multipers/gudhi/gudhi/Persistence_matrix/columns/column_utilities.h +219 -219
  64. multipers/gudhi/gudhi/Persistence_matrix/columns/entry_types.h +327 -327
  65. multipers/gudhi/gudhi/Persistence_matrix/columns/heap_column.h +1140 -1140
  66. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_list_column.h +934 -934
  67. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_set_column.h +934 -934
  68. multipers/gudhi/gudhi/Persistence_matrix/columns/list_column.h +980 -980
  69. multipers/gudhi/gudhi/Persistence_matrix/columns/naive_vector_column.h +1092 -1092
  70. multipers/gudhi/gudhi/Persistence_matrix/columns/row_access.h +192 -192
  71. multipers/gudhi/gudhi/Persistence_matrix/columns/set_column.h +921 -921
  72. multipers/gudhi/gudhi/Persistence_matrix/columns/small_vector_column.h +1093 -1093
  73. multipers/gudhi/gudhi/Persistence_matrix/columns/unordered_set_column.h +1012 -1012
  74. multipers/gudhi/gudhi/Persistence_matrix/columns/vector_column.h +1244 -1244
  75. multipers/gudhi/gudhi/Persistence_matrix/matrix_dimension_holders.h +186 -186
  76. multipers/gudhi/gudhi/Persistence_matrix/matrix_row_access.h +164 -164
  77. multipers/gudhi/gudhi/Persistence_matrix/ru_pairing.h +156 -156
  78. multipers/gudhi/gudhi/Persistence_matrix/ru_rep_cycles.h +376 -376
  79. multipers/gudhi/gudhi/Persistence_matrix/ru_vine_swap.h +540 -540
  80. multipers/gudhi/gudhi/Persistent_cohomology/Field_Zp.h +118 -118
  81. multipers/gudhi/gudhi/Persistent_cohomology/Multi_field.h +173 -173
  82. multipers/gudhi/gudhi/Persistent_cohomology/Persistent_cohomology_column.h +128 -128
  83. multipers/gudhi/gudhi/Persistent_cohomology.h +745 -745
  84. multipers/gudhi/gudhi/Points_off_io.h +171 -171
  85. multipers/gudhi/gudhi/Simple_object_pool.h +69 -69
  86. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_iterators.h +463 -463
  87. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_node_explicit_storage.h +83 -83
  88. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_siblings.h +106 -106
  89. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_star_simplex_iterators.h +277 -277
  90. multipers/gudhi/gudhi/Simplex_tree/hooks_simplex_base.h +62 -62
  91. multipers/gudhi/gudhi/Simplex_tree/indexing_tag.h +27 -27
  92. multipers/gudhi/gudhi/Simplex_tree/serialization_utils.h +62 -62
  93. multipers/gudhi/gudhi/Simplex_tree/simplex_tree_options.h +157 -157
  94. multipers/gudhi/gudhi/Simplex_tree.h +2794 -2794
  95. multipers/gudhi/gudhi/Simplex_tree_multi.h +152 -163
  96. multipers/gudhi/gudhi/distance_functions.h +62 -62
  97. multipers/gudhi/gudhi/graph_simplicial_complex.h +104 -104
  98. multipers/gudhi/gudhi/persistence_interval.h +253 -253
  99. multipers/gudhi/gudhi/persistence_matrix_options.h +170 -170
  100. multipers/gudhi/gudhi/reader_utils.h +367 -367
  101. multipers/gudhi/mma_interface_coh.h +256 -255
  102. multipers/gudhi/mma_interface_h0.h +223 -231
  103. multipers/gudhi/mma_interface_matrix.h +284 -282
  104. multipers/gudhi/naive_merge_tree.h +536 -575
  105. multipers/gudhi/scc_io.h +310 -289
  106. multipers/gudhi/truc.h +890 -888
  107. multipers/io.cp311-win_amd64.pyd +0 -0
  108. multipers/io.pyx +711 -711
  109. multipers/ml/accuracies.py +90 -90
  110. multipers/ml/convolutions.py +520 -520
  111. multipers/ml/invariants_with_persistable.py +79 -79
  112. multipers/ml/kernels.py +176 -176
  113. multipers/ml/mma.py +713 -714
  114. multipers/ml/one.py +472 -472
  115. multipers/ml/point_clouds.py +352 -346
  116. multipers/ml/signed_measures.py +1589 -1589
  117. multipers/ml/sliced_wasserstein.py +461 -461
  118. multipers/ml/tools.py +113 -113
  119. multipers/mma_structures.cp311-win_amd64.pyd +0 -0
  120. multipers/mma_structures.pxd +127 -127
  121. multipers/mma_structures.pyx +4 -4
  122. multipers/mma_structures.pyx.tp +1085 -1085
  123. multipers/multi_parameter_rank_invariant/diff_helpers.h +84 -93
  124. multipers/multi_parameter_rank_invariant/euler_characteristic.h +97 -97
  125. multipers/multi_parameter_rank_invariant/function_rips.h +322 -322
  126. multipers/multi_parameter_rank_invariant/hilbert_function.h +769 -769
  127. multipers/multi_parameter_rank_invariant/persistence_slices.h +148 -148
  128. multipers/multi_parameter_rank_invariant/rank_invariant.h +369 -369
  129. multipers/multiparameter_edge_collapse.py +41 -41
  130. multipers/multiparameter_module_approximation/approximation.h +2296 -2295
  131. multipers/multiparameter_module_approximation/combinatory.h +129 -129
  132. multipers/multiparameter_module_approximation/debug.h +107 -107
  133. multipers/multiparameter_module_approximation/format_python-cpp.h +286 -286
  134. multipers/multiparameter_module_approximation/heap_column.h +238 -238
  135. multipers/multiparameter_module_approximation/images.h +79 -79
  136. multipers/multiparameter_module_approximation/list_column.h +174 -174
  137. multipers/multiparameter_module_approximation/list_column_2.h +232 -232
  138. multipers/multiparameter_module_approximation/ru_matrix.h +347 -347
  139. multipers/multiparameter_module_approximation/set_column.h +135 -135
  140. multipers/multiparameter_module_approximation/structure_higher_dim_barcode.h +36 -36
  141. multipers/multiparameter_module_approximation/unordered_set_column.h +166 -166
  142. multipers/multiparameter_module_approximation/utilities.h +403 -419
  143. multipers/multiparameter_module_approximation/vector_column.h +223 -223
  144. multipers/multiparameter_module_approximation/vector_matrix.h +331 -331
  145. multipers/multiparameter_module_approximation/vineyards.h +464 -464
  146. multipers/multiparameter_module_approximation/vineyards_trajectories.h +649 -649
  147. multipers/multiparameter_module_approximation.cp311-win_amd64.pyd +0 -0
  148. multipers/multiparameter_module_approximation.pyx +216 -217
  149. multipers/pickle.py +90 -53
  150. multipers/plots.py +342 -334
  151. multipers/point_measure.cp311-win_amd64.pyd +0 -0
  152. multipers/point_measure.pyx +322 -320
  153. multipers/simplex_tree_multi.cp311-win_amd64.pyd +0 -0
  154. multipers/simplex_tree_multi.pxd +133 -133
  155. multipers/simplex_tree_multi.pyx +18 -15
  156. multipers/simplex_tree_multi.pyx.tp +1939 -1935
  157. multipers/slicer.cp311-win_amd64.pyd +0 -0
  158. multipers/slicer.pxd +81 -20
  159. multipers/slicer.pxd.tp +215 -214
  160. multipers/slicer.pyx +1091 -308
  161. multipers/slicer.pyx.tp +924 -914
  162. multipers/tensor/tensor.h +672 -672
  163. multipers/tensor.pxd +13 -13
  164. multipers/test.pyx +44 -44
  165. multipers/tests/__init__.py +57 -57
  166. multipers/torch/diff_grids.py +217 -217
  167. multipers/torch/rips_density.py +310 -304
  168. {multipers-2.2.3.dist-info → multipers-2.3.0.dist-info}/LICENSE +21 -21
  169. {multipers-2.2.3.dist-info → multipers-2.3.0.dist-info}/METADATA +21 -11
  170. multipers-2.3.0.dist-info/RECORD +182 -0
  171. multipers/tests/test_diff_helper.py +0 -73
  172. multipers/tests/test_hilbert_function.py +0 -82
  173. multipers/tests/test_mma.py +0 -83
  174. multipers/tests/test_point_clouds.py +0 -49
  175. multipers/tests/test_python-cpp_conversion.py +0 -82
  176. multipers/tests/test_signed_betti.py +0 -181
  177. multipers/tests/test_signed_measure.py +0 -89
  178. multipers/tests/test_simplextreemulti.py +0 -221
  179. multipers/tests/test_slicer.py +0 -221
  180. multipers-2.2.3.dist-info/RECORD +0 -189
  181. {multipers-2.2.3.dist-info → multipers-2.3.0.dist-info}/WHEEL +0 -0
  182. {multipers-2.2.3.dist-info → multipers-2.3.0.dist-info}/top_level.txt +0 -0
multipers/distances.py CHANGED
@@ -1,198 +1,198 @@
1
- import numpy as np
2
- import ot
3
-
4
- from multipers.mma_structures import PyMultiDiagrams_type
5
- from multipers.multiparameter_module_approximation import PyModule_type
6
- from multipers.simplex_tree_multi import SimplexTreeMulti_type
7
-
8
-
9
- def sm2diff(sm1, sm2):
10
- pts = sm1[0]
11
- dtype = pts.dtype
12
- if isinstance(pts, np.ndarray):
13
-
14
- def backend_concatenate(a, b):
15
- return np.concatenate([a, b], axis=0, dtype=dtype)
16
-
17
- def backend_tensor(x):
18
- return np.asarray(x, dtype=int)
19
-
20
- else:
21
- import torch
22
-
23
- assert isinstance(pts, torch.Tensor), "Invalid backend. Numpy or torch."
24
-
25
- def backend_concatenate(a, b):
26
- return torch.concatenate([a, b], dim=0)
27
-
28
- def backend_tensor(x):
29
- return torch.tensor(x).type(torch.int)
30
-
31
- pts1, w1 = sm1
32
- pts2, w2 = sm2
33
- ## TODO: optimize this
34
- pos_indices1 = backend_tensor(
35
- [i for i, w in enumerate(w1) for _ in range(w) if w > 0]
36
- )
37
- pos_indices2 = backend_tensor(
38
- [i for i, w in enumerate(w2) for _ in range(w) if w > 0]
39
- )
40
- neg_indices1 = backend_tensor(
41
- [i for i, w in enumerate(w1) for _ in range(-w) if w < 0]
42
- )
43
- neg_indices2 = backend_tensor(
44
- [i for i, w in enumerate(w2) for _ in range(-w) if w < 0]
45
- )
46
- x = backend_concatenate(pts1[pos_indices1], pts2[neg_indices2])
47
- y = backend_concatenate(pts1[neg_indices1], pts2[pos_indices2])
48
- return x, y
49
-
50
-
51
- def sm_distance(
52
- sm1: tuple,
53
- sm2: tuple,
54
- reg: float = 0,
55
- reg_m: float = 0,
56
- numItermax: int = 10000,
57
- p: float = 1,
58
- ):
59
- """
60
- Computes the wasserstein distances between two signed measures,
61
- of the form
62
- - (pts,weights)
63
- with
64
- - pts : (num_pts, dim) float array
65
- - weights : (num_pts,) int array
66
-
67
- Regularisation:
68
- - sinkhorn if reg != 0
69
- - sinkhorn unbalanced if reg_m != 0
70
- """
71
- x, y = sm2diff(sm1, sm2)
72
- loss = ot.dist(
73
- x, y, metric="sqeuclidean", p=p
74
- ) # only euc + sqeuclidian are implemented in pot for the moment with torch backend # TODO : check later
75
- if isinstance(x, np.ndarray):
76
- empty_tensor = np.array([]) # uniform weights
77
- else:
78
- import torch
79
-
80
- assert isinstance(x, torch.Tensor), "Unimplemented backend."
81
- empty_tensor = torch.tensor([]) # uniform weights
82
-
83
- if reg == 0:
84
- return ot.lp.emd2(empty_tensor, empty_tensor, M=loss) * len(x)
85
- if reg_m == 0:
86
- return ot.sinkhorn2(
87
- a=empty_tensor, b=empty_tensor, M=loss, reg=reg, numItermax=numItermax
88
- )
89
- return ot.sinkhorn_unbalanced2(
90
- a=empty_tensor,
91
- b=empty_tensor,
92
- M=loss,
93
- reg=reg,
94
- reg_m=reg_m,
95
- numItermax=numItermax,
96
- )
97
- # return ot.sinkhorn2(a=onesx,b=onesy,M=loss,reg=reg, numItermax=numItermax)
98
- # return ot.bregman.empirical_sinkhorn2(x,y,reg=reg)
99
-
100
-
101
- def estimate_matching(b1: PyMultiDiagrams_type, b2: PyMultiDiagrams_type):
102
- assert len(b1) == len(b2)
103
- from gudhi.bottleneck import bottleneck_distance
104
-
105
- def get_bc(b: PyMultiDiagrams_type, i: int) -> np.ndarray:
106
- temp = b[i].get_points()
107
- out = (
108
- np.array(temp)[:, :, 0] if len(temp) > 0 else np.empty((0, 2))
109
- ) # GUDHI FIX
110
- return out
111
-
112
- return max(
113
- (bottleneck_distance(get_bc(b1, i), get_bc(b2, i)) for i in range(len(b1)))
114
- )
115
-
116
-
117
- # Functions to estimate precision
118
- def estimate_error(
119
- st: SimplexTreeMulti_type,
120
- module: PyModule_type,
121
- degree: int,
122
- nlines: int = 100,
123
- verbose: bool = False,
124
- ):
125
- """
126
- Given an MMA SimplexTree and PyModule, estimates the bottleneck distance using barcodes given by gudhi.
127
-
128
- Parameters
129
- ----------
130
- - st:SimplexTree
131
- The simplextree representing the n-filtered complex. Used to define the gudhi simplextrees on different lines.
132
- - module:PyModule
133
- The module on which to estimate approximation error, w.r.t. the original simplextree st.
134
- - degree:int
135
- The homology degree to consider
136
-
137
- Returns
138
- -------
139
- - float:The estimation of the matching distance, i.e., the maximum of the sampled bottleneck distances.
140
-
141
- """
142
- from time import perf_counter
143
-
144
- parameter = 0
145
-
146
- def _get_bc_ST(st, basepoint, degree: int):
147
- """
148
- Slices an mma simplextree to a gudhi simplextree, and compute its persistence on the diagonal line crossing the given basepoint.
149
- """
150
- gst = st.project_on_line(
151
- basepoint=basepoint, parameter=parameter
152
- ) # we consider only the 1rst coordinate (as )
153
- gst.compute_persistence()
154
- return gst.persistence_intervals_in_dimension(degree)
155
-
156
- from gudhi.bottleneck import bottleneck_distance
157
-
158
- low, high = module.get_box()
159
- nfiltration = len(low)
160
- basepoints = np.random.uniform(low=low, high=high, size=(nlines, nfiltration))
161
- # barcodes from module
162
- print("Computing mma barcodes...", flush=1, end="") if verbose else None
163
- time = perf_counter()
164
- bcs_from_mod = module.barcodes(degree=degree, basepoints=basepoints).get_points()
165
- print(f"Done. {perf_counter() - time}s.") if verbose else None
166
-
167
- def clean(dgm):
168
- return np.array(
169
- [
170
- [birth[parameter], death[parameter]]
171
- for birth, death in dgm
172
- if len(birth) > 0 and birth[parameter] != np.inf
173
- ]
174
- )
175
-
176
- bcs_from_mod = [
177
- clean(dgm) for dgm in bcs_from_mod
178
- ] # we only consider the 1st coordinate of the barcode
179
- # Computes gudhi barcodes
180
- from tqdm import tqdm
181
-
182
- bcs_from_gudhi = [
183
- _get_bc_ST(st, basepoint=basepoint, degree=degree)
184
- for basepoint in tqdm(
185
- basepoints, disable=not verbose, desc="Computing gudhi barcodes"
186
- )
187
- ]
188
- return max(
189
- (
190
- bottleneck_distance(a, b)
191
- for a, b in tqdm(
192
- zip(bcs_from_mod, bcs_from_gudhi),
193
- disable=not verbose,
194
- total=nlines,
195
- desc="Computing bottleneck distances",
196
- )
197
- )
198
- )
1
+ import numpy as np
2
+ import ot
3
+
4
+ from multipers.mma_structures import PyMultiDiagrams_type
5
+ from multipers.multiparameter_module_approximation import PyModule_type
6
+ from multipers.simplex_tree_multi import SimplexTreeMulti_type
7
+
8
+
9
+ def sm2diff(sm1, sm2):
10
+ pts = sm1[0]
11
+ dtype = pts.dtype
12
+ if isinstance(pts, np.ndarray):
13
+
14
+ def backend_concatenate(a, b):
15
+ return np.concatenate([a, b], axis=0, dtype=dtype)
16
+
17
+ def backend_tensor(x):
18
+ return np.asarray(x, dtype=int)
19
+
20
+ else:
21
+ import torch
22
+
23
+ assert isinstance(pts, torch.Tensor), "Invalid backend. Numpy or torch."
24
+
25
+ def backend_concatenate(a, b):
26
+ return torch.concatenate([a, b], dim=0)
27
+
28
+ def backend_tensor(x):
29
+ return torch.tensor(x).type(torch.int)
30
+
31
+ pts1, w1 = sm1
32
+ pts2, w2 = sm2
33
+ ## TODO: optimize this
34
+ pos_indices1 = backend_tensor(
35
+ [i for i, w in enumerate(w1) for _ in range(w) if w > 0]
36
+ )
37
+ pos_indices2 = backend_tensor(
38
+ [i for i, w in enumerate(w2) for _ in range(w) if w > 0]
39
+ )
40
+ neg_indices1 = backend_tensor(
41
+ [i for i, w in enumerate(w1) for _ in range(-w) if w < 0]
42
+ )
43
+ neg_indices2 = backend_tensor(
44
+ [i for i, w in enumerate(w2) for _ in range(-w) if w < 0]
45
+ )
46
+ x = backend_concatenate(pts1[pos_indices1], pts2[neg_indices2])
47
+ y = backend_concatenate(pts1[neg_indices1], pts2[pos_indices2])
48
+ return x, y
49
+
50
+
51
+ def sm_distance(
52
+ sm1: tuple,
53
+ sm2: tuple,
54
+ reg: float = 0,
55
+ reg_m: float = 0,
56
+ numItermax: int = 10000,
57
+ p: float = 1,
58
+ ):
59
+ """
60
+ Computes the wasserstein distances between two signed measures,
61
+ of the form
62
+ - (pts,weights)
63
+ with
64
+ - pts : (num_pts, dim) float array
65
+ - weights : (num_pts,) int array
66
+
67
+ Regularisation:
68
+ - sinkhorn if reg != 0
69
+ - sinkhorn unbalanced if reg_m != 0
70
+ """
71
+ x, y = sm2diff(sm1, sm2)
72
+ loss = ot.dist(
73
+ x, y, metric="sqeuclidean", p=p
74
+ ) # only euc + sqeuclidian are implemented in pot for the moment with torch backend # TODO : check later
75
+ if isinstance(x, np.ndarray):
76
+ empty_tensor = np.array([]) # uniform weights
77
+ else:
78
+ import torch
79
+
80
+ assert isinstance(x, torch.Tensor), "Unimplemented backend."
81
+ empty_tensor = torch.tensor([]) # uniform weights
82
+
83
+ if reg == 0:
84
+ return ot.lp.emd2(empty_tensor, empty_tensor, M=loss) * len(x)
85
+ if reg_m == 0:
86
+ return ot.sinkhorn2(
87
+ a=empty_tensor, b=empty_tensor, M=loss, reg=reg, numItermax=numItermax
88
+ )
89
+ return ot.sinkhorn_unbalanced2(
90
+ a=empty_tensor,
91
+ b=empty_tensor,
92
+ M=loss,
93
+ reg=reg,
94
+ reg_m=reg_m,
95
+ numItermax=numItermax,
96
+ )
97
+ # return ot.sinkhorn2(a=onesx,b=onesy,M=loss,reg=reg, numItermax=numItermax)
98
+ # return ot.bregman.empirical_sinkhorn2(x,y,reg=reg)
99
+
100
+
101
+ def estimate_matching(b1: PyMultiDiagrams_type, b2: PyMultiDiagrams_type):
102
+ assert len(b1) == len(b2)
103
+ from gudhi.bottleneck import bottleneck_distance
104
+
105
+ def get_bc(b: PyMultiDiagrams_type, i: int) -> np.ndarray:
106
+ temp = b[i].get_points()
107
+ out = (
108
+ np.array(temp)[:, :, 0] if len(temp) > 0 else np.empty((0, 2))
109
+ ) # GUDHI FIX
110
+ return out
111
+
112
+ return max(
113
+ (bottleneck_distance(get_bc(b1, i), get_bc(b2, i)) for i in range(len(b1)))
114
+ )
115
+
116
+
117
+ # Functions to estimate precision
118
+ def estimate_error(
119
+ st: SimplexTreeMulti_type,
120
+ module: PyModule_type,
121
+ degree: int,
122
+ nlines: int = 100,
123
+ verbose: bool = False,
124
+ ):
125
+ """
126
+ Given an MMA SimplexTree and PyModule, estimates the bottleneck distance using barcodes given by gudhi.
127
+
128
+ Parameters
129
+ ----------
130
+ - st:SimplexTree
131
+ The simplextree representing the n-filtered complex. Used to define the gudhi simplextrees on different lines.
132
+ - module:PyModule
133
+ The module on which to estimate approximation error, w.r.t. the original simplextree st.
134
+ - degree:int
135
+ The homology degree to consider
136
+
137
+ Returns
138
+ -------
139
+ - float:The estimation of the matching distance, i.e., the maximum of the sampled bottleneck distances.
140
+
141
+ """
142
+ from time import perf_counter
143
+
144
+ parameter = 0
145
+
146
+ def _get_bc_ST(st, basepoint, degree: int):
147
+ """
148
+ Slices an mma simplextree to a gudhi simplextree, and compute its persistence on the diagonal line crossing the given basepoint.
149
+ """
150
+ gst = st.project_on_line(
151
+ basepoint=basepoint, parameter=parameter
152
+ ) # we consider only the 1rst coordinate (as )
153
+ gst.compute_persistence()
154
+ return gst.persistence_intervals_in_dimension(degree)
155
+
156
+ from gudhi.bottleneck import bottleneck_distance
157
+
158
+ low, high = module.get_box()
159
+ nfiltration = len(low)
160
+ basepoints = np.random.uniform(low=low, high=high, size=(nlines, nfiltration))
161
+ # barcodes from module
162
+ print("Computing mma barcodes...", flush=1, end="") if verbose else None
163
+ time = perf_counter()
164
+ bcs_from_mod = module.barcodes(degree=degree, basepoints=basepoints).get_points()
165
+ print(f"Done. {perf_counter() - time}s.") if verbose else None
166
+
167
+ def clean(dgm):
168
+ return np.array(
169
+ [
170
+ [birth[parameter], death[parameter]]
171
+ for birth, death in dgm
172
+ if len(birth) > 0 and birth[parameter] != np.inf
173
+ ]
174
+ )
175
+
176
+ bcs_from_mod = [
177
+ clean(dgm) for dgm in bcs_from_mod
178
+ ] # we only consider the 1st coordinate of the barcode
179
+ # Computes gudhi barcodes
180
+ from tqdm import tqdm
181
+
182
+ bcs_from_gudhi = [
183
+ _get_bc_ST(st, basepoint=basepoint, degree=degree)
184
+ for basepoint in tqdm(
185
+ basepoints, disable=not verbose, desc="Computing gudhi barcodes"
186
+ )
187
+ ]
188
+ return max(
189
+ (
190
+ bottleneck_distance(a, b)
191
+ for a, b in tqdm(
192
+ zip(bcs_from_mod, bcs_from_gudhi),
193
+ disable=not verbose,
194
+ total=nlines,
195
+ desc="Computing bottleneck distances",
196
+ )
197
+ )
198
+ )
@@ -1,84 +1,84 @@
1
- {{py:
2
-
3
- """
4
- Filtrations conversions between python and C++
5
- """
6
-
7
- ## Value types : CTYPE, PYTHON_TYPE, short
8
- value_types = [
9
- ("int32_t", "np.int32", "i32"),
10
- ("int64_t", "np.int64", "i64"),
11
- ("float", "np.float32", "f32"),
12
- ("double", "np.float64", "f64"),
13
- ]
14
-
15
- }}
16
-
17
- # Python to C++ conversions
18
- from multipers.filtrations cimport One_critical_filtration,Multi_critical_filtration
19
- from libcpp.vector cimport vector
20
- from libcpp cimport bool
21
- cimport numpy as cnp
22
- import numpy as np
23
- from libc.stdint cimport int32_t, int64_t
24
- from cython.operator cimport dereference
25
-
26
- {{for CTYPE, PYTYPE, SHORT in value_types}}
27
- ###### ------------------- PY TO CPP
28
- #### ----------
29
-
30
- cdef inline Multi_critical_filtration[{{CTYPE}}] _py2kc_{{SHORT}}({{CTYPE}}[:,:] filtrations) noexcept nogil:
31
- # cdef {{CTYPE}}[:,:] filtrations = np.asarray(filtrations_, dtype={{PYTYPE}})
32
- cdef Multi_critical_filtration[{{CTYPE}}] out
33
- out.set_num_generators(filtrations.shape[0])
34
- for i in range(filtrations.shape[0]):
35
- out[i].resize(filtrations.shape[1])
36
- for j in range(filtrations.shape[1]):
37
- out[i][j] = filtrations[i,j]
38
- out.simplify()
39
- return out
40
-
41
- cdef inline One_critical_filtration[{{CTYPE}}] _py21c_{{SHORT}}({{CTYPE}}[:] filtration) noexcept nogil:
42
- # cdef {{CTYPE}}[:] filtration = np.asarray(filtration_, dtype={{PYTYPE}})
43
- cdef One_critical_filtration[{{CTYPE}}] out = One_critical_filtration[{{CTYPE}}](0)
44
- out.reserve(len(filtration))
45
- for i in range(len(filtration)):
46
- out.push_back(filtration[i])
47
- return out
48
-
49
-
50
- cdef inline vector[One_critical_filtration[{{CTYPE}}]] _py2v1c_{{SHORT}}({{CTYPE}}[:,:] filtrations) noexcept nogil:
51
- # cdef {{CTYPE}}[:,:] filtrations = np.asarray(filtrations_, dtype={{PYTYPE}})
52
- cdef vector[One_critical_filtration[{{CTYPE}}]] out
53
- out.reserve(filtrations.shape[0])
54
- for i in range(filtrations.shape[0]):
55
- out.push_back(_py21c_{{SHORT}}(filtrations[i,:]))
56
- return out
57
-
58
-
59
- ###### ------------------- CPP to PY
60
-
61
-
62
- ## CYTHON BUG: using tuples here will cause some weird issues.
63
- cdef inline _ff21cview_{{SHORT}}(One_critical_filtration[{{CTYPE}}]* x, bool copy=False, int duplicate=0):
64
- cdef Py_ssize_t num_parameters = dereference(x).num_parameters()
65
- if copy and duplicate and not dereference(x).is_finite():
66
- return np.full(shape=duplicate, fill_value=dereference(x)[0])
67
- cdef {{CTYPE}}[:] x_view = <{{CTYPE}}[:num_parameters]>(&(dereference(x)[0]))
68
- return np.array(x_view) if copy else np.asarray(x_view)
69
-
70
- cdef inline _ff2kcview_{{SHORT}}(Multi_critical_filtration[{{CTYPE}}]* x, bool copy=False, int duplicate=0):
71
- cdef Py_ssize_t k = dereference(x).num_generators()
72
- return [_ff21cview_{{SHORT}}(&(dereference(x)[i]), copy=copy, duplicate=duplicate) for i in range(k)]
73
-
74
-
75
- cdef inline _vff21cview_{{SHORT}}(vector[One_critical_filtration[{{CTYPE}}]]& x, bool copy = False, int duplicate=0):
76
- cdef Py_ssize_t num_stuff = x.size()
77
- return [_ff21cview_{{SHORT}}(&(x[i]), copy=copy, duplicate=duplicate) for i in range(num_stuff)]
78
-
79
- cdef inline _vff2kcview_{{SHORT}}(vector[Multi_critical_filtration[{{CTYPE}}]]& x, bool copy = False, int duplicate=0):
80
- cdef Py_ssize_t num_stuff = x.size()
81
- return [_ff2kcview_{{SHORT}}(&(x[i]), copy=copy, duplicate=duplicate) for i in range(num_stuff)]
82
-
83
- {{endfor}}
84
-
1
+ {{py:
2
+
3
+ """
4
+ Filtrations conversions between python and C++
5
+ """
6
+
7
+ ## Value types : CTYPE, PYTHON_TYPE, short
8
+ value_types = [
9
+ ("int32_t", "np.int32", "i32"),
10
+ ("int64_t", "np.int64", "i64"),
11
+ ("float", "np.float32", "f32"),
12
+ ("double", "np.float64", "f64"),
13
+ ]
14
+
15
+ }}
16
+
17
+ # Python to C++ conversions
18
+ from multipers.filtrations cimport One_critical_filtration,Multi_critical_filtration
19
+ from libcpp.vector cimport vector
20
+ from libcpp cimport bool
21
+ cimport numpy as cnp
22
+ import numpy as np
23
+ from libc.stdint cimport int32_t, int64_t
24
+ from cython.operator cimport dereference
25
+
26
+ {{for CTYPE, PYTYPE, SHORT in value_types}}
27
+ ###### ------------------- PY TO CPP
28
+ #### ----------
29
+
30
+ cdef inline Multi_critical_filtration[{{CTYPE}}] _py2kc_{{SHORT}}({{CTYPE}}[:,:] filtrations) noexcept nogil:
31
+ # cdef {{CTYPE}}[:,:] filtrations = np.asarray(filtrations_, dtype={{PYTYPE}})
32
+ cdef Multi_critical_filtration[{{CTYPE}}] out
33
+ out.set_num_generators(filtrations.shape[0])
34
+ for i in range(filtrations.shape[0]):
35
+ out[i].resize(filtrations.shape[1])
36
+ for j in range(filtrations.shape[1]):
37
+ out[i][j] = filtrations[i,j]
38
+ out.simplify()
39
+ return out
40
+
41
+ cdef inline One_critical_filtration[{{CTYPE}}] _py21c_{{SHORT}}({{CTYPE}}[:] filtration) noexcept nogil:
42
+ # cdef {{CTYPE}}[:] filtration = np.asarray(filtration_, dtype={{PYTYPE}})
43
+ cdef One_critical_filtration[{{CTYPE}}] out = One_critical_filtration[{{CTYPE}}](0)
44
+ out.reserve(len(filtration))
45
+ for i in range(len(filtration)):
46
+ out.push_back(filtration[i])
47
+ return out
48
+
49
+
50
+ cdef inline vector[One_critical_filtration[{{CTYPE}}]] _py2v1c_{{SHORT}}({{CTYPE}}[:,:] filtrations) noexcept nogil:
51
+ # cdef {{CTYPE}}[:,:] filtrations = np.asarray(filtrations_, dtype={{PYTYPE}})
52
+ cdef vector[One_critical_filtration[{{CTYPE}}]] out
53
+ out.reserve(filtrations.shape[0])
54
+ for i in range(filtrations.shape[0]):
55
+ out.push_back(_py21c_{{SHORT}}(filtrations[i,:]))
56
+ return out
57
+
58
+
59
+ ###### ------------------- CPP to PY
60
+
61
+
62
+ ## CYTHON BUG: using tuples here will cause some weird issues.
63
+ cdef inline _ff21cview_{{SHORT}}(One_critical_filtration[{{CTYPE}}]* x, bool copy=False, int duplicate=0):
64
+ cdef Py_ssize_t num_parameters = dereference(x).num_parameters()
65
+ if copy and duplicate and not dereference(x).is_finite():
66
+ return np.full(shape=duplicate, fill_value=dereference(x)[0])
67
+ cdef {{CTYPE}}[:] x_view = <{{CTYPE}}[:num_parameters]>(&(dereference(x)[0]))
68
+ return np.array(x_view) if copy else np.asarray(x_view)
69
+
70
+ cdef inline _ff2kcview_{{SHORT}}(Multi_critical_filtration[{{CTYPE}}]* x, bool copy=False, int duplicate=0):
71
+ cdef Py_ssize_t k = dereference(x).num_generators()
72
+ return [_ff21cview_{{SHORT}}(&(dereference(x)[i]), copy=copy, duplicate=duplicate) for i in range(k)]
73
+
74
+
75
+ cdef inline _vff21cview_{{SHORT}}(vector[One_critical_filtration[{{CTYPE}}]]& x, bool copy = False, int duplicate=0):
76
+ cdef Py_ssize_t num_stuff = x.size()
77
+ return [_ff21cview_{{SHORT}}(&(x[i]), copy=copy, duplicate=duplicate) for i in range(num_stuff)]
78
+
79
+ cdef inline _vff2kcview_{{SHORT}}(vector[Multi_critical_filtration[{{CTYPE}}]]& x, bool copy = False, int duplicate=0):
80
+ cdef Py_ssize_t num_stuff = x.size()
81
+ return [_ff2kcview_{{SHORT}}(&(x[i]), copy=copy, duplicate=duplicate) for i in range(num_stuff)]
82
+
83
+ {{endfor}}
84
+
@@ -0,0 +1,18 @@
1
+ from .filtrations import (
2
+ CoreDelaunay,
3
+ Cubical,
4
+ DegreeRips,
5
+ DelaunayCodensity,
6
+ DelaunayLowerstar,
7
+ RipsCodensity,
8
+ RipsLowerstar,
9
+ )
10
+ __all__ = [
11
+ "CoreDelaunay",
12
+ "Cubical",
13
+ "DegreeRips",
14
+ "DelaunayCodensity",
15
+ "DelaunayLowerstar",
16
+ "RipsCodensity",
17
+ "RipsLowerstar",
18
+ ]