multipers 2.2.3__cp311-cp311-win_amd64.whl → 2.3.0__cp311-cp311-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of multipers might be problematic. Click here for more details.

Files changed (182) hide show
  1. multipers/__init__.py +33 -31
  2. multipers/_signed_measure_meta.py +430 -430
  3. multipers/_slicer_meta.py +211 -212
  4. multipers/data/MOL2.py +458 -458
  5. multipers/data/UCR.py +18 -18
  6. multipers/data/graphs.py +466 -466
  7. multipers/data/immuno_regions.py +27 -27
  8. multipers/data/pytorch2simplextree.py +90 -90
  9. multipers/data/shape3d.py +101 -101
  10. multipers/data/synthetic.py +113 -111
  11. multipers/distances.py +198 -198
  12. multipers/filtration_conversions.pxd.tp +84 -84
  13. multipers/filtrations/__init__.py +18 -0
  14. multipers/filtrations/filtrations.py +289 -0
  15. multipers/filtrations.pxd +224 -224
  16. multipers/function_rips.cp311-win_amd64.pyd +0 -0
  17. multipers/function_rips.pyx +105 -105
  18. multipers/grids.cp311-win_amd64.pyd +0 -0
  19. multipers/grids.pyx +350 -350
  20. multipers/gudhi/Persistence_slices_interface.h +132 -132
  21. multipers/gudhi/Simplex_tree_interface.h +239 -245
  22. multipers/gudhi/Simplex_tree_multi_interface.h +516 -561
  23. multipers/gudhi/cubical_to_boundary.h +59 -59
  24. multipers/gudhi/gudhi/Bitmap_cubical_complex.h +450 -450
  25. multipers/gudhi/gudhi/Bitmap_cubical_complex_base.h +1070 -1070
  26. multipers/gudhi/gudhi/Bitmap_cubical_complex_periodic_boundary_conditions_base.h +579 -579
  27. multipers/gudhi/gudhi/Debug_utils.h +45 -45
  28. multipers/gudhi/gudhi/Fields/Multi_field.h +484 -484
  29. multipers/gudhi/gudhi/Fields/Multi_field_operators.h +455 -455
  30. multipers/gudhi/gudhi/Fields/Multi_field_shared.h +450 -450
  31. multipers/gudhi/gudhi/Fields/Multi_field_small.h +531 -531
  32. multipers/gudhi/gudhi/Fields/Multi_field_small_operators.h +507 -507
  33. multipers/gudhi/gudhi/Fields/Multi_field_small_shared.h +531 -531
  34. multipers/gudhi/gudhi/Fields/Z2_field.h +355 -355
  35. multipers/gudhi/gudhi/Fields/Z2_field_operators.h +376 -376
  36. multipers/gudhi/gudhi/Fields/Zp_field.h +420 -420
  37. multipers/gudhi/gudhi/Fields/Zp_field_operators.h +400 -400
  38. multipers/gudhi/gudhi/Fields/Zp_field_shared.h +418 -418
  39. multipers/gudhi/gudhi/Flag_complex_edge_collapser.h +337 -337
  40. multipers/gudhi/gudhi/Matrix.h +2107 -2107
  41. multipers/gudhi/gudhi/Multi_critical_filtration.h +1038 -1038
  42. multipers/gudhi/gudhi/Multi_persistence/Box.h +171 -171
  43. multipers/gudhi/gudhi/Multi_persistence/Line.h +282 -282
  44. multipers/gudhi/gudhi/Off_reader.h +173 -173
  45. multipers/gudhi/gudhi/One_critical_filtration.h +1432 -1431
  46. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix.h +769 -769
  47. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix_with_column_compression.h +686 -686
  48. multipers/gudhi/gudhi/Persistence_matrix/Boundary_matrix.h +842 -842
  49. multipers/gudhi/gudhi/Persistence_matrix/Chain_matrix.h +1350 -1350
  50. multipers/gudhi/gudhi/Persistence_matrix/Id_to_index_overlay.h +1105 -1105
  51. multipers/gudhi/gudhi/Persistence_matrix/Position_to_index_overlay.h +859 -859
  52. multipers/gudhi/gudhi/Persistence_matrix/RU_matrix.h +910 -910
  53. multipers/gudhi/gudhi/Persistence_matrix/allocators/entry_constructors.h +139 -139
  54. multipers/gudhi/gudhi/Persistence_matrix/base_pairing.h +230 -230
  55. multipers/gudhi/gudhi/Persistence_matrix/base_swap.h +211 -211
  56. multipers/gudhi/gudhi/Persistence_matrix/boundary_cell_position_to_id_mapper.h +60 -60
  57. multipers/gudhi/gudhi/Persistence_matrix/boundary_face_position_to_id_mapper.h +60 -60
  58. multipers/gudhi/gudhi/Persistence_matrix/chain_pairing.h +136 -136
  59. multipers/gudhi/gudhi/Persistence_matrix/chain_rep_cycles.h +190 -190
  60. multipers/gudhi/gudhi/Persistence_matrix/chain_vine_swap.h +616 -616
  61. multipers/gudhi/gudhi/Persistence_matrix/columns/chain_column_extra_properties.h +150 -150
  62. multipers/gudhi/gudhi/Persistence_matrix/columns/column_dimension_holder.h +106 -106
  63. multipers/gudhi/gudhi/Persistence_matrix/columns/column_utilities.h +219 -219
  64. multipers/gudhi/gudhi/Persistence_matrix/columns/entry_types.h +327 -327
  65. multipers/gudhi/gudhi/Persistence_matrix/columns/heap_column.h +1140 -1140
  66. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_list_column.h +934 -934
  67. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_set_column.h +934 -934
  68. multipers/gudhi/gudhi/Persistence_matrix/columns/list_column.h +980 -980
  69. multipers/gudhi/gudhi/Persistence_matrix/columns/naive_vector_column.h +1092 -1092
  70. multipers/gudhi/gudhi/Persistence_matrix/columns/row_access.h +192 -192
  71. multipers/gudhi/gudhi/Persistence_matrix/columns/set_column.h +921 -921
  72. multipers/gudhi/gudhi/Persistence_matrix/columns/small_vector_column.h +1093 -1093
  73. multipers/gudhi/gudhi/Persistence_matrix/columns/unordered_set_column.h +1012 -1012
  74. multipers/gudhi/gudhi/Persistence_matrix/columns/vector_column.h +1244 -1244
  75. multipers/gudhi/gudhi/Persistence_matrix/matrix_dimension_holders.h +186 -186
  76. multipers/gudhi/gudhi/Persistence_matrix/matrix_row_access.h +164 -164
  77. multipers/gudhi/gudhi/Persistence_matrix/ru_pairing.h +156 -156
  78. multipers/gudhi/gudhi/Persistence_matrix/ru_rep_cycles.h +376 -376
  79. multipers/gudhi/gudhi/Persistence_matrix/ru_vine_swap.h +540 -540
  80. multipers/gudhi/gudhi/Persistent_cohomology/Field_Zp.h +118 -118
  81. multipers/gudhi/gudhi/Persistent_cohomology/Multi_field.h +173 -173
  82. multipers/gudhi/gudhi/Persistent_cohomology/Persistent_cohomology_column.h +128 -128
  83. multipers/gudhi/gudhi/Persistent_cohomology.h +745 -745
  84. multipers/gudhi/gudhi/Points_off_io.h +171 -171
  85. multipers/gudhi/gudhi/Simple_object_pool.h +69 -69
  86. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_iterators.h +463 -463
  87. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_node_explicit_storage.h +83 -83
  88. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_siblings.h +106 -106
  89. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_star_simplex_iterators.h +277 -277
  90. multipers/gudhi/gudhi/Simplex_tree/hooks_simplex_base.h +62 -62
  91. multipers/gudhi/gudhi/Simplex_tree/indexing_tag.h +27 -27
  92. multipers/gudhi/gudhi/Simplex_tree/serialization_utils.h +62 -62
  93. multipers/gudhi/gudhi/Simplex_tree/simplex_tree_options.h +157 -157
  94. multipers/gudhi/gudhi/Simplex_tree.h +2794 -2794
  95. multipers/gudhi/gudhi/Simplex_tree_multi.h +152 -163
  96. multipers/gudhi/gudhi/distance_functions.h +62 -62
  97. multipers/gudhi/gudhi/graph_simplicial_complex.h +104 -104
  98. multipers/gudhi/gudhi/persistence_interval.h +253 -253
  99. multipers/gudhi/gudhi/persistence_matrix_options.h +170 -170
  100. multipers/gudhi/gudhi/reader_utils.h +367 -367
  101. multipers/gudhi/mma_interface_coh.h +256 -255
  102. multipers/gudhi/mma_interface_h0.h +223 -231
  103. multipers/gudhi/mma_interface_matrix.h +284 -282
  104. multipers/gudhi/naive_merge_tree.h +536 -575
  105. multipers/gudhi/scc_io.h +310 -289
  106. multipers/gudhi/truc.h +890 -888
  107. multipers/io.cp311-win_amd64.pyd +0 -0
  108. multipers/io.pyx +711 -711
  109. multipers/ml/accuracies.py +90 -90
  110. multipers/ml/convolutions.py +520 -520
  111. multipers/ml/invariants_with_persistable.py +79 -79
  112. multipers/ml/kernels.py +176 -176
  113. multipers/ml/mma.py +713 -714
  114. multipers/ml/one.py +472 -472
  115. multipers/ml/point_clouds.py +352 -346
  116. multipers/ml/signed_measures.py +1589 -1589
  117. multipers/ml/sliced_wasserstein.py +461 -461
  118. multipers/ml/tools.py +113 -113
  119. multipers/mma_structures.cp311-win_amd64.pyd +0 -0
  120. multipers/mma_structures.pxd +127 -127
  121. multipers/mma_structures.pyx +4 -4
  122. multipers/mma_structures.pyx.tp +1085 -1085
  123. multipers/multi_parameter_rank_invariant/diff_helpers.h +84 -93
  124. multipers/multi_parameter_rank_invariant/euler_characteristic.h +97 -97
  125. multipers/multi_parameter_rank_invariant/function_rips.h +322 -322
  126. multipers/multi_parameter_rank_invariant/hilbert_function.h +769 -769
  127. multipers/multi_parameter_rank_invariant/persistence_slices.h +148 -148
  128. multipers/multi_parameter_rank_invariant/rank_invariant.h +369 -369
  129. multipers/multiparameter_edge_collapse.py +41 -41
  130. multipers/multiparameter_module_approximation/approximation.h +2296 -2295
  131. multipers/multiparameter_module_approximation/combinatory.h +129 -129
  132. multipers/multiparameter_module_approximation/debug.h +107 -107
  133. multipers/multiparameter_module_approximation/format_python-cpp.h +286 -286
  134. multipers/multiparameter_module_approximation/heap_column.h +238 -238
  135. multipers/multiparameter_module_approximation/images.h +79 -79
  136. multipers/multiparameter_module_approximation/list_column.h +174 -174
  137. multipers/multiparameter_module_approximation/list_column_2.h +232 -232
  138. multipers/multiparameter_module_approximation/ru_matrix.h +347 -347
  139. multipers/multiparameter_module_approximation/set_column.h +135 -135
  140. multipers/multiparameter_module_approximation/structure_higher_dim_barcode.h +36 -36
  141. multipers/multiparameter_module_approximation/unordered_set_column.h +166 -166
  142. multipers/multiparameter_module_approximation/utilities.h +403 -419
  143. multipers/multiparameter_module_approximation/vector_column.h +223 -223
  144. multipers/multiparameter_module_approximation/vector_matrix.h +331 -331
  145. multipers/multiparameter_module_approximation/vineyards.h +464 -464
  146. multipers/multiparameter_module_approximation/vineyards_trajectories.h +649 -649
  147. multipers/multiparameter_module_approximation.cp311-win_amd64.pyd +0 -0
  148. multipers/multiparameter_module_approximation.pyx +216 -217
  149. multipers/pickle.py +90 -53
  150. multipers/plots.py +342 -334
  151. multipers/point_measure.cp311-win_amd64.pyd +0 -0
  152. multipers/point_measure.pyx +322 -320
  153. multipers/simplex_tree_multi.cp311-win_amd64.pyd +0 -0
  154. multipers/simplex_tree_multi.pxd +133 -133
  155. multipers/simplex_tree_multi.pyx +18 -15
  156. multipers/simplex_tree_multi.pyx.tp +1939 -1935
  157. multipers/slicer.cp311-win_amd64.pyd +0 -0
  158. multipers/slicer.pxd +81 -20
  159. multipers/slicer.pxd.tp +215 -214
  160. multipers/slicer.pyx +1091 -308
  161. multipers/slicer.pyx.tp +924 -914
  162. multipers/tensor/tensor.h +672 -672
  163. multipers/tensor.pxd +13 -13
  164. multipers/test.pyx +44 -44
  165. multipers/tests/__init__.py +57 -57
  166. multipers/torch/diff_grids.py +217 -217
  167. multipers/torch/rips_density.py +310 -304
  168. {multipers-2.2.3.dist-info → multipers-2.3.0.dist-info}/LICENSE +21 -21
  169. {multipers-2.2.3.dist-info → multipers-2.3.0.dist-info}/METADATA +21 -11
  170. multipers-2.3.0.dist-info/RECORD +182 -0
  171. multipers/tests/test_diff_helper.py +0 -73
  172. multipers/tests/test_hilbert_function.py +0 -82
  173. multipers/tests/test_mma.py +0 -83
  174. multipers/tests/test_point_clouds.py +0 -49
  175. multipers/tests/test_python-cpp_conversion.py +0 -82
  176. multipers/tests/test_signed_betti.py +0 -181
  177. multipers/tests/test_signed_measure.py +0 -89
  178. multipers/tests/test_simplextreemulti.py +0 -221
  179. multipers/tests/test_slicer.py +0 -221
  180. multipers-2.2.3.dist-info/RECORD +0 -189
  181. {multipers-2.2.3.dist-info → multipers-2.3.0.dist-info}/WHEEL +0 -0
  182. {multipers-2.2.3.dist-info → multipers-2.3.0.dist-info}/top_level.txt +0 -0
multipers/plots.py CHANGED
@@ -1,334 +1,342 @@
1
- from typing import Optional
2
-
3
- import matplotlib.pyplot as plt
4
- import numpy as np
5
-
6
-
7
- def _plot_rectangle(rectangle: np.ndarray, weight, **plt_kwargs):
8
- rectangle = np.asarray(rectangle)
9
- x_axis = rectangle[[0, 2]]
10
- y_axis = rectangle[[1, 3]]
11
- color = "blue" if weight > 0 else "red"
12
- plt.plot(x_axis, y_axis, c=color, **plt_kwargs)
13
-
14
-
15
- def _plot_signed_measure_2(
16
- pts, weights, temp_alpha=0.7, threshold=(np.inf, np.inf), **plt_kwargs
17
- ):
18
- import matplotlib.colors
19
-
20
- pts = np.clip(pts, a_min=-np.inf, a_max=np.asarray(threshold)[None, :])
21
- weights = np.asarray(weights)
22
- color_weights = np.array(weights, dtype=float)
23
- neg_idx = weights < 0
24
- pos_idx = weights > 0
25
- if np.any(neg_idx):
26
- current_weights = -weights[neg_idx]
27
- min_weight = np.max(current_weights)
28
- color_weights[neg_idx] /= min_weight
29
- color_weights[neg_idx] -= 1
30
- else:
31
- min_weight = 0
32
-
33
- if np.any(pos_idx):
34
- current_weights = weights[pos_idx]
35
- max_weight = np.max(current_weights)
36
- color_weights[pos_idx] /= max_weight
37
- color_weights[pos_idx] += 1
38
- else:
39
- max_weight = 1
40
-
41
- bordeaux = np.array([0.70567316, 0.01555616, 0.15023281, 1])
42
- light_bordeaux = np.array([0.70567316, 0.01555616, 0.15023281, temp_alpha])
43
- bleu = np.array([0.2298057, 0.29871797, 0.75368315, 1])
44
- light_bleu = np.array([0.2298057, 0.29871797, 0.75368315, temp_alpha])
45
- norm = plt.Normalize(-2, 2)
46
- cmap = matplotlib.colors.LinearSegmentedColormap.from_list(
47
- "", [bordeaux, light_bordeaux, "white", light_bleu, bleu]
48
- )
49
- plt.scatter(
50
- pts[:, 0], pts[:, 1], c=color_weights, cmap=cmap, norm=norm, **plt_kwargs
51
- )
52
- plt.scatter([], [], color=bleu, label="positive mass", **plt_kwargs)
53
- plt.scatter([], [], color=bordeaux, label="negative mass", **plt_kwargs)
54
- plt.legend()
55
-
56
-
57
- def _plot_signed_measure_4(
58
- pts,
59
- weights,
60
- x_smoothing: float = 1,
61
- area_alpha: bool = True,
62
- threshold=(np.inf, np.inf),
63
- alpha=None,
64
- **plt_kwargs, # ignored ftm
65
- ):
66
- # compute the maximal rectangle area
67
- pts = np.clip(pts, a_min=-np.inf, a_max=np.array((*threshold, *threshold))[None, :])
68
- alpha_rescaling = 0
69
- for rectangle, weight in zip(pts, weights):
70
- if rectangle[2] > x_smoothing * rectangle[0]:
71
- alpha_rescaling = max(
72
- alpha_rescaling,
73
- (rectangle[2] / x_smoothing - rectangle[0])
74
- * (rectangle[3] - rectangle[1]),
75
- )
76
- # draw the rectangles
77
- for rectangle, weight in zip(pts, weights):
78
- # draw only the rectangles that have not been reduced to the empty set
79
- if rectangle[2] > x_smoothing * rectangle[0]:
80
- # make the alpha channel proportional to the rectangle's area
81
- if area_alpha:
82
- _plot_rectangle(
83
- rectangle=[
84
- rectangle[0],
85
- rectangle[1],
86
- rectangle[2] / x_smoothing,
87
- rectangle[3],
88
- ],
89
- weight=weight,
90
- alpha=(
91
- (rectangle[2] / x_smoothing - rectangle[0])
92
- * (rectangle[3] - rectangle[1])
93
- / alpha_rescaling
94
- if alpha is None
95
- else alpha
96
- ),
97
- **plt_kwargs,
98
- )
99
- else:
100
- _plot_rectangle(
101
- rectangle=[
102
- rectangle[0],
103
- rectangle[1],
104
- rectangle[2] / x_smoothing,
105
- rectangle[3],
106
- ],
107
- weight=weight,
108
- alpha=1 if alpha is None else alpha,
109
- **plt_kwargs,
110
- )
111
-
112
-
113
- def plot_signed_measure(signed_measure, threshold=None, ax=None, **plt_kwargs):
114
- if ax is None:
115
- ax = plt.gca()
116
- else:
117
- plt.sca(ax)
118
- pts, weights = signed_measure
119
- pts = np.asarray(pts)
120
- num_pts = pts.shape[0]
121
- num_parameters = pts.shape[1]
122
- if threshold is None:
123
- if num_pts == 0:
124
- threshold = (np.inf, np.inf)
125
- else:
126
- if num_parameters == 4:
127
- pts_ = np.concatenate([pts[:, :2], pts[:, 2:]], axis=0)
128
- else:
129
- pts_ = pts
130
- threshold = np.max(np.ma.masked_invalid(pts_), axis=0)
131
- if isinstance(pts, np.ndarray):
132
- pass
133
- else:
134
- import torch
135
-
136
- if isinstance(pts, torch.Tensor):
137
- pts = pts.detach().numpy()
138
- else:
139
- raise Exception("Invalid measure type.")
140
-
141
- assert num_parameters in (2, 4)
142
- if num_parameters == 2:
143
- _plot_signed_measure_2(
144
- pts=pts, weights=weights, threshold=threshold, **plt_kwargs
145
- )
146
- else:
147
- _plot_signed_measure_4(
148
- pts=pts, weights=weights, threshold=threshold, **plt_kwargs
149
- )
150
-
151
-
152
- def plot_signed_measures(signed_measures, threshold=None, size=4):
153
- num_degrees = len(signed_measures)
154
- if num_degrees <= 1:
155
- axes = [plt.gca()]
156
- else:
157
- fig, axes = plt.subplots(
158
- nrows=1, ncols=num_degrees, figsize=(num_degrees * size, size)
159
- )
160
- for ax, signed_measure in zip(axes, signed_measures):
161
- plot_signed_measure(signed_measure=signed_measure, ax=ax, threshold=threshold)
162
- plt.tight_layout()
163
-
164
-
165
- def plot_surface(
166
- grid,
167
- hf,
168
- fig=None,
169
- ax=None,
170
- cmap: Optional[str] = None,
171
- discrete_surface=False,
172
- has_negative_values=False,
173
- **plt_args,
174
- ):
175
- import matplotlib
176
-
177
- if ax is None:
178
- ax = plt.gca()
179
- else:
180
- plt.sca(ax)
181
- if hf.ndim == 3 and hf.shape[0] == 1:
182
- hf = hf[0]
183
- assert hf.ndim == 2, "Can only plot a 2d surface"
184
- fig = plt.gcf() if fig is None else fig
185
- if cmap is None:
186
- if discrete_surface:
187
- cmap = matplotlib.colormaps["gray_r"]
188
- else:
189
- cmap = matplotlib.colormaps["plasma"]
190
- if discrete_surface:
191
- if has_negative_values:
192
- bounds = np.arange(-5, 6, 1, dtype=int)
193
- else:
194
- bounds = np.arange(0, 11, 1, dtype=int)
195
- norm = matplotlib.colors.BoundaryNorm(bounds, cmap.N, extend="max")
196
- im = ax.pcolormesh(grid[0], grid[1], hf.T, cmap=cmap, norm=norm, **plt_args)
197
- cbar = fig.colorbar(
198
- matplotlib.cm.ScalarMappable(cmap=cmap, norm=norm),
199
- spacing="proportional",
200
- ax=ax,
201
- )
202
- cbar.set_ticks(ticks=bounds, labels=bounds)
203
- return im
204
- im = ax.pcolormesh(grid[0], grid[1], hf.T, cmap=cmap, **plt_args)
205
- return im
206
-
207
-
208
- def plot_surfaces(HF, size=4, **plt_args):
209
- grid, hf = HF
210
- assert (
211
- hf.ndim == 3
212
- ), f"Found hf.shape = {hf.shape}, expected ndim = 3 : degree, 2-parameter surface."
213
- num_degrees = hf.shape[0]
214
- fig, axes = plt.subplots(
215
- nrows=1, ncols=num_degrees, figsize=(num_degrees * size, size)
216
- )
217
- if num_degrees == 1:
218
- axes = [axes]
219
- for ax, hf_of_degree in zip(axes, hf):
220
- plot_surface(grid=grid, hf=hf_of_degree, fig=fig, ax=ax, **plt_args)
221
- plt.tight_layout()
222
-
223
-
224
- def _rectangle(x, y, color, alpha):
225
- """
226
- Defines a rectangle patch in the format {z | x  ≤ z ≤ y} with color and alpha
227
- """
228
- from matplotlib.patches import Rectangle as RectanglePatch
229
-
230
- return RectanglePatch(
231
- x, max(y[0] - x[0], 0), max(y[1] - x[1], 0), color=color, alpha=alpha
232
- )
233
-
234
-
235
- def _d_inf(a, b):
236
- if type(a) != np.ndarray or type(b) != np.ndarray:
237
- a = np.array(a)
238
- b = np.array(b)
239
- return np.min(np.abs(b - a))
240
-
241
-
242
- def plot2d_PyModule(
243
- corners,
244
- box,
245
- *,
246
- dimension=-1,
247
- separated=False,
248
- min_persistence=0,
249
- alpha=1,
250
- verbose=False,
251
- save=False,
252
- dpi=200,
253
- shapely=True,
254
- xlabel=None,
255
- ylabel=None,
256
- cmap=None,
257
- ):
258
- import matplotlib
259
-
260
- try:
261
- from shapely import union_all
262
- from shapely.geometry import Polygon as _Polygon
263
- from shapely.geometry import box as _rectangle_box
264
-
265
- shapely = True and shapely
266
- except ImportError:
267
- from warnings import warn
268
-
269
- shapely = False
270
- warn(
271
- "Shapely not installed. Fallbacking to matplotlib. The plots may be inacurate."
272
- )
273
- cmap = (
274
- matplotlib.colormaps["Spectral"] if cmap is None else matplotlib.colormaps[cmap]
275
- )
276
- box = list(box)
277
- if not (separated):
278
- # fig, ax = plt.subplots()
279
- ax = plt.gca()
280
- ax.set(xlim=[box[0][0], box[1][0]], ylim=[box[0][1], box[1][1]])
281
- n_summands = len(corners)
282
- for i in range(n_summands):
283
- trivial_summand = True
284
- list_of_rect = []
285
- for birth in corners[i][0]:
286
- if len(birth) == 1:
287
- birth = np.asarray([birth[0]] * 2)
288
- birth = np.asarray(birth).clip(min=box[0])
289
- for death in corners[i][1]:
290
- if len(death) == 1:
291
- death = np.asarray([death[0]] * 2)
292
- death = np.asarray(death).clip(max=box[1])
293
- if death[1] > birth[1] and death[0] > birth[0]:
294
- if trivial_summand and _d_inf(birth, death) > min_persistence:
295
- trivial_summand = False
296
- if shapely:
297
- list_of_rect.append(
298
- _rectangle_box(birth[0], birth[1], death[0], death[1])
299
- )
300
- else:
301
- list_of_rect.append(
302
- _rectangle(birth, death, cmap(i / n_summands), alpha)
303
- )
304
- if not (trivial_summand):
305
- if separated:
306
- fig, ax = plt.subplots()
307
- ax.set(xlim=[box[0][0], box[1][0]], ylim=[box[0][1], box[1][1]])
308
- if shapely:
309
- summand_shape = union_all(list_of_rect)
310
- if type(summand_shape) is _Polygon:
311
- xs, ys = summand_shape.exterior.xy
312
- ax.fill(xs, ys, alpha=alpha, fc=cmap(i / n_summands), ec="None")
313
- else:
314
- for polygon in summand_shape.geoms:
315
- xs, ys = polygon.exterior.xy
316
- ax.fill(xs, ys, alpha=alpha, fc=cmap(i / n_summands), ec="None")
317
- else:
318
- for rectangle in list_of_rect:
319
- ax.add_patch(rectangle)
320
- if separated:
321
- if xlabel:
322
- plt.xlabel(xlabel)
323
- if ylabel:
324
- plt.ylabel(ylabel)
325
- if dimension >= 0:
326
- plt.title(rf"$H_{dimension}$ $2$-persistence")
327
- if not (separated):
328
- if xlabel is not None:
329
- plt.xlabel(xlabel)
330
- if ylabel is not None:
331
- plt.ylabel(ylabel)
332
- if dimension >= 0:
333
- plt.title(rf"$H_{dimension}$ $2$-persistence")
334
- return
1
+ from typing import Optional
2
+
3
+ import matplotlib.pyplot as plt
4
+ import numpy as np
5
+
6
+ try:
7
+ import torch
8
+ istensor = torch.is_tensor
9
+ except ImportError:
10
+ istensor = lambda x: False
11
+
12
+ def _plot_rectangle(rectangle: np.ndarray, weight, **plt_kwargs):
13
+ rectangle = np.asarray(rectangle)
14
+ x_axis = rectangle[[0, 2]]
15
+ y_axis = rectangle[[1, 3]]
16
+ color = "blue" if weight > 0 else "red"
17
+ plt.plot(x_axis, y_axis, c=color, **plt_kwargs)
18
+
19
+
20
+ def _plot_signed_measure_2(
21
+ pts, weights, temp_alpha=0.7, threshold=(np.inf, np.inf), **plt_kwargs
22
+ ):
23
+ import matplotlib.colors
24
+
25
+ pts = np.clip(pts, a_min=-np.inf, a_max=np.asarray(threshold)[None, :])
26
+ weights = np.asarray(weights)
27
+ color_weights = np.array(weights, dtype=float)
28
+ neg_idx = weights < 0
29
+ pos_idx = weights > 0
30
+ if np.any(neg_idx):
31
+ current_weights = -weights[neg_idx]
32
+ min_weight = np.max(current_weights)
33
+ color_weights[neg_idx] /= min_weight
34
+ color_weights[neg_idx] -= 1
35
+ else:
36
+ min_weight = 0
37
+
38
+ if np.any(pos_idx):
39
+ current_weights = weights[pos_idx]
40
+ max_weight = np.max(current_weights)
41
+ color_weights[pos_idx] /= max_weight
42
+ color_weights[pos_idx] += 1
43
+ else:
44
+ max_weight = 1
45
+
46
+ bordeaux = np.array([0.70567316, 0.01555616, 0.15023281, 1])
47
+ light_bordeaux = np.array([0.70567316, 0.01555616, 0.15023281, temp_alpha])
48
+ bleu = np.array([0.2298057, 0.29871797, 0.75368315, 1])
49
+ light_bleu = np.array([0.2298057, 0.29871797, 0.75368315, temp_alpha])
50
+ norm = plt.Normalize(-2, 2)
51
+ cmap = matplotlib.colors.LinearSegmentedColormap.from_list(
52
+ "", [bordeaux, light_bordeaux, "white", light_bleu, bleu]
53
+ )
54
+ plt.scatter(
55
+ pts[:, 0], pts[:, 1], c=color_weights, cmap=cmap, norm=norm, **plt_kwargs
56
+ )
57
+ plt.scatter([], [], color=bleu, label="positive mass", **plt_kwargs)
58
+ plt.scatter([], [], color=bordeaux, label="negative mass", **plt_kwargs)
59
+ plt.legend()
60
+
61
+
62
+ def _plot_signed_measure_4(
63
+ pts,
64
+ weights,
65
+ x_smoothing: float = 1,
66
+ area_alpha: bool = True,
67
+ threshold=(np.inf, np.inf),
68
+ alpha=None,
69
+ **plt_kwargs, # ignored ftm
70
+ ):
71
+ # compute the maximal rectangle area
72
+ pts = np.clip(pts, a_min=-np.inf, a_max=np.array((*threshold, *threshold))[None, :])
73
+ alpha_rescaling = 0
74
+ for rectangle, weight in zip(pts, weights):
75
+ if rectangle[2] > x_smoothing * rectangle[0]:
76
+ alpha_rescaling = max(
77
+ alpha_rescaling,
78
+ (rectangle[2] / x_smoothing - rectangle[0])
79
+ * (rectangle[3] - rectangle[1]),
80
+ )
81
+ # draw the rectangles
82
+ for rectangle, weight in zip(pts, weights):
83
+ # draw only the rectangles that have not been reduced to the empty set
84
+ if rectangle[2] > x_smoothing * rectangle[0]:
85
+ # make the alpha channel proportional to the rectangle's area
86
+ if area_alpha:
87
+ _plot_rectangle(
88
+ rectangle=[
89
+ rectangle[0],
90
+ rectangle[1],
91
+ rectangle[2] / x_smoothing,
92
+ rectangle[3],
93
+ ],
94
+ weight=weight,
95
+ alpha=(
96
+ (rectangle[2] / x_smoothing - rectangle[0])
97
+ * (rectangle[3] - rectangle[1])
98
+ / alpha_rescaling
99
+ if alpha is None
100
+ else alpha
101
+ ),
102
+ **plt_kwargs,
103
+ )
104
+ else:
105
+ _plot_rectangle(
106
+ rectangle=[
107
+ rectangle[0],
108
+ rectangle[1],
109
+ rectangle[2] / x_smoothing,
110
+ rectangle[3],
111
+ ],
112
+ weight=weight,
113
+ alpha=1 if alpha is None else alpha,
114
+ **plt_kwargs,
115
+ )
116
+
117
+
118
+ def plot_signed_measure(signed_measure, threshold=None, ax=None, **plt_kwargs):
119
+ if ax is None:
120
+ ax = plt.gca()
121
+ else:
122
+ plt.sca(ax)
123
+ pts, weights = signed_measure
124
+ if istensor(pts):
125
+ pts = pts.detach().numpy()
126
+ if istensor(weights):
127
+ weights = weights.detach().numpy()
128
+ pts = np.asarray(pts)
129
+ num_pts = pts.shape[0]
130
+ num_parameters = pts.shape[1]
131
+ if threshold is None:
132
+ if num_pts == 0:
133
+ threshold = (np.inf, np.inf)
134
+ else:
135
+ if num_parameters == 4:
136
+ pts_ = np.concatenate([pts[:, :2], pts[:, 2:]], axis=0)
137
+ else:
138
+ pts_ = pts
139
+ threshold = np.max(np.ma.masked_invalid(pts_), axis=0)
140
+ if isinstance(pts, np.ndarray):
141
+ pass
142
+ else:
143
+ import torch
144
+
145
+ if isinstance(pts, torch.Tensor):
146
+ pts = pts.detach().numpy()
147
+ else:
148
+ raise Exception("Invalid measure type.")
149
+
150
+ assert num_parameters in (2, 4)
151
+ if num_parameters == 2:
152
+ _plot_signed_measure_2(
153
+ pts=pts, weights=weights, threshold=threshold, **plt_kwargs
154
+ )
155
+ else:
156
+ _plot_signed_measure_4(
157
+ pts=pts, weights=weights, threshold=threshold, **plt_kwargs
158
+ )
159
+
160
+
161
+ def plot_signed_measures(signed_measures, threshold=None, size=4):
162
+ num_degrees = len(signed_measures)
163
+ if num_degrees <= 1:
164
+ axes = [plt.gca()]
165
+ else:
166
+ fig, axes = plt.subplots(
167
+ nrows=1, ncols=num_degrees, figsize=(num_degrees * size, size)
168
+ )
169
+ for ax, signed_measure in zip(axes, signed_measures):
170
+ plot_signed_measure(signed_measure=signed_measure, ax=ax, threshold=threshold)
171
+ plt.tight_layout()
172
+
173
+
174
+ def plot_surface(
175
+ grid,
176
+ hf,
177
+ fig=None,
178
+ ax=None,
179
+ cmap: Optional[str] = None,
180
+ discrete_surface=False,
181
+ has_negative_values=False,
182
+ **plt_args,
183
+ ):
184
+ import matplotlib
185
+
186
+ if ax is None:
187
+ ax = plt.gca()
188
+ else:
189
+ plt.sca(ax)
190
+ if hf.ndim == 3 and hf.shape[0] == 1:
191
+ hf = hf[0]
192
+ assert hf.ndim == 2, "Can only plot a 2d surface"
193
+ fig = plt.gcf() if fig is None else fig
194
+ if cmap is None:
195
+ if discrete_surface:
196
+ cmap = matplotlib.colormaps["gray_r"]
197
+ else:
198
+ cmap = matplotlib.colormaps["plasma"]
199
+ if discrete_surface:
200
+ if has_negative_values:
201
+ bounds = np.arange(-5, 6, 1, dtype=int)
202
+ else:
203
+ bounds = np.arange(0, 11, 1, dtype=int)
204
+ norm = matplotlib.colors.BoundaryNorm(bounds, cmap.N, extend="max")
205
+ im = ax.pcolormesh(grid[0], grid[1], hf.T, cmap=cmap, norm=norm, **plt_args)
206
+ cbar = fig.colorbar(
207
+ matplotlib.cm.ScalarMappable(cmap=cmap, norm=norm),
208
+ spacing="proportional",
209
+ ax=ax,
210
+ )
211
+ cbar.set_ticks(ticks=bounds, labels=bounds)
212
+ return im
213
+ im = ax.pcolormesh(grid[0], grid[1], hf.T, cmap=cmap, **plt_args)
214
+ return im
215
+
216
+
217
+ def plot_surfaces(HF, size=4, **plt_args):
218
+ grid, hf = HF
219
+ assert (
220
+ hf.ndim == 3
221
+ ), f"Found hf.shape = {hf.shape}, expected ndim = 3 : degree, 2-parameter surface."
222
+ num_degrees = hf.shape[0]
223
+ fig, axes = plt.subplots(
224
+ nrows=1, ncols=num_degrees, figsize=(num_degrees * size, size)
225
+ )
226
+ if num_degrees == 1:
227
+ axes = [axes]
228
+ for ax, hf_of_degree in zip(axes, hf):
229
+ plot_surface(grid=grid, hf=hf_of_degree, fig=fig, ax=ax, **plt_args)
230
+ plt.tight_layout()
231
+
232
+
233
+ def _rectangle(x, y, color, alpha):
234
+ """
235
+ Defines a rectangle patch in the format {z | x  ≤ z ≤ y} with color and alpha
236
+ """
237
+ from matplotlib.patches import Rectangle as RectanglePatch
238
+
239
+ return RectanglePatch(
240
+ x, max(y[0] - x[0], 0), max(y[1] - x[1], 0), color=color, alpha=alpha
241
+ )
242
+
243
+
244
+ def _d_inf(a, b):
245
+ a = np.asarray(a)
246
+ b = np.asarray(b)
247
+ return np.min(np.abs(b - a))
248
+
249
+
250
+ def plot2d_PyModule(
251
+ corners,
252
+ box,
253
+ *,
254
+ dimension=-1,
255
+ separated=False,
256
+ min_persistence=0,
257
+ alpha=1,
258
+ verbose=False,
259
+ save=False,
260
+ dpi=200,
261
+ shapely=True,
262
+ xlabel=None,
263
+ ylabel=None,
264
+ cmap=None,
265
+ ):
266
+ import matplotlib
267
+
268
+ try:
269
+ from shapely import union_all
270
+ from shapely.geometry import Polygon as _Polygon
271
+ from shapely.geometry import box as _rectangle_box
272
+
273
+ shapely = True and shapely
274
+ except ImportError:
275
+ from warnings import warn
276
+
277
+ shapely = False
278
+ warn(
279
+ "Shapely not installed. Fallbacking to matplotlib. The plots may be inacurate."
280
+ )
281
+ cmap = (
282
+ matplotlib.colormaps["Spectral"] if cmap is None else matplotlib.colormaps[cmap]
283
+ )
284
+ box = list(box)
285
+ if not (separated):
286
+ # fig, ax = plt.subplots()
287
+ ax = plt.gca()
288
+ ax.set(xlim=[box[0][0], box[1][0]], ylim=[box[0][1], box[1][1]])
289
+ n_summands = len(corners)
290
+ for i in range(n_summands):
291
+ trivial_summand = True
292
+ list_of_rect = []
293
+ for birth in corners[i][0]:
294
+ if len(birth) == 1:
295
+ birth = np.asarray([birth[0]] * 2)
296
+ birth = np.asarray(birth).clip(min=box[0])
297
+ for death in corners[i][1]:
298
+ if len(death) == 1:
299
+ death = np.asarray([death[0]] * 2)
300
+ death = np.asarray(death).clip(max=box[1])
301
+ if death[1] > birth[1] and death[0] > birth[0]:
302
+ if trivial_summand and _d_inf(birth, death) > min_persistence:
303
+ trivial_summand = False
304
+ if shapely:
305
+ list_of_rect.append(
306
+ _rectangle_box(birth[0], birth[1], death[0], death[1])
307
+ )
308
+ else:
309
+ list_of_rect.append(
310
+ _rectangle(birth, death, cmap(i / n_summands), alpha)
311
+ )
312
+ if not (trivial_summand):
313
+ if separated:
314
+ fig, ax = plt.subplots()
315
+ ax.set(xlim=[box[0][0], box[1][0]], ylim=[box[0][1], box[1][1]])
316
+ if shapely:
317
+ summand_shape = union_all(list_of_rect)
318
+ if type(summand_shape) is _Polygon:
319
+ xs, ys = summand_shape.exterior.xy
320
+ ax.fill(xs, ys, alpha=alpha, fc=cmap(i / n_summands), ec="None")
321
+ else:
322
+ for polygon in summand_shape.geoms:
323
+ xs, ys = polygon.exterior.xy
324
+ ax.fill(xs, ys, alpha=alpha, fc=cmap(i / n_summands), ec="None")
325
+ else:
326
+ for rectangle in list_of_rect:
327
+ ax.add_patch(rectangle)
328
+ if separated:
329
+ if xlabel:
330
+ plt.xlabel(xlabel)
331
+ if ylabel:
332
+ plt.ylabel(ylabel)
333
+ if dimension >= 0:
334
+ plt.title(rf"$H_{dimension}$ $2$-persistence")
335
+ if not (separated):
336
+ if xlabel is not None:
337
+ plt.xlabel(xlabel)
338
+ if ylabel is not None:
339
+ plt.ylabel(ylabel)
340
+ if dimension >= 0:
341
+ plt.title(rf"$H_{dimension}$ $2$-persistence")
342
+ return