mteb 2.7.3__py3-none-any.whl → 2.7.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/_create_dataloaders.py +47 -5
- mteb/_evaluators/any_sts_evaluator.py +2 -0
- mteb/_evaluators/clustering_evaluator.py +2 -0
- mteb/_evaluators/evaluator.py +2 -1
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +8 -1
- mteb/_evaluators/pair_classification_evaluator.py +3 -0
- mteb/_evaluators/retrieval_evaluator.py +3 -0
- mteb/_evaluators/sklearn_evaluator.py +6 -1
- mteb/_evaluators/text/bitext_mining_evaluator.py +2 -0
- mteb/_evaluators/text/summarization_evaluator.py +2 -0
- mteb/_evaluators/zeroshot_classification_evaluator.py +2 -0
- mteb/abstasks/abstask.py +31 -12
- mteb/abstasks/classification.py +10 -3
- mteb/abstasks/clustering.py +6 -2
- mteb/abstasks/clustering_legacy.py +8 -2
- mteb/abstasks/image/image_text_pair_classification.py +6 -2
- mteb/abstasks/multilabel_classification.py +2 -0
- mteb/abstasks/pair_classification.py +8 -2
- mteb/abstasks/retrieval.py +27 -12
- mteb/abstasks/retrieval_dataset_loaders.py +29 -19
- mteb/abstasks/sts.py +10 -3
- mteb/abstasks/text/bitext_mining.py +9 -5
- mteb/abstasks/text/reranking.py +2 -2
- mteb/abstasks/text/summarization.py +2 -1
- mteb/abstasks/zeroshot_classification.py +8 -2
- mteb/benchmarks/benchmarks/__init__.py +2 -0
- mteb/benchmarks/benchmarks/benchmarks.py +41 -2
- mteb/descriptive_stats/Retrieval/BrightAopsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightLeetcodeRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQAQuestionsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQATheoremsRetrieval.json +35 -0
- mteb/evaluate.py +10 -2
- mteb/models/model_implementations/align_models.py +1 -0
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +2 -0
- mteb/models/model_implementations/ara_models.py +1 -0
- mteb/models/model_implementations/arctic_models.py +8 -0
- mteb/models/model_implementations/b1ade_models.py +1 -0
- mteb/models/model_implementations/bedrock_models.py +4 -0
- mteb/models/model_implementations/bge_models.py +40 -1
- mteb/models/model_implementations/bica_model.py +1 -0
- mteb/models/model_implementations/blip2_models.py +2 -0
- mteb/models/model_implementations/blip_models.py +8 -0
- mteb/models/model_implementations/bm25.py +10 -5
- mteb/models/model_implementations/bmretriever_models.py +4 -0
- mteb/models/model_implementations/cadet_models.py +1 -0
- mteb/models/model_implementations/cde_models.py +2 -0
- mteb/models/model_implementations/clip_models.py +3 -0
- mteb/models/model_implementations/clips_models.py +3 -0
- mteb/models/model_implementations/codefuse_models.py +5 -0
- mteb/models/model_implementations/codesage_models.py +3 -0
- mteb/models/model_implementations/cohere_models.py +4 -0
- mteb/models/model_implementations/cohere_v.py +5 -0
- mteb/models/model_implementations/colpali_models.py +3 -0
- mteb/models/model_implementations/colqwen_models.py +7 -0
- mteb/models/model_implementations/colsmol_models.py +2 -0
- mteb/models/model_implementations/conan_models.py +1 -0
- mteb/models/model_implementations/dino_models.py +19 -0
- mteb/models/model_implementations/e5_instruct.py +4 -0
- mteb/models/model_implementations/e5_models.py +9 -0
- mteb/models/model_implementations/e5_v.py +1 -0
- mteb/models/model_implementations/eagerworks_models.py +1 -0
- mteb/models/model_implementations/emillykkejensen_models.py +3 -0
- mteb/models/model_implementations/en_code_retriever.py +1 -0
- mteb/models/model_implementations/euler_models.py +1 -0
- mteb/models/model_implementations/evaclip_models.py +4 -0
- mteb/models/model_implementations/fa_models.py +9 -0
- mteb/models/model_implementations/facebookai.py +2 -0
- mteb/models/model_implementations/geogpt_models.py +1 -0
- mteb/models/model_implementations/gme_v_models.py +2 -0
- mteb/models/model_implementations/google_models.py +5 -0
- mteb/models/model_implementations/granite_vision_embedding_models.py +1 -0
- mteb/models/model_implementations/gritlm_models.py +2 -0
- mteb/models/model_implementations/gte_models.py +9 -0
- mteb/models/model_implementations/hinvec_models.py +1 -0
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +6 -0
- mteb/models/model_implementations/inf_models.py +2 -0
- mteb/models/model_implementations/jasper_models.py +2 -0
- mteb/models/model_implementations/jina_clip.py +1 -0
- mteb/models/model_implementations/jina_models.py +7 -0
- mteb/models/model_implementations/kalm_models.py +6 -0
- mteb/models/model_implementations/kblab.py +1 -0
- mteb/models/model_implementations/kennethenevoldsen_models.py +2 -0
- mteb/models/model_implementations/kfst.py +1 -0
- mteb/models/model_implementations/kowshik24_models.py +1 -0
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +1 -0
- mteb/models/model_implementations/linq_models.py +1 -0
- mteb/models/model_implementations/listconranker.py +1 -0
- mteb/models/model_implementations/llm2clip_models.py +3 -0
- mteb/models/model_implementations/llm2vec_models.py +8 -0
- mteb/models/model_implementations/mcinext_models.py +3 -0
- mteb/models/model_implementations/mdbr_models.py +2 -0
- mteb/models/model_implementations/misc_models.py +63 -0
- mteb/models/model_implementations/mixedbread_ai_models.py +3 -0
- mteb/models/model_implementations/mme5_models.py +2 -1
- mteb/models/model_implementations/moco_models.py +2 -0
- mteb/models/model_implementations/mod_models.py +1 -0
- mteb/models/model_implementations/model2vec_models.py +13 -0
- mteb/models/model_implementations/moka_models.py +3 -0
- mteb/models/model_implementations/nbailab.py +3 -0
- mteb/models/model_implementations/no_instruct_sentence_models.py +1 -0
- mteb/models/model_implementations/nomic_models.py +6 -0
- mteb/models/model_implementations/nomic_models_vision.py +1 -0
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +2 -0
- mteb/models/model_implementations/nvidia_models.py +3 -0
- mteb/models/model_implementations/octen_models.py +2 -0
- mteb/models/model_implementations/openai_models.py +5 -0
- mteb/models/model_implementations/openclip_models.py +8 -0
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -0
- mteb/models/model_implementations/ops_moa_models.py +2 -0
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -0
- mteb/models/model_implementations/pawan_models.py +1 -0
- mteb/models/model_implementations/piccolo_models.py +2 -0
- mteb/models/model_implementations/promptriever_models.py +4 -0
- mteb/models/model_implementations/pylate_models.py +13 -0
- mteb/models/model_implementations/qodo_models.py +2 -0
- mteb/models/model_implementations/qtack_models.py +1 -0
- mteb/models/model_implementations/qwen3_models.py +3 -0
- mteb/models/model_implementations/qzhou_models.py +2 -0
- mteb/models/model_implementations/rasgaard_models.py +1 -0
- mteb/models/model_implementations/reasonir_model.py +65 -0
- mteb/models/model_implementations/repllama_models.py +2 -0
- mteb/models/model_implementations/rerankers_custom.py +3 -0
- mteb/models/model_implementations/rerankers_monot5_based.py +14 -0
- mteb/models/model_implementations/richinfoai_models.py +1 -0
- mteb/models/model_implementations/ru_sentence_models.py +20 -0
- mteb/models/model_implementations/ruri_models.py +10 -0
- mteb/models/model_implementations/salesforce_models.py +3 -0
- mteb/models/model_implementations/samilpwc_models.py +1 -0
- mteb/models/model_implementations/sarashina_embedding_models.py +2 -0
- mteb/models/model_implementations/searchmap_models.py +1 -0
- mteb/models/model_implementations/seed_1_6_embedding_models.py +1 -0
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +1 -0
- mteb/models/model_implementations/seed_models.py +1 -0
- mteb/models/model_implementations/sentence_transformers_models.py +18 -0
- mteb/models/model_implementations/shuu_model.py +1 -0
- mteb/models/model_implementations/siglip_models.py +10 -0
- mteb/models/model_implementations/sonar_models.py +2 -1
- mteb/models/model_implementations/spartan8806_atles_champion.py +1 -0
- mteb/models/model_implementations/stella_models.py +6 -0
- mteb/models/model_implementations/tarka_models.py +2 -0
- mteb/models/model_implementations/text2vec_models.py +3 -0
- mteb/models/model_implementations/ua_sentence_models.py +1 -0
- mteb/models/model_implementations/uae_models.py +1 -0
- mteb/models/model_implementations/vdr_models.py +1 -0
- mteb/models/model_implementations/vi_vn_models.py +6 -0
- mteb/models/model_implementations/vista_models.py +2 -0
- mteb/models/model_implementations/vlm2vec_models.py +2 -0
- mteb/models/model_implementations/voyage_models.py +15 -0
- mteb/models/model_implementations/voyage_v.py +1 -0
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +1 -0
- mteb/models/model_implementations/yuan_models.py +1 -0
- mteb/models/model_implementations/yuan_models_en.py +1 -0
- mteb/models/model_meta.py +35 -2
- mteb/models/models_protocols.py +4 -0
- mteb/models/search_wrappers.py +12 -0
- mteb/tasks/bitext_mining/eng/pub_chem_smiles_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/fas/fa_mteb_summary_retrieval.py +3 -3
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/flores_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/in22_conv_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/in22_gen_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/norwegian_courts_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ntrex_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/roma_tales_bitext_mining.py +2 -2
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -1
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -1
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -1
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -1
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -1
- mteb/tasks/classification/bul/bulgarian_store_review_sentiment_classfication.py +1 -1
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -1
- mteb/tasks/classification/dan/dk_hate_classification.py +1 -1
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -1
- mteb/tasks/classification/ell/greek_legal_code_classification.py +1 -1
- mteb/tasks/classification/eng/dbpedia_classification.py +2 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -2
- mteb/tasks/classification/eng/toxic_conversations_classification.py +2 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +1 -1
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -1
- mteb/tasks/classification/eng/yelp_review_full_classification.py +2 -2
- mteb/tasks/classification/est/estonian_valence.py +1 -1
- mteb/tasks/classification/fas/fa_mteb_classification.py +6 -6
- mteb/tasks/classification/fas/persian_food_sentiment_classification.py +1 -1
- mteb/tasks/classification/fil/filipino_shopee_reviews_classification.py +1 -1
- mteb/tasks/classification/fin/fin_toxicity_classification.py +1 -1
- mteb/tasks/classification/fra/french_book_reviews.py +2 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -1
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -1
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -1
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +2 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -1
- mteb/tasks/classification/ita/dado_eval_coarse_classification.py +1 -1
- mteb/tasks/classification/ita/ita_casehold_classification.py +1 -1
- mteb/tasks/classification/ita/sardi_stance_classification.py +1 -1
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -1
- mteb/tasks/classification/jpn/wrime_classification.py +1 -1
- mteb/tasks/classification/kan/kannada_news_classification.py +2 -2
- mteb/tasks/classification/kor/klue_tc.py +2 -2
- mteb/tasks/classification/kor/kor_fin.py +1 -1
- mteb/tasks/classification/kor/kor_hate_classification.py +1 -1
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +1 -1
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -1
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/afri_senti_lang_classification.py +1 -1
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -1
- mteb/tasks/classification/multilingual/cyrillic_turkic_lang_classification.py +1 -1
- mteb/tasks/classification/multilingual/indic_nlp_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/masakha_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -1
- mteb/tasks/classification/multilingual/multilingual_sentiment_classification.py +1 -1
- mteb/tasks/classification/multilingual/scala_classification.py +1 -1
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -1
- mteb/tasks/classification/multilingual/turkic_classification.py +1 -1
- mteb/tasks/classification/multilingual/tweet_sentiment_classification.py +1 -1
- mteb/tasks/classification/nep/nepali_news_classification.py +2 -2
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +1 -1
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +1 -1
- mteb/tasks/classification/ory/odia_news_classification.py +2 -2
- mteb/tasks/classification/pan/punjabi_news_classification.py +1 -1
- mteb/tasks/classification/ron/moroco.py +1 -1
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -1
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -1
- mteb/tasks/classification/rus/georeview_classification.py +1 -1
- mteb/tasks/classification/rus/headline_classification.py +2 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +2 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +2 -2
- mteb/tasks/classification/rus/ru_sci_bench_grnti_classification.py +1 -1
- mteb/tasks/classification/rus/ru_sci_bench_oecd_classification.py +1 -1
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -1
- mteb/tasks/classification/san/sanskrit_shlokas_classification.py +1 -1
- mteb/tasks/classification/sin/sinhala_news_classification.py +2 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +2 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -1
- mteb/tasks/classification/spa/spanish_news_classification.py +2 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -1
- mteb/tasks/classification/tam/tamil_news_classification.py +2 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +2 -2
- mteb/tasks/classification/tha/wongnai_reviews_classification.py +1 -1
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +2 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -2
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -1
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -1
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +2 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -1
- mteb/tasks/clustering/deu/blurbs_clustering_p2p.py +1 -1
- mteb/tasks/clustering/deu/blurbs_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/arxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/arxiv_hierarchical_clustering.py +2 -2
- mteb/tasks/clustering/eng/big_patent_clustering.py +1 -1
- mteb/tasks/clustering/eng/biorxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/biorxiv_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/medrxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/medrxiv_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/reddit_clustering.py +1 -1
- mteb/tasks/clustering/eng/reddit_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/stack_exchange_clustering.py +1 -1
- mteb/tasks/clustering/eng/stack_exchange_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/twenty_newsgroups_clustering.py +1 -1
- mteb/tasks/clustering/fas/fa_mteb_clustering.py +4 -4
- mteb/tasks/clustering/fra/hal_clustering_s2s.py +2 -2
- mteb/tasks/clustering/multilingual/mlsum_clustering_p2p.py +2 -2
- mteb/tasks/clustering/multilingual/mlsum_clustering_s2s.py +2 -2
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -1
- mteb/tasks/clustering/multilingual/wiki_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nob/snl_clustering.py +1 -1
- mteb/tasks/clustering/nob/vg_clustering.py +1 -1
- mteb/tasks/clustering/pol/polish_clustering.py +3 -3
- mteb/tasks/clustering/rus/ru_sci_bench_grnti_clustering_p2p.py +1 -1
- mteb/tasks/clustering/rus/ru_sci_bench_oecd_clustering_p2p.py +1 -1
- mteb/tasks/clustering/zho/cmteb_clustering.py +4 -4
- mteb/tasks/image_text_pair_classification/eng/image_co_de.py +1 -1
- mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +1 -1
- mteb/tasks/instruction_reranking/multilingual/m_follow_ir.py +2 -2
- mteb/tasks/multichoice/eng/cv_bench.py +4 -4
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -1
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -1
- mteb/tasks/multilabel_classification/rus/ru_toixic_multilabelclassification_okmlcup.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -1
- mteb/tasks/pair_classification/ara/ar_entail.py +1 -1
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -1
- mteb/tasks/pair_classification/deu/false_friends_de_en_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_ai_sentence_paraphrase_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_smilespc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_synonym_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_wiki_paragraphs_pc.py +1 -1
- mteb/tasks/pair_classification/eng/sprint_duplicate_questions_pc.py +1 -1
- mteb/tasks/pair_classification/eng/twitter_sem_eval2015_pc.py +1 -1
- mteb/tasks/pair_classification/eng/twitter_url_corpus_pc.py +1 -1
- mteb/tasks/pair_classification/fas/fa_mteb_pair_classification.py +5 -5
- mteb/tasks/pair_classification/fas/fars_tail.py +2 -2
- mteb/tasks/pair_classification/hye/armenian_paraphrase_pc.py +1 -1
- mteb/tasks/pair_classification/ita/dis_co_tex_pair_classification.py +1 -1
- mteb/tasks/pair_classification/kor/klue_nli.py +1 -1
- mteb/tasks/pair_classification/multilingual/rte3.py +2 -2
- mteb/tasks/pair_classification/multilingual/xnli.py +1 -1
- mteb/tasks/pair_classification/pol/polish_pc.py +4 -4
- mteb/tasks/pair_classification/por/assin2_rte.py +1 -1
- mteb/tasks/pair_classification/por/sick_br_pc.py +1 -1
- mteb/tasks/pair_classification/rus/terra.py +2 -2
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -1
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -1
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -1
- mteb/tasks/pair_classification/zho/cmteb_pair_classification.py +2 -2
- mteb/tasks/retrieval/ara/sadeem_question_retrieval.py +1 -1
- mteb/tasks/retrieval/code/code_edit_search_retrieval.py +1 -1
- mteb/tasks/retrieval/code/code_rag.py +4 -4
- mteb/tasks/retrieval/code/code_search_net_cc_retrieval.py +1 -1
- mteb/tasks/retrieval/code/coir_code_search_net_retrieval.py +1 -1
- mteb/tasks/retrieval/code/ds1000_retrieval.py +1 -1
- mteb/tasks/retrieval/code/fresh_stack_retrieval.py +1 -1
- mteb/tasks/retrieval/code/human_eval_retrieval.py +1 -1
- mteb/tasks/retrieval/code/mbpp_retrieval.py +1 -1
- mteb/tasks/retrieval/code/wiki_sql_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +1 -1
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +1 -1
- mteb/tasks/retrieval/deu/german_gov_service_retrieval.py +1 -1
- mteb/tasks/retrieval/deu/german_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/ell/greek_civics_qa.py +1 -1
- mteb/tasks/retrieval/eng/__init__.py +42 -0
- mteb/tasks/retrieval/eng/bright_retrieval.py +10 -2
- mteb/tasks/retrieval/eng/bright_v1_1_retrieval.py +968 -0
- mteb/tasks/retrieval/eng/chat_doctor_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/fin_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/finance_bench_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hateful_memes_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hateful_memes_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hc3_finance_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_narrative_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_needle_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_passkey_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_summ_screen_fd_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_wikim_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lembqm_sum_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/memotion_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/memotion_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/ml_questions.py +1 -1
- mteb/tasks/retrieval/eng/nano_argu_ana_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_climate_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_db_pedia_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_fi_qa2018_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_hotpot_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_msmarco_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_nf_corpus_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_nq_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_quora_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_sci_fact_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_scidocs_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_touche2020_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/narrative_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/r2_med_retrieval.py +8 -8
- mteb/tasks/retrieval/eng/sci_mmir_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/sci_mmir_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +10 -10
- mteb/tasks/retrieval/fra/f_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/fra/syntec_retrieval.py +1 -1
- mteb/tasks/retrieval/hun/hun_sum2.py +1 -1
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt19.py +1 -1
- mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt21.py +1 -1
- mteb/tasks/retrieval/multilingual/cur_ev1_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/miracl_vision_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/mr_tidy_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -2
- mteb/tasks/retrieval/multilingual/statcan_dialogue_dataset_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/vdr_multilingual_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +14 -4
- mteb/tasks/retrieval/multilingual/wit_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/x_flickr30k_co_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/x_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/xm3600_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_android_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_english_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_gaming_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_gis_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_mathematica_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_physics_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_programmers_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_stats_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_tex_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_unix_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_webmasters_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_wordpress_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nob/norquad.py +1 -1
- mteb/tasks/retrieval/nob/snl_retrieval.py +1 -1
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -1
- mteb/tasks/retrieval/vie/vie_qu_ad_retrieval.py +1 -1
- mteb/tasks/sts/fao/faroese_sts.py +1 -1
- mteb/tasks/sts/fra/sick_fr_sts.py +1 -1
- mteb/tasks/sts/kor/klue_sts.py +1 -1
- mteb/tasks/sts/por/sick_br_sts.py +1 -1
- mteb/tasks/sts/rus/ru_para_phraser_sts.py +1 -1
- mteb/tasks/zeroshot_classification/eng/sci_mmir.py +1 -1
- {mteb-2.7.3.dist-info → mteb-2.7.5.dist-info}/METADATA +1 -1
- {mteb-2.7.3.dist-info → mteb-2.7.5.dist-info}/RECORD +434 -413
- {mteb-2.7.3.dist-info → mteb-2.7.5.dist-info}/WHEEL +0 -0
- {mteb-2.7.3.dist-info → mteb-2.7.5.dist-info}/entry_points.txt +0 -0
- {mteb-2.7.3.dist-info → mteb-2.7.5.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.7.3.dist-info → mteb-2.7.5.dist-info}/top_level.txt +0 -0
|
@@ -173,6 +173,7 @@ m2v_base_glove_subword = ModelMeta(
|
|
|
173
173
|
revision="5f4f5ca159b7321a8b39739bba0794fa0debddf4",
|
|
174
174
|
release_date="2024-09-21",
|
|
175
175
|
n_parameters=int(103 * 1e6),
|
|
176
|
+
n_embedding_parameters=int(103 * 1e6),
|
|
176
177
|
memory_usage_mb=391,
|
|
177
178
|
max_tokens=np.inf, # Theoretically infinite
|
|
178
179
|
embed_dim=256,
|
|
@@ -199,6 +200,7 @@ m2v_base_glove = ModelMeta(
|
|
|
199
200
|
revision="38ebd7f10f71e67fa8db898290f92b82e9cfff2b",
|
|
200
201
|
release_date="2024-09-21",
|
|
201
202
|
n_parameters=int(102 * 1e6),
|
|
203
|
+
n_embedding_parameters=int(102 * 1e6),
|
|
202
204
|
memory_usage_mb=391,
|
|
203
205
|
max_tokens=np.inf,
|
|
204
206
|
embed_dim=256,
|
|
@@ -224,6 +226,7 @@ m2v_base_output = ModelMeta(
|
|
|
224
226
|
revision="02460ae401a22b09d2c6652e23371398329551e2",
|
|
225
227
|
release_date="2024-09-21",
|
|
226
228
|
n_parameters=int(7.56 * 1e6),
|
|
229
|
+
n_embedding_parameters=int(7.56 * 1e6),
|
|
227
230
|
memory_usage_mb=29,
|
|
228
231
|
max_tokens=np.inf,
|
|
229
232
|
embed_dim=256,
|
|
@@ -249,6 +252,7 @@ m2v_multilingual_output = ModelMeta(
|
|
|
249
252
|
revision="2cf4ec4e1f51aeca6c55cf9b93097d00711a6305",
|
|
250
253
|
release_date="2024-09-21",
|
|
251
254
|
n_parameters=int(128 * 1e6),
|
|
255
|
+
n_embedding_parameters=int(128 * 1e6),
|
|
252
256
|
memory_usage_mb=489,
|
|
253
257
|
max_tokens=np.inf,
|
|
254
258
|
embed_dim=256,
|
|
@@ -274,6 +278,7 @@ potion_base_2m = ModelMeta(
|
|
|
274
278
|
revision="86db093558fbced2072b929eb1690bce5272bd4b",
|
|
275
279
|
release_date="2024-10-29",
|
|
276
280
|
n_parameters=int(2 * 1e6),
|
|
281
|
+
n_embedding_parameters=int(2 * 1e6),
|
|
277
282
|
memory_usage_mb=7,
|
|
278
283
|
max_tokens=np.inf,
|
|
279
284
|
embed_dim=64,
|
|
@@ -299,6 +304,7 @@ potion_base_4m = ModelMeta(
|
|
|
299
304
|
revision="81b1802ada41afcd0987a37dc15e569c9fa76f04",
|
|
300
305
|
release_date="2024-10-29",
|
|
301
306
|
n_parameters=int(3.78 * 1e6),
|
|
307
|
+
n_embedding_parameters=int(3.78 * 1e6),
|
|
302
308
|
memory_usage_mb=14,
|
|
303
309
|
max_tokens=np.inf,
|
|
304
310
|
embed_dim=128,
|
|
@@ -324,6 +330,7 @@ potion_base_8m = ModelMeta(
|
|
|
324
330
|
revision="dcbec7aa2d52fc76754ac6291803feedd8c619ce",
|
|
325
331
|
release_date="2024-10-29",
|
|
326
332
|
n_parameters=int(7.56 * 1e6),
|
|
333
|
+
n_embedding_parameters=int(7.56 * 1e6),
|
|
327
334
|
memory_usage_mb=29,
|
|
328
335
|
max_tokens=np.inf,
|
|
329
336
|
embed_dim=256,
|
|
@@ -349,6 +356,7 @@ potion_multilingual_128m = ModelMeta(
|
|
|
349
356
|
revision="38ebd7f10f71e67fa8db898290f92b82e9cfff2a",
|
|
350
357
|
release_date="2025-05-23",
|
|
351
358
|
n_parameters=128 * 1e6,
|
|
359
|
+
n_embedding_parameters=128 * 1e6,
|
|
352
360
|
memory_usage_mb=489,
|
|
353
361
|
max_tokens=np.inf,
|
|
354
362
|
embed_dim=256,
|
|
@@ -374,6 +382,7 @@ pubmed_bert_100k = ModelMeta(
|
|
|
374
382
|
revision="bac5e3b12fb8c650e92a19c41b436732c4f16e9e",
|
|
375
383
|
release_date="2025-01-03",
|
|
376
384
|
n_parameters=1 * 1e5,
|
|
385
|
+
n_embedding_parameters=1 * 1e5,
|
|
377
386
|
memory_usage_mb=0,
|
|
378
387
|
max_tokens=np.inf,
|
|
379
388
|
embed_dim=64,
|
|
@@ -398,6 +407,7 @@ pubmed_bert_500k = ModelMeta(
|
|
|
398
407
|
revision="34ba71e35c393fdad7ed695113f653feb407b16b",
|
|
399
408
|
release_date="2025-01-03",
|
|
400
409
|
n_parameters=5 * 1e5,
|
|
410
|
+
n_embedding_parameters=5 * 1e5,
|
|
401
411
|
memory_usage_mb=2,
|
|
402
412
|
max_tokens=np.inf,
|
|
403
413
|
embed_dim=64,
|
|
@@ -422,6 +432,7 @@ pubmed_bert_1m = ModelMeta(
|
|
|
422
432
|
revision="2b7fed222594708da6d88bcda92ae9b434b7ddd1",
|
|
423
433
|
release_date="2025-01-03",
|
|
424
434
|
n_parameters=1 * 1e6,
|
|
435
|
+
n_embedding_parameters=1 * 1e6,
|
|
425
436
|
memory_usage_mb=2,
|
|
426
437
|
max_tokens=np.inf,
|
|
427
438
|
embed_dim=64,
|
|
@@ -446,6 +457,7 @@ pubmed_bert_2m = ModelMeta(
|
|
|
446
457
|
revision="1d7bbe04d6713e425161146bfdc71473cbed498a",
|
|
447
458
|
release_date="2025-01-03",
|
|
448
459
|
n_parameters=1.95 * 1e6,
|
|
460
|
+
n_embedding_parameters=1.95 * 1e6,
|
|
449
461
|
memory_usage_mb=7,
|
|
450
462
|
max_tokens=np.inf,
|
|
451
463
|
embed_dim=64,
|
|
@@ -470,6 +482,7 @@ pubmed_bert_8m = ModelMeta(
|
|
|
470
482
|
revision="387d350015e963744f4fafe56a574b7cd48646c9",
|
|
471
483
|
release_date="2025-01-03",
|
|
472
484
|
n_parameters=7.81 * 1e6,
|
|
485
|
+
n_embedding_parameters=7.81 * 1e6,
|
|
473
486
|
memory_usage_mb=30,
|
|
474
487
|
max_tokens=np.inf,
|
|
475
488
|
embed_dim=256,
|
|
@@ -97,6 +97,7 @@ m3e_base = ModelMeta(
|
|
|
97
97
|
revision="764b537a0e50e5c7d64db883f2d2e051cbe3c64c",
|
|
98
98
|
release_date="2023-06-06", # first commit
|
|
99
99
|
n_parameters=int(102 * 1e6),
|
|
100
|
+
n_embedding_parameters=16_226_304,
|
|
100
101
|
memory_usage_mb=390,
|
|
101
102
|
embed_dim=768,
|
|
102
103
|
# They don't give a specific license but commercial use is not allowed
|
|
@@ -123,6 +124,7 @@ m3e_small = ModelMeta(
|
|
|
123
124
|
revision="44c696631b2a8c200220aaaad5f987f096e986df",
|
|
124
125
|
release_date="2023-06-02", # first commit
|
|
125
126
|
n_parameters=None,
|
|
127
|
+
n_embedding_parameters=10_817_536,
|
|
126
128
|
memory_usage_mb=None, # Can't be seen on HF page
|
|
127
129
|
embed_dim=512,
|
|
128
130
|
# They don't give a specific license but commercial use is not allowed
|
|
@@ -149,6 +151,7 @@ m3e_large = ModelMeta(
|
|
|
149
151
|
revision="12900375086c37ba5d83d1e417b21dc7d1d1f388",
|
|
150
152
|
release_date="2023-06-21", # first commit
|
|
151
153
|
n_parameters=None,
|
|
154
|
+
n_embedding_parameters=21_635_072,
|
|
152
155
|
memory_usage_mb=None, # Can't be seen on HF page
|
|
153
156
|
embed_dim=768,
|
|
154
157
|
# They don't give a specific license but commercial use is not allowed
|
|
@@ -12,6 +12,7 @@ nb_sbert = ModelMeta(
|
|
|
12
12
|
revision="b95656350a076aeafd2d23763660f80655408cc6",
|
|
13
13
|
release_date="2022-11-23",
|
|
14
14
|
n_parameters=1_780_000_000,
|
|
15
|
+
n_embedding_parameters=91_812_096,
|
|
15
16
|
memory_usage_mb=678,
|
|
16
17
|
embed_dim=4096,
|
|
17
18
|
license="apache-2.0",
|
|
@@ -34,6 +35,7 @@ nb_bert_large = ModelMeta(
|
|
|
34
35
|
revision="f9d0fc184adab4dc354d85e1854b7634540d7550",
|
|
35
36
|
release_date="2021-04-29",
|
|
36
37
|
n_parameters=355087360,
|
|
38
|
+
n_embedding_parameters=51_200_000,
|
|
37
39
|
memory_usage_mb=1359,
|
|
38
40
|
embed_dim=1024,
|
|
39
41
|
license="cc-by-4.0",
|
|
@@ -56,6 +58,7 @@ nb_bert_base = ModelMeta(
|
|
|
56
58
|
revision="9417c3f62a3adc99f17ff92bff446f35d011f994",
|
|
57
59
|
release_date="2021-01-13",
|
|
58
60
|
n_parameters=177853440,
|
|
61
|
+
n_embedding_parameters=91_812_096,
|
|
59
62
|
memory_usage_mb=681,
|
|
60
63
|
embed_dim=768,
|
|
61
64
|
license="cc-by-4.0",
|
|
@@ -110,6 +110,7 @@ no_instruct_small_v0 = ModelMeta(
|
|
|
110
110
|
revision="b38747000553d8268915c95a55fc87e707c9aadd",
|
|
111
111
|
release_date="2024-05-01", # first commit
|
|
112
112
|
n_parameters=33_400_000,
|
|
113
|
+
n_embedding_parameters=11_720_448,
|
|
113
114
|
memory_usage_mb=127,
|
|
114
115
|
max_tokens=512,
|
|
115
116
|
embed_dim=384,
|
|
@@ -215,6 +215,7 @@ nomic_embed_v1_5 = ModelMeta(
|
|
|
215
215
|
release_date="2024-02-10", # first commit
|
|
216
216
|
citation=NOMIC_CITATION,
|
|
217
217
|
n_parameters=137_000_000,
|
|
218
|
+
n_embedding_parameters=None,
|
|
218
219
|
memory_usage_mb=522,
|
|
219
220
|
max_tokens=8192,
|
|
220
221
|
embed_dim=768,
|
|
@@ -249,6 +250,7 @@ nomic_embed_v1 = ModelMeta(
|
|
|
249
250
|
revision="0759316f275aa0cb93a5b830973843ca66babcf5",
|
|
250
251
|
release_date="2024-01-31", # first commit
|
|
251
252
|
n_parameters=None,
|
|
253
|
+
n_embedding_parameters=None,
|
|
252
254
|
memory_usage_mb=522,
|
|
253
255
|
max_tokens=8192,
|
|
254
256
|
embed_dim=768,
|
|
@@ -284,6 +286,7 @@ nomic_embed_v1_ablated = ModelMeta(
|
|
|
284
286
|
revision="7d948905c5d5d3874fa55a925d68e49dbf411e5f",
|
|
285
287
|
release_date="2024-01-15", # first commit
|
|
286
288
|
n_parameters=None,
|
|
289
|
+
n_embedding_parameters=None,
|
|
287
290
|
memory_usage_mb=None,
|
|
288
291
|
max_tokens=8192,
|
|
289
292
|
embed_dim=768,
|
|
@@ -312,6 +315,7 @@ nomic_embed_v1_unsupervised = ModelMeta(
|
|
|
312
315
|
revision="b53d557b15ae63852847c222d336c1609eced93c",
|
|
313
316
|
release_date="2024-01-15", # first commit
|
|
314
317
|
n_parameters=None,
|
|
318
|
+
n_embedding_parameters=None,
|
|
315
319
|
memory_usage_mb=None,
|
|
316
320
|
max_tokens=8192,
|
|
317
321
|
embed_dim=768,
|
|
@@ -340,6 +344,7 @@ nomic_modern_bert_embed = ModelMeta(
|
|
|
340
344
|
revision="5960f1566fb7cb1adf1eb6e816639cf4646d9b12",
|
|
341
345
|
release_date="2024-12-29",
|
|
342
346
|
n_parameters=149_000_000,
|
|
347
|
+
n_embedding_parameters=None,
|
|
343
348
|
memory_usage_mb=568,
|
|
344
349
|
max_tokens=8192,
|
|
345
350
|
embed_dim=768,
|
|
@@ -479,6 +484,7 @@ nomic_embed_text_v2_moe = ModelMeta(
|
|
|
479
484
|
revision="1066b6599d099fbb93dfcb64f9c37a7c9e503e85",
|
|
480
485
|
release_date="2025-02-07",
|
|
481
486
|
n_parameters=475292928,
|
|
487
|
+
n_embedding_parameters=None,
|
|
482
488
|
memory_usage_mb=1813,
|
|
483
489
|
max_tokens=512,
|
|
484
490
|
embed_dim=768,
|
|
@@ -162,6 +162,7 @@ llama_nemoretriever_colembed_1b_v1 = ModelMeta(
|
|
|
162
162
|
release_date="2025-06-27",
|
|
163
163
|
modalities=["image", "text"],
|
|
164
164
|
n_parameters=2_418_000_000,
|
|
165
|
+
n_embedding_parameters=None,
|
|
165
166
|
memory_usage_mb=4610,
|
|
166
167
|
max_tokens=8192,
|
|
167
168
|
embed_dim=2048,
|
|
@@ -189,6 +190,7 @@ llama_nemoretriever_colembed_3b_v1 = ModelMeta(
|
|
|
189
190
|
release_date="2025-06-27",
|
|
190
191
|
modalities=["image", "text"],
|
|
191
192
|
n_parameters=4_407_000_000,
|
|
193
|
+
n_embedding_parameters=None,
|
|
192
194
|
memory_usage_mb=8403,
|
|
193
195
|
max_tokens=8192,
|
|
194
196
|
embed_dim=3072,
|
|
@@ -204,6 +204,7 @@ NV_embed_v2 = ModelMeta(
|
|
|
204
204
|
revision="7604d305b621f14095a1aa23d351674c2859553a",
|
|
205
205
|
release_date="2024-09-09", # initial commit of hf model.
|
|
206
206
|
n_parameters=7_850_000_000,
|
|
207
|
+
n_embedding_parameters=None,
|
|
207
208
|
memory_usage_mb=14975,
|
|
208
209
|
embed_dim=4096,
|
|
209
210
|
license="cc-by-nc-4.0",
|
|
@@ -235,6 +236,7 @@ NV_embed_v1 = ModelMeta(
|
|
|
235
236
|
revision="570834afd5fef5bf3a3c2311a2b6e0a66f6f4f2c",
|
|
236
237
|
release_date="2024-09-13", # initial commit of hf model.
|
|
237
238
|
n_parameters=7_850_000_000,
|
|
239
|
+
n_embedding_parameters=None,
|
|
238
240
|
memory_usage_mb=14975,
|
|
239
241
|
embed_dim=4096,
|
|
240
242
|
license="cc-by-nc-4.0",
|
|
@@ -624,6 +626,7 @@ llama_embed_nemotron_8b = ModelMeta(
|
|
|
624
626
|
revision="84a375593d27d3528beb4e104822515659e093b4",
|
|
625
627
|
release_date="2025-10-23",
|
|
626
628
|
n_parameters=7_504_924_672,
|
|
629
|
+
n_embedding_parameters=None,
|
|
627
630
|
memory_usage_mb=28629,
|
|
628
631
|
embed_dim=4096,
|
|
629
632
|
license="https://huggingface.co/nvidia/llama-embed-nemotron-8b/blob/main/LICENSE",
|
|
@@ -208,6 +208,7 @@ Octen_Embedding_4B = ModelMeta(
|
|
|
208
208
|
revision="6e188e3b072c3e3678b235ad84e6e97bcbb71e8f",
|
|
209
209
|
release_date="2025-12-30",
|
|
210
210
|
n_parameters=4021774336,
|
|
211
|
+
n_embedding_parameters=None,
|
|
211
212
|
memory_usage_mb=7671,
|
|
212
213
|
embed_dim=2560,
|
|
213
214
|
max_tokens=32768,
|
|
@@ -238,6 +239,7 @@ Octen_Embedding_8B = ModelMeta(
|
|
|
238
239
|
revision="f7db178d5a82fb841f606a6a67c423cead2fdbba",
|
|
239
240
|
release_date="2025-12-23",
|
|
240
241
|
n_parameters=7567295488,
|
|
242
|
+
n_embedding_parameters=None,
|
|
241
243
|
memory_usage_mb=14433,
|
|
242
244
|
embed_dim=4096,
|
|
243
245
|
max_tokens=32768,
|
|
@@ -185,6 +185,7 @@ text_embedding_3_small = ModelMeta(
|
|
|
185
185
|
embed_dim=1536,
|
|
186
186
|
open_weights=False,
|
|
187
187
|
n_parameters=None,
|
|
188
|
+
n_embedding_parameters=None,
|
|
188
189
|
memory_usage_mb=None,
|
|
189
190
|
license=None,
|
|
190
191
|
reference="https://openai.com/index/new-embedding-models-and-api-updates/",
|
|
@@ -213,6 +214,7 @@ text_embedding_3_large = ModelMeta(
|
|
|
213
214
|
framework=["API"],
|
|
214
215
|
use_instructions=False,
|
|
215
216
|
n_parameters=None,
|
|
217
|
+
n_embedding_parameters=None,
|
|
216
218
|
memory_usage_mb=None,
|
|
217
219
|
public_training_code=None,
|
|
218
220
|
public_training_data=None, # assumed
|
|
@@ -238,6 +240,7 @@ text_embedding_ada_002 = ModelMeta(
|
|
|
238
240
|
framework=["API"],
|
|
239
241
|
use_instructions=False,
|
|
240
242
|
n_parameters=None,
|
|
243
|
+
n_embedding_parameters=None,
|
|
241
244
|
memory_usage_mb=None,
|
|
242
245
|
public_training_code=None,
|
|
243
246
|
public_training_data=None, # assumed
|
|
@@ -262,6 +265,7 @@ text_embedding_3_small_512 = ModelMeta(
|
|
|
262
265
|
embed_dim=512,
|
|
263
266
|
open_weights=False,
|
|
264
267
|
n_parameters=None,
|
|
268
|
+
n_embedding_parameters=None,
|
|
265
269
|
memory_usage_mb=None,
|
|
266
270
|
license=None,
|
|
267
271
|
reference="https://openai.com/index/new-embedding-models-and-api-updates/",
|
|
@@ -292,6 +296,7 @@ text_embedding_3_large_512 = ModelMeta(
|
|
|
292
296
|
framework=["API"],
|
|
293
297
|
use_instructions=False,
|
|
294
298
|
n_parameters=None,
|
|
299
|
+
n_embedding_parameters=None,
|
|
295
300
|
memory_usage_mb=None,
|
|
296
301
|
public_training_code=None,
|
|
297
302
|
public_training_data=None, # assumed
|
|
@@ -133,6 +133,7 @@ CLIP_ViT_L_14_DataComp_XL_s13B_b90K = ModelMeta(
|
|
|
133
133
|
release_date="2023-04-26",
|
|
134
134
|
modalities=["image", "text"],
|
|
135
135
|
n_parameters=428_000_000,
|
|
136
|
+
n_embedding_parameters=None,
|
|
136
137
|
memory_usage_mb=1633,
|
|
137
138
|
max_tokens=77,
|
|
138
139
|
embed_dim=768,
|
|
@@ -159,6 +160,7 @@ CLIP_ViT_B_32_DataComp_XL_s13B_b90K = ModelMeta(
|
|
|
159
160
|
release_date="2023-04-26",
|
|
160
161
|
modalities=["image", "text"],
|
|
161
162
|
n_parameters=151_000_000,
|
|
163
|
+
n_embedding_parameters=None,
|
|
162
164
|
memory_usage_mb=576,
|
|
163
165
|
max_tokens=77,
|
|
164
166
|
embed_dim=512,
|
|
@@ -185,6 +187,7 @@ CLIP_ViT_B_16_DataComp_XL_s13B_b90K = ModelMeta(
|
|
|
185
187
|
release_date="2023-04-26",
|
|
186
188
|
modalities=["image", "text"],
|
|
187
189
|
n_parameters=150_000_000,
|
|
190
|
+
n_embedding_parameters=None,
|
|
188
191
|
memory_usage_mb=572,
|
|
189
192
|
max_tokens=77,
|
|
190
193
|
embed_dim=512,
|
|
@@ -211,6 +214,7 @@ CLIP_ViT_bigG_14_laion2B_39B_b160k = ModelMeta(
|
|
|
211
214
|
release_date="2023-01-23",
|
|
212
215
|
modalities=["image", "text"],
|
|
213
216
|
n_parameters=2_540_000_000,
|
|
217
|
+
n_embedding_parameters=None,
|
|
214
218
|
memory_usage_mb=9689,
|
|
215
219
|
max_tokens=77,
|
|
216
220
|
embed_dim=1280,
|
|
@@ -237,6 +241,7 @@ CLIP_ViT_g_14_laion2B_s34B_b88K = ModelMeta(
|
|
|
237
241
|
release_date="2023-03-06",
|
|
238
242
|
modalities=["image", "text"],
|
|
239
243
|
n_parameters=1_367_000_000,
|
|
244
|
+
n_embedding_parameters=None,
|
|
240
245
|
memory_usage_mb=5215,
|
|
241
246
|
max_tokens=77,
|
|
242
247
|
embed_dim=1024,
|
|
@@ -263,6 +268,7 @@ CLIP_ViT_H_14_laion2B_s32B_b79K = ModelMeta(
|
|
|
263
268
|
release_date="2022-09-15",
|
|
264
269
|
modalities=["image", "text"],
|
|
265
270
|
n_parameters=986_000_000,
|
|
271
|
+
n_embedding_parameters=None,
|
|
266
272
|
memory_usage_mb=3762,
|
|
267
273
|
max_tokens=77,
|
|
268
274
|
embed_dim=1024,
|
|
@@ -289,6 +295,7 @@ CLIP_ViT_L_14_laion2B_s32B_b82K = ModelMeta(
|
|
|
289
295
|
release_date="2022-09-15",
|
|
290
296
|
modalities=["image", "text"],
|
|
291
297
|
n_parameters=428_000_000,
|
|
298
|
+
n_embedding_parameters=None,
|
|
292
299
|
memory_usage_mb=1631,
|
|
293
300
|
max_tokens=77,
|
|
294
301
|
embed_dim=768,
|
|
@@ -315,6 +322,7 @@ CLIP_ViT_B_32_laion2B_s34B_b79K = ModelMeta(
|
|
|
315
322
|
release_date="2022-09-15",
|
|
316
323
|
modalities=["image", "text"],
|
|
317
324
|
n_parameters=151_000_000,
|
|
325
|
+
n_embedding_parameters=None,
|
|
318
326
|
memory_usage_mb=577,
|
|
319
327
|
max_tokens=77,
|
|
320
328
|
embed_dim=512,
|
|
@@ -140,6 +140,7 @@ opensearch_neural_sparse_encoding_doc_v3_gte = ModelMeta(
|
|
|
140
140
|
revision="a8abaa916125ee512a7a8f4d706d07eb0128a8e6",
|
|
141
141
|
release_date="2025-06-18",
|
|
142
142
|
n_parameters=137_394_234,
|
|
143
|
+
n_embedding_parameters=23_440_896,
|
|
143
144
|
memory_usage_mb=549,
|
|
144
145
|
embed_dim=30522,
|
|
145
146
|
license="apache-2.0",
|
|
@@ -166,6 +167,7 @@ opensearch_neural_sparse_encoding_doc_v3_distill = ModelMeta(
|
|
|
166
167
|
revision="babf71f3c48695e2e53a978208e8aba48335e3c0",
|
|
167
168
|
release_date="2025-03-28",
|
|
168
169
|
n_parameters=66_985_530,
|
|
170
|
+
n_embedding_parameters=23_440_896,
|
|
169
171
|
memory_usage_mb=267,
|
|
170
172
|
embed_dim=30522,
|
|
171
173
|
license="apache-2.0",
|
|
@@ -188,6 +190,7 @@ opensearch_neural_sparse_encoding_doc_v2_distill = ModelMeta(
|
|
|
188
190
|
revision="8921a26c78b8559d6604eb1f5c0b74c079bee38f",
|
|
189
191
|
release_date="2024-07-17",
|
|
190
192
|
n_parameters=66_985_530,
|
|
193
|
+
n_embedding_parameters=23_440_896,
|
|
191
194
|
memory_usage_mb=267,
|
|
192
195
|
embed_dim=30522,
|
|
193
196
|
license="apache-2.0",
|
|
@@ -211,6 +214,7 @@ opensearch_neural_sparse_encoding_doc_v2_mini = ModelMeta(
|
|
|
211
214
|
revision="4af867a426867dfdd744097531046f4289a32fdd",
|
|
212
215
|
release_date="2024-07-18",
|
|
213
216
|
n_parameters=22_744_506,
|
|
217
|
+
n_embedding_parameters=11_720_448,
|
|
214
218
|
memory_usage_mb=86,
|
|
215
219
|
embed_dim=30522,
|
|
216
220
|
license="apache-2.0",
|
|
@@ -233,6 +237,7 @@ opensearch_neural_sparse_encoding_doc_v1 = ModelMeta(
|
|
|
233
237
|
revision="98cdcbd72867c547f72f2b7b7bed9cdf9f09922d",
|
|
234
238
|
release_date="2024-03-07",
|
|
235
239
|
n_parameters=132_955_194,
|
|
240
|
+
n_embedding_parameters=23_440_896,
|
|
236
241
|
memory_usage_mb=507,
|
|
237
242
|
embed_dim=30522,
|
|
238
243
|
license="apache-2.0",
|
|
@@ -33,6 +33,7 @@ ops_moa_conan_embedding = ModelMeta(
|
|
|
33
33
|
languages=["zho-Hans"],
|
|
34
34
|
loader=OPSWrapper,
|
|
35
35
|
n_parameters=int(343 * 1e6),
|
|
36
|
+
n_embedding_parameters=21_635_072,
|
|
36
37
|
memory_usage_mb=1308,
|
|
37
38
|
max_tokens=512,
|
|
38
39
|
embed_dim=1536,
|
|
@@ -65,6 +66,7 @@ ops_moa_yuan_embedding = ModelMeta(
|
|
|
65
66
|
languages=["zho-Hans"],
|
|
66
67
|
loader=OPSWrapper,
|
|
67
68
|
n_parameters=int(343 * 1e6),
|
|
69
|
+
n_embedding_parameters=21_635_072,
|
|
68
70
|
memory_usage_mb=1242,
|
|
69
71
|
max_tokens=512,
|
|
70
72
|
embed_dim=1536,
|
|
@@ -12,6 +12,7 @@ piccolo_base_zh = ModelMeta(
|
|
|
12
12
|
revision="47c0a63b8f667c3482e05b2fd45577bb19252196",
|
|
13
13
|
release_date="2023-09-04", # first commit
|
|
14
14
|
n_parameters=None,
|
|
15
|
+
n_embedding_parameters=16_226_304,
|
|
15
16
|
memory_usage_mb=None, # can't see on model card
|
|
16
17
|
embed_dim=768,
|
|
17
18
|
license="mit",
|
|
@@ -37,6 +38,7 @@ piccolo_large_zh_v2 = ModelMeta(
|
|
|
37
38
|
revision="05948c1d889355936bdf9db7d30df57dd78d25a3",
|
|
38
39
|
release_date="2024-04-22", # first commit
|
|
39
40
|
n_parameters=None,
|
|
41
|
+
n_embedding_parameters=None,
|
|
40
42
|
memory_usage_mb=None, # we don't know because they removed the model
|
|
41
43
|
embed_dim=1024,
|
|
42
44
|
license="not specified",
|
|
@@ -87,6 +87,7 @@ promptriever_llama2 = ModelMeta(
|
|
|
87
87
|
revision="01c7f73d771dfac7d292323805ebc428287df4f9-30b14e3813c0fa45facfd01a594580c3fe5ecf23", # base-peft revision
|
|
88
88
|
release_date="2024-09-15",
|
|
89
89
|
n_parameters=7_000_000_000,
|
|
90
|
+
n_embedding_parameters=None,
|
|
90
91
|
memory_usage_mb=26703,
|
|
91
92
|
max_tokens=4096,
|
|
92
93
|
embed_dim=4096,
|
|
@@ -123,6 +124,7 @@ promptriever_llama3 = ModelMeta(
|
|
|
123
124
|
},
|
|
124
125
|
release_date="2024-09-15",
|
|
125
126
|
n_parameters=8_000_000_000,
|
|
127
|
+
n_embedding_parameters=None,
|
|
126
128
|
memory_usage_mb=30518,
|
|
127
129
|
max_tokens=8192,
|
|
128
130
|
embed_dim=4096,
|
|
@@ -152,6 +154,7 @@ promptriever_llama3_instruct = ModelMeta(
|
|
|
152
154
|
revision="5206a32e0bd3067aef1ce90f5528ade7d866253f-8b677258615625122c2eb7329292b8c402612c21", # base-peft revision
|
|
153
155
|
release_date="2024-09-15",
|
|
154
156
|
n_parameters=8_000_000_000,
|
|
157
|
+
n_embedding_parameters=None,
|
|
155
158
|
memory_usage_mb=30518,
|
|
156
159
|
max_tokens=8192,
|
|
157
160
|
embed_dim=4096,
|
|
@@ -185,6 +188,7 @@ promptriever_mistral_v1 = ModelMeta(
|
|
|
185
188
|
revision="7231864981174d9bee8c7687c24c8344414eae6b-876d63e49b6115ecb6839893a56298fadee7e8f5", # base-peft revision
|
|
186
189
|
release_date="2024-09-15",
|
|
187
190
|
n_parameters=7_000_000_000,
|
|
191
|
+
n_embedding_parameters=131_072_000,
|
|
188
192
|
memory_usage_mb=26703,
|
|
189
193
|
training_datasets={
|
|
190
194
|
# "samaya-ai/msmarco-w-instructions",
|
|
@@ -53,6 +53,7 @@ class PylateSearchEncoder:
|
|
|
53
53
|
hf_split: str,
|
|
54
54
|
hf_subset: str,
|
|
55
55
|
encode_kwargs: EncodeKwargs,
|
|
56
|
+
num_proc: int,
|
|
56
57
|
) -> None:
|
|
57
58
|
"""Index the corpus for retrieval.
|
|
58
59
|
|
|
@@ -62,6 +63,7 @@ class PylateSearchEncoder:
|
|
|
62
63
|
hf_split: Split of current task, allows to know some additional information about current split.
|
|
63
64
|
hf_subset: Subset of current task. Similar to `hf_split` to get more information
|
|
64
65
|
encode_kwargs: Additional arguments to pass to the encoder during indexing.
|
|
66
|
+
num_proc: Number of processes to use for indexing.
|
|
65
67
|
"""
|
|
66
68
|
self.task_corpus = corpus
|
|
67
69
|
|
|
@@ -87,12 +89,14 @@ class PylateSearchEncoder:
|
|
|
87
89
|
top_k: int,
|
|
88
90
|
encode_kwargs: EncodeKwargs,
|
|
89
91
|
top_ranked: TopRankedDocumentsType | None = None,
|
|
92
|
+
num_proc: int,
|
|
90
93
|
) -> RetrievalOutputType:
|
|
91
94
|
queries_dataloader = create_dataloader(
|
|
92
95
|
queries,
|
|
93
96
|
task_metadata,
|
|
94
97
|
prompt_type=PromptType.query,
|
|
95
98
|
batch_size=encode_kwargs.get("batch_size", 32),
|
|
99
|
+
num_proc=num_proc,
|
|
96
100
|
)
|
|
97
101
|
|
|
98
102
|
query_embeddings = self.encode(
|
|
@@ -116,6 +120,7 @@ class PylateSearchEncoder:
|
|
|
116
120
|
hf_subset=hf_subset,
|
|
117
121
|
hf_split=hf_split,
|
|
118
122
|
encode_kwargs=encode_kwargs,
|
|
123
|
+
num_proc=num_proc,
|
|
119
124
|
)
|
|
120
125
|
else:
|
|
121
126
|
result_heaps = self._pylate_full_corpus_search(
|
|
@@ -126,6 +131,7 @@ class PylateSearchEncoder:
|
|
|
126
131
|
hf_subset=hf_subset,
|
|
127
132
|
hf_split=hf_split,
|
|
128
133
|
encode_kwargs=encode_kwargs,
|
|
134
|
+
num_proc=num_proc,
|
|
129
135
|
)
|
|
130
136
|
|
|
131
137
|
results = {qid: {} for qid in query_idx_to_id.values()}
|
|
@@ -144,6 +150,7 @@ class PylateSearchEncoder:
|
|
|
144
150
|
hf_split: str,
|
|
145
151
|
top_k: int,
|
|
146
152
|
encode_kwargs: EncodeKwargs,
|
|
153
|
+
num_proc: int,
|
|
147
154
|
) -> dict[str, list[tuple[float, str]]]:
|
|
148
155
|
from pylate import indexes, retrieve
|
|
149
156
|
|
|
@@ -170,6 +177,7 @@ class PylateSearchEncoder:
|
|
|
170
177
|
task_metadata,
|
|
171
178
|
prompt_type=PromptType.document,
|
|
172
179
|
batch_size=encode_kwargs.get("batch_size", 32),
|
|
180
|
+
num_proc=num_proc,
|
|
173
181
|
)
|
|
174
182
|
documents_embeddings = self.encode(
|
|
175
183
|
documents_loader,
|
|
@@ -208,6 +216,7 @@ class PylateSearchEncoder:
|
|
|
208
216
|
hf_subset: str,
|
|
209
217
|
hf_split: str,
|
|
210
218
|
encode_kwargs: EncodeKwargs,
|
|
219
|
+
num_proc: int = 1,
|
|
211
220
|
) -> dict[str, list[tuple[float, str]]]:
|
|
212
221
|
"""Rerank with PyLate's rank.rerank using per-query candidates.
|
|
213
222
|
|
|
@@ -230,6 +239,7 @@ class PylateSearchEncoder:
|
|
|
230
239
|
task_metadata,
|
|
231
240
|
prompt_type=PromptType.document,
|
|
232
241
|
batch_size=encode_kwargs.get("batch_size", 32),
|
|
242
|
+
num_proc=num_proc,
|
|
233
243
|
),
|
|
234
244
|
task_metadata=task_metadata,
|
|
235
245
|
hf_split=hf_split,
|
|
@@ -352,6 +362,7 @@ colbert_v2 = ModelMeta(
|
|
|
352
362
|
public_training_data=None,
|
|
353
363
|
release_date="2024-09-21",
|
|
354
364
|
n_parameters=int(110 * 1e6),
|
|
365
|
+
n_embedding_parameters=23_440_896,
|
|
355
366
|
memory_usage_mb=418,
|
|
356
367
|
max_tokens=180,
|
|
357
368
|
embed_dim=None,
|
|
@@ -408,6 +419,7 @@ jina_colbert_v2 = ModelMeta(
|
|
|
408
419
|
public_training_data=None,
|
|
409
420
|
release_date="2024-08-16",
|
|
410
421
|
n_parameters=int(559 * 1e6),
|
|
422
|
+
n_embedding_parameters=None,
|
|
411
423
|
memory_usage_mb=1067,
|
|
412
424
|
max_tokens=8192,
|
|
413
425
|
embed_dim=None,
|
|
@@ -464,6 +476,7 @@ lightonai__gte_moderncolbert_v1 = ModelMeta(
|
|
|
464
476
|
public_training_data="https://huggingface.co/datasets/lightonai/ms-marco-en-bge-gemma",
|
|
465
477
|
release_date="2025-04-30",
|
|
466
478
|
n_parameters=int(149 * 1e6),
|
|
479
|
+
n_embedding_parameters=None,
|
|
467
480
|
memory_usage_mb=None,
|
|
468
481
|
max_tokens=8192,
|
|
469
482
|
embed_dim=None,
|
|
@@ -36,6 +36,7 @@ Qodo_Embed_1_1_5B = ModelMeta(
|
|
|
36
36
|
revision="84bbef079b32e8823ec226d4e9e92902706b0eb6",
|
|
37
37
|
release_date="2025-02-19",
|
|
38
38
|
n_parameters=1_780_000_000,
|
|
39
|
+
n_embedding_parameters=232_928_256,
|
|
39
40
|
memory_usage_mb=6776,
|
|
40
41
|
embed_dim=1536,
|
|
41
42
|
license="https://huggingface.co/Qodo/Qodo-Embed-1-1.5B/blob/main/LICENSE",
|
|
@@ -59,6 +60,7 @@ Qodo_Embed_1_7B = ModelMeta(
|
|
|
59
60
|
revision="f9edd9bf7f687c0e832424058e265120f603cd81",
|
|
60
61
|
release_date="2025-02-24",
|
|
61
62
|
n_parameters=7_613_000_000,
|
|
63
|
+
n_embedding_parameters=None,
|
|
62
64
|
memory_usage_mb=29040,
|
|
63
65
|
embed_dim=3584,
|
|
64
66
|
license="https://huggingface.co/Qodo/Qodo-Embed-1-1.5B/blob/main/LICENSE",
|
|
@@ -147,6 +147,7 @@ Qwen3_Embedding_0B6 = ModelMeta(
|
|
|
147
147
|
revision="b22da495047858cce924d27d76261e96be6febc0", # Commit of @tomaarsen
|
|
148
148
|
release_date="2025-06-05",
|
|
149
149
|
n_parameters=595776512,
|
|
150
|
+
n_embedding_parameters=None,
|
|
150
151
|
memory_usage_mb=1136,
|
|
151
152
|
embed_dim=1024,
|
|
152
153
|
max_tokens=32768,
|
|
@@ -170,6 +171,7 @@ Qwen3_Embedding_4B = ModelMeta(
|
|
|
170
171
|
revision="636cd9bf47d976946cdbb2b0c3ca0cb2f8eea5ff", # Commit of @tomaarsen
|
|
171
172
|
release_date="2025-06-05",
|
|
172
173
|
n_parameters=4021774336,
|
|
174
|
+
n_embedding_parameters=None,
|
|
173
175
|
memory_usage_mb=7671,
|
|
174
176
|
embed_dim=2560,
|
|
175
177
|
max_tokens=32768,
|
|
@@ -193,6 +195,7 @@ Qwen3_Embedding_8B = ModelMeta(
|
|
|
193
195
|
revision="4e423935c619ae4df87b646a3ce949610c66241c", # Commit of @tomaarsen
|
|
194
196
|
release_date="2025-06-05",
|
|
195
197
|
n_parameters=7567295488,
|
|
198
|
+
n_embedding_parameters=None,
|
|
196
199
|
memory_usage_mb=14433,
|
|
197
200
|
embed_dim=4096,
|
|
198
201
|
max_tokens=32768,
|
|
@@ -64,6 +64,7 @@ QZhou_Embedding = ModelMeta(
|
|
|
64
64
|
revision="f1e6c03ee3882e7b9fa5cec91217715272e433b8",
|
|
65
65
|
release_date="2025-08-24",
|
|
66
66
|
n_parameters=7_070_619_136,
|
|
67
|
+
n_embedding_parameters=None,
|
|
67
68
|
memory_usage_mb=14436,
|
|
68
69
|
embed_dim=3584,
|
|
69
70
|
license="apache-2.0",
|
|
@@ -98,6 +99,7 @@ QZhou_Embedding_Zh = ModelMeta(
|
|
|
98
99
|
revision="0321ccb126413d1e49c5ce908e802b63d35f18e2",
|
|
99
100
|
release_date="2025-09-28",
|
|
100
101
|
n_parameters=7_575_747_328,
|
|
102
|
+
n_embedding_parameters=None,
|
|
101
103
|
memory_usage_mb=29431,
|
|
102
104
|
embed_dim=1792,
|
|
103
105
|
license="apache-2.0",
|