mteb 2.7.3__py3-none-any.whl → 2.7.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/_create_dataloaders.py +47 -5
- mteb/_evaluators/any_sts_evaluator.py +2 -0
- mteb/_evaluators/clustering_evaluator.py +2 -0
- mteb/_evaluators/evaluator.py +2 -1
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +8 -1
- mteb/_evaluators/pair_classification_evaluator.py +3 -0
- mteb/_evaluators/retrieval_evaluator.py +3 -0
- mteb/_evaluators/sklearn_evaluator.py +6 -1
- mteb/_evaluators/text/bitext_mining_evaluator.py +2 -0
- mteb/_evaluators/text/summarization_evaluator.py +2 -0
- mteb/_evaluators/zeroshot_classification_evaluator.py +2 -0
- mteb/abstasks/abstask.py +31 -12
- mteb/abstasks/classification.py +10 -3
- mteb/abstasks/clustering.py +6 -2
- mteb/abstasks/clustering_legacy.py +8 -2
- mteb/abstasks/image/image_text_pair_classification.py +6 -2
- mteb/abstasks/multilabel_classification.py +2 -0
- mteb/abstasks/pair_classification.py +8 -2
- mteb/abstasks/retrieval.py +27 -12
- mteb/abstasks/retrieval_dataset_loaders.py +29 -19
- mteb/abstasks/sts.py +10 -3
- mteb/abstasks/text/bitext_mining.py +9 -5
- mteb/abstasks/text/reranking.py +2 -2
- mteb/abstasks/text/summarization.py +2 -1
- mteb/abstasks/zeroshot_classification.py +8 -2
- mteb/benchmarks/benchmarks/__init__.py +2 -0
- mteb/benchmarks/benchmarks/benchmarks.py +41 -2
- mteb/descriptive_stats/Retrieval/BrightAopsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightLeetcodeRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQAQuestionsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQATheoremsRetrieval.json +35 -0
- mteb/evaluate.py +10 -2
- mteb/models/model_implementations/align_models.py +1 -0
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +2 -0
- mteb/models/model_implementations/ara_models.py +1 -0
- mteb/models/model_implementations/arctic_models.py +8 -0
- mteb/models/model_implementations/b1ade_models.py +1 -0
- mteb/models/model_implementations/bedrock_models.py +4 -0
- mteb/models/model_implementations/bge_models.py +40 -1
- mteb/models/model_implementations/bica_model.py +1 -0
- mteb/models/model_implementations/blip2_models.py +2 -0
- mteb/models/model_implementations/blip_models.py +8 -0
- mteb/models/model_implementations/bm25.py +10 -5
- mteb/models/model_implementations/bmretriever_models.py +4 -0
- mteb/models/model_implementations/cadet_models.py +1 -0
- mteb/models/model_implementations/cde_models.py +2 -0
- mteb/models/model_implementations/clip_models.py +3 -0
- mteb/models/model_implementations/clips_models.py +3 -0
- mteb/models/model_implementations/codefuse_models.py +5 -0
- mteb/models/model_implementations/codesage_models.py +3 -0
- mteb/models/model_implementations/cohere_models.py +4 -0
- mteb/models/model_implementations/cohere_v.py +5 -0
- mteb/models/model_implementations/colpali_models.py +3 -0
- mteb/models/model_implementations/colqwen_models.py +7 -0
- mteb/models/model_implementations/colsmol_models.py +2 -0
- mteb/models/model_implementations/conan_models.py +1 -0
- mteb/models/model_implementations/dino_models.py +19 -0
- mteb/models/model_implementations/e5_instruct.py +4 -0
- mteb/models/model_implementations/e5_models.py +9 -0
- mteb/models/model_implementations/e5_v.py +1 -0
- mteb/models/model_implementations/eagerworks_models.py +1 -0
- mteb/models/model_implementations/emillykkejensen_models.py +3 -0
- mteb/models/model_implementations/en_code_retriever.py +1 -0
- mteb/models/model_implementations/euler_models.py +1 -0
- mteb/models/model_implementations/evaclip_models.py +4 -0
- mteb/models/model_implementations/fa_models.py +9 -0
- mteb/models/model_implementations/facebookai.py +2 -0
- mteb/models/model_implementations/geogpt_models.py +1 -0
- mteb/models/model_implementations/gme_v_models.py +2 -0
- mteb/models/model_implementations/google_models.py +5 -0
- mteb/models/model_implementations/granite_vision_embedding_models.py +1 -0
- mteb/models/model_implementations/gritlm_models.py +2 -0
- mteb/models/model_implementations/gte_models.py +9 -0
- mteb/models/model_implementations/hinvec_models.py +1 -0
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +6 -0
- mteb/models/model_implementations/inf_models.py +2 -0
- mteb/models/model_implementations/jasper_models.py +2 -0
- mteb/models/model_implementations/jina_clip.py +1 -0
- mteb/models/model_implementations/jina_models.py +7 -0
- mteb/models/model_implementations/kalm_models.py +6 -0
- mteb/models/model_implementations/kblab.py +1 -0
- mteb/models/model_implementations/kennethenevoldsen_models.py +2 -0
- mteb/models/model_implementations/kfst.py +1 -0
- mteb/models/model_implementations/kowshik24_models.py +1 -0
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +1 -0
- mteb/models/model_implementations/linq_models.py +1 -0
- mteb/models/model_implementations/listconranker.py +1 -0
- mteb/models/model_implementations/llm2clip_models.py +3 -0
- mteb/models/model_implementations/llm2vec_models.py +8 -0
- mteb/models/model_implementations/mcinext_models.py +3 -0
- mteb/models/model_implementations/mdbr_models.py +2 -0
- mteb/models/model_implementations/misc_models.py +63 -0
- mteb/models/model_implementations/mixedbread_ai_models.py +3 -0
- mteb/models/model_implementations/mme5_models.py +2 -1
- mteb/models/model_implementations/moco_models.py +2 -0
- mteb/models/model_implementations/mod_models.py +1 -0
- mteb/models/model_implementations/model2vec_models.py +13 -0
- mteb/models/model_implementations/moka_models.py +3 -0
- mteb/models/model_implementations/nbailab.py +3 -0
- mteb/models/model_implementations/no_instruct_sentence_models.py +1 -0
- mteb/models/model_implementations/nomic_models.py +6 -0
- mteb/models/model_implementations/nomic_models_vision.py +1 -0
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +2 -0
- mteb/models/model_implementations/nvidia_models.py +3 -0
- mteb/models/model_implementations/octen_models.py +2 -0
- mteb/models/model_implementations/openai_models.py +5 -0
- mteb/models/model_implementations/openclip_models.py +8 -0
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -0
- mteb/models/model_implementations/ops_moa_models.py +2 -0
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -0
- mteb/models/model_implementations/pawan_models.py +1 -0
- mteb/models/model_implementations/piccolo_models.py +2 -0
- mteb/models/model_implementations/promptriever_models.py +4 -0
- mteb/models/model_implementations/pylate_models.py +13 -0
- mteb/models/model_implementations/qodo_models.py +2 -0
- mteb/models/model_implementations/qtack_models.py +1 -0
- mteb/models/model_implementations/qwen3_models.py +3 -0
- mteb/models/model_implementations/qzhou_models.py +2 -0
- mteb/models/model_implementations/rasgaard_models.py +1 -0
- mteb/models/model_implementations/reasonir_model.py +65 -0
- mteb/models/model_implementations/repllama_models.py +2 -0
- mteb/models/model_implementations/rerankers_custom.py +3 -0
- mteb/models/model_implementations/rerankers_monot5_based.py +14 -0
- mteb/models/model_implementations/richinfoai_models.py +1 -0
- mteb/models/model_implementations/ru_sentence_models.py +20 -0
- mteb/models/model_implementations/ruri_models.py +10 -0
- mteb/models/model_implementations/salesforce_models.py +3 -0
- mteb/models/model_implementations/samilpwc_models.py +1 -0
- mteb/models/model_implementations/sarashina_embedding_models.py +2 -0
- mteb/models/model_implementations/searchmap_models.py +1 -0
- mteb/models/model_implementations/seed_1_6_embedding_models.py +1 -0
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +1 -0
- mteb/models/model_implementations/seed_models.py +1 -0
- mteb/models/model_implementations/sentence_transformers_models.py +18 -0
- mteb/models/model_implementations/shuu_model.py +1 -0
- mteb/models/model_implementations/siglip_models.py +10 -0
- mteb/models/model_implementations/sonar_models.py +2 -1
- mteb/models/model_implementations/spartan8806_atles_champion.py +1 -0
- mteb/models/model_implementations/stella_models.py +6 -0
- mteb/models/model_implementations/tarka_models.py +2 -0
- mteb/models/model_implementations/text2vec_models.py +3 -0
- mteb/models/model_implementations/ua_sentence_models.py +1 -0
- mteb/models/model_implementations/uae_models.py +1 -0
- mteb/models/model_implementations/vdr_models.py +1 -0
- mteb/models/model_implementations/vi_vn_models.py +6 -0
- mteb/models/model_implementations/vista_models.py +2 -0
- mteb/models/model_implementations/vlm2vec_models.py +2 -0
- mteb/models/model_implementations/voyage_models.py +15 -0
- mteb/models/model_implementations/voyage_v.py +1 -0
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +1 -0
- mteb/models/model_implementations/yuan_models.py +1 -0
- mteb/models/model_implementations/yuan_models_en.py +1 -0
- mteb/models/model_meta.py +35 -2
- mteb/models/models_protocols.py +4 -0
- mteb/models/search_wrappers.py +12 -0
- mteb/tasks/bitext_mining/eng/pub_chem_smiles_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/fas/fa_mteb_summary_retrieval.py +3 -3
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/flores_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/in22_conv_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/in22_gen_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/norwegian_courts_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ntrex_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/roma_tales_bitext_mining.py +2 -2
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -1
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -1
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -1
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -1
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -1
- mteb/tasks/classification/bul/bulgarian_store_review_sentiment_classfication.py +1 -1
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -1
- mteb/tasks/classification/dan/dk_hate_classification.py +1 -1
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -1
- mteb/tasks/classification/ell/greek_legal_code_classification.py +1 -1
- mteb/tasks/classification/eng/dbpedia_classification.py +2 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -2
- mteb/tasks/classification/eng/toxic_conversations_classification.py +2 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +1 -1
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -1
- mteb/tasks/classification/eng/yelp_review_full_classification.py +2 -2
- mteb/tasks/classification/est/estonian_valence.py +1 -1
- mteb/tasks/classification/fas/fa_mteb_classification.py +6 -6
- mteb/tasks/classification/fas/persian_food_sentiment_classification.py +1 -1
- mteb/tasks/classification/fil/filipino_shopee_reviews_classification.py +1 -1
- mteb/tasks/classification/fin/fin_toxicity_classification.py +1 -1
- mteb/tasks/classification/fra/french_book_reviews.py +2 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -1
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -1
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -1
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +2 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -1
- mteb/tasks/classification/ita/dado_eval_coarse_classification.py +1 -1
- mteb/tasks/classification/ita/ita_casehold_classification.py +1 -1
- mteb/tasks/classification/ita/sardi_stance_classification.py +1 -1
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -1
- mteb/tasks/classification/jpn/wrime_classification.py +1 -1
- mteb/tasks/classification/kan/kannada_news_classification.py +2 -2
- mteb/tasks/classification/kor/klue_tc.py +2 -2
- mteb/tasks/classification/kor/kor_fin.py +1 -1
- mteb/tasks/classification/kor/kor_hate_classification.py +1 -1
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +1 -1
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -1
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/afri_senti_lang_classification.py +1 -1
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -1
- mteb/tasks/classification/multilingual/cyrillic_turkic_lang_classification.py +1 -1
- mteb/tasks/classification/multilingual/indic_nlp_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/masakha_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -1
- mteb/tasks/classification/multilingual/multilingual_sentiment_classification.py +1 -1
- mteb/tasks/classification/multilingual/scala_classification.py +1 -1
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -1
- mteb/tasks/classification/multilingual/turkic_classification.py +1 -1
- mteb/tasks/classification/multilingual/tweet_sentiment_classification.py +1 -1
- mteb/tasks/classification/nep/nepali_news_classification.py +2 -2
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +1 -1
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +1 -1
- mteb/tasks/classification/ory/odia_news_classification.py +2 -2
- mteb/tasks/classification/pan/punjabi_news_classification.py +1 -1
- mteb/tasks/classification/ron/moroco.py +1 -1
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -1
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -1
- mteb/tasks/classification/rus/georeview_classification.py +1 -1
- mteb/tasks/classification/rus/headline_classification.py +2 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +2 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +2 -2
- mteb/tasks/classification/rus/ru_sci_bench_grnti_classification.py +1 -1
- mteb/tasks/classification/rus/ru_sci_bench_oecd_classification.py +1 -1
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -1
- mteb/tasks/classification/san/sanskrit_shlokas_classification.py +1 -1
- mteb/tasks/classification/sin/sinhala_news_classification.py +2 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +2 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -1
- mteb/tasks/classification/spa/spanish_news_classification.py +2 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -1
- mteb/tasks/classification/tam/tamil_news_classification.py +2 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +2 -2
- mteb/tasks/classification/tha/wongnai_reviews_classification.py +1 -1
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +2 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -2
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -1
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -1
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +2 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -1
- mteb/tasks/clustering/deu/blurbs_clustering_p2p.py +1 -1
- mteb/tasks/clustering/deu/blurbs_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/arxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/arxiv_hierarchical_clustering.py +2 -2
- mteb/tasks/clustering/eng/big_patent_clustering.py +1 -1
- mteb/tasks/clustering/eng/biorxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/biorxiv_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/medrxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/medrxiv_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/reddit_clustering.py +1 -1
- mteb/tasks/clustering/eng/reddit_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/stack_exchange_clustering.py +1 -1
- mteb/tasks/clustering/eng/stack_exchange_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/twenty_newsgroups_clustering.py +1 -1
- mteb/tasks/clustering/fas/fa_mteb_clustering.py +4 -4
- mteb/tasks/clustering/fra/hal_clustering_s2s.py +2 -2
- mteb/tasks/clustering/multilingual/mlsum_clustering_p2p.py +2 -2
- mteb/tasks/clustering/multilingual/mlsum_clustering_s2s.py +2 -2
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -1
- mteb/tasks/clustering/multilingual/wiki_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nob/snl_clustering.py +1 -1
- mteb/tasks/clustering/nob/vg_clustering.py +1 -1
- mteb/tasks/clustering/pol/polish_clustering.py +3 -3
- mteb/tasks/clustering/rus/ru_sci_bench_grnti_clustering_p2p.py +1 -1
- mteb/tasks/clustering/rus/ru_sci_bench_oecd_clustering_p2p.py +1 -1
- mteb/tasks/clustering/zho/cmteb_clustering.py +4 -4
- mteb/tasks/image_text_pair_classification/eng/image_co_de.py +1 -1
- mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +1 -1
- mteb/tasks/instruction_reranking/multilingual/m_follow_ir.py +2 -2
- mteb/tasks/multichoice/eng/cv_bench.py +4 -4
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -1
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -1
- mteb/tasks/multilabel_classification/rus/ru_toixic_multilabelclassification_okmlcup.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -1
- mteb/tasks/pair_classification/ara/ar_entail.py +1 -1
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -1
- mteb/tasks/pair_classification/deu/false_friends_de_en_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_ai_sentence_paraphrase_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_smilespc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_synonym_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_wiki_paragraphs_pc.py +1 -1
- mteb/tasks/pair_classification/eng/sprint_duplicate_questions_pc.py +1 -1
- mteb/tasks/pair_classification/eng/twitter_sem_eval2015_pc.py +1 -1
- mteb/tasks/pair_classification/eng/twitter_url_corpus_pc.py +1 -1
- mteb/tasks/pair_classification/fas/fa_mteb_pair_classification.py +5 -5
- mteb/tasks/pair_classification/fas/fars_tail.py +2 -2
- mteb/tasks/pair_classification/hye/armenian_paraphrase_pc.py +1 -1
- mteb/tasks/pair_classification/ita/dis_co_tex_pair_classification.py +1 -1
- mteb/tasks/pair_classification/kor/klue_nli.py +1 -1
- mteb/tasks/pair_classification/multilingual/rte3.py +2 -2
- mteb/tasks/pair_classification/multilingual/xnli.py +1 -1
- mteb/tasks/pair_classification/pol/polish_pc.py +4 -4
- mteb/tasks/pair_classification/por/assin2_rte.py +1 -1
- mteb/tasks/pair_classification/por/sick_br_pc.py +1 -1
- mteb/tasks/pair_classification/rus/terra.py +2 -2
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -1
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -1
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -1
- mteb/tasks/pair_classification/zho/cmteb_pair_classification.py +2 -2
- mteb/tasks/retrieval/ara/sadeem_question_retrieval.py +1 -1
- mteb/tasks/retrieval/code/code_edit_search_retrieval.py +1 -1
- mteb/tasks/retrieval/code/code_rag.py +4 -4
- mteb/tasks/retrieval/code/code_search_net_cc_retrieval.py +1 -1
- mteb/tasks/retrieval/code/coir_code_search_net_retrieval.py +1 -1
- mteb/tasks/retrieval/code/ds1000_retrieval.py +1 -1
- mteb/tasks/retrieval/code/fresh_stack_retrieval.py +1 -1
- mteb/tasks/retrieval/code/human_eval_retrieval.py +1 -1
- mteb/tasks/retrieval/code/mbpp_retrieval.py +1 -1
- mteb/tasks/retrieval/code/wiki_sql_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +1 -1
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +1 -1
- mteb/tasks/retrieval/deu/german_gov_service_retrieval.py +1 -1
- mteb/tasks/retrieval/deu/german_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/ell/greek_civics_qa.py +1 -1
- mteb/tasks/retrieval/eng/__init__.py +42 -0
- mteb/tasks/retrieval/eng/bright_retrieval.py +10 -2
- mteb/tasks/retrieval/eng/bright_v1_1_retrieval.py +968 -0
- mteb/tasks/retrieval/eng/chat_doctor_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/fin_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/finance_bench_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hateful_memes_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hateful_memes_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hc3_finance_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_narrative_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_needle_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_passkey_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_summ_screen_fd_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_wikim_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lembqm_sum_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/memotion_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/memotion_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/ml_questions.py +1 -1
- mteb/tasks/retrieval/eng/nano_argu_ana_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_climate_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_db_pedia_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_fi_qa2018_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_hotpot_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_msmarco_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_nf_corpus_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_nq_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_quora_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_sci_fact_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_scidocs_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_touche2020_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/narrative_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/r2_med_retrieval.py +8 -8
- mteb/tasks/retrieval/eng/sci_mmir_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/sci_mmir_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +10 -10
- mteb/tasks/retrieval/fra/f_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/fra/syntec_retrieval.py +1 -1
- mteb/tasks/retrieval/hun/hun_sum2.py +1 -1
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt19.py +1 -1
- mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt21.py +1 -1
- mteb/tasks/retrieval/multilingual/cur_ev1_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/miracl_vision_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/mr_tidy_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -2
- mteb/tasks/retrieval/multilingual/statcan_dialogue_dataset_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/vdr_multilingual_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +14 -4
- mteb/tasks/retrieval/multilingual/wit_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/x_flickr30k_co_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/x_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/xm3600_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_android_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_english_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_gaming_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_gis_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_mathematica_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_physics_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_programmers_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_stats_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_tex_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_unix_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_webmasters_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_wordpress_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nob/norquad.py +1 -1
- mteb/tasks/retrieval/nob/snl_retrieval.py +1 -1
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -1
- mteb/tasks/retrieval/vie/vie_qu_ad_retrieval.py +1 -1
- mteb/tasks/sts/fao/faroese_sts.py +1 -1
- mteb/tasks/sts/fra/sick_fr_sts.py +1 -1
- mteb/tasks/sts/kor/klue_sts.py +1 -1
- mteb/tasks/sts/por/sick_br_sts.py +1 -1
- mteb/tasks/sts/rus/ru_para_phraser_sts.py +1 -1
- mteb/tasks/zeroshot_classification/eng/sci_mmir.py +1 -1
- {mteb-2.7.3.dist-info → mteb-2.7.5.dist-info}/METADATA +1 -1
- {mteb-2.7.3.dist-info → mteb-2.7.5.dist-info}/RECORD +434 -413
- {mteb-2.7.3.dist-info → mteb-2.7.5.dist-info}/WHEEL +0 -0
- {mteb-2.7.3.dist-info → mteb-2.7.5.dist-info}/entry_points.txt +0 -0
- {mteb-2.7.3.dist-info → mteb-2.7.5.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.7.3.dist-info → mteb-2.7.5.dist-info}/top_level.txt +0 -0
|
@@ -149,6 +149,7 @@ EVA02_CLIP_B_16 = ModelMeta(
|
|
|
149
149
|
release_date="2023-04-26",
|
|
150
150
|
modalities=["image", "text"],
|
|
151
151
|
n_parameters=149_000_000,
|
|
152
|
+
n_embedding_parameters=None,
|
|
152
153
|
memory_usage_mb=568,
|
|
153
154
|
max_tokens=77,
|
|
154
155
|
embed_dim=512,
|
|
@@ -173,6 +174,7 @@ EVA02_CLIP_L_14 = ModelMeta(
|
|
|
173
174
|
release_date="2023-04-26",
|
|
174
175
|
modalities=["image", "text"],
|
|
175
176
|
n_parameters=428_000_000,
|
|
177
|
+
n_embedding_parameters=None,
|
|
176
178
|
memory_usage_mb=1633,
|
|
177
179
|
max_tokens=77,
|
|
178
180
|
embed_dim=768,
|
|
@@ -197,6 +199,7 @@ EVA02_CLIP_bigE_14 = ModelMeta(
|
|
|
197
199
|
release_date="2023-04-26",
|
|
198
200
|
modalities=["image", "text"],
|
|
199
201
|
n_parameters=4_700_000_000,
|
|
202
|
+
n_embedding_parameters=None,
|
|
200
203
|
memory_usage_mb=17929,
|
|
201
204
|
max_tokens=77,
|
|
202
205
|
embed_dim=1024,
|
|
@@ -222,6 +225,7 @@ EVA02_CLIP_bigE_14_plus = ModelMeta(
|
|
|
222
225
|
release_date="2023-04-26",
|
|
223
226
|
modalities=["image", "text"],
|
|
224
227
|
n_parameters=5_000_000_000,
|
|
228
|
+
n_embedding_parameters=None,
|
|
225
229
|
memory_usage_mb=19073,
|
|
226
230
|
max_tokens=77,
|
|
227
231
|
embed_dim=1024,
|
|
@@ -12,6 +12,7 @@ parsbert = ModelMeta(
|
|
|
12
12
|
revision="d73a0e2c7492c33bd5819bcdb23eba207404dd19",
|
|
13
13
|
release_date="2021-05-19",
|
|
14
14
|
n_parameters=162_841_344,
|
|
15
|
+
n_embedding_parameters=76_800_000,
|
|
15
16
|
memory_usage_mb=621,
|
|
16
17
|
embed_dim=768,
|
|
17
18
|
license="not specified",
|
|
@@ -48,6 +49,7 @@ bert_zwnj = ModelMeta(
|
|
|
48
49
|
revision="b9506ddc579ac8c398ae6dae680401ae0a1a5b23",
|
|
49
50
|
release_date="2021-06-28",
|
|
50
51
|
n_parameters=118_297_344,
|
|
52
|
+
n_embedding_parameters=32_256_000,
|
|
51
53
|
memory_usage_mb=451,
|
|
52
54
|
embed_dim=768,
|
|
53
55
|
license="not specified",
|
|
@@ -74,6 +76,7 @@ roberta_zwnj = ModelMeta(
|
|
|
74
76
|
revision="36f912ac44e22250aee16ea533a4ff8cd848c1a1",
|
|
75
77
|
release_date="2021-06-28",
|
|
76
78
|
n_parameters=118_298_112,
|
|
79
|
+
n_embedding_parameters=32_256_000,
|
|
77
80
|
memory_usage_mb=451,
|
|
78
81
|
embed_dim=768,
|
|
79
82
|
license="not specified",
|
|
@@ -99,6 +102,7 @@ sentence_transformer_parsbert = ModelMeta(
|
|
|
99
102
|
revision="72bd0a3557622f0ae08a092f4643609e0b950cdd",
|
|
100
103
|
release_date="2024-12-10",
|
|
101
104
|
n_parameters=162_841_344,
|
|
105
|
+
n_embedding_parameters=76_800_000,
|
|
102
106
|
memory_usage_mb=621,
|
|
103
107
|
embed_dim=768,
|
|
104
108
|
license="apache-2.0",
|
|
@@ -123,6 +127,7 @@ tooka_bert_base = ModelMeta(
|
|
|
123
127
|
revision="fa5ca89df5670700d9325b8872ac65c17cb24582",
|
|
124
128
|
release_date="2024-12-08",
|
|
125
129
|
n_parameters=122_905_344,
|
|
130
|
+
n_embedding_parameters=36_864_000,
|
|
126
131
|
memory_usage_mb=469,
|
|
127
132
|
embed_dim=768,
|
|
128
133
|
license="apache-2.0",
|
|
@@ -150,6 +155,7 @@ tooka_sbert = ModelMeta(
|
|
|
150
155
|
revision="5d07f0c543aca654373b931ae07cd197769110fd",
|
|
151
156
|
release_date="2024-12-07",
|
|
152
157
|
n_parameters=353_039_360,
|
|
158
|
+
n_embedding_parameters=49_152_000,
|
|
153
159
|
memory_usage_mb=1347,
|
|
154
160
|
embed_dim=1024,
|
|
155
161
|
license="apache-2.0",
|
|
@@ -181,6 +187,7 @@ fa_bert = ModelMeta(
|
|
|
181
187
|
revision="a0e3973064c97768e121b9b95f21adc94e0ca3fb",
|
|
182
188
|
release_date="2024-10-07",
|
|
183
189
|
n_parameters=124_441_344,
|
|
190
|
+
n_embedding_parameters=38_400_000,
|
|
184
191
|
memory_usage_mb=475,
|
|
185
192
|
embed_dim=768,
|
|
186
193
|
license="not specified",
|
|
@@ -229,6 +236,7 @@ tooka_sbert_v2_small = ModelMeta(
|
|
|
229
236
|
revision="8bbed87e36669387f71437c061430ba56d1b496f",
|
|
230
237
|
release_date="2025-05-01",
|
|
231
238
|
n_parameters=122_905_344,
|
|
239
|
+
n_embedding_parameters=36_864_000,
|
|
232
240
|
memory_usage_mb=496,
|
|
233
241
|
embed_dim=768,
|
|
234
242
|
license="not specified",
|
|
@@ -260,6 +268,7 @@ tooka_sbert_v2_large = ModelMeta(
|
|
|
260
268
|
revision="b59682efa961122cc0e4408296d5852870c82eae",
|
|
261
269
|
release_date="2025-05-01",
|
|
262
270
|
n_parameters=353_039_360,
|
|
271
|
+
n_embedding_parameters=49_152_000,
|
|
263
272
|
memory_usage_mb=1347,
|
|
264
273
|
embed_dim=1024,
|
|
265
274
|
license="not specified",
|
|
@@ -113,6 +113,7 @@ xlmr_base = ModelMeta(
|
|
|
113
113
|
revision="e73636d4f797dec63c3081bb6ed5c7b0bb3f2089",
|
|
114
114
|
release_date="2019-11-05", # arxiv paper release
|
|
115
115
|
n_parameters=278043648,
|
|
116
|
+
n_embedding_parameters=192_001_536,
|
|
116
117
|
memory_usage_mb=1064,
|
|
117
118
|
embed_dim=768,
|
|
118
119
|
license="mit",
|
|
@@ -163,6 +164,7 @@ xlmr_large = ModelMeta(
|
|
|
163
164
|
revision="c23d21b0620b635a76227c604d44e43a9f0ee389",
|
|
164
165
|
release_date="2019-11-05", # arxiv paper release
|
|
165
166
|
n_parameters=559890432,
|
|
167
|
+
n_embedding_parameters=256_002_048,
|
|
166
168
|
memory_usage_mb=2141,
|
|
167
169
|
embed_dim=1024,
|
|
168
170
|
license="mit",
|
|
@@ -356,6 +356,7 @@ gme_qwen2vl_2b = ModelMeta(
|
|
|
356
356
|
release_date="2024-12-24",
|
|
357
357
|
modalities=["image", "text"],
|
|
358
358
|
n_parameters=2_210_000_000,
|
|
359
|
+
n_embedding_parameters=233_373_696,
|
|
359
360
|
memory_usage_mb=8427,
|
|
360
361
|
embed_dim=1536,
|
|
361
362
|
license="apache-2.0",
|
|
@@ -380,6 +381,7 @@ gme_qwen2vl_7b = ModelMeta(
|
|
|
380
381
|
release_date="2024-12-24",
|
|
381
382
|
modalities=["image", "text"],
|
|
382
383
|
n_parameters=8_290_000_000,
|
|
384
|
+
n_embedding_parameters=544_997_376,
|
|
383
385
|
memory_usage_mb=31629,
|
|
384
386
|
embed_dim=3584,
|
|
385
387
|
license="apache-2.0",
|
|
@@ -162,6 +162,7 @@ google_text_emb_004 = ModelMeta(
|
|
|
162
162
|
revision="1", # revision is intended for implementation
|
|
163
163
|
release_date="2024-05-14",
|
|
164
164
|
n_parameters=None,
|
|
165
|
+
n_embedding_parameters=None,
|
|
165
166
|
memory_usage_mb=None,
|
|
166
167
|
max_tokens=2048,
|
|
167
168
|
embed_dim=768,
|
|
@@ -187,6 +188,7 @@ google_text_emb_005 = ModelMeta(
|
|
|
187
188
|
revision="1", # revision is intended for implementation
|
|
188
189
|
release_date="2024-11-18",
|
|
189
190
|
n_parameters=None,
|
|
191
|
+
n_embedding_parameters=None,
|
|
190
192
|
memory_usage_mb=None,
|
|
191
193
|
max_tokens=2048,
|
|
192
194
|
embed_dim=768,
|
|
@@ -212,6 +214,7 @@ google_text_multilingual_emb_002 = ModelMeta(
|
|
|
212
214
|
revision="1",
|
|
213
215
|
release_date="2024-05-14",
|
|
214
216
|
n_parameters=None,
|
|
217
|
+
n_embedding_parameters=None,
|
|
215
218
|
memory_usage_mb=None,
|
|
216
219
|
max_tokens=2048,
|
|
217
220
|
embed_dim=768,
|
|
@@ -237,6 +240,7 @@ google_gemini_embedding_001 = ModelMeta(
|
|
|
237
240
|
revision="1",
|
|
238
241
|
release_date="2025-03-07",
|
|
239
242
|
n_parameters=None,
|
|
243
|
+
n_embedding_parameters=None,
|
|
240
244
|
memory_usage_mb=None,
|
|
241
245
|
max_tokens=2048,
|
|
242
246
|
embed_dim=3072,
|
|
@@ -272,6 +276,7 @@ embedding_gemma_300m = ModelMeta(
|
|
|
272
276
|
revision="64614b0b8b64f0c6c1e52b07e4e9a4e8fe4d2da2",
|
|
273
277
|
release_date="2025-09-04",
|
|
274
278
|
n_parameters=307_581_696,
|
|
279
|
+
n_embedding_parameters=201_326_592,
|
|
275
280
|
embed_dim=768,
|
|
276
281
|
max_tokens=2048,
|
|
277
282
|
license="gemma",
|
|
@@ -44,6 +44,7 @@ gritlm7b = ModelMeta(
|
|
|
44
44
|
revision="13f00a0e36500c80ce12870ea513846a066004af",
|
|
45
45
|
release_date="2024-02-15",
|
|
46
46
|
n_parameters=7_240_000_000,
|
|
47
|
+
n_embedding_parameters=131_072_000,
|
|
47
48
|
memory_usage_mb=13813,
|
|
48
49
|
embed_dim=4096,
|
|
49
50
|
license="apache-2.0",
|
|
@@ -73,6 +74,7 @@ gritlm8x7b = ModelMeta(
|
|
|
73
74
|
revision="7f089b13e3345510281733ca1e6ff871b5b4bc76",
|
|
74
75
|
release_date="2024-02-15",
|
|
75
76
|
n_parameters=57_920_000_000,
|
|
77
|
+
n_embedding_parameters=None,
|
|
76
78
|
memory_usage_mb=89079,
|
|
77
79
|
embed_dim=32768,
|
|
78
80
|
license="apache-2.0",
|
|
@@ -48,6 +48,7 @@ gte_qwen2_7b_instruct = ModelMeta(
|
|
|
48
48
|
revision="e26182b2122f4435e8b3ebecbf363990f409b45b",
|
|
49
49
|
release_date="2024-06-15", # initial commit of hf model.
|
|
50
50
|
n_parameters=7_613_000_000,
|
|
51
|
+
n_embedding_parameters=543_499_264,
|
|
51
52
|
memory_usage_mb=29040,
|
|
52
53
|
embed_dim=3584,
|
|
53
54
|
license="apache-2.0",
|
|
@@ -80,6 +81,7 @@ gte_qwen1_5_7b_instruct = ModelMeta(
|
|
|
80
81
|
revision="07d27e5226328010336563bc1b564a5e3436a298",
|
|
81
82
|
release_date="2024-04-20", # initial commit of hf model.
|
|
82
83
|
n_parameters=7_720_000_000,
|
|
84
|
+
n_embedding_parameters=None,
|
|
83
85
|
memory_usage_mb=29449,
|
|
84
86
|
embed_dim=4096,
|
|
85
87
|
license="apache-2.0",
|
|
@@ -117,6 +119,7 @@ gte_qwen2_1_5b_instruct = ModelMeta(
|
|
|
117
119
|
revision="c6c1b92f4a3e1b92b326ad29dd3c8433457df8dd",
|
|
118
120
|
release_date="2024-07-29", # initial commit of hf model.
|
|
119
121
|
n_parameters=1_780_000_000,
|
|
122
|
+
n_embedding_parameters=232_928_256,
|
|
120
123
|
memory_usage_mb=6776,
|
|
121
124
|
embed_dim=8960,
|
|
122
125
|
license="apache-2.0",
|
|
@@ -145,6 +148,7 @@ gte_small_zh = ModelMeta(
|
|
|
145
148
|
revision="af7bd46fbb00b3a6963c8dd7f1786ddfbfbe973a",
|
|
146
149
|
release_date="2023-11-08", # initial commit of hf model.
|
|
147
150
|
n_parameters=int(30.3 * 1e6),
|
|
151
|
+
n_embedding_parameters=10_817_536,
|
|
148
152
|
memory_usage_mb=58,
|
|
149
153
|
embed_dim=1024,
|
|
150
154
|
license="mit",
|
|
@@ -173,6 +177,7 @@ gte_base_zh = ModelMeta(
|
|
|
173
177
|
revision="71ab7947d6fac5b64aa299e6e40e6c2b2e85976c",
|
|
174
178
|
release_date="2023-11-08", # initial commit of hf model.
|
|
175
179
|
n_parameters=int(102 * 1e6),
|
|
180
|
+
n_embedding_parameters=16_226_304,
|
|
176
181
|
memory_usage_mb=195,
|
|
177
182
|
embed_dim=1024,
|
|
178
183
|
license="mit",
|
|
@@ -201,6 +206,7 @@ gte_large_zh = ModelMeta(
|
|
|
201
206
|
revision="64c364e579de308104a9b2c170ca009502f4f545",
|
|
202
207
|
release_date="2023-11-08", # initial commit of hf model.
|
|
203
208
|
n_parameters=int(326 * 1e6),
|
|
209
|
+
n_embedding_parameters=21_635_072,
|
|
204
210
|
memory_usage_mb=621,
|
|
205
211
|
embed_dim=1024,
|
|
206
212
|
license="mit",
|
|
@@ -330,6 +336,7 @@ gte_multilingual_base = ModelMeta(
|
|
|
330
336
|
revision="ca1791e0bcc104f6db161f27de1340241b13c5a4",
|
|
331
337
|
release_date="2024-07-20", # initial commit of hf model.
|
|
332
338
|
n_parameters=int(305 * 1e6),
|
|
339
|
+
n_embedding_parameters=192_036_864,
|
|
333
340
|
memory_usage_mb=582,
|
|
334
341
|
embed_dim=768,
|
|
335
342
|
license="apache-2.0",
|
|
@@ -359,6 +366,7 @@ gte_modernbert_base = ModelMeta(
|
|
|
359
366
|
revision="7ca8b4ca700621b67618669f5378fe5f5820b8e4",
|
|
360
367
|
release_date="2025-01-21", # initial commit of hf model.
|
|
361
368
|
n_parameters=int(149 * 1e6),
|
|
369
|
+
n_embedding_parameters=None,
|
|
362
370
|
memory_usage_mb=284,
|
|
363
371
|
embed_dim=768,
|
|
364
372
|
license="apache-2.0",
|
|
@@ -402,6 +410,7 @@ gte_base_en_v15 = ModelMeta(
|
|
|
402
410
|
revision="a829fd0e060bb84554da0dfd354d0de0f7712b7f", # can be any
|
|
403
411
|
release_date="2024-06-20", # initial commit of hf model
|
|
404
412
|
n_parameters=137_000_000,
|
|
413
|
+
n_embedding_parameters=23_445_504,
|
|
405
414
|
memory_usage_mb=None,
|
|
406
415
|
embed_dim=768,
|
|
407
416
|
license="apache-2.0",
|
|
@@ -100,6 +100,7 @@ granite_107m_multilingual = ModelMeta(
|
|
|
100
100
|
revision="47db56afe692f731540413c67dd818ff492277e7",
|
|
101
101
|
release_date="2024-12-18",
|
|
102
102
|
n_parameters=107_000_000,
|
|
103
|
+
n_embedding_parameters=96_000_768,
|
|
103
104
|
memory_usage_mb=204,
|
|
104
105
|
embed_dim=384,
|
|
105
106
|
license="apache-2.0",
|
|
@@ -131,6 +132,7 @@ granite_278m_multilingual = ModelMeta(
|
|
|
131
132
|
revision="84e3546b88b0cb69f8078608a1df558020bcbf1f",
|
|
132
133
|
release_date="2024-12-18",
|
|
133
134
|
n_parameters=278_000_000,
|
|
135
|
+
n_embedding_parameters=192_001_536,
|
|
134
136
|
memory_usage_mb=530,
|
|
135
137
|
embed_dim=768,
|
|
136
138
|
license="apache-2.0",
|
|
@@ -162,6 +164,7 @@ granite_30m_english = ModelMeta(
|
|
|
162
164
|
revision="eddbb57470f896b5f8e2bfcb823d8f0e2d2024a5",
|
|
163
165
|
release_date="2024-12-18",
|
|
164
166
|
n_parameters=30_000_000,
|
|
167
|
+
n_embedding_parameters=19_301_760,
|
|
165
168
|
memory_usage_mb=58,
|
|
166
169
|
embed_dim=384,
|
|
167
170
|
license="apache-2.0",
|
|
@@ -193,6 +196,7 @@ granite_125m_english = ModelMeta(
|
|
|
193
196
|
revision="e48d3a5b47eaa18e3fe07d4676e187fd80f32730",
|
|
194
197
|
release_date="2024-12-18",
|
|
195
198
|
n_parameters=125_000_000,
|
|
199
|
+
n_embedding_parameters=38_603_520,
|
|
196
200
|
memory_usage_mb=238,
|
|
197
201
|
embed_dim=768,
|
|
198
202
|
license="apache-2.0",
|
|
@@ -225,6 +229,7 @@ granite_english_r2 = ModelMeta(
|
|
|
225
229
|
revision="6e7b8ce0e76270394ac4669ba4bbd7133b60b7f9",
|
|
226
230
|
release_date="2025-08-15",
|
|
227
231
|
n_parameters=149_000_000,
|
|
232
|
+
n_embedding_parameters=None,
|
|
228
233
|
memory_usage_mb=284,
|
|
229
234
|
embed_dim=768,
|
|
230
235
|
license="apache-2.0",
|
|
@@ -250,6 +255,7 @@ granite_small_english_r2 = ModelMeta(
|
|
|
250
255
|
revision="54a8d2616a0844355a5164432d3f6dafb37b17a3",
|
|
251
256
|
release_date="2025-08-15",
|
|
252
257
|
n_parameters=47_000_000,
|
|
258
|
+
n_embedding_parameters=None,
|
|
253
259
|
memory_usage_mb=91,
|
|
254
260
|
embed_dim=384,
|
|
255
261
|
license="apache-2.0",
|
|
@@ -56,6 +56,7 @@ inf_retriever_v1 = ModelMeta(
|
|
|
56
56
|
revision="cb70ca7c31dfa866b2eff2dad229c144d8ddfd91",
|
|
57
57
|
release_date="2024-12-24", # initial commit of hf model.
|
|
58
58
|
n_parameters=7_069_121_024,
|
|
59
|
+
n_embedding_parameters=None,
|
|
59
60
|
memory_usage_mb=13483,
|
|
60
61
|
embed_dim=3584,
|
|
61
62
|
license="apache-2.0",
|
|
@@ -83,6 +84,7 @@ inf_retriever_v1_1_5b = ModelMeta(
|
|
|
83
84
|
revision="c9c05c2dd50707a486966ba81703021ae2094a06",
|
|
84
85
|
release_date="2025-02-08", # initial commit of hf model.
|
|
85
86
|
n_parameters=1_543_268_864,
|
|
87
|
+
n_embedding_parameters=232_928_256,
|
|
86
88
|
memory_usage_mb=2944,
|
|
87
89
|
embed_dim=1536,
|
|
88
90
|
license="apache-2.0",
|
|
@@ -299,6 +299,7 @@ jasper_en_v1 = ModelMeta(
|
|
|
299
299
|
revision="d6330ce98f8a0d741e781df845904c9484f00efa",
|
|
300
300
|
release_date="2024-12-11", # first commit
|
|
301
301
|
n_parameters=1_999_000_000,
|
|
302
|
+
n_embedding_parameters=232_932_864,
|
|
302
303
|
memory_usage_mb=3802,
|
|
303
304
|
max_tokens=131072,
|
|
304
305
|
embed_dim=8960,
|
|
@@ -346,6 +347,7 @@ Jasper_Token_Compression_600M = ModelMeta(
|
|
|
346
347
|
revision="06a100f753a5a96d9e583b3af79c6fcdfacc4719",
|
|
347
348
|
release_date="2025-11-14",
|
|
348
349
|
n_parameters=595776512,
|
|
350
|
+
n_embedding_parameters=None,
|
|
349
351
|
memory_usage_mb=2272,
|
|
350
352
|
embed_dim=2048,
|
|
351
353
|
license="mit",
|
|
@@ -733,6 +733,7 @@ jina_reranker_v3 = ModelMeta(
|
|
|
733
733
|
release_date="2025-09-18", # official release date
|
|
734
734
|
modalities=["text"],
|
|
735
735
|
n_parameters=int(0.6 * 1e9),
|
|
736
|
+
n_embedding_parameters=None,
|
|
736
737
|
memory_usage_mb=1138,
|
|
737
738
|
max_tokens=131072,
|
|
738
739
|
embed_dim=None,
|
|
@@ -776,6 +777,7 @@ jina_embeddings_v4 = ModelMeta(
|
|
|
776
777
|
release_date="2025-06-24", # official release date
|
|
777
778
|
modalities=["image", "text"],
|
|
778
779
|
n_parameters=int(3.8 * 1e9),
|
|
780
|
+
n_embedding_parameters=None,
|
|
779
781
|
memory_usage_mb=7500,
|
|
780
782
|
max_tokens=32768,
|
|
781
783
|
embed_dim=2048,
|
|
@@ -824,6 +826,7 @@ jina_embeddings_v3 = ModelMeta(
|
|
|
824
826
|
revision="215a6e121fa0183376388ac6b1ae230326bfeaed",
|
|
825
827
|
release_date="2024-09-18", # official release date
|
|
826
828
|
n_parameters=int(572 * 1e6),
|
|
829
|
+
n_embedding_parameters=None,
|
|
827
830
|
memory_usage_mb=1092,
|
|
828
831
|
max_tokens=8194,
|
|
829
832
|
embed_dim=1024,
|
|
@@ -884,6 +887,7 @@ jina_embeddings_v2_base_en = ModelMeta(
|
|
|
884
887
|
revision="6e85f575bc273f1fd840a658067d0157933c83f0",
|
|
885
888
|
release_date="2023-09-27",
|
|
886
889
|
n_parameters=137_000_000,
|
|
890
|
+
n_embedding_parameters=23_445_504,
|
|
887
891
|
memory_usage_mb=262,
|
|
888
892
|
embed_dim=768,
|
|
889
893
|
license="apache-2.0",
|
|
@@ -948,6 +952,7 @@ jina_embeddings_v2_small_en = ModelMeta(
|
|
|
948
952
|
revision="44e7d1d6caec8c883c2d4b207588504d519788d0",
|
|
949
953
|
release_date="2023-09-27",
|
|
950
954
|
n_parameters=32_700_000,
|
|
955
|
+
n_embedding_parameters=15_630_336,
|
|
951
956
|
memory_usage_mb=62,
|
|
952
957
|
embed_dim=512,
|
|
953
958
|
license="apache-2.0",
|
|
@@ -1009,6 +1014,7 @@ jina_embedding_b_en_v1 = ModelMeta(
|
|
|
1009
1014
|
revision="32aa658e5ceb90793454d22a57d8e3a14e699516",
|
|
1010
1015
|
release_date="2023-07-07",
|
|
1011
1016
|
n_parameters=110_000_000,
|
|
1017
|
+
n_embedding_parameters=24_674_304,
|
|
1012
1018
|
memory_usage_mb=420,
|
|
1013
1019
|
embed_dim=768,
|
|
1014
1020
|
license="apache-2.0",
|
|
@@ -1066,6 +1072,7 @@ jina_embedding_s_en_v1 = ModelMeta(
|
|
|
1066
1072
|
revision="5ac6cd473e2324c6d5f9e558a6a9f65abb57143e",
|
|
1067
1073
|
release_date="2023-07-07",
|
|
1068
1074
|
n_parameters=35_000_000,
|
|
1075
|
+
n_embedding_parameters=16_449_536,
|
|
1069
1076
|
memory_usage_mb=134,
|
|
1070
1077
|
embed_dim=512,
|
|
1071
1078
|
license="apache-2.0",
|
|
@@ -780,6 +780,7 @@ HIT_TMG__KaLM_embedding_multilingual_mini_instruct_v1 = ModelMeta(
|
|
|
780
780
|
release_date="2024-10-23",
|
|
781
781
|
languages=["eng-Latn", "zho-Hans"],
|
|
782
782
|
n_parameters=494032768,
|
|
783
|
+
n_embedding_parameters=136_134_656,
|
|
783
784
|
memory_usage_mb=1885,
|
|
784
785
|
max_tokens=512,
|
|
785
786
|
embed_dim=896,
|
|
@@ -805,6 +806,7 @@ HIT_TMG__KaLM_embedding_multilingual_mini_v1 = ModelMeta(
|
|
|
805
806
|
release_date="2024-08-27",
|
|
806
807
|
languages=["eng-Latn", "zho-Hans"],
|
|
807
808
|
n_parameters=494032768,
|
|
809
|
+
n_embedding_parameters=136_134_656,
|
|
808
810
|
memory_usage_mb=1885,
|
|
809
811
|
max_tokens=512,
|
|
810
812
|
embed_dim=896,
|
|
@@ -836,6 +838,7 @@ HIT_TMG__KaLM_embedding_multilingual_mini_instruct_v1_5 = ModelMeta(
|
|
|
836
838
|
release_date="2024-12-26",
|
|
837
839
|
languages=["eng-Latn", "zho-Hans"],
|
|
838
840
|
n_parameters=494032768,
|
|
841
|
+
n_embedding_parameters=136_134_656,
|
|
839
842
|
memory_usage_mb=1885,
|
|
840
843
|
max_tokens=512,
|
|
841
844
|
embed_dim=896,
|
|
@@ -867,6 +870,7 @@ HIT_TMG__KaLM_embedding_multilingual_mini_instruct_v2 = ModelMeta(
|
|
|
867
870
|
release_date="2025-06-25",
|
|
868
871
|
languages=["eng-Latn", "zho-Hans"],
|
|
869
872
|
n_parameters=494032768,
|
|
873
|
+
n_embedding_parameters=136_134_656,
|
|
870
874
|
memory_usage_mb=942,
|
|
871
875
|
max_tokens=512,
|
|
872
876
|
embed_dim=896,
|
|
@@ -898,6 +902,7 @@ KaLM_Embedding_KaLM_embedding_multilingual_mini_instruct_v2_5 = ModelMeta(
|
|
|
898
902
|
release_date="2025-09-30",
|
|
899
903
|
languages=["eng-Latn", "zho-Hans"],
|
|
900
904
|
n_parameters=494032768,
|
|
905
|
+
n_embedding_parameters=136_134_656,
|
|
901
906
|
memory_usage_mb=1885,
|
|
902
907
|
max_tokens=512,
|
|
903
908
|
embed_dim=896,
|
|
@@ -948,6 +953,7 @@ KaLM_Embedding_gemma_3_12b_2511 = ModelMeta(
|
|
|
948
953
|
open_weights=True,
|
|
949
954
|
release_date="2025-11-06",
|
|
950
955
|
n_parameters=11.76 * 1e9,
|
|
956
|
+
n_embedding_parameters=None,
|
|
951
957
|
memory_usage_mb=44884,
|
|
952
958
|
max_tokens=32768,
|
|
953
959
|
embed_dim=3840,
|
|
@@ -12,6 +12,7 @@ dfm_enc_large = ModelMeta(
|
|
|
12
12
|
revision="132c53391e7a780dc6a2f9a03724d0158fe7122c",
|
|
13
13
|
release_date="2023-07-12",
|
|
14
14
|
n_parameters=355087360,
|
|
15
|
+
n_embedding_parameters=51_200_000,
|
|
15
16
|
memory_usage_mb=1554,
|
|
16
17
|
embed_dim=1024,
|
|
17
18
|
license="mit",
|
|
@@ -47,6 +48,7 @@ dfm_enc_med = ModelMeta(
|
|
|
47
48
|
revision="701bce95d499fa97610d57e8823c54fd1fb79930",
|
|
48
49
|
release_date="2023-07-12",
|
|
49
50
|
n_parameters=124445952,
|
|
51
|
+
n_embedding_parameters=38_403_840,
|
|
50
52
|
memory_usage_mb=475,
|
|
51
53
|
embed_dim=768,
|
|
52
54
|
license="mit",
|
|
@@ -9,6 +9,7 @@ kowshik24_bangla_embedding_model = ModelMeta(
|
|
|
9
9
|
revision="6689c21e69be5950596bad084457cbaa138728d8",
|
|
10
10
|
release_date="2025-11-10",
|
|
11
11
|
n_parameters=278_000_000,
|
|
12
|
+
n_embedding_parameters=192_001_536,
|
|
12
13
|
memory_usage_mb=1061,
|
|
13
14
|
embed_dim=768,
|
|
14
15
|
license="apache-2.0",
|
|
@@ -18,6 +18,7 @@ lens_d4000 = ModelMeta(
|
|
|
18
18
|
revision="e473b33364e6c48a324796fd1411d3b93670c6fe",
|
|
19
19
|
release_date="2025-01-17",
|
|
20
20
|
n_parameters=int(7.11 * 1e9),
|
|
21
|
+
n_embedding_parameters=131_084_288,
|
|
21
22
|
memory_usage_mb=27125,
|
|
22
23
|
embed_dim=4000,
|
|
23
24
|
license="apache-2.0",
|
|
@@ -41,6 +42,7 @@ lens_d8000 = ModelMeta(
|
|
|
41
42
|
revision="a0b87bd91cb27b6f2f0b0fe22c28026da1d464ef",
|
|
42
43
|
release_date="2025-01-17",
|
|
43
44
|
n_parameters=int(7.11 * 1e9),
|
|
45
|
+
n_embedding_parameters=131_084_288,
|
|
44
46
|
memory_usage_mb=27125,
|
|
45
47
|
embed_dim=8000,
|
|
46
48
|
license="apache-2.0",
|
|
@@ -43,6 +43,7 @@ Linq_Embed_Mistral = ModelMeta(
|
|
|
43
43
|
revision="0c1a0b0589177079acc552433cad51d7c9132379",
|
|
44
44
|
release_date="2024-05-29", # initial commit of hf model.
|
|
45
45
|
n_parameters=7_110_000_000,
|
|
46
|
+
n_embedding_parameters=None,
|
|
46
47
|
memory_usage_mb=13563,
|
|
47
48
|
embed_dim=4096,
|
|
48
49
|
license="cc-by-nc-4.0",
|
|
@@ -123,6 +123,7 @@ listconranker = ModelMeta(
|
|
|
123
123
|
revision="95ae6a5f422a916bc36520f0f3e198e7d91520a0",
|
|
124
124
|
release_date="2024-12-11",
|
|
125
125
|
n_parameters=401_000_000,
|
|
126
|
+
n_embedding_parameters=None,
|
|
126
127
|
memory_usage_mb=1242,
|
|
127
128
|
similarity_fn_name="cosine",
|
|
128
129
|
training_datasets=listconranker_training_datasets,
|
|
@@ -194,6 +194,7 @@ llm2clip_openai_l_14_336 = ModelMeta(
|
|
|
194
194
|
release_date="2024-11-07",
|
|
195
195
|
modalities=["image", "text"],
|
|
196
196
|
n_parameters=579_000_000,
|
|
197
|
+
n_embedding_parameters=None,
|
|
197
198
|
memory_usage_mb=None,
|
|
198
199
|
max_tokens=None,
|
|
199
200
|
embed_dim=1280,
|
|
@@ -219,6 +220,7 @@ llm2clip_openai_l_14_224 = ModelMeta(
|
|
|
219
220
|
release_date="2024-11-07",
|
|
220
221
|
modalities=["image", "text"],
|
|
221
222
|
n_parameters=578_000_000,
|
|
223
|
+
n_embedding_parameters=None,
|
|
222
224
|
memory_usage_mb=None,
|
|
223
225
|
max_tokens=None,
|
|
224
226
|
embed_dim=1280,
|
|
@@ -243,6 +245,7 @@ llm2clip_openai_b_16 = ModelMeta(
|
|
|
243
245
|
release_date="2024-11-07",
|
|
244
246
|
modalities=["image", "text"],
|
|
245
247
|
n_parameters=361_000_000,
|
|
248
|
+
n_embedding_parameters=None,
|
|
246
249
|
memory_usage_mb=None,
|
|
247
250
|
max_tokens=None,
|
|
248
251
|
embed_dim=1280,
|