mteb 2.7.3__py3-none-any.whl → 2.7.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/_create_dataloaders.py +47 -5
- mteb/_evaluators/any_sts_evaluator.py +2 -0
- mteb/_evaluators/clustering_evaluator.py +2 -0
- mteb/_evaluators/evaluator.py +2 -1
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +8 -1
- mteb/_evaluators/pair_classification_evaluator.py +3 -0
- mteb/_evaluators/retrieval_evaluator.py +3 -0
- mteb/_evaluators/sklearn_evaluator.py +6 -1
- mteb/_evaluators/text/bitext_mining_evaluator.py +2 -0
- mteb/_evaluators/text/summarization_evaluator.py +2 -0
- mteb/_evaluators/zeroshot_classification_evaluator.py +2 -0
- mteb/abstasks/abstask.py +31 -12
- mteb/abstasks/classification.py +10 -3
- mteb/abstasks/clustering.py +6 -2
- mteb/abstasks/clustering_legacy.py +8 -2
- mteb/abstasks/image/image_text_pair_classification.py +6 -2
- mteb/abstasks/multilabel_classification.py +2 -0
- mteb/abstasks/pair_classification.py +8 -2
- mteb/abstasks/retrieval.py +27 -12
- mteb/abstasks/retrieval_dataset_loaders.py +29 -19
- mteb/abstasks/sts.py +10 -3
- mteb/abstasks/text/bitext_mining.py +9 -5
- mteb/abstasks/text/reranking.py +2 -2
- mteb/abstasks/text/summarization.py +2 -1
- mteb/abstasks/zeroshot_classification.py +8 -2
- mteb/benchmarks/benchmarks/__init__.py +2 -0
- mteb/benchmarks/benchmarks/benchmarks.py +41 -2
- mteb/descriptive_stats/Retrieval/BrightAopsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightLeetcodeRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQAQuestionsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQATheoremsRetrieval.json +35 -0
- mteb/evaluate.py +10 -2
- mteb/models/model_implementations/align_models.py +1 -0
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +2 -0
- mteb/models/model_implementations/ara_models.py +1 -0
- mteb/models/model_implementations/arctic_models.py +8 -0
- mteb/models/model_implementations/b1ade_models.py +1 -0
- mteb/models/model_implementations/bedrock_models.py +4 -0
- mteb/models/model_implementations/bge_models.py +40 -1
- mteb/models/model_implementations/bica_model.py +1 -0
- mteb/models/model_implementations/blip2_models.py +2 -0
- mteb/models/model_implementations/blip_models.py +8 -0
- mteb/models/model_implementations/bm25.py +10 -5
- mteb/models/model_implementations/bmretriever_models.py +4 -0
- mteb/models/model_implementations/cadet_models.py +1 -0
- mteb/models/model_implementations/cde_models.py +2 -0
- mteb/models/model_implementations/clip_models.py +3 -0
- mteb/models/model_implementations/clips_models.py +3 -0
- mteb/models/model_implementations/codefuse_models.py +5 -0
- mteb/models/model_implementations/codesage_models.py +3 -0
- mteb/models/model_implementations/cohere_models.py +4 -0
- mteb/models/model_implementations/cohere_v.py +5 -0
- mteb/models/model_implementations/colpali_models.py +3 -0
- mteb/models/model_implementations/colqwen_models.py +7 -0
- mteb/models/model_implementations/colsmol_models.py +2 -0
- mteb/models/model_implementations/conan_models.py +1 -0
- mteb/models/model_implementations/dino_models.py +19 -0
- mteb/models/model_implementations/e5_instruct.py +4 -0
- mteb/models/model_implementations/e5_models.py +9 -0
- mteb/models/model_implementations/e5_v.py +1 -0
- mteb/models/model_implementations/eagerworks_models.py +1 -0
- mteb/models/model_implementations/emillykkejensen_models.py +3 -0
- mteb/models/model_implementations/en_code_retriever.py +1 -0
- mteb/models/model_implementations/euler_models.py +1 -0
- mteb/models/model_implementations/evaclip_models.py +4 -0
- mteb/models/model_implementations/fa_models.py +9 -0
- mteb/models/model_implementations/facebookai.py +2 -0
- mteb/models/model_implementations/geogpt_models.py +1 -0
- mteb/models/model_implementations/gme_v_models.py +2 -0
- mteb/models/model_implementations/google_models.py +5 -0
- mteb/models/model_implementations/granite_vision_embedding_models.py +1 -0
- mteb/models/model_implementations/gritlm_models.py +2 -0
- mteb/models/model_implementations/gte_models.py +9 -0
- mteb/models/model_implementations/hinvec_models.py +1 -0
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +6 -0
- mteb/models/model_implementations/inf_models.py +2 -0
- mteb/models/model_implementations/jasper_models.py +2 -0
- mteb/models/model_implementations/jina_clip.py +1 -0
- mteb/models/model_implementations/jina_models.py +7 -0
- mteb/models/model_implementations/kalm_models.py +6 -0
- mteb/models/model_implementations/kblab.py +1 -0
- mteb/models/model_implementations/kennethenevoldsen_models.py +2 -0
- mteb/models/model_implementations/kfst.py +1 -0
- mteb/models/model_implementations/kowshik24_models.py +1 -0
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +1 -0
- mteb/models/model_implementations/linq_models.py +1 -0
- mteb/models/model_implementations/listconranker.py +1 -0
- mteb/models/model_implementations/llm2clip_models.py +3 -0
- mteb/models/model_implementations/llm2vec_models.py +8 -0
- mteb/models/model_implementations/mcinext_models.py +3 -0
- mteb/models/model_implementations/mdbr_models.py +2 -0
- mteb/models/model_implementations/misc_models.py +63 -0
- mteb/models/model_implementations/mixedbread_ai_models.py +3 -0
- mteb/models/model_implementations/mme5_models.py +2 -1
- mteb/models/model_implementations/moco_models.py +2 -0
- mteb/models/model_implementations/mod_models.py +1 -0
- mteb/models/model_implementations/model2vec_models.py +13 -0
- mteb/models/model_implementations/moka_models.py +3 -0
- mteb/models/model_implementations/nbailab.py +3 -0
- mteb/models/model_implementations/no_instruct_sentence_models.py +1 -0
- mteb/models/model_implementations/nomic_models.py +6 -0
- mteb/models/model_implementations/nomic_models_vision.py +1 -0
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +2 -0
- mteb/models/model_implementations/nvidia_models.py +3 -0
- mteb/models/model_implementations/octen_models.py +2 -0
- mteb/models/model_implementations/openai_models.py +5 -0
- mteb/models/model_implementations/openclip_models.py +8 -0
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -0
- mteb/models/model_implementations/ops_moa_models.py +2 -0
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -0
- mteb/models/model_implementations/pawan_models.py +1 -0
- mteb/models/model_implementations/piccolo_models.py +2 -0
- mteb/models/model_implementations/promptriever_models.py +4 -0
- mteb/models/model_implementations/pylate_models.py +13 -0
- mteb/models/model_implementations/qodo_models.py +2 -0
- mteb/models/model_implementations/qtack_models.py +1 -0
- mteb/models/model_implementations/qwen3_models.py +3 -0
- mteb/models/model_implementations/qzhou_models.py +2 -0
- mteb/models/model_implementations/rasgaard_models.py +1 -0
- mteb/models/model_implementations/reasonir_model.py +65 -0
- mteb/models/model_implementations/repllama_models.py +2 -0
- mteb/models/model_implementations/rerankers_custom.py +3 -0
- mteb/models/model_implementations/rerankers_monot5_based.py +14 -0
- mteb/models/model_implementations/richinfoai_models.py +1 -0
- mteb/models/model_implementations/ru_sentence_models.py +20 -0
- mteb/models/model_implementations/ruri_models.py +10 -0
- mteb/models/model_implementations/salesforce_models.py +3 -0
- mteb/models/model_implementations/samilpwc_models.py +1 -0
- mteb/models/model_implementations/sarashina_embedding_models.py +2 -0
- mteb/models/model_implementations/searchmap_models.py +1 -0
- mteb/models/model_implementations/seed_1_6_embedding_models.py +1 -0
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +1 -0
- mteb/models/model_implementations/seed_models.py +1 -0
- mteb/models/model_implementations/sentence_transformers_models.py +18 -0
- mteb/models/model_implementations/shuu_model.py +1 -0
- mteb/models/model_implementations/siglip_models.py +10 -0
- mteb/models/model_implementations/sonar_models.py +2 -1
- mteb/models/model_implementations/spartan8806_atles_champion.py +1 -0
- mteb/models/model_implementations/stella_models.py +6 -0
- mteb/models/model_implementations/tarka_models.py +2 -0
- mteb/models/model_implementations/text2vec_models.py +3 -0
- mteb/models/model_implementations/ua_sentence_models.py +1 -0
- mteb/models/model_implementations/uae_models.py +1 -0
- mteb/models/model_implementations/vdr_models.py +1 -0
- mteb/models/model_implementations/vi_vn_models.py +6 -0
- mteb/models/model_implementations/vista_models.py +2 -0
- mteb/models/model_implementations/vlm2vec_models.py +2 -0
- mteb/models/model_implementations/voyage_models.py +15 -0
- mteb/models/model_implementations/voyage_v.py +1 -0
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +1 -0
- mteb/models/model_implementations/yuan_models.py +1 -0
- mteb/models/model_implementations/yuan_models_en.py +1 -0
- mteb/models/model_meta.py +35 -2
- mteb/models/models_protocols.py +4 -0
- mteb/models/search_wrappers.py +12 -0
- mteb/tasks/bitext_mining/eng/pub_chem_smiles_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/fas/fa_mteb_summary_retrieval.py +3 -3
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/flores_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/in22_conv_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/in22_gen_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/norwegian_courts_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ntrex_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/roma_tales_bitext_mining.py +2 -2
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -1
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -1
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -1
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -1
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -1
- mteb/tasks/classification/bul/bulgarian_store_review_sentiment_classfication.py +1 -1
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -1
- mteb/tasks/classification/dan/dk_hate_classification.py +1 -1
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -1
- mteb/tasks/classification/ell/greek_legal_code_classification.py +1 -1
- mteb/tasks/classification/eng/dbpedia_classification.py +2 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -2
- mteb/tasks/classification/eng/toxic_conversations_classification.py +2 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +1 -1
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -1
- mteb/tasks/classification/eng/yelp_review_full_classification.py +2 -2
- mteb/tasks/classification/est/estonian_valence.py +1 -1
- mteb/tasks/classification/fas/fa_mteb_classification.py +6 -6
- mteb/tasks/classification/fas/persian_food_sentiment_classification.py +1 -1
- mteb/tasks/classification/fil/filipino_shopee_reviews_classification.py +1 -1
- mteb/tasks/classification/fin/fin_toxicity_classification.py +1 -1
- mteb/tasks/classification/fra/french_book_reviews.py +2 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -1
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -1
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -1
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +2 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -1
- mteb/tasks/classification/ita/dado_eval_coarse_classification.py +1 -1
- mteb/tasks/classification/ita/ita_casehold_classification.py +1 -1
- mteb/tasks/classification/ita/sardi_stance_classification.py +1 -1
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -1
- mteb/tasks/classification/jpn/wrime_classification.py +1 -1
- mteb/tasks/classification/kan/kannada_news_classification.py +2 -2
- mteb/tasks/classification/kor/klue_tc.py +2 -2
- mteb/tasks/classification/kor/kor_fin.py +1 -1
- mteb/tasks/classification/kor/kor_hate_classification.py +1 -1
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +1 -1
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -1
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/afri_senti_lang_classification.py +1 -1
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -1
- mteb/tasks/classification/multilingual/cyrillic_turkic_lang_classification.py +1 -1
- mteb/tasks/classification/multilingual/indic_nlp_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/masakha_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -1
- mteb/tasks/classification/multilingual/multilingual_sentiment_classification.py +1 -1
- mteb/tasks/classification/multilingual/scala_classification.py +1 -1
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -1
- mteb/tasks/classification/multilingual/turkic_classification.py +1 -1
- mteb/tasks/classification/multilingual/tweet_sentiment_classification.py +1 -1
- mteb/tasks/classification/nep/nepali_news_classification.py +2 -2
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +1 -1
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +1 -1
- mteb/tasks/classification/ory/odia_news_classification.py +2 -2
- mteb/tasks/classification/pan/punjabi_news_classification.py +1 -1
- mteb/tasks/classification/ron/moroco.py +1 -1
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -1
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -1
- mteb/tasks/classification/rus/georeview_classification.py +1 -1
- mteb/tasks/classification/rus/headline_classification.py +2 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +2 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +2 -2
- mteb/tasks/classification/rus/ru_sci_bench_grnti_classification.py +1 -1
- mteb/tasks/classification/rus/ru_sci_bench_oecd_classification.py +1 -1
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -1
- mteb/tasks/classification/san/sanskrit_shlokas_classification.py +1 -1
- mteb/tasks/classification/sin/sinhala_news_classification.py +2 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +2 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -1
- mteb/tasks/classification/spa/spanish_news_classification.py +2 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -1
- mteb/tasks/classification/tam/tamil_news_classification.py +2 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +2 -2
- mteb/tasks/classification/tha/wongnai_reviews_classification.py +1 -1
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +2 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -2
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -1
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -1
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +2 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -1
- mteb/tasks/clustering/deu/blurbs_clustering_p2p.py +1 -1
- mteb/tasks/clustering/deu/blurbs_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/arxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/arxiv_hierarchical_clustering.py +2 -2
- mteb/tasks/clustering/eng/big_patent_clustering.py +1 -1
- mteb/tasks/clustering/eng/biorxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/biorxiv_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/medrxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/medrxiv_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/reddit_clustering.py +1 -1
- mteb/tasks/clustering/eng/reddit_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/stack_exchange_clustering.py +1 -1
- mteb/tasks/clustering/eng/stack_exchange_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/twenty_newsgroups_clustering.py +1 -1
- mteb/tasks/clustering/fas/fa_mteb_clustering.py +4 -4
- mteb/tasks/clustering/fra/hal_clustering_s2s.py +2 -2
- mteb/tasks/clustering/multilingual/mlsum_clustering_p2p.py +2 -2
- mteb/tasks/clustering/multilingual/mlsum_clustering_s2s.py +2 -2
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -1
- mteb/tasks/clustering/multilingual/wiki_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nob/snl_clustering.py +1 -1
- mteb/tasks/clustering/nob/vg_clustering.py +1 -1
- mteb/tasks/clustering/pol/polish_clustering.py +3 -3
- mteb/tasks/clustering/rus/ru_sci_bench_grnti_clustering_p2p.py +1 -1
- mteb/tasks/clustering/rus/ru_sci_bench_oecd_clustering_p2p.py +1 -1
- mteb/tasks/clustering/zho/cmteb_clustering.py +4 -4
- mteb/tasks/image_text_pair_classification/eng/image_co_de.py +1 -1
- mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +1 -1
- mteb/tasks/instruction_reranking/multilingual/m_follow_ir.py +2 -2
- mteb/tasks/multichoice/eng/cv_bench.py +4 -4
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -1
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -1
- mteb/tasks/multilabel_classification/rus/ru_toixic_multilabelclassification_okmlcup.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -1
- mteb/tasks/pair_classification/ara/ar_entail.py +1 -1
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -1
- mteb/tasks/pair_classification/deu/false_friends_de_en_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_ai_sentence_paraphrase_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_smilespc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_synonym_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_wiki_paragraphs_pc.py +1 -1
- mteb/tasks/pair_classification/eng/sprint_duplicate_questions_pc.py +1 -1
- mteb/tasks/pair_classification/eng/twitter_sem_eval2015_pc.py +1 -1
- mteb/tasks/pair_classification/eng/twitter_url_corpus_pc.py +1 -1
- mteb/tasks/pair_classification/fas/fa_mteb_pair_classification.py +5 -5
- mteb/tasks/pair_classification/fas/fars_tail.py +2 -2
- mteb/tasks/pair_classification/hye/armenian_paraphrase_pc.py +1 -1
- mteb/tasks/pair_classification/ita/dis_co_tex_pair_classification.py +1 -1
- mteb/tasks/pair_classification/kor/klue_nli.py +1 -1
- mteb/tasks/pair_classification/multilingual/rte3.py +2 -2
- mteb/tasks/pair_classification/multilingual/xnli.py +1 -1
- mteb/tasks/pair_classification/pol/polish_pc.py +4 -4
- mteb/tasks/pair_classification/por/assin2_rte.py +1 -1
- mteb/tasks/pair_classification/por/sick_br_pc.py +1 -1
- mteb/tasks/pair_classification/rus/terra.py +2 -2
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -1
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -1
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -1
- mteb/tasks/pair_classification/zho/cmteb_pair_classification.py +2 -2
- mteb/tasks/retrieval/ara/sadeem_question_retrieval.py +1 -1
- mteb/tasks/retrieval/code/code_edit_search_retrieval.py +1 -1
- mteb/tasks/retrieval/code/code_rag.py +4 -4
- mteb/tasks/retrieval/code/code_search_net_cc_retrieval.py +1 -1
- mteb/tasks/retrieval/code/coir_code_search_net_retrieval.py +1 -1
- mteb/tasks/retrieval/code/ds1000_retrieval.py +1 -1
- mteb/tasks/retrieval/code/fresh_stack_retrieval.py +1 -1
- mteb/tasks/retrieval/code/human_eval_retrieval.py +1 -1
- mteb/tasks/retrieval/code/mbpp_retrieval.py +1 -1
- mteb/tasks/retrieval/code/wiki_sql_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +1 -1
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +1 -1
- mteb/tasks/retrieval/deu/german_gov_service_retrieval.py +1 -1
- mteb/tasks/retrieval/deu/german_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/ell/greek_civics_qa.py +1 -1
- mteb/tasks/retrieval/eng/__init__.py +42 -0
- mteb/tasks/retrieval/eng/bright_retrieval.py +10 -2
- mteb/tasks/retrieval/eng/bright_v1_1_retrieval.py +968 -0
- mteb/tasks/retrieval/eng/chat_doctor_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/fin_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/finance_bench_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hateful_memes_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hateful_memes_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hc3_finance_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_narrative_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_needle_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_passkey_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_summ_screen_fd_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_wikim_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lembqm_sum_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/memotion_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/memotion_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/ml_questions.py +1 -1
- mteb/tasks/retrieval/eng/nano_argu_ana_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_climate_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_db_pedia_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_fi_qa2018_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_hotpot_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_msmarco_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_nf_corpus_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_nq_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_quora_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_sci_fact_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_scidocs_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_touche2020_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/narrative_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/r2_med_retrieval.py +8 -8
- mteb/tasks/retrieval/eng/sci_mmir_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/sci_mmir_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +10 -10
- mteb/tasks/retrieval/fra/f_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/fra/syntec_retrieval.py +1 -1
- mteb/tasks/retrieval/hun/hun_sum2.py +1 -1
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt19.py +1 -1
- mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt21.py +1 -1
- mteb/tasks/retrieval/multilingual/cur_ev1_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/miracl_vision_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/mr_tidy_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -2
- mteb/tasks/retrieval/multilingual/statcan_dialogue_dataset_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/vdr_multilingual_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +14 -4
- mteb/tasks/retrieval/multilingual/wit_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/x_flickr30k_co_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/x_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/xm3600_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_android_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_english_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_gaming_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_gis_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_mathematica_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_physics_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_programmers_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_stats_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_tex_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_unix_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_webmasters_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_wordpress_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nob/norquad.py +1 -1
- mteb/tasks/retrieval/nob/snl_retrieval.py +1 -1
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -1
- mteb/tasks/retrieval/vie/vie_qu_ad_retrieval.py +1 -1
- mteb/tasks/sts/fao/faroese_sts.py +1 -1
- mteb/tasks/sts/fra/sick_fr_sts.py +1 -1
- mteb/tasks/sts/kor/klue_sts.py +1 -1
- mteb/tasks/sts/por/sick_br_sts.py +1 -1
- mteb/tasks/sts/rus/ru_para_phraser_sts.py +1 -1
- mteb/tasks/zeroshot_classification/eng/sci_mmir.py +1 -1
- {mteb-2.7.3.dist-info → mteb-2.7.5.dist-info}/METADATA +1 -1
- {mteb-2.7.3.dist-info → mteb-2.7.5.dist-info}/RECORD +434 -413
- {mteb-2.7.3.dist-info → mteb-2.7.5.dist-info}/WHEEL +0 -0
- {mteb-2.7.3.dist-info → mteb-2.7.5.dist-info}/entry_points.txt +0 -0
- {mteb-2.7.3.dist-info → mteb-2.7.5.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.7.3.dist-info → mteb-2.7.5.dist-info}/top_level.txt +0 -0
|
@@ -13,7 +13,6 @@ if TYPE_CHECKING:
|
|
|
13
13
|
from mteb.types import (
|
|
14
14
|
CorpusDatasetType,
|
|
15
15
|
EncodeKwargs,
|
|
16
|
-
InstructionDatasetType,
|
|
17
16
|
QueryDatasetType,
|
|
18
17
|
RetrievalOutputType,
|
|
19
18
|
TopRankedDocumentsType,
|
|
@@ -55,6 +54,7 @@ def bm25_loader(model_name, **kwargs) -> SearchProtocol:
|
|
|
55
54
|
hf_split: str,
|
|
56
55
|
hf_subset: str,
|
|
57
56
|
encode_kwargs: EncodeKwargs,
|
|
57
|
+
num_proc: int = 1,
|
|
58
58
|
) -> None:
|
|
59
59
|
logger.info("Encoding Corpus...")
|
|
60
60
|
corpus_texts = [
|
|
@@ -80,8 +80,8 @@ def bm25_loader(model_name, **kwargs) -> SearchProtocol:
|
|
|
80
80
|
hf_subset: str,
|
|
81
81
|
top_k: int,
|
|
82
82
|
encode_kwargs: EncodeKwargs,
|
|
83
|
-
instructions: InstructionDatasetType | None = None,
|
|
84
83
|
top_ranked: TopRankedDocumentsType | None = None,
|
|
84
|
+
num_proc: int = 1,
|
|
85
85
|
) -> RetrievalOutputType:
|
|
86
86
|
logger.info("Encoding Queries...")
|
|
87
87
|
query_ids = list(queries["id"])
|
|
@@ -103,13 +103,17 @@ def bm25_loader(model_name, **kwargs) -> SearchProtocol:
|
|
|
103
103
|
query_results = queries_results[qi]
|
|
104
104
|
scores = queries_scores[qi]
|
|
105
105
|
doc_id_to_score = {}
|
|
106
|
+
query_documents = (
|
|
107
|
+
top_ranked[qid] if top_ranked and qid in top_ranked else None
|
|
108
|
+
)
|
|
106
109
|
|
|
107
110
|
# Iterate over results
|
|
108
|
-
for
|
|
109
|
-
doc_idx = query_results[ri]
|
|
110
|
-
score = scores[ri]
|
|
111
|
+
for doc_idx, score in zip(query_results, scores):
|
|
111
112
|
doc_id = self.corpus_idx_to_id[doc_idx]
|
|
112
113
|
|
|
114
|
+
# handle reranking with a filtered set of documents
|
|
115
|
+
if query_documents is not None and doc_id not in query_documents:
|
|
116
|
+
continue
|
|
113
117
|
doc_id_to_score[doc_id] = float(score)
|
|
114
118
|
|
|
115
119
|
results[qid] = doc_id_to_score
|
|
@@ -132,6 +136,7 @@ bm25_s = ModelMeta(
|
|
|
132
136
|
revision="0_1_10",
|
|
133
137
|
release_date="2024-07-10", # release of version 0.1.10
|
|
134
138
|
n_parameters=None,
|
|
139
|
+
n_embedding_parameters=None,
|
|
135
140
|
memory_usage_mb=None,
|
|
136
141
|
embed_dim=None,
|
|
137
142
|
license=None,
|
|
@@ -103,6 +103,7 @@ BMRetriever_410M = ModelMeta(
|
|
|
103
103
|
release_date="2024-04-29",
|
|
104
104
|
embed_dim=1024,
|
|
105
105
|
n_parameters=353_822_720,
|
|
106
|
+
n_embedding_parameters=51_511_296,
|
|
106
107
|
memory_usage_mb=1349,
|
|
107
108
|
max_tokens=2048,
|
|
108
109
|
license="mit",
|
|
@@ -133,6 +134,7 @@ BMRetriever_1B = ModelMeta(
|
|
|
133
134
|
release_date="2024-04-29",
|
|
134
135
|
embed_dim=2048,
|
|
135
136
|
n_parameters=908_759_040,
|
|
137
|
+
n_embedding_parameters=103_022_592,
|
|
136
138
|
memory_usage_mb=3466,
|
|
137
139
|
max_tokens=2048,
|
|
138
140
|
license="mit",
|
|
@@ -163,6 +165,7 @@ BMRetriever_2B = ModelMeta(
|
|
|
163
165
|
release_date="2024-04-29",
|
|
164
166
|
embed_dim=2048,
|
|
165
167
|
n_parameters=2_506_172_416,
|
|
168
|
+
n_embedding_parameters=524_288_000,
|
|
166
169
|
memory_usage_mb=9560,
|
|
167
170
|
max_tokens=8192,
|
|
168
171
|
license="mit",
|
|
@@ -193,6 +196,7 @@ BMRetriever_7B = ModelMeta(
|
|
|
193
196
|
release_date="2024-04-29",
|
|
194
197
|
embed_dim=4096,
|
|
195
198
|
n_parameters=7_110_660_096,
|
|
199
|
+
n_embedding_parameters=131_072_000,
|
|
196
200
|
memory_usage_mb=27124,
|
|
197
201
|
max_tokens=32768,
|
|
198
202
|
license="mit",
|
|
@@ -226,6 +226,7 @@ cde_small_v1 = ModelMeta(
|
|
|
226
226
|
revision="e151df18af0d7f1d1c37b074fee58406ececf19f",
|
|
227
227
|
release_date="2024-09-24",
|
|
228
228
|
n_parameters=int(281 * 1e6),
|
|
229
|
+
n_embedding_parameters=None,
|
|
229
230
|
memory_usage_mb=1072, # Though the second-stage model is only 140M
|
|
230
231
|
max_tokens=512,
|
|
231
232
|
embed_dim=768,
|
|
@@ -255,6 +256,7 @@ cde_small_v2 = ModelMeta(
|
|
|
255
256
|
revision="4e1d021a6c3fd7ce8aa0a7204057eee5ae61d390",
|
|
256
257
|
release_date="2025-01-13",
|
|
257
258
|
n_parameters=int(306 * 1e6),
|
|
259
|
+
n_embedding_parameters=None,
|
|
258
260
|
memory_usage_mb=1166, # Though the second-stage model is only 140M
|
|
259
261
|
max_tokens=512,
|
|
260
262
|
embed_dim=768,
|
|
@@ -128,6 +128,7 @@ clip_vit_large_patch14 = ModelMeta(
|
|
|
128
128
|
release_date="2021-02-26",
|
|
129
129
|
modalities=["image", "text"],
|
|
130
130
|
n_parameters=428_000_000,
|
|
131
|
+
n_embedding_parameters=None,
|
|
131
132
|
memory_usage_mb=1631,
|
|
132
133
|
max_tokens=77,
|
|
133
134
|
embed_dim=768,
|
|
@@ -152,6 +153,7 @@ clip_vit_base_patch32 = ModelMeta(
|
|
|
152
153
|
release_date="2021-02-26",
|
|
153
154
|
modalities=["image", "text"],
|
|
154
155
|
n_parameters=151_000_000,
|
|
156
|
+
n_embedding_parameters=None,
|
|
155
157
|
memory_usage_mb=576,
|
|
156
158
|
max_tokens=77,
|
|
157
159
|
embed_dim=512,
|
|
@@ -176,6 +178,7 @@ clip_vit_base_patch16 = ModelMeta(
|
|
|
176
178
|
release_date="2021-02-26",
|
|
177
179
|
modalities=["image", "text"],
|
|
178
180
|
n_parameters=151_000_000,
|
|
181
|
+
n_embedding_parameters=None,
|
|
179
182
|
memory_usage_mb=576,
|
|
180
183
|
max_tokens=77,
|
|
181
184
|
embed_dim=512,
|
|
@@ -30,6 +30,7 @@ e5_nl_small = ModelMeta(
|
|
|
30
30
|
revision="0243664a6c5e12eef854b091eb283e51833c3e9f",
|
|
31
31
|
release_date="2025-09-23",
|
|
32
32
|
n_parameters=40_800_000,
|
|
33
|
+
n_embedding_parameters=19_200_768,
|
|
33
34
|
memory_usage_mb=78,
|
|
34
35
|
embed_dim=384,
|
|
35
36
|
license="mit",
|
|
@@ -57,6 +58,7 @@ e5_nl_base = ModelMeta(
|
|
|
57
58
|
revision="6bd5722f236da48b4b8bcb28cc1fc478f7089956",
|
|
58
59
|
release_date="2025-09-23",
|
|
59
60
|
n_parameters=124_400_000,
|
|
61
|
+
n_embedding_parameters=38_401_536,
|
|
60
62
|
memory_usage_mb=237,
|
|
61
63
|
embed_dim=768,
|
|
62
64
|
license="mit",
|
|
@@ -84,6 +86,7 @@ e5_nl_large = ModelMeta(
|
|
|
84
86
|
revision="683333f86ed9eb3699b5567f0fdabeb958d412b0",
|
|
85
87
|
release_date="2025-09-23",
|
|
86
88
|
n_parameters=355_000_000,
|
|
89
|
+
n_embedding_parameters=51_202_048,
|
|
87
90
|
memory_usage_mb=1355,
|
|
88
91
|
embed_dim=1024,
|
|
89
92
|
license="mit",
|
|
@@ -236,6 +236,7 @@ F2LLM_0B6 = ModelMeta(
|
|
|
236
236
|
revision="36416618b83d4bd84a8ca30c2ee01ed518f9f2e7",
|
|
237
237
|
release_date="2025-09-18",
|
|
238
238
|
n_parameters=595_776_512,
|
|
239
|
+
n_embedding_parameters=None,
|
|
239
240
|
memory_usage_mb=1137,
|
|
240
241
|
embed_dim=1024,
|
|
241
242
|
license="apache-2.0",
|
|
@@ -266,6 +267,7 @@ F2LLM_1B7 = ModelMeta(
|
|
|
266
267
|
revision="fdce0e09655f42cea26f7f66f5a70cd4507ea45c",
|
|
267
268
|
release_date="2025-09-18",
|
|
268
269
|
n_parameters=1_720_574_976,
|
|
270
|
+
n_embedding_parameters=None,
|
|
269
271
|
memory_usage_mb=3282,
|
|
270
272
|
embed_dim=2560,
|
|
271
273
|
license="apache-2.0",
|
|
@@ -296,6 +298,7 @@ F2LLM_4B = ModelMeta(
|
|
|
296
298
|
revision="9fe95901ed2b6b59dd7673d6e93c9d76766a1e25",
|
|
297
299
|
release_date="2025-09-18",
|
|
298
300
|
n_parameters=4_021_774_336,
|
|
301
|
+
n_embedding_parameters=None,
|
|
299
302
|
memory_usage_mb=7672,
|
|
300
303
|
embed_dim=2560,
|
|
301
304
|
license="apache-2.0",
|
|
@@ -318,6 +321,7 @@ C2LLM_0B5 = ModelMeta(
|
|
|
318
321
|
release_date="2025-12-22",
|
|
319
322
|
languages=c2llm_languages,
|
|
320
323
|
n_parameters=497252096,
|
|
324
|
+
n_embedding_parameters=None,
|
|
321
325
|
memory_usage_mb=948.0,
|
|
322
326
|
max_tokens=32768,
|
|
323
327
|
embed_dim=896,
|
|
@@ -346,6 +350,7 @@ C2LLM_7B = ModelMeta(
|
|
|
346
350
|
release_date="2025-12-22",
|
|
347
351
|
languages=c2llm_languages,
|
|
348
352
|
n_parameters=7667028992,
|
|
353
|
+
n_embedding_parameters=None,
|
|
349
354
|
memory_usage_mb=14624.0,
|
|
350
355
|
max_tokens=32768,
|
|
351
356
|
embed_dim=3584,
|
|
@@ -28,6 +28,7 @@ codesage_large = ModelMeta(
|
|
|
28
28
|
release_date="2024-02-03",
|
|
29
29
|
modalities=["text"],
|
|
30
30
|
n_parameters=1_300_000_000,
|
|
31
|
+
n_embedding_parameters=100_667_392,
|
|
31
32
|
memory_usage_mb=4959,
|
|
32
33
|
max_tokens=2048,
|
|
33
34
|
embed_dim=2048,
|
|
@@ -55,6 +56,7 @@ codesage_base = ModelMeta(
|
|
|
55
56
|
release_date="2024-02-03",
|
|
56
57
|
modalities=["text"],
|
|
57
58
|
n_parameters=356_000_000,
|
|
59
|
+
n_embedding_parameters=50_333_696,
|
|
58
60
|
memory_usage_mb=1358,
|
|
59
61
|
max_tokens=2048,
|
|
60
62
|
embed_dim=1024,
|
|
@@ -82,6 +84,7 @@ codesage_small = ModelMeta(
|
|
|
82
84
|
release_date="2024-02-03",
|
|
83
85
|
modalities=["text"],
|
|
84
86
|
n_parameters=130_000_000,
|
|
87
|
+
n_embedding_parameters=50_333_696,
|
|
85
88
|
memory_usage_mb=496,
|
|
86
89
|
max_tokens=2048,
|
|
87
90
|
embed_dim=1024,
|
|
@@ -392,6 +392,7 @@ cohere_mult_3 = ModelMeta(
|
|
|
392
392
|
revision="1",
|
|
393
393
|
release_date="2023-11-02",
|
|
394
394
|
n_parameters=None,
|
|
395
|
+
n_embedding_parameters=None,
|
|
395
396
|
memory_usage_mb=None,
|
|
396
397
|
max_tokens=None,
|
|
397
398
|
embed_dim=512,
|
|
@@ -418,6 +419,7 @@ cohere_eng_3 = ModelMeta(
|
|
|
418
419
|
revision="1",
|
|
419
420
|
release_date="2023-11-02",
|
|
420
421
|
n_parameters=None,
|
|
422
|
+
n_embedding_parameters=None,
|
|
421
423
|
memory_usage_mb=None,
|
|
422
424
|
max_tokens=512,
|
|
423
425
|
embed_dim=1024,
|
|
@@ -443,6 +445,7 @@ cohere_mult_light_3 = ModelMeta(
|
|
|
443
445
|
reference="https://cohere.com/blog/introducing-embed-v3",
|
|
444
446
|
release_date="2023-11-02",
|
|
445
447
|
n_parameters=None,
|
|
448
|
+
n_embedding_parameters=None,
|
|
446
449
|
memory_usage_mb=None,
|
|
447
450
|
max_tokens=512,
|
|
448
451
|
embed_dim=384,
|
|
@@ -468,6 +471,7 @@ cohere_eng_light_3 = ModelMeta(
|
|
|
468
471
|
revision="1",
|
|
469
472
|
release_date="2023-11-02",
|
|
470
473
|
n_parameters=None,
|
|
474
|
+
n_embedding_parameters=None,
|
|
471
475
|
memory_usage_mb=None,
|
|
472
476
|
max_tokens=512,
|
|
473
477
|
embed_dim=384,
|
|
@@ -391,6 +391,7 @@ cohere_mult_3 = ModelMeta(
|
|
|
391
391
|
revision="1",
|
|
392
392
|
release_date="2024-10-24",
|
|
393
393
|
n_parameters=None,
|
|
394
|
+
n_embedding_parameters=None,
|
|
394
395
|
memory_usage_mb=None,
|
|
395
396
|
max_tokens=None,
|
|
396
397
|
embed_dim=1024,
|
|
@@ -415,6 +416,7 @@ cohere_eng_3 = ModelMeta(
|
|
|
415
416
|
revision="1",
|
|
416
417
|
release_date="2024-10-24",
|
|
417
418
|
n_parameters=None,
|
|
419
|
+
n_embedding_parameters=None,
|
|
418
420
|
memory_usage_mb=None,
|
|
419
421
|
max_tokens=None,
|
|
420
422
|
embed_dim=1024,
|
|
@@ -439,6 +441,7 @@ cohere_embed_v4_multimodal = ModelMeta(
|
|
|
439
441
|
revision="1",
|
|
440
442
|
release_date="2024-12-01",
|
|
441
443
|
n_parameters=None,
|
|
444
|
+
n_embedding_parameters=None,
|
|
442
445
|
memory_usage_mb=None,
|
|
443
446
|
max_tokens=128000,
|
|
444
447
|
embed_dim=1536,
|
|
@@ -463,6 +466,7 @@ cohere_embed_v4_multimodal_binary = ModelMeta(
|
|
|
463
466
|
revision="1",
|
|
464
467
|
release_date="2024-12-01",
|
|
465
468
|
n_parameters=None,
|
|
469
|
+
n_embedding_parameters=None,
|
|
466
470
|
memory_usage_mb=None,
|
|
467
471
|
max_tokens=128000,
|
|
468
472
|
embed_dim=1536,
|
|
@@ -488,6 +492,7 @@ cohere_embed_v4_multimodal_int8 = ModelMeta(
|
|
|
488
492
|
revision="1",
|
|
489
493
|
release_date="2024-12-01",
|
|
490
494
|
n_parameters=None,
|
|
495
|
+
n_embedding_parameters=None,
|
|
491
496
|
memory_usage_mb=None,
|
|
492
497
|
max_tokens=128000,
|
|
493
498
|
embed_dim=1536,
|
|
@@ -220,6 +220,7 @@ colpali_v1_1 = ModelMeta(
|
|
|
220
220
|
release_date="2024-08-21",
|
|
221
221
|
modalities=["image", "text"],
|
|
222
222
|
n_parameters=2_920_000_000,
|
|
223
|
+
n_embedding_parameters=None,
|
|
223
224
|
memory_usage_mb=4700,
|
|
224
225
|
max_tokens=16384,
|
|
225
226
|
embed_dim=128,
|
|
@@ -247,6 +248,7 @@ colpali_v1_2 = ModelMeta(
|
|
|
247
248
|
release_date="2024-08-26",
|
|
248
249
|
modalities=["image", "text"],
|
|
249
250
|
n_parameters=2_920_000_000,
|
|
251
|
+
n_embedding_parameters=None,
|
|
250
252
|
memory_usage_mb=4700,
|
|
251
253
|
max_tokens=16384,
|
|
252
254
|
embed_dim=128,
|
|
@@ -274,6 +276,7 @@ colpali_v1_3 = ModelMeta(
|
|
|
274
276
|
release_date="2024-11-01",
|
|
275
277
|
modalities=["image", "text"],
|
|
276
278
|
n_parameters=2_920_000_000,
|
|
279
|
+
n_embedding_parameters=None,
|
|
277
280
|
memory_usage_mb=4700,
|
|
278
281
|
max_tokens=16384,
|
|
279
282
|
embed_dim=128,
|
|
@@ -224,6 +224,7 @@ colqwen2 = ModelMeta(
|
|
|
224
224
|
release_date="2025-11-03",
|
|
225
225
|
modalities=["image", "text"],
|
|
226
226
|
n_parameters=2_210_000_000,
|
|
227
|
+
n_embedding_parameters=None,
|
|
227
228
|
memory_usage_mb=7200,
|
|
228
229
|
max_tokens=32768,
|
|
229
230
|
embed_dim=128,
|
|
@@ -251,6 +252,7 @@ colqwen2_5 = ModelMeta(
|
|
|
251
252
|
release_date="2025-01-31",
|
|
252
253
|
modalities=["image", "text"],
|
|
253
254
|
n_parameters=3_000_000_000,
|
|
255
|
+
n_embedding_parameters=None,
|
|
254
256
|
memory_usage_mb=7200,
|
|
255
257
|
max_tokens=128000,
|
|
256
258
|
embed_dim=128,
|
|
@@ -295,6 +297,7 @@ colqwen3_8b = ModelMeta(
|
|
|
295
297
|
release_date="2025-11-26",
|
|
296
298
|
modalities=["image", "text"],
|
|
297
299
|
n_parameters=8_000_000_000,
|
|
300
|
+
n_embedding_parameters=None,
|
|
298
301
|
memory_usage_mb=16724,
|
|
299
302
|
max_tokens=262144,
|
|
300
303
|
embed_dim=320,
|
|
@@ -319,6 +322,7 @@ colqwen3_4b = ModelMeta(
|
|
|
319
322
|
release_date="2025-11-26",
|
|
320
323
|
modalities=["image", "text"],
|
|
321
324
|
n_parameters=4_000_000_000,
|
|
325
|
+
n_embedding_parameters=None,
|
|
322
326
|
memory_usage_mb=8466,
|
|
323
327
|
max_tokens=262144,
|
|
324
328
|
embed_dim=320,
|
|
@@ -365,6 +369,7 @@ colnomic_3b = ModelMeta(
|
|
|
365
369
|
release_date="2025-03-31",
|
|
366
370
|
modalities=["image", "text"],
|
|
367
371
|
n_parameters=3_000_000_000,
|
|
372
|
+
n_embedding_parameters=None,
|
|
368
373
|
memory_usage_mb=7200,
|
|
369
374
|
max_tokens=128000,
|
|
370
375
|
embed_dim=128,
|
|
@@ -430,6 +435,7 @@ evoqwen25_vl_retriever_3b_v1 = ModelMeta(
|
|
|
430
435
|
release_date="2025-11-04",
|
|
431
436
|
modalities=["image", "text"],
|
|
432
437
|
n_parameters=3_000_000_000,
|
|
438
|
+
n_embedding_parameters=None,
|
|
433
439
|
memory_usage_mb=7200,
|
|
434
440
|
max_tokens=128000,
|
|
435
441
|
embed_dim=128,
|
|
@@ -456,6 +462,7 @@ evoqwen25_vl_retriever_7b_v1 = ModelMeta(
|
|
|
456
462
|
release_date="2025-11-04",
|
|
457
463
|
modalities=["image", "text"],
|
|
458
464
|
n_parameters=7_000_000_000,
|
|
465
|
+
n_embedding_parameters=None,
|
|
459
466
|
memory_usage_mb=14400,
|
|
460
467
|
max_tokens=128000,
|
|
461
468
|
embed_dim=128,
|
|
@@ -60,6 +60,7 @@ colsmol_256m = ModelMeta(
|
|
|
60
60
|
release_date="2025-01-22",
|
|
61
61
|
modalities=["image", "text"],
|
|
62
62
|
n_parameters=256_000_000,
|
|
63
|
+
n_embedding_parameters=None,
|
|
63
64
|
memory_usage_mb=800,
|
|
64
65
|
max_tokens=8192,
|
|
65
66
|
embed_dim=128,
|
|
@@ -87,6 +88,7 @@ colsmol_500m = ModelMeta(
|
|
|
87
88
|
release_date="2025-01-22",
|
|
88
89
|
modalities=["image", "text"],
|
|
89
90
|
n_parameters=500_000_000,
|
|
91
|
+
n_embedding_parameters=None,
|
|
90
92
|
memory_usage_mb=1200,
|
|
91
93
|
max_tokens=8192,
|
|
92
94
|
embed_dim=128,
|
|
@@ -117,6 +117,7 @@ dinov2_small = ModelMeta(
|
|
|
117
117
|
release_date="2023-07-18",
|
|
118
118
|
modalities=["image"],
|
|
119
119
|
n_parameters=22_100_000,
|
|
120
|
+
n_embedding_parameters=None,
|
|
120
121
|
memory_usage_mb=84,
|
|
121
122
|
max_tokens=None,
|
|
122
123
|
embed_dim=384,
|
|
@@ -148,6 +149,7 @@ dinov2_base = ModelMeta(
|
|
|
148
149
|
release_date="2023-07-18",
|
|
149
150
|
modalities=["image"],
|
|
150
151
|
n_parameters=86_600_000,
|
|
152
|
+
n_embedding_parameters=None,
|
|
151
153
|
memory_usage_mb=330,
|
|
152
154
|
max_tokens=None,
|
|
153
155
|
embed_dim=768,
|
|
@@ -179,6 +181,7 @@ dinov2_large = ModelMeta(
|
|
|
179
181
|
release_date="2023-07-18",
|
|
180
182
|
modalities=["image"],
|
|
181
183
|
n_parameters=304_000_000,
|
|
184
|
+
n_embedding_parameters=None,
|
|
182
185
|
memory_usage_mb=1161,
|
|
183
186
|
max_tokens=None,
|
|
184
187
|
embed_dim=1024,
|
|
@@ -210,6 +213,7 @@ dinov2_giant = ModelMeta(
|
|
|
210
213
|
release_date="2023-07-18",
|
|
211
214
|
modalities=["image"],
|
|
212
215
|
n_parameters=1_140_000_000,
|
|
216
|
+
n_embedding_parameters=None,
|
|
213
217
|
memory_usage_mb=4335,
|
|
214
218
|
max_tokens=None,
|
|
215
219
|
embed_dim=1536,
|
|
@@ -245,6 +249,7 @@ webssl_dino300m_full2b = ModelMeta(
|
|
|
245
249
|
release_date="2025-04-24",
|
|
246
250
|
modalities=["image"],
|
|
247
251
|
n_parameters=304_000_000,
|
|
252
|
+
n_embedding_parameters=None,
|
|
248
253
|
memory_usage_mb=1158,
|
|
249
254
|
max_tokens=None,
|
|
250
255
|
embed_dim=1024,
|
|
@@ -276,6 +281,7 @@ webssl_dino1b_full2b = ModelMeta(
|
|
|
276
281
|
release_date="2025-04-24",
|
|
277
282
|
modalities=["image"],
|
|
278
283
|
n_parameters=1_130_000_000,
|
|
284
|
+
n_embedding_parameters=None,
|
|
279
285
|
memory_usage_mb=4329,
|
|
280
286
|
max_tokens=None,
|
|
281
287
|
embed_dim=1536,
|
|
@@ -307,6 +313,7 @@ webssl_dino2b_full2b = ModelMeta(
|
|
|
307
313
|
release_date="2025-04-24",
|
|
308
314
|
modalities=["image"],
|
|
309
315
|
n_parameters=2_080_000_000,
|
|
316
|
+
n_embedding_parameters=None,
|
|
310
317
|
memory_usage_mb=7951,
|
|
311
318
|
max_tokens=None,
|
|
312
319
|
embed_dim=2688,
|
|
@@ -338,6 +345,7 @@ webssl_dino3b_full2b = ModelMeta(
|
|
|
338
345
|
release_date="2025-04-24",
|
|
339
346
|
modalities=["image"],
|
|
340
347
|
n_parameters=3_000_000_000,
|
|
348
|
+
n_embedding_parameters=None,
|
|
341
349
|
memory_usage_mb=11247,
|
|
342
350
|
max_tokens=None,
|
|
343
351
|
embed_dim=3072,
|
|
@@ -369,6 +377,7 @@ webssl_dino5b_full2b = ModelMeta(
|
|
|
369
377
|
release_date="2025-04-24",
|
|
370
378
|
modalities=["image"],
|
|
371
379
|
n_parameters=5_000_000_000,
|
|
380
|
+
n_embedding_parameters=None,
|
|
372
381
|
memory_usage_mb=18838,
|
|
373
382
|
max_tokens=None,
|
|
374
383
|
embed_dim=3584,
|
|
@@ -400,6 +409,7 @@ webssl_dino7b_full8b_224 = ModelMeta(
|
|
|
400
409
|
release_date="2025-04-24",
|
|
401
410
|
modalities=["image"],
|
|
402
411
|
n_parameters=7_000_000_000,
|
|
412
|
+
n_embedding_parameters=None,
|
|
403
413
|
memory_usage_mb=24605,
|
|
404
414
|
max_tokens=None,
|
|
405
415
|
embed_dim=4096,
|
|
@@ -431,6 +441,7 @@ webssl_dino7b_full8b_378 = ModelMeta(
|
|
|
431
441
|
release_date="2025-04-24",
|
|
432
442
|
modalities=["image"],
|
|
433
443
|
n_parameters=7_000_000_000,
|
|
444
|
+
n_embedding_parameters=None,
|
|
434
445
|
memory_usage_mb=24613,
|
|
435
446
|
max_tokens=None,
|
|
436
447
|
embed_dim=4096,
|
|
@@ -462,6 +473,7 @@ webssl_dino7b_full8b_518 = ModelMeta(
|
|
|
462
473
|
release_date="2025-04-24",
|
|
463
474
|
modalities=["image"],
|
|
464
475
|
n_parameters=7_000_000_000,
|
|
476
|
+
n_embedding_parameters=None,
|
|
465
477
|
memory_usage_mb=24623,
|
|
466
478
|
max_tokens=None,
|
|
467
479
|
embed_dim=4096,
|
|
@@ -494,6 +506,7 @@ webssl_dino2b_light2b = ModelMeta(
|
|
|
494
506
|
release_date="2025-04-24",
|
|
495
507
|
modalities=["image"],
|
|
496
508
|
n_parameters=2_000_000_000,
|
|
509
|
+
n_embedding_parameters=None,
|
|
497
510
|
memory_usage_mb=7951,
|
|
498
511
|
max_tokens=None,
|
|
499
512
|
embed_dim=2688,
|
|
@@ -525,6 +538,7 @@ webssl_dino2b_heavy2b = ModelMeta(
|
|
|
525
538
|
release_date="2025-04-24",
|
|
526
539
|
modalities=["image"],
|
|
527
540
|
n_parameters=2_000_000_000,
|
|
541
|
+
n_embedding_parameters=None,
|
|
528
542
|
memory_usage_mb=7951,
|
|
529
543
|
max_tokens=None,
|
|
530
544
|
embed_dim=2688,
|
|
@@ -556,6 +570,7 @@ webssl_dino3b_light2b = ModelMeta(
|
|
|
556
570
|
release_date="2025-04-24",
|
|
557
571
|
modalities=["image"],
|
|
558
572
|
n_parameters=3_000_000_000,
|
|
573
|
+
n_embedding_parameters=None,
|
|
559
574
|
memory_usage_mb=11247,
|
|
560
575
|
max_tokens=None,
|
|
561
576
|
embed_dim=3072,
|
|
@@ -587,6 +602,7 @@ webssl_dino3b_heavy2b = ModelMeta(
|
|
|
587
602
|
release_date="2025-04-24",
|
|
588
603
|
modalities=["image"],
|
|
589
604
|
n_parameters=3_000_000_000,
|
|
605
|
+
n_embedding_parameters=None,
|
|
590
606
|
memory_usage_mb=11247,
|
|
591
607
|
max_tokens=None,
|
|
592
608
|
embed_dim=3072,
|
|
@@ -618,6 +634,7 @@ webssl_mae300m_full2b = ModelMeta(
|
|
|
618
634
|
release_date="2025-04-24",
|
|
619
635
|
modalities=["image"],
|
|
620
636
|
n_parameters=304_000_000,
|
|
637
|
+
n_embedding_parameters=None,
|
|
621
638
|
memory_usage_mb=1161,
|
|
622
639
|
max_tokens=None,
|
|
623
640
|
embed_dim=1024,
|
|
@@ -649,6 +666,7 @@ webssl_mae700m_full2b = ModelMeta(
|
|
|
649
666
|
release_date="2025-04-24",
|
|
650
667
|
modalities=["image"],
|
|
651
668
|
n_parameters=700_000_000,
|
|
669
|
+
n_embedding_parameters=None,
|
|
652
670
|
memory_usage_mb=2412,
|
|
653
671
|
max_tokens=None,
|
|
654
672
|
embed_dim=1280,
|
|
@@ -680,6 +698,7 @@ webssl_mae1b_full2b = ModelMeta(
|
|
|
680
698
|
release_date="2025-04-24",
|
|
681
699
|
modalities=["image"],
|
|
682
700
|
n_parameters=1_000_000_000,
|
|
701
|
+
n_embedding_parameters=None,
|
|
683
702
|
memory_usage_mb=4337,
|
|
684
703
|
max_tokens=None,
|
|
685
704
|
embed_dim=1536,
|
|
@@ -57,6 +57,7 @@ e5_instruct = ModelMeta(
|
|
|
57
57
|
use_instructions=True,
|
|
58
58
|
reference="https://huggingface.co/intfloat/multilingual-e5-large-instruct",
|
|
59
59
|
n_parameters=560_000_000,
|
|
60
|
+
n_embedding_parameters=256_002_048,
|
|
60
61
|
memory_usage_mb=1068,
|
|
61
62
|
embed_dim=1024,
|
|
62
63
|
license="mit",
|
|
@@ -102,6 +103,7 @@ e5_mistral = ModelMeta(
|
|
|
102
103
|
use_instructions=True,
|
|
103
104
|
reference="https://huggingface.co/intfloat/e5-mistral-7b-instruct",
|
|
104
105
|
n_parameters=7_111_000_000,
|
|
106
|
+
n_embedding_parameters=131_072_000,
|
|
105
107
|
memory_usage_mb=13563,
|
|
106
108
|
embed_dim=4096,
|
|
107
109
|
license="mit",
|
|
@@ -145,6 +147,7 @@ zeta_alpha_ai__zeta_alpha_e5_mistral = ModelMeta(
|
|
|
145
147
|
release_date="2024-08-30",
|
|
146
148
|
languages=["eng-Latn"],
|
|
147
149
|
n_parameters=7110660096,
|
|
150
|
+
n_embedding_parameters=None,
|
|
148
151
|
memory_usage_mb=13563,
|
|
149
152
|
max_tokens=32768.0,
|
|
150
153
|
embed_dim=4096,
|
|
@@ -228,6 +231,7 @@ BeastyZ__e5_R_mistral_7b = ModelMeta(
|
|
|
228
231
|
release_date="2024-06-28",
|
|
229
232
|
languages=["eng-Latn"],
|
|
230
233
|
n_parameters=7241732096,
|
|
234
|
+
n_embedding_parameters=131_072_000,
|
|
231
235
|
memory_usage_mb=27625,
|
|
232
236
|
max_tokens=32768.0,
|
|
233
237
|
embed_dim=4096,
|
|
@@ -76,6 +76,7 @@ e5_mult_small = ModelMeta(
|
|
|
76
76
|
revision="fd1525a9fd15316a2d503bf26ab031a61d056e98",
|
|
77
77
|
release_date=E5_PAPER_RELEASE_DATE,
|
|
78
78
|
n_parameters=118_000_000,
|
|
79
|
+
n_embedding_parameters=96_014_208,
|
|
79
80
|
memory_usage_mb=449,
|
|
80
81
|
embed_dim=384,
|
|
81
82
|
license="mit",
|
|
@@ -103,6 +104,7 @@ e5_mult_base = ModelMeta(
|
|
|
103
104
|
revision="d13f1b27baf31030b7fd040960d60d909913633f",
|
|
104
105
|
release_date=E5_PAPER_RELEASE_DATE,
|
|
105
106
|
n_parameters=278_000_000,
|
|
107
|
+
n_embedding_parameters=192_001_536,
|
|
106
108
|
memory_usage_mb=1061,
|
|
107
109
|
embed_dim=768,
|
|
108
110
|
license="mit",
|
|
@@ -130,6 +132,7 @@ e5_mult_large = ModelMeta(
|
|
|
130
132
|
revision="ab10c1a7f42e74530fe7ae5be82e6d4f11a719eb",
|
|
131
133
|
release_date=E5_PAPER_RELEASE_DATE,
|
|
132
134
|
n_parameters=560_000_000,
|
|
135
|
+
n_embedding_parameters=256_002_048,
|
|
133
136
|
memory_usage_mb=2136,
|
|
134
137
|
embed_dim=1024,
|
|
135
138
|
license="mit",
|
|
@@ -157,6 +160,7 @@ e5_eng_small_v2 = ModelMeta(
|
|
|
157
160
|
revision="dca8b1a9dae0d4575df2bf423a5edb485a431236",
|
|
158
161
|
release_date=E5_PAPER_RELEASE_DATE,
|
|
159
162
|
n_parameters=33_000_000,
|
|
163
|
+
n_embedding_parameters=11_720_448,
|
|
160
164
|
memory_usage_mb=127,
|
|
161
165
|
embed_dim=384,
|
|
162
166
|
license="mit",
|
|
@@ -184,6 +188,7 @@ e5_eng_small = ModelMeta(
|
|
|
184
188
|
revision="e272f3049e853b47cb5ca3952268c6662abda68f",
|
|
185
189
|
release_date=E5_PAPER_RELEASE_DATE,
|
|
186
190
|
n_parameters=33_000_000,
|
|
191
|
+
n_embedding_parameters=11_720_448,
|
|
187
192
|
memory_usage_mb=127,
|
|
188
193
|
embed_dim=384,
|
|
189
194
|
license="mit",
|
|
@@ -211,6 +216,7 @@ e5_eng_base_v2 = ModelMeta(
|
|
|
211
216
|
revision="1c644c92ad3ba1efdad3f1451a637716616a20e8",
|
|
212
217
|
release_date=E5_PAPER_RELEASE_DATE,
|
|
213
218
|
n_parameters=109_000_000,
|
|
219
|
+
n_embedding_parameters=23_440_896,
|
|
214
220
|
memory_usage_mb=418,
|
|
215
221
|
embed_dim=768,
|
|
216
222
|
license="mit",
|
|
@@ -239,6 +245,7 @@ e5_eng_large_v2 = ModelMeta(
|
|
|
239
245
|
revision="b322e09026e4ea05f42beadf4d661fb4e101d311",
|
|
240
246
|
release_date=E5_PAPER_RELEASE_DATE,
|
|
241
247
|
n_parameters=335_000_000,
|
|
248
|
+
n_embedding_parameters=31_254_528,
|
|
242
249
|
memory_usage_mb=1278,
|
|
243
250
|
embed_dim=1024,
|
|
244
251
|
license="mit",
|
|
@@ -267,6 +274,7 @@ e5_large = ModelMeta(
|
|
|
267
274
|
revision="4dc6d853a804b9c8886ede6dda8a073b7dc08a81",
|
|
268
275
|
release_date="2022-12-26",
|
|
269
276
|
n_parameters=335_000_000,
|
|
277
|
+
n_embedding_parameters=31_254_528,
|
|
270
278
|
memory_usage_mb=1278,
|
|
271
279
|
embed_dim=1024,
|
|
272
280
|
license="apache-2.0",
|
|
@@ -295,6 +303,7 @@ e5_base = ModelMeta(
|
|
|
295
303
|
revision="b533fe4636f4a2507c08ddab40644d20b0006d6a",
|
|
296
304
|
release_date="2022-12-26",
|
|
297
305
|
n_parameters=109_000_000,
|
|
306
|
+
n_embedding_parameters=23_440_896,
|
|
298
307
|
memory_usage_mb=418,
|
|
299
308
|
embed_dim=768,
|
|
300
309
|
license="apache-2.0",
|
|
@@ -10,6 +10,7 @@ embedding_gemma_300m_scandi = ModelMeta(
|
|
|
10
10
|
revision="9f3307b9f601db564a9190cb475324d128dcfe86",
|
|
11
11
|
release_date="2025-10-17",
|
|
12
12
|
n_parameters=307_581_696,
|
|
13
|
+
n_embedding_parameters=None,
|
|
13
14
|
embed_dim=768,
|
|
14
15
|
max_tokens=2048,
|
|
15
16
|
license="apache-2.0",
|
|
@@ -43,6 +44,7 @@ qwen_scandi = ModelMeta(
|
|
|
43
44
|
revision="cf1e7ba36ebd3d605549d8f02930a18e17b54513",
|
|
44
45
|
release_date="2025-10-17",
|
|
45
46
|
n_parameters=595776512,
|
|
47
|
+
n_embedding_parameters=None,
|
|
46
48
|
memory_usage_mb=2272,
|
|
47
49
|
embed_dim=1024,
|
|
48
50
|
max_tokens=32768,
|
|
@@ -67,6 +69,7 @@ mmbert_scandi = ModelMeta(
|
|
|
67
69
|
revision="82d74c7a5d8e1ddf31b132865df2d16b2b0294ee",
|
|
68
70
|
release_date="2025-10-17",
|
|
69
71
|
n_parameters=306939648,
|
|
72
|
+
n_embedding_parameters=None,
|
|
70
73
|
memory_usage_mb=1171,
|
|
71
74
|
embed_dim=768,
|
|
72
75
|
max_tokens=8192,
|