mteb 2.7.3__py3-none-any.whl → 2.7.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/_create_dataloaders.py +47 -5
- mteb/_evaluators/any_sts_evaluator.py +2 -0
- mteb/_evaluators/clustering_evaluator.py +2 -0
- mteb/_evaluators/evaluator.py +2 -1
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +8 -1
- mteb/_evaluators/pair_classification_evaluator.py +3 -0
- mteb/_evaluators/retrieval_evaluator.py +3 -0
- mteb/_evaluators/sklearn_evaluator.py +6 -1
- mteb/_evaluators/text/bitext_mining_evaluator.py +2 -0
- mteb/_evaluators/text/summarization_evaluator.py +2 -0
- mteb/_evaluators/zeroshot_classification_evaluator.py +2 -0
- mteb/abstasks/abstask.py +31 -12
- mteb/abstasks/classification.py +10 -3
- mteb/abstasks/clustering.py +6 -2
- mteb/abstasks/clustering_legacy.py +8 -2
- mteb/abstasks/image/image_text_pair_classification.py +6 -2
- mteb/abstasks/multilabel_classification.py +2 -0
- mteb/abstasks/pair_classification.py +8 -2
- mteb/abstasks/retrieval.py +27 -12
- mteb/abstasks/retrieval_dataset_loaders.py +29 -19
- mteb/abstasks/sts.py +10 -3
- mteb/abstasks/text/bitext_mining.py +9 -5
- mteb/abstasks/text/reranking.py +2 -2
- mteb/abstasks/text/summarization.py +2 -1
- mteb/abstasks/zeroshot_classification.py +8 -2
- mteb/benchmarks/benchmarks/__init__.py +2 -0
- mteb/benchmarks/benchmarks/benchmarks.py +41 -2
- mteb/descriptive_stats/Retrieval/BrightAopsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightLeetcodeRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQAQuestionsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQATheoremsRetrieval.json +35 -0
- mteb/evaluate.py +10 -2
- mteb/models/model_implementations/align_models.py +1 -0
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +2 -0
- mteb/models/model_implementations/ara_models.py +1 -0
- mteb/models/model_implementations/arctic_models.py +8 -0
- mteb/models/model_implementations/b1ade_models.py +1 -0
- mteb/models/model_implementations/bedrock_models.py +4 -0
- mteb/models/model_implementations/bge_models.py +40 -1
- mteb/models/model_implementations/bica_model.py +1 -0
- mteb/models/model_implementations/blip2_models.py +2 -0
- mteb/models/model_implementations/blip_models.py +8 -0
- mteb/models/model_implementations/bm25.py +10 -5
- mteb/models/model_implementations/bmretriever_models.py +4 -0
- mteb/models/model_implementations/cadet_models.py +1 -0
- mteb/models/model_implementations/cde_models.py +2 -0
- mteb/models/model_implementations/clip_models.py +3 -0
- mteb/models/model_implementations/clips_models.py +3 -0
- mteb/models/model_implementations/codefuse_models.py +5 -0
- mteb/models/model_implementations/codesage_models.py +3 -0
- mteb/models/model_implementations/cohere_models.py +4 -0
- mteb/models/model_implementations/cohere_v.py +5 -0
- mteb/models/model_implementations/colpali_models.py +3 -0
- mteb/models/model_implementations/colqwen_models.py +7 -0
- mteb/models/model_implementations/colsmol_models.py +2 -0
- mteb/models/model_implementations/conan_models.py +1 -0
- mteb/models/model_implementations/dino_models.py +19 -0
- mteb/models/model_implementations/e5_instruct.py +4 -0
- mteb/models/model_implementations/e5_models.py +9 -0
- mteb/models/model_implementations/e5_v.py +1 -0
- mteb/models/model_implementations/eagerworks_models.py +1 -0
- mteb/models/model_implementations/emillykkejensen_models.py +3 -0
- mteb/models/model_implementations/en_code_retriever.py +1 -0
- mteb/models/model_implementations/euler_models.py +1 -0
- mteb/models/model_implementations/evaclip_models.py +4 -0
- mteb/models/model_implementations/fa_models.py +9 -0
- mteb/models/model_implementations/facebookai.py +2 -0
- mteb/models/model_implementations/geogpt_models.py +1 -0
- mteb/models/model_implementations/gme_v_models.py +2 -0
- mteb/models/model_implementations/google_models.py +5 -0
- mteb/models/model_implementations/granite_vision_embedding_models.py +1 -0
- mteb/models/model_implementations/gritlm_models.py +2 -0
- mteb/models/model_implementations/gte_models.py +9 -0
- mteb/models/model_implementations/hinvec_models.py +1 -0
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +6 -0
- mteb/models/model_implementations/inf_models.py +2 -0
- mteb/models/model_implementations/jasper_models.py +2 -0
- mteb/models/model_implementations/jina_clip.py +1 -0
- mteb/models/model_implementations/jina_models.py +7 -0
- mteb/models/model_implementations/kalm_models.py +6 -0
- mteb/models/model_implementations/kblab.py +1 -0
- mteb/models/model_implementations/kennethenevoldsen_models.py +2 -0
- mteb/models/model_implementations/kfst.py +1 -0
- mteb/models/model_implementations/kowshik24_models.py +1 -0
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +1 -0
- mteb/models/model_implementations/linq_models.py +1 -0
- mteb/models/model_implementations/listconranker.py +1 -0
- mteb/models/model_implementations/llm2clip_models.py +3 -0
- mteb/models/model_implementations/llm2vec_models.py +8 -0
- mteb/models/model_implementations/mcinext_models.py +3 -0
- mteb/models/model_implementations/mdbr_models.py +2 -0
- mteb/models/model_implementations/misc_models.py +63 -0
- mteb/models/model_implementations/mixedbread_ai_models.py +3 -0
- mteb/models/model_implementations/mme5_models.py +2 -1
- mteb/models/model_implementations/moco_models.py +2 -0
- mteb/models/model_implementations/mod_models.py +1 -0
- mteb/models/model_implementations/model2vec_models.py +13 -0
- mteb/models/model_implementations/moka_models.py +3 -0
- mteb/models/model_implementations/nbailab.py +3 -0
- mteb/models/model_implementations/no_instruct_sentence_models.py +1 -0
- mteb/models/model_implementations/nomic_models.py +6 -0
- mteb/models/model_implementations/nomic_models_vision.py +1 -0
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +2 -0
- mteb/models/model_implementations/nvidia_models.py +3 -0
- mteb/models/model_implementations/octen_models.py +2 -0
- mteb/models/model_implementations/openai_models.py +5 -0
- mteb/models/model_implementations/openclip_models.py +8 -0
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -0
- mteb/models/model_implementations/ops_moa_models.py +2 -0
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -0
- mteb/models/model_implementations/pawan_models.py +1 -0
- mteb/models/model_implementations/piccolo_models.py +2 -0
- mteb/models/model_implementations/promptriever_models.py +4 -0
- mteb/models/model_implementations/pylate_models.py +13 -0
- mteb/models/model_implementations/qodo_models.py +2 -0
- mteb/models/model_implementations/qtack_models.py +1 -0
- mteb/models/model_implementations/qwen3_models.py +3 -0
- mteb/models/model_implementations/qzhou_models.py +2 -0
- mteb/models/model_implementations/rasgaard_models.py +1 -0
- mteb/models/model_implementations/reasonir_model.py +65 -0
- mteb/models/model_implementations/repllama_models.py +2 -0
- mteb/models/model_implementations/rerankers_custom.py +3 -0
- mteb/models/model_implementations/rerankers_monot5_based.py +14 -0
- mteb/models/model_implementations/richinfoai_models.py +1 -0
- mteb/models/model_implementations/ru_sentence_models.py +20 -0
- mteb/models/model_implementations/ruri_models.py +10 -0
- mteb/models/model_implementations/salesforce_models.py +3 -0
- mteb/models/model_implementations/samilpwc_models.py +1 -0
- mteb/models/model_implementations/sarashina_embedding_models.py +2 -0
- mteb/models/model_implementations/searchmap_models.py +1 -0
- mteb/models/model_implementations/seed_1_6_embedding_models.py +1 -0
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +1 -0
- mteb/models/model_implementations/seed_models.py +1 -0
- mteb/models/model_implementations/sentence_transformers_models.py +18 -0
- mteb/models/model_implementations/shuu_model.py +1 -0
- mteb/models/model_implementations/siglip_models.py +10 -0
- mteb/models/model_implementations/sonar_models.py +2 -1
- mteb/models/model_implementations/spartan8806_atles_champion.py +1 -0
- mteb/models/model_implementations/stella_models.py +6 -0
- mteb/models/model_implementations/tarka_models.py +2 -0
- mteb/models/model_implementations/text2vec_models.py +3 -0
- mteb/models/model_implementations/ua_sentence_models.py +1 -0
- mteb/models/model_implementations/uae_models.py +1 -0
- mteb/models/model_implementations/vdr_models.py +1 -0
- mteb/models/model_implementations/vi_vn_models.py +6 -0
- mteb/models/model_implementations/vista_models.py +2 -0
- mteb/models/model_implementations/vlm2vec_models.py +2 -0
- mteb/models/model_implementations/voyage_models.py +15 -0
- mteb/models/model_implementations/voyage_v.py +1 -0
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +1 -0
- mteb/models/model_implementations/yuan_models.py +1 -0
- mteb/models/model_implementations/yuan_models_en.py +1 -0
- mteb/models/model_meta.py +35 -2
- mteb/models/models_protocols.py +4 -0
- mteb/models/search_wrappers.py +12 -0
- mteb/tasks/bitext_mining/eng/pub_chem_smiles_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/fas/fa_mteb_summary_retrieval.py +3 -3
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/flores_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/in22_conv_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/in22_gen_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/norwegian_courts_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ntrex_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/roma_tales_bitext_mining.py +2 -2
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -1
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -1
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -1
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -1
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -1
- mteb/tasks/classification/bul/bulgarian_store_review_sentiment_classfication.py +1 -1
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -1
- mteb/tasks/classification/dan/dk_hate_classification.py +1 -1
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -1
- mteb/tasks/classification/ell/greek_legal_code_classification.py +1 -1
- mteb/tasks/classification/eng/dbpedia_classification.py +2 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -2
- mteb/tasks/classification/eng/toxic_conversations_classification.py +2 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +1 -1
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -1
- mteb/tasks/classification/eng/yelp_review_full_classification.py +2 -2
- mteb/tasks/classification/est/estonian_valence.py +1 -1
- mteb/tasks/classification/fas/fa_mteb_classification.py +6 -6
- mteb/tasks/classification/fas/persian_food_sentiment_classification.py +1 -1
- mteb/tasks/classification/fil/filipino_shopee_reviews_classification.py +1 -1
- mteb/tasks/classification/fin/fin_toxicity_classification.py +1 -1
- mteb/tasks/classification/fra/french_book_reviews.py +2 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -1
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -1
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -1
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +2 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -1
- mteb/tasks/classification/ita/dado_eval_coarse_classification.py +1 -1
- mteb/tasks/classification/ita/ita_casehold_classification.py +1 -1
- mteb/tasks/classification/ita/sardi_stance_classification.py +1 -1
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -1
- mteb/tasks/classification/jpn/wrime_classification.py +1 -1
- mteb/tasks/classification/kan/kannada_news_classification.py +2 -2
- mteb/tasks/classification/kor/klue_tc.py +2 -2
- mteb/tasks/classification/kor/kor_fin.py +1 -1
- mteb/tasks/classification/kor/kor_hate_classification.py +1 -1
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +1 -1
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -1
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/afri_senti_lang_classification.py +1 -1
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -1
- mteb/tasks/classification/multilingual/cyrillic_turkic_lang_classification.py +1 -1
- mteb/tasks/classification/multilingual/indic_nlp_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/masakha_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -1
- mteb/tasks/classification/multilingual/multilingual_sentiment_classification.py +1 -1
- mteb/tasks/classification/multilingual/scala_classification.py +1 -1
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -1
- mteb/tasks/classification/multilingual/turkic_classification.py +1 -1
- mteb/tasks/classification/multilingual/tweet_sentiment_classification.py +1 -1
- mteb/tasks/classification/nep/nepali_news_classification.py +2 -2
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +1 -1
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +1 -1
- mteb/tasks/classification/ory/odia_news_classification.py +2 -2
- mteb/tasks/classification/pan/punjabi_news_classification.py +1 -1
- mteb/tasks/classification/ron/moroco.py +1 -1
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -1
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -1
- mteb/tasks/classification/rus/georeview_classification.py +1 -1
- mteb/tasks/classification/rus/headline_classification.py +2 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +2 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +2 -2
- mteb/tasks/classification/rus/ru_sci_bench_grnti_classification.py +1 -1
- mteb/tasks/classification/rus/ru_sci_bench_oecd_classification.py +1 -1
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -1
- mteb/tasks/classification/san/sanskrit_shlokas_classification.py +1 -1
- mteb/tasks/classification/sin/sinhala_news_classification.py +2 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +2 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -1
- mteb/tasks/classification/spa/spanish_news_classification.py +2 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -1
- mteb/tasks/classification/tam/tamil_news_classification.py +2 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +2 -2
- mteb/tasks/classification/tha/wongnai_reviews_classification.py +1 -1
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +2 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -2
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -1
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -1
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +2 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -1
- mteb/tasks/clustering/deu/blurbs_clustering_p2p.py +1 -1
- mteb/tasks/clustering/deu/blurbs_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/arxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/arxiv_hierarchical_clustering.py +2 -2
- mteb/tasks/clustering/eng/big_patent_clustering.py +1 -1
- mteb/tasks/clustering/eng/biorxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/biorxiv_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/medrxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/medrxiv_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/reddit_clustering.py +1 -1
- mteb/tasks/clustering/eng/reddit_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/stack_exchange_clustering.py +1 -1
- mteb/tasks/clustering/eng/stack_exchange_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/twenty_newsgroups_clustering.py +1 -1
- mteb/tasks/clustering/fas/fa_mteb_clustering.py +4 -4
- mteb/tasks/clustering/fra/hal_clustering_s2s.py +2 -2
- mteb/tasks/clustering/multilingual/mlsum_clustering_p2p.py +2 -2
- mteb/tasks/clustering/multilingual/mlsum_clustering_s2s.py +2 -2
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -1
- mteb/tasks/clustering/multilingual/wiki_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nob/snl_clustering.py +1 -1
- mteb/tasks/clustering/nob/vg_clustering.py +1 -1
- mteb/tasks/clustering/pol/polish_clustering.py +3 -3
- mteb/tasks/clustering/rus/ru_sci_bench_grnti_clustering_p2p.py +1 -1
- mteb/tasks/clustering/rus/ru_sci_bench_oecd_clustering_p2p.py +1 -1
- mteb/tasks/clustering/zho/cmteb_clustering.py +4 -4
- mteb/tasks/image_text_pair_classification/eng/image_co_de.py +1 -1
- mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +1 -1
- mteb/tasks/instruction_reranking/multilingual/m_follow_ir.py +2 -2
- mteb/tasks/multichoice/eng/cv_bench.py +4 -4
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -1
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -1
- mteb/tasks/multilabel_classification/rus/ru_toixic_multilabelclassification_okmlcup.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -1
- mteb/tasks/pair_classification/ara/ar_entail.py +1 -1
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -1
- mteb/tasks/pair_classification/deu/false_friends_de_en_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_ai_sentence_paraphrase_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_smilespc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_synonym_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_wiki_paragraphs_pc.py +1 -1
- mteb/tasks/pair_classification/eng/sprint_duplicate_questions_pc.py +1 -1
- mteb/tasks/pair_classification/eng/twitter_sem_eval2015_pc.py +1 -1
- mteb/tasks/pair_classification/eng/twitter_url_corpus_pc.py +1 -1
- mteb/tasks/pair_classification/fas/fa_mteb_pair_classification.py +5 -5
- mteb/tasks/pair_classification/fas/fars_tail.py +2 -2
- mteb/tasks/pair_classification/hye/armenian_paraphrase_pc.py +1 -1
- mteb/tasks/pair_classification/ita/dis_co_tex_pair_classification.py +1 -1
- mteb/tasks/pair_classification/kor/klue_nli.py +1 -1
- mteb/tasks/pair_classification/multilingual/rte3.py +2 -2
- mteb/tasks/pair_classification/multilingual/xnli.py +1 -1
- mteb/tasks/pair_classification/pol/polish_pc.py +4 -4
- mteb/tasks/pair_classification/por/assin2_rte.py +1 -1
- mteb/tasks/pair_classification/por/sick_br_pc.py +1 -1
- mteb/tasks/pair_classification/rus/terra.py +2 -2
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -1
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -1
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -1
- mteb/tasks/pair_classification/zho/cmteb_pair_classification.py +2 -2
- mteb/tasks/retrieval/ara/sadeem_question_retrieval.py +1 -1
- mteb/tasks/retrieval/code/code_edit_search_retrieval.py +1 -1
- mteb/tasks/retrieval/code/code_rag.py +4 -4
- mteb/tasks/retrieval/code/code_search_net_cc_retrieval.py +1 -1
- mteb/tasks/retrieval/code/coir_code_search_net_retrieval.py +1 -1
- mteb/tasks/retrieval/code/ds1000_retrieval.py +1 -1
- mteb/tasks/retrieval/code/fresh_stack_retrieval.py +1 -1
- mteb/tasks/retrieval/code/human_eval_retrieval.py +1 -1
- mteb/tasks/retrieval/code/mbpp_retrieval.py +1 -1
- mteb/tasks/retrieval/code/wiki_sql_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +1 -1
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +1 -1
- mteb/tasks/retrieval/deu/german_gov_service_retrieval.py +1 -1
- mteb/tasks/retrieval/deu/german_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/ell/greek_civics_qa.py +1 -1
- mteb/tasks/retrieval/eng/__init__.py +42 -0
- mteb/tasks/retrieval/eng/bright_retrieval.py +10 -2
- mteb/tasks/retrieval/eng/bright_v1_1_retrieval.py +968 -0
- mteb/tasks/retrieval/eng/chat_doctor_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/fin_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/finance_bench_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hateful_memes_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hateful_memes_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hc3_finance_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_narrative_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_needle_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_passkey_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_summ_screen_fd_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_wikim_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lembqm_sum_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/memotion_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/memotion_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/ml_questions.py +1 -1
- mteb/tasks/retrieval/eng/nano_argu_ana_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_climate_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_db_pedia_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_fi_qa2018_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_hotpot_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_msmarco_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_nf_corpus_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_nq_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_quora_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_sci_fact_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_scidocs_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_touche2020_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/narrative_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/r2_med_retrieval.py +8 -8
- mteb/tasks/retrieval/eng/sci_mmir_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/sci_mmir_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +10 -10
- mteb/tasks/retrieval/fra/f_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/fra/syntec_retrieval.py +1 -1
- mteb/tasks/retrieval/hun/hun_sum2.py +1 -1
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt19.py +1 -1
- mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt21.py +1 -1
- mteb/tasks/retrieval/multilingual/cur_ev1_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/miracl_vision_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/mr_tidy_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -2
- mteb/tasks/retrieval/multilingual/statcan_dialogue_dataset_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/vdr_multilingual_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +14 -4
- mteb/tasks/retrieval/multilingual/wit_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/x_flickr30k_co_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/x_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/xm3600_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_android_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_english_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_gaming_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_gis_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_mathematica_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_physics_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_programmers_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_stats_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_tex_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_unix_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_webmasters_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_wordpress_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nob/norquad.py +1 -1
- mteb/tasks/retrieval/nob/snl_retrieval.py +1 -1
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -1
- mteb/tasks/retrieval/vie/vie_qu_ad_retrieval.py +1 -1
- mteb/tasks/sts/fao/faroese_sts.py +1 -1
- mteb/tasks/sts/fra/sick_fr_sts.py +1 -1
- mteb/tasks/sts/kor/klue_sts.py +1 -1
- mteb/tasks/sts/por/sick_br_sts.py +1 -1
- mteb/tasks/sts/rus/ru_para_phraser_sts.py +1 -1
- mteb/tasks/zeroshot_classification/eng/sci_mmir.py +1 -1
- {mteb-2.7.3.dist-info → mteb-2.7.5.dist-info}/METADATA +1 -1
- {mteb-2.7.3.dist-info → mteb-2.7.5.dist-info}/RECORD +434 -413
- {mteb-2.7.3.dist-info → mteb-2.7.5.dist-info}/WHEEL +0 -0
- {mteb-2.7.3.dist-info → mteb-2.7.5.dist-info}/entry_points.txt +0 -0
- {mteb-2.7.3.dist-info → mteb-2.7.5.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.7.3.dist-info → mteb-2.7.5.dist-info}/top_level.txt +0 -0
|
@@ -29,7 +29,7 @@ class FrenchBookReviews(AbsTaskClassification):
|
|
|
29
29
|
superseded_by="FrenchBookReviews.v2",
|
|
30
30
|
)
|
|
31
31
|
|
|
32
|
-
def dataset_transform(self):
|
|
32
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
33
33
|
self.dataset = self.dataset.rename_columns({"reader_review": "text"})
|
|
34
34
|
self.dataset = self.stratified_subsampling(
|
|
35
35
|
self.dataset, seed=self.seed, splits=["train"]
|
|
@@ -63,7 +63,7 @@ class FrenchBookReviewsV2(AbsTaskClassification):
|
|
|
63
63
|
adapted_from=["FrenchBookReviews"],
|
|
64
64
|
)
|
|
65
65
|
|
|
66
|
-
def dataset_transform(self):
|
|
66
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
67
67
|
self.dataset = self.stratified_subsampling(
|
|
68
68
|
self.dataset, seed=self.seed, splits=["train"]
|
|
69
69
|
)
|
|
@@ -35,7 +35,7 @@ class MovieReviewSentimentClassification(AbsTaskClassification):
|
|
|
35
35
|
superseded_by="MovieReviewSentimentClassification.v2",
|
|
36
36
|
)
|
|
37
37
|
|
|
38
|
-
def dataset_transform(self):
|
|
38
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
39
39
|
self.dataset = self.dataset.rename_column("review", "text")
|
|
40
40
|
self.dataset = self.stratified_subsampling(
|
|
41
41
|
self.dataset, seed=self.seed, splits=["validation", "test"]
|
|
@@ -75,7 +75,7 @@ class MovieReviewSentimentClassificationV2(AbsTaskClassification):
|
|
|
75
75
|
adapted_from=["MovieReviewSentimentClassification"],
|
|
76
76
|
)
|
|
77
77
|
|
|
78
|
-
def dataset_transform(self):
|
|
78
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
79
79
|
self.dataset = self.stratified_subsampling(
|
|
80
80
|
self.dataset, seed=self.seed, splits=["validation", "test"]
|
|
81
81
|
)
|
|
@@ -28,7 +28,7 @@ class GujaratiNewsClassification(AbsTaskClassification):
|
|
|
28
28
|
superseded_by="GujaratiNewsClassification.v2",
|
|
29
29
|
)
|
|
30
30
|
|
|
31
|
-
def dataset_transform(self):
|
|
31
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
32
32
|
self.dataset = self.dataset.rename_column("headline", "text")
|
|
33
33
|
|
|
34
34
|
|
|
@@ -101,7 +101,7 @@ Stent, Amanda},
|
|
|
101
101
|
adapted_from=["HindiDiscourseClassification"],
|
|
102
102
|
)
|
|
103
103
|
|
|
104
|
-
def dataset_transform(self):
|
|
104
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
105
105
|
self.dataset = self.stratified_subsampling(
|
|
106
106
|
self.dataset, seed=self.seed, splits=["train"]
|
|
107
107
|
)
|
|
@@ -37,7 +37,7 @@ class SentimentAnalysisHindi(AbsTaskClassification):
|
|
|
37
37
|
superseded_by="SentimentAnalysisHindi.v2",
|
|
38
38
|
)
|
|
39
39
|
|
|
40
|
-
def dataset_transform(self):
|
|
40
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
41
41
|
self.dataset = self.stratified_subsampling(
|
|
42
42
|
self.dataset, seed=self.seed, splits=["train"]
|
|
43
43
|
)
|
|
@@ -41,7 +41,7 @@ class IndonesianIdClickbaitClassification(AbsTaskClassification):
|
|
|
41
41
|
superseded_by="IndonesianIdClickbaitClassification.v2",
|
|
42
42
|
)
|
|
43
43
|
|
|
44
|
-
def dataset_transform(self):
|
|
44
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
45
45
|
self.dataset = self.dataset.remove_columns(["label"]).rename_columns(
|
|
46
46
|
{"title": "text", "label_score": "label"}
|
|
47
47
|
)
|
|
@@ -89,7 +89,7 @@ class IndonesianIdClickbaitClassificationV2(AbsTaskClassification):
|
|
|
89
89
|
adapted_from=["IndonesianIdClickbaitClassification"],
|
|
90
90
|
)
|
|
91
91
|
|
|
92
|
-
def dataset_transform(self):
|
|
92
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
93
93
|
self.dataset = self.stratified_subsampling(
|
|
94
94
|
self.dataset, seed=self.seed, splits=["train"]
|
|
95
95
|
)
|
|
@@ -55,7 +55,7 @@ Purwarianti, Ayu},
|
|
|
55
55
|
superseded_by="IndonesianMongabayConservationClassification.v2",
|
|
56
56
|
)
|
|
57
57
|
|
|
58
|
-
def dataset_transform(self):
|
|
58
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
59
59
|
splits = self.metadata.eval_splits
|
|
60
60
|
class_labels = ["positif", "netral", "negatif"]
|
|
61
61
|
|
|
@@ -73,7 +73,7 @@ class JavaneseIMDBClassificationV2(AbsTaskClassification):
|
|
|
73
73
|
adapted_from=["JavaneseIMDBClassification"],
|
|
74
74
|
)
|
|
75
75
|
|
|
76
|
-
def dataset_transform(self):
|
|
76
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
77
77
|
self.dataset = self.stratified_subsampling(
|
|
78
78
|
self.dataset, seed=self.seed, splits=["test"]
|
|
79
79
|
)
|
|
@@ -108,7 +108,7 @@ Zhou, Yichao},
|
|
|
108
108
|
adapted_from=["WRIMEClassification"],
|
|
109
109
|
)
|
|
110
110
|
|
|
111
|
-
def dataset_transform(self):
|
|
111
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
112
112
|
self.dataset = self.stratified_subsampling(
|
|
113
113
|
self.dataset, seed=self.seed, splits=["test"]
|
|
114
114
|
)
|
|
@@ -35,7 +35,7 @@ class KannadaNewsClassification(AbsTaskClassification):
|
|
|
35
35
|
superseded_by="KannadaNewsClassification.v2",
|
|
36
36
|
)
|
|
37
37
|
|
|
38
|
-
def dataset_transform(self):
|
|
38
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
39
39
|
self.dataset = self.dataset.rename_column("headline", "text")
|
|
40
40
|
self.dataset = self.stratified_subsampling(
|
|
41
41
|
self.dataset, seed=self.seed, splits=["train"]
|
|
@@ -75,7 +75,7 @@ class KannadaNewsClassificationV2(AbsTaskClassification):
|
|
|
75
75
|
adapted_from=["KannadaNewsClassification"],
|
|
76
76
|
)
|
|
77
77
|
|
|
78
|
-
def dataset_transform(self):
|
|
78
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
79
79
|
self.dataset = self.stratified_subsampling(
|
|
80
80
|
self.dataset, seed=self.seed, splits=["train"]
|
|
81
81
|
)
|
|
@@ -38,7 +38,7 @@ class KlueTC(AbsTaskClassification):
|
|
|
38
38
|
superseded_by="KLUE-TC.v2",
|
|
39
39
|
)
|
|
40
40
|
|
|
41
|
-
def dataset_transform(self):
|
|
41
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
42
42
|
def id2str(example):
|
|
43
43
|
return {"label": label_feature.int2str(example["label_id"])}
|
|
44
44
|
|
|
@@ -90,7 +90,7 @@ class KlueTCV2(AbsTaskClassification):
|
|
|
90
90
|
adapted_from=["KlueTC"],
|
|
91
91
|
)
|
|
92
92
|
|
|
93
|
-
def dataset_transform(self):
|
|
93
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
94
94
|
self.dataset = self.stratified_subsampling(
|
|
95
95
|
self.dataset, seed=self.seed, splits=["validation"]
|
|
96
96
|
)
|
|
@@ -37,7 +37,7 @@ class KorFin(AbsTaskClassification):
|
|
|
37
37
|
""",
|
|
38
38
|
)
|
|
39
39
|
|
|
40
|
-
def dataset_transform(self):
|
|
40
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
41
41
|
self.dataset = self.dataset.rename_columns(
|
|
42
42
|
{"SRC": "text", "SENTIMENT": "label"}
|
|
43
43
|
).remove_columns(["SID", "TYPE", "ASPECT"])
|
|
@@ -73,7 +73,7 @@ class KorHateClassificationV2(AbsTaskClassification):
|
|
|
73
73
|
adapted_from=["KorHateClassification"],
|
|
74
74
|
)
|
|
75
75
|
|
|
76
|
-
def dataset_transform(self):
|
|
76
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
77
77
|
self.dataset = self.stratified_subsampling(
|
|
78
78
|
self.dataset, seed=self.seed, splits=["train"]
|
|
79
79
|
)
|
|
@@ -73,7 +73,7 @@ class KorSarcasmClassificationV2(AbsTaskClassification):
|
|
|
73
73
|
adapted_from=["KorSarcasmClassification"],
|
|
74
74
|
)
|
|
75
75
|
|
|
76
|
-
def dataset_transform(self):
|
|
76
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
77
77
|
self.dataset = self.stratified_subsampling(
|
|
78
78
|
self.dataset, seed=self.seed, splits=["train"]
|
|
79
79
|
)
|
|
@@ -35,7 +35,7 @@ class MalayalamNewsClassification(AbsTaskClassification):
|
|
|
35
35
|
superseded_by="MalayalamNewsClassification.v2",
|
|
36
36
|
)
|
|
37
37
|
|
|
38
|
-
def dataset_transform(self):
|
|
38
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
39
39
|
self.dataset = self.dataset.rename_columns({"headings": "text"})
|
|
40
40
|
|
|
41
41
|
|
|
@@ -35,7 +35,7 @@ class MarathiNewsClassification(AbsTaskClassification):
|
|
|
35
35
|
superseded_by="MarathiNewsClassification.v2",
|
|
36
36
|
)
|
|
37
37
|
|
|
38
|
-
def dataset_transform(self):
|
|
38
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
39
39
|
self.dataset = self.dataset.rename_columns({"headline": "text"})
|
|
40
40
|
self.dataset = self.stratified_subsampling(self.dataset, seed=self.seed)
|
|
41
41
|
|
|
@@ -43,7 +43,7 @@ class AfriSentiLangClassification(AbsTaskClassification):
|
|
|
43
43
|
|
|
44
44
|
samples_per_label = 32
|
|
45
45
|
|
|
46
|
-
def dataset_transform(self):
|
|
46
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
47
47
|
self.dataset = self.dataset.rename_column("tweet", "text")
|
|
48
48
|
self.dataset = self.stratified_subsampling(
|
|
49
49
|
self.dataset, seed=self.seed, splits=["test"]
|
|
@@ -44,7 +44,7 @@ class CyrillicTurkicLangClassification(AbsTaskClassification):
|
|
|
44
44
|
""",
|
|
45
45
|
)
|
|
46
46
|
|
|
47
|
-
def dataset_transform(self):
|
|
47
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
48
48
|
self.dataset = self.stratified_subsampling(
|
|
49
49
|
self.dataset, seed=self.seed, splits=["test"]
|
|
50
50
|
)
|
|
@@ -45,7 +45,7 @@ class IndicNLPNewsClassification(AbsTaskClassification):
|
|
|
45
45
|
""",
|
|
46
46
|
)
|
|
47
47
|
|
|
48
|
-
def dataset_transform(self):
|
|
48
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
49
49
|
for lang in self.hf_subsets:
|
|
50
50
|
self.dataset[lang] = self.dataset[lang].rename_columns(
|
|
51
51
|
{"news": "text", "class": "label"}
|
|
@@ -55,7 +55,7 @@ class MasakhaNEWSClassification(AbsTaskClassification):
|
|
|
55
55
|
""",
|
|
56
56
|
)
|
|
57
57
|
|
|
58
|
-
def dataset_transform(self):
|
|
58
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
59
59
|
for lang in self.dataset.keys():
|
|
60
60
|
self.dataset[lang] = self.dataset[lang].rename_columns(
|
|
61
61
|
{"category": "label"}
|
|
@@ -234,7 +234,7 @@ class SIB200Classification(AbsTaskClassification):
|
|
|
234
234
|
""",
|
|
235
235
|
)
|
|
236
236
|
|
|
237
|
-
def dataset_transform(self):
|
|
237
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
238
238
|
for lang in self.dataset.keys():
|
|
239
239
|
self.dataset[lang] = self.dataset[lang].class_encode_column("category")
|
|
240
240
|
self.dataset[lang] = self.dataset[lang].rename_columns(
|
|
@@ -49,7 +49,7 @@ class TurkicClassification(AbsTaskClassification):
|
|
|
49
49
|
)
|
|
50
50
|
return dataset_lang["train"]
|
|
51
51
|
|
|
52
|
-
def load_data(self) -> None:
|
|
52
|
+
def load_data(self, num_proc: int = 1, **kwargs) -> None:
|
|
53
53
|
"""Load dataset from HuggingFace hub"""
|
|
54
54
|
if self.data_loaded:
|
|
55
55
|
return
|
|
@@ -53,7 +53,7 @@ Camacho-Collados, Jose},
|
|
|
53
53
|
""",
|
|
54
54
|
)
|
|
55
55
|
|
|
56
|
-
def dataset_transform(self):
|
|
56
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
57
57
|
for lang in self.hf_subsets:
|
|
58
58
|
self.dataset[lang] = self.stratified_subsampling(
|
|
59
59
|
self.dataset[lang], n_samples=256, seed=self.seed, splits=["test"]
|
|
@@ -47,7 +47,7 @@ Tan, Liling},
|
|
|
47
47
|
superseded_by="NepaliNewsClassification.v2",
|
|
48
48
|
)
|
|
49
49
|
|
|
50
|
-
def dataset_transform(self):
|
|
50
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
51
51
|
self.dataset = self.dataset.rename_column("paras", "text")
|
|
52
52
|
self.dataset = self.stratified_subsampling(
|
|
53
53
|
self.dataset, seed=self.seed, splits=["train"]
|
|
@@ -99,7 +99,7 @@ Tan, Liling},
|
|
|
99
99
|
adapted_from=["NepaliNewsClassification"],
|
|
100
100
|
)
|
|
101
101
|
|
|
102
|
-
def dataset_transform(self):
|
|
102
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
103
103
|
self.dataset = self.stratified_subsampling(
|
|
104
104
|
self.dataset, seed=self.seed, splits=["train"]
|
|
105
105
|
)
|
|
@@ -32,7 +32,7 @@ class DutchSarcasticHeadlinesClassification(AbsTaskClassification):
|
|
|
32
32
|
},
|
|
33
33
|
)
|
|
34
34
|
|
|
35
|
-
def dataset_transform(self):
|
|
35
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
36
36
|
for split in self.dataset:
|
|
37
37
|
self.dataset[split] = self.dataset[split].rename_columns(
|
|
38
38
|
{"headline": "text", "is_sarcastic": "label"}
|
|
@@ -42,7 +42,7 @@ class VaccinChatNLClassification(AbsTaskClassification):
|
|
|
42
42
|
},
|
|
43
43
|
)
|
|
44
44
|
|
|
45
|
-
def dataset_transform(self):
|
|
45
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
46
46
|
for split in self.dataset:
|
|
47
47
|
self.dataset[split] = self.dataset[split].rename_columns(
|
|
48
48
|
{"sentence1": "text"}
|
|
@@ -35,7 +35,7 @@ class OdiaNewsClassification(AbsTaskClassification):
|
|
|
35
35
|
superseded_by="OdiaNewsClassification.v2",
|
|
36
36
|
)
|
|
37
37
|
|
|
38
|
-
def dataset_transform(self):
|
|
38
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
39
39
|
self.dataset = self.dataset.rename_columns({"headings": "text"})
|
|
40
40
|
self.dataset = self.stratified_subsampling(self.dataset, seed=self.seed)
|
|
41
41
|
|
|
@@ -73,5 +73,5 @@ class OdiaNewsClassificationV2(AbsTaskClassification):
|
|
|
73
73
|
adapted_from=["OdiaNewsClassification"],
|
|
74
74
|
)
|
|
75
75
|
|
|
76
|
-
def dataset_transform(self):
|
|
76
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
77
77
|
self.dataset = self.stratified_subsampling(self.dataset, seed=self.seed)
|
|
@@ -69,7 +69,7 @@ class RomanianReviewsSentimentV2(AbsTaskClassification):
|
|
|
69
69
|
adapted_from=["RomanianReviewsSentiment"],
|
|
70
70
|
)
|
|
71
71
|
|
|
72
|
-
def dataset_transform(self):
|
|
72
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
73
73
|
self.dataset = self.stratified_subsampling(
|
|
74
74
|
self.dataset, seed=self.seed, splits=["test"]
|
|
75
75
|
)
|
|
@@ -71,7 +71,7 @@ class RomanianSentimentClassificationV2(AbsTaskClassification):
|
|
|
71
71
|
adapted_from=["RomanianSentimentClassification"],
|
|
72
72
|
)
|
|
73
73
|
|
|
74
|
-
def dataset_transform(self):
|
|
74
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
75
75
|
self.dataset = self.stratified_subsampling(
|
|
76
76
|
self.dataset, seed=self.seed, splits=["test"]
|
|
77
77
|
)
|
|
@@ -57,7 +57,7 @@ class GeoreviewClassificationV2(AbsTaskClassification):
|
|
|
57
57
|
adapted_from=["GeoreviewClassification"],
|
|
58
58
|
)
|
|
59
59
|
|
|
60
|
-
def dataset_transform(self):
|
|
60
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
61
61
|
self.dataset = self.stratified_subsampling(
|
|
62
62
|
self.dataset, seed=self.seed, n_samples=2048, splits=["test"]
|
|
63
63
|
)
|
|
@@ -53,7 +53,7 @@ Oda, Yusuke},
|
|
|
53
53
|
superseded_by="HeadlineClassification.v2",
|
|
54
54
|
)
|
|
55
55
|
|
|
56
|
-
def dataset_transform(self):
|
|
56
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
57
57
|
self.dataset = self.stratified_subsampling(
|
|
58
58
|
self.dataset, seed=self.seed, n_samples=2048, splits=["test"]
|
|
59
59
|
)
|
|
@@ -110,7 +110,7 @@ Oda, Yusuke},
|
|
|
110
110
|
adapted_from=["HeadlineClassification"],
|
|
111
111
|
)
|
|
112
112
|
|
|
113
|
-
def dataset_transform(self):
|
|
113
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
114
114
|
self.dataset = self.stratified_subsampling(
|
|
115
115
|
self.dataset, seed=self.seed, n_samples=2048, splits=["test"]
|
|
116
116
|
)
|
|
@@ -57,7 +57,7 @@ Robnik-{\v{S}}ikonja, Marko},
|
|
|
57
57
|
superseded_by="InappropriatenessClassification.v2",
|
|
58
58
|
)
|
|
59
59
|
|
|
60
|
-
def dataset_transform(self):
|
|
60
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
61
61
|
self.dataset = self.stratified_subsampling(
|
|
62
62
|
self.dataset, seed=self.seed, n_samples=2048, splits=["test"]
|
|
63
63
|
)
|
|
@@ -118,7 +118,7 @@ Robnik-{\v{S}}ikonja, Marko},
|
|
|
118
118
|
adapted_from=["InappropriatenessClassification"],
|
|
119
119
|
)
|
|
120
120
|
|
|
121
|
-
def dataset_transform(self):
|
|
121
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
122
122
|
self.dataset = self.stratified_subsampling(
|
|
123
123
|
self.dataset, seed=self.seed, n_samples=2048, splits=["test"]
|
|
124
124
|
)
|
|
@@ -42,7 +42,7 @@ class RuReviewsClassification(AbsTaskClassification):
|
|
|
42
42
|
superseded_by="RuReviewsClassification.v2",
|
|
43
43
|
)
|
|
44
44
|
|
|
45
|
-
def dataset_transform(self):
|
|
45
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
46
46
|
self.dataset = self.stratified_subsampling(
|
|
47
47
|
self.dataset, seed=self.seed, n_samples=2048, splits=["test"]
|
|
48
48
|
)
|
|
@@ -88,7 +88,7 @@ class RuReviewsClassificationV2(AbsTaskClassification):
|
|
|
88
88
|
adapted_from=["RuReviewsClassification"],
|
|
89
89
|
)
|
|
90
90
|
|
|
91
|
-
def dataset_transform(self):
|
|
91
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
92
92
|
self.dataset = self.stratified_subsampling(
|
|
93
93
|
self.dataset, seed=self.seed, n_samples=2048, splits=["test"]
|
|
94
94
|
)
|
|
@@ -29,7 +29,7 @@ class RuSciBenchGRNTIClassification(AbsTaskClassification):
|
|
|
29
29
|
superseded_by="RuSciBenchGRNTIClassification.v2",
|
|
30
30
|
)
|
|
31
31
|
|
|
32
|
-
def dataset_transform(self):
|
|
32
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
33
33
|
self.dataset = self.stratified_subsampling(
|
|
34
34
|
self.dataset, seed=self.seed, n_samples=2048, splits=["test"]
|
|
35
35
|
)
|
|
@@ -29,7 +29,7 @@ class RuSciBenchOECDClassification(AbsTaskClassification):
|
|
|
29
29
|
superseded_by="RuSciBenchOECDClassification.v2",
|
|
30
30
|
)
|
|
31
31
|
|
|
32
|
-
def dataset_transform(self):
|
|
32
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
33
33
|
self.dataset = self.stratified_subsampling(
|
|
34
34
|
self.dataset, seed=self.seed, n_samples=2048, splits=["test"]
|
|
35
35
|
)
|
|
@@ -28,7 +28,7 @@ class RuToxicOKMLCUPClassification(AbsTaskClassification):
|
|
|
28
28
|
superseded_by="RuToxicOKMLCUPClassification.v2",
|
|
29
29
|
)
|
|
30
30
|
|
|
31
|
-
def dataset_transform(self):
|
|
31
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
32
32
|
self.dataset = self.dataset.rename_column("toxic", "label")
|
|
33
33
|
|
|
34
34
|
|
|
@@ -42,7 +42,7 @@ class SinhalaNewsClassification(AbsTaskClassification):
|
|
|
42
42
|
superseded_by="SinhalaNewsClassification.v2",
|
|
43
43
|
)
|
|
44
44
|
|
|
45
|
-
def dataset_transform(self):
|
|
45
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
46
46
|
self.dataset = self.dataset.rename_columns(
|
|
47
47
|
{"comments": "text", "labels": "label"}
|
|
48
48
|
)
|
|
@@ -91,7 +91,7 @@ class SinhalaNewsClassificationV2(AbsTaskClassification):
|
|
|
91
91
|
adapted_from=["SinhalaNewsClassification"],
|
|
92
92
|
)
|
|
93
93
|
|
|
94
|
-
def dataset_transform(self):
|
|
94
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
95
95
|
self.dataset = self.stratified_subsampling(
|
|
96
96
|
self.dataset, seed=self.seed, splits=["train"]
|
|
97
97
|
)
|
|
@@ -35,7 +35,7 @@ class SinhalaNewsSourceClassification(AbsTaskClassification):
|
|
|
35
35
|
superseded_by="SinhalaNewsSourceClassification.v2",
|
|
36
36
|
)
|
|
37
37
|
|
|
38
|
-
def dataset_transform(self):
|
|
38
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
39
39
|
self.dataset = self.dataset.rename_column("comment", "text")
|
|
40
40
|
self.dataset = self.stratified_subsampling(
|
|
41
41
|
self.dataset, seed=self.seed, splits=["train"]
|
|
@@ -75,7 +75,7 @@ class SinhalaNewsSourceClassificationV2(AbsTaskClassification):
|
|
|
75
75
|
adapted_from=["SinhalaNewsSourceClassification"],
|
|
76
76
|
)
|
|
77
77
|
|
|
78
|
-
def dataset_transform(self):
|
|
78
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
79
79
|
self.dataset = self.stratified_subsampling(
|
|
80
80
|
self.dataset, seed=self.seed, splits=["train"]
|
|
81
81
|
)
|
|
@@ -42,7 +42,7 @@ class CSFDSKMovieReviewSentimentClassification(AbsTaskClassification):
|
|
|
42
42
|
# Increase the samples_per_label in order to improve baseline performance
|
|
43
43
|
samples_per_label = 20
|
|
44
44
|
|
|
45
|
-
def dataset_transform(self):
|
|
45
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
46
46
|
self.dataset = self.dataset.rename_columns(
|
|
47
47
|
{"comment": "text", "rating_int": "label"}
|
|
48
48
|
)
|
|
@@ -89,7 +89,7 @@ class CSFDSKMovieReviewSentimentClassificationV2(AbsTaskClassification):
|
|
|
89
89
|
# Increase the samples_per_label in order to improve baseline performance
|
|
90
90
|
samples_per_label = 20
|
|
91
91
|
|
|
92
|
-
def dataset_transform(self):
|
|
92
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
93
93
|
self.dataset = self.stratified_subsampling(
|
|
94
94
|
self.dataset, seed=self.seed, splits=["test"], n_samples=N_SAMPLES
|
|
95
95
|
)
|
|
@@ -75,7 +75,7 @@ class FrenkSlClassificationV2(AbsTaskClassification):
|
|
|
75
75
|
adapted_from=["FrenkSlClassification"],
|
|
76
76
|
)
|
|
77
77
|
|
|
78
|
-
def dataset_transform(self):
|
|
78
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
79
79
|
self.dataset = self.stratified_subsampling(
|
|
80
80
|
self.dataset, seed=self.seed, splits=["test"]
|
|
81
81
|
)
|
|
@@ -29,7 +29,7 @@ class SpanishNewsClassification(AbsTaskClassification):
|
|
|
29
29
|
superseded_by="SpanishNewsClassification.v2",
|
|
30
30
|
)
|
|
31
31
|
|
|
32
|
-
def dataset_transform(self):
|
|
32
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
33
33
|
self.dataset = self.dataset.rename_columns({"category": "label"})
|
|
34
34
|
self.dataset = self.stratified_subsampling(
|
|
35
35
|
self.dataset, seed=self.seed, splits=["train"]
|
|
@@ -63,7 +63,7 @@ class SpanishNewsClassificationV2(AbsTaskClassification):
|
|
|
63
63
|
adapted_from=["SpanishNewsClassification"],
|
|
64
64
|
)
|
|
65
65
|
|
|
66
|
-
def dataset_transform(self):
|
|
66
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
67
67
|
self.dataset = self.stratified_subsampling(
|
|
68
68
|
self.dataset, seed=self.seed, splits=["train"]
|
|
69
69
|
)
|