mteb 2.7.3__py3-none-any.whl → 2.7.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/_create_dataloaders.py +47 -5
- mteb/_evaluators/any_sts_evaluator.py +2 -0
- mteb/_evaluators/clustering_evaluator.py +2 -0
- mteb/_evaluators/evaluator.py +2 -1
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +8 -1
- mteb/_evaluators/pair_classification_evaluator.py +3 -0
- mteb/_evaluators/retrieval_evaluator.py +3 -0
- mteb/_evaluators/sklearn_evaluator.py +6 -1
- mteb/_evaluators/text/bitext_mining_evaluator.py +2 -0
- mteb/_evaluators/text/summarization_evaluator.py +2 -0
- mteb/_evaluators/zeroshot_classification_evaluator.py +2 -0
- mteb/abstasks/abstask.py +31 -12
- mteb/abstasks/classification.py +10 -3
- mteb/abstasks/clustering.py +6 -2
- mteb/abstasks/clustering_legacy.py +8 -2
- mteb/abstasks/image/image_text_pair_classification.py +6 -2
- mteb/abstasks/multilabel_classification.py +2 -0
- mteb/abstasks/pair_classification.py +8 -2
- mteb/abstasks/retrieval.py +27 -12
- mteb/abstasks/retrieval_dataset_loaders.py +29 -19
- mteb/abstasks/sts.py +10 -3
- mteb/abstasks/text/bitext_mining.py +9 -5
- mteb/abstasks/text/reranking.py +2 -2
- mteb/abstasks/text/summarization.py +2 -1
- mteb/abstasks/zeroshot_classification.py +8 -2
- mteb/benchmarks/benchmarks/__init__.py +2 -0
- mteb/benchmarks/benchmarks/benchmarks.py +41 -2
- mteb/descriptive_stats/Retrieval/BrightAopsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightLeetcodeRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQAQuestionsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQATheoremsRetrieval.json +35 -0
- mteb/evaluate.py +10 -2
- mteb/models/model_implementations/align_models.py +1 -0
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +2 -0
- mteb/models/model_implementations/ara_models.py +1 -0
- mteb/models/model_implementations/arctic_models.py +8 -0
- mteb/models/model_implementations/b1ade_models.py +1 -0
- mteb/models/model_implementations/bedrock_models.py +4 -0
- mteb/models/model_implementations/bge_models.py +40 -1
- mteb/models/model_implementations/bica_model.py +1 -0
- mteb/models/model_implementations/blip2_models.py +2 -0
- mteb/models/model_implementations/blip_models.py +8 -0
- mteb/models/model_implementations/bm25.py +10 -5
- mteb/models/model_implementations/bmretriever_models.py +4 -0
- mteb/models/model_implementations/cadet_models.py +1 -0
- mteb/models/model_implementations/cde_models.py +2 -0
- mteb/models/model_implementations/clip_models.py +3 -0
- mteb/models/model_implementations/clips_models.py +3 -0
- mteb/models/model_implementations/codefuse_models.py +5 -0
- mteb/models/model_implementations/codesage_models.py +3 -0
- mteb/models/model_implementations/cohere_models.py +4 -0
- mteb/models/model_implementations/cohere_v.py +5 -0
- mteb/models/model_implementations/colpali_models.py +3 -0
- mteb/models/model_implementations/colqwen_models.py +7 -0
- mteb/models/model_implementations/colsmol_models.py +2 -0
- mteb/models/model_implementations/conan_models.py +1 -0
- mteb/models/model_implementations/dino_models.py +19 -0
- mteb/models/model_implementations/e5_instruct.py +4 -0
- mteb/models/model_implementations/e5_models.py +9 -0
- mteb/models/model_implementations/e5_v.py +1 -0
- mteb/models/model_implementations/eagerworks_models.py +1 -0
- mteb/models/model_implementations/emillykkejensen_models.py +3 -0
- mteb/models/model_implementations/en_code_retriever.py +1 -0
- mteb/models/model_implementations/euler_models.py +1 -0
- mteb/models/model_implementations/evaclip_models.py +4 -0
- mteb/models/model_implementations/fa_models.py +9 -0
- mteb/models/model_implementations/facebookai.py +2 -0
- mteb/models/model_implementations/geogpt_models.py +1 -0
- mteb/models/model_implementations/gme_v_models.py +2 -0
- mteb/models/model_implementations/google_models.py +5 -0
- mteb/models/model_implementations/granite_vision_embedding_models.py +1 -0
- mteb/models/model_implementations/gritlm_models.py +2 -0
- mteb/models/model_implementations/gte_models.py +9 -0
- mteb/models/model_implementations/hinvec_models.py +1 -0
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +6 -0
- mteb/models/model_implementations/inf_models.py +2 -0
- mteb/models/model_implementations/jasper_models.py +2 -0
- mteb/models/model_implementations/jina_clip.py +1 -0
- mteb/models/model_implementations/jina_models.py +7 -0
- mteb/models/model_implementations/kalm_models.py +6 -0
- mteb/models/model_implementations/kblab.py +1 -0
- mteb/models/model_implementations/kennethenevoldsen_models.py +2 -0
- mteb/models/model_implementations/kfst.py +1 -0
- mteb/models/model_implementations/kowshik24_models.py +1 -0
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +1 -0
- mteb/models/model_implementations/linq_models.py +1 -0
- mteb/models/model_implementations/listconranker.py +1 -0
- mteb/models/model_implementations/llm2clip_models.py +3 -0
- mteb/models/model_implementations/llm2vec_models.py +8 -0
- mteb/models/model_implementations/mcinext_models.py +3 -0
- mteb/models/model_implementations/mdbr_models.py +2 -0
- mteb/models/model_implementations/misc_models.py +63 -0
- mteb/models/model_implementations/mixedbread_ai_models.py +3 -0
- mteb/models/model_implementations/mme5_models.py +2 -1
- mteb/models/model_implementations/moco_models.py +2 -0
- mteb/models/model_implementations/mod_models.py +1 -0
- mteb/models/model_implementations/model2vec_models.py +13 -0
- mteb/models/model_implementations/moka_models.py +3 -0
- mteb/models/model_implementations/nbailab.py +3 -0
- mteb/models/model_implementations/no_instruct_sentence_models.py +1 -0
- mteb/models/model_implementations/nomic_models.py +6 -0
- mteb/models/model_implementations/nomic_models_vision.py +1 -0
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +2 -0
- mteb/models/model_implementations/nvidia_models.py +3 -0
- mteb/models/model_implementations/octen_models.py +2 -0
- mteb/models/model_implementations/openai_models.py +5 -0
- mteb/models/model_implementations/openclip_models.py +8 -0
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -0
- mteb/models/model_implementations/ops_moa_models.py +2 -0
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -0
- mteb/models/model_implementations/pawan_models.py +1 -0
- mteb/models/model_implementations/piccolo_models.py +2 -0
- mteb/models/model_implementations/promptriever_models.py +4 -0
- mteb/models/model_implementations/pylate_models.py +13 -0
- mteb/models/model_implementations/qodo_models.py +2 -0
- mteb/models/model_implementations/qtack_models.py +1 -0
- mteb/models/model_implementations/qwen3_models.py +3 -0
- mteb/models/model_implementations/qzhou_models.py +2 -0
- mteb/models/model_implementations/rasgaard_models.py +1 -0
- mteb/models/model_implementations/reasonir_model.py +65 -0
- mteb/models/model_implementations/repllama_models.py +2 -0
- mteb/models/model_implementations/rerankers_custom.py +3 -0
- mteb/models/model_implementations/rerankers_monot5_based.py +14 -0
- mteb/models/model_implementations/richinfoai_models.py +1 -0
- mteb/models/model_implementations/ru_sentence_models.py +20 -0
- mteb/models/model_implementations/ruri_models.py +10 -0
- mteb/models/model_implementations/salesforce_models.py +3 -0
- mteb/models/model_implementations/samilpwc_models.py +1 -0
- mteb/models/model_implementations/sarashina_embedding_models.py +2 -0
- mteb/models/model_implementations/searchmap_models.py +1 -0
- mteb/models/model_implementations/seed_1_6_embedding_models.py +1 -0
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +1 -0
- mteb/models/model_implementations/seed_models.py +1 -0
- mteb/models/model_implementations/sentence_transformers_models.py +18 -0
- mteb/models/model_implementations/shuu_model.py +1 -0
- mteb/models/model_implementations/siglip_models.py +10 -0
- mteb/models/model_implementations/sonar_models.py +2 -1
- mteb/models/model_implementations/spartan8806_atles_champion.py +1 -0
- mteb/models/model_implementations/stella_models.py +6 -0
- mteb/models/model_implementations/tarka_models.py +2 -0
- mteb/models/model_implementations/text2vec_models.py +3 -0
- mteb/models/model_implementations/ua_sentence_models.py +1 -0
- mteb/models/model_implementations/uae_models.py +1 -0
- mteb/models/model_implementations/vdr_models.py +1 -0
- mteb/models/model_implementations/vi_vn_models.py +6 -0
- mteb/models/model_implementations/vista_models.py +2 -0
- mteb/models/model_implementations/vlm2vec_models.py +2 -0
- mteb/models/model_implementations/voyage_models.py +15 -0
- mteb/models/model_implementations/voyage_v.py +1 -0
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +1 -0
- mteb/models/model_implementations/yuan_models.py +1 -0
- mteb/models/model_implementations/yuan_models_en.py +1 -0
- mteb/models/model_meta.py +35 -2
- mteb/models/models_protocols.py +4 -0
- mteb/models/search_wrappers.py +12 -0
- mteb/tasks/bitext_mining/eng/pub_chem_smiles_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/fas/fa_mteb_summary_retrieval.py +3 -3
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/flores_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/in22_conv_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/in22_gen_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/norwegian_courts_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ntrex_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/roma_tales_bitext_mining.py +2 -2
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -1
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -1
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -1
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -1
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -1
- mteb/tasks/classification/bul/bulgarian_store_review_sentiment_classfication.py +1 -1
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -1
- mteb/tasks/classification/dan/dk_hate_classification.py +1 -1
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -1
- mteb/tasks/classification/ell/greek_legal_code_classification.py +1 -1
- mteb/tasks/classification/eng/dbpedia_classification.py +2 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -2
- mteb/tasks/classification/eng/toxic_conversations_classification.py +2 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +1 -1
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -1
- mteb/tasks/classification/eng/yelp_review_full_classification.py +2 -2
- mteb/tasks/classification/est/estonian_valence.py +1 -1
- mteb/tasks/classification/fas/fa_mteb_classification.py +6 -6
- mteb/tasks/classification/fas/persian_food_sentiment_classification.py +1 -1
- mteb/tasks/classification/fil/filipino_shopee_reviews_classification.py +1 -1
- mteb/tasks/classification/fin/fin_toxicity_classification.py +1 -1
- mteb/tasks/classification/fra/french_book_reviews.py +2 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -1
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -1
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -1
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +2 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -1
- mteb/tasks/classification/ita/dado_eval_coarse_classification.py +1 -1
- mteb/tasks/classification/ita/ita_casehold_classification.py +1 -1
- mteb/tasks/classification/ita/sardi_stance_classification.py +1 -1
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -1
- mteb/tasks/classification/jpn/wrime_classification.py +1 -1
- mteb/tasks/classification/kan/kannada_news_classification.py +2 -2
- mteb/tasks/classification/kor/klue_tc.py +2 -2
- mteb/tasks/classification/kor/kor_fin.py +1 -1
- mteb/tasks/classification/kor/kor_hate_classification.py +1 -1
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +1 -1
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -1
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/afri_senti_lang_classification.py +1 -1
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -1
- mteb/tasks/classification/multilingual/cyrillic_turkic_lang_classification.py +1 -1
- mteb/tasks/classification/multilingual/indic_nlp_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/masakha_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -1
- mteb/tasks/classification/multilingual/multilingual_sentiment_classification.py +1 -1
- mteb/tasks/classification/multilingual/scala_classification.py +1 -1
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -1
- mteb/tasks/classification/multilingual/turkic_classification.py +1 -1
- mteb/tasks/classification/multilingual/tweet_sentiment_classification.py +1 -1
- mteb/tasks/classification/nep/nepali_news_classification.py +2 -2
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +1 -1
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +1 -1
- mteb/tasks/classification/ory/odia_news_classification.py +2 -2
- mteb/tasks/classification/pan/punjabi_news_classification.py +1 -1
- mteb/tasks/classification/ron/moroco.py +1 -1
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -1
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -1
- mteb/tasks/classification/rus/georeview_classification.py +1 -1
- mteb/tasks/classification/rus/headline_classification.py +2 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +2 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +2 -2
- mteb/tasks/classification/rus/ru_sci_bench_grnti_classification.py +1 -1
- mteb/tasks/classification/rus/ru_sci_bench_oecd_classification.py +1 -1
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -1
- mteb/tasks/classification/san/sanskrit_shlokas_classification.py +1 -1
- mteb/tasks/classification/sin/sinhala_news_classification.py +2 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +2 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -1
- mteb/tasks/classification/spa/spanish_news_classification.py +2 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -1
- mteb/tasks/classification/tam/tamil_news_classification.py +2 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +2 -2
- mteb/tasks/classification/tha/wongnai_reviews_classification.py +1 -1
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +2 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -2
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -1
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -1
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +2 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -1
- mteb/tasks/clustering/deu/blurbs_clustering_p2p.py +1 -1
- mteb/tasks/clustering/deu/blurbs_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/arxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/arxiv_hierarchical_clustering.py +2 -2
- mteb/tasks/clustering/eng/big_patent_clustering.py +1 -1
- mteb/tasks/clustering/eng/biorxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/biorxiv_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/medrxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/medrxiv_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/reddit_clustering.py +1 -1
- mteb/tasks/clustering/eng/reddit_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/stack_exchange_clustering.py +1 -1
- mteb/tasks/clustering/eng/stack_exchange_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/twenty_newsgroups_clustering.py +1 -1
- mteb/tasks/clustering/fas/fa_mteb_clustering.py +4 -4
- mteb/tasks/clustering/fra/hal_clustering_s2s.py +2 -2
- mteb/tasks/clustering/multilingual/mlsum_clustering_p2p.py +2 -2
- mteb/tasks/clustering/multilingual/mlsum_clustering_s2s.py +2 -2
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -1
- mteb/tasks/clustering/multilingual/wiki_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nob/snl_clustering.py +1 -1
- mteb/tasks/clustering/nob/vg_clustering.py +1 -1
- mteb/tasks/clustering/pol/polish_clustering.py +3 -3
- mteb/tasks/clustering/rus/ru_sci_bench_grnti_clustering_p2p.py +1 -1
- mteb/tasks/clustering/rus/ru_sci_bench_oecd_clustering_p2p.py +1 -1
- mteb/tasks/clustering/zho/cmteb_clustering.py +4 -4
- mteb/tasks/image_text_pair_classification/eng/image_co_de.py +1 -1
- mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +1 -1
- mteb/tasks/instruction_reranking/multilingual/m_follow_ir.py +2 -2
- mteb/tasks/multichoice/eng/cv_bench.py +4 -4
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -1
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -1
- mteb/tasks/multilabel_classification/rus/ru_toixic_multilabelclassification_okmlcup.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -1
- mteb/tasks/pair_classification/ara/ar_entail.py +1 -1
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -1
- mteb/tasks/pair_classification/deu/false_friends_de_en_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_ai_sentence_paraphrase_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_smilespc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_synonym_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_wiki_paragraphs_pc.py +1 -1
- mteb/tasks/pair_classification/eng/sprint_duplicate_questions_pc.py +1 -1
- mteb/tasks/pair_classification/eng/twitter_sem_eval2015_pc.py +1 -1
- mteb/tasks/pair_classification/eng/twitter_url_corpus_pc.py +1 -1
- mteb/tasks/pair_classification/fas/fa_mteb_pair_classification.py +5 -5
- mteb/tasks/pair_classification/fas/fars_tail.py +2 -2
- mteb/tasks/pair_classification/hye/armenian_paraphrase_pc.py +1 -1
- mteb/tasks/pair_classification/ita/dis_co_tex_pair_classification.py +1 -1
- mteb/tasks/pair_classification/kor/klue_nli.py +1 -1
- mteb/tasks/pair_classification/multilingual/rte3.py +2 -2
- mteb/tasks/pair_classification/multilingual/xnli.py +1 -1
- mteb/tasks/pair_classification/pol/polish_pc.py +4 -4
- mteb/tasks/pair_classification/por/assin2_rte.py +1 -1
- mteb/tasks/pair_classification/por/sick_br_pc.py +1 -1
- mteb/tasks/pair_classification/rus/terra.py +2 -2
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -1
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -1
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -1
- mteb/tasks/pair_classification/zho/cmteb_pair_classification.py +2 -2
- mteb/tasks/retrieval/ara/sadeem_question_retrieval.py +1 -1
- mteb/tasks/retrieval/code/code_edit_search_retrieval.py +1 -1
- mteb/tasks/retrieval/code/code_rag.py +4 -4
- mteb/tasks/retrieval/code/code_search_net_cc_retrieval.py +1 -1
- mteb/tasks/retrieval/code/coir_code_search_net_retrieval.py +1 -1
- mteb/tasks/retrieval/code/ds1000_retrieval.py +1 -1
- mteb/tasks/retrieval/code/fresh_stack_retrieval.py +1 -1
- mteb/tasks/retrieval/code/human_eval_retrieval.py +1 -1
- mteb/tasks/retrieval/code/mbpp_retrieval.py +1 -1
- mteb/tasks/retrieval/code/wiki_sql_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +1 -1
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +1 -1
- mteb/tasks/retrieval/deu/german_gov_service_retrieval.py +1 -1
- mteb/tasks/retrieval/deu/german_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/ell/greek_civics_qa.py +1 -1
- mteb/tasks/retrieval/eng/__init__.py +42 -0
- mteb/tasks/retrieval/eng/bright_retrieval.py +10 -2
- mteb/tasks/retrieval/eng/bright_v1_1_retrieval.py +968 -0
- mteb/tasks/retrieval/eng/chat_doctor_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/fin_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/finance_bench_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hateful_memes_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hateful_memes_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hc3_finance_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_narrative_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_needle_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_passkey_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_summ_screen_fd_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_wikim_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lembqm_sum_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/memotion_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/memotion_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/ml_questions.py +1 -1
- mteb/tasks/retrieval/eng/nano_argu_ana_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_climate_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_db_pedia_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_fi_qa2018_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_hotpot_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_msmarco_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_nf_corpus_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_nq_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_quora_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_sci_fact_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_scidocs_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_touche2020_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/narrative_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/r2_med_retrieval.py +8 -8
- mteb/tasks/retrieval/eng/sci_mmir_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/sci_mmir_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +10 -10
- mteb/tasks/retrieval/fra/f_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/fra/syntec_retrieval.py +1 -1
- mteb/tasks/retrieval/hun/hun_sum2.py +1 -1
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt19.py +1 -1
- mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt21.py +1 -1
- mteb/tasks/retrieval/multilingual/cur_ev1_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/miracl_vision_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/mr_tidy_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -2
- mteb/tasks/retrieval/multilingual/statcan_dialogue_dataset_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/vdr_multilingual_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +14 -4
- mteb/tasks/retrieval/multilingual/wit_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/x_flickr30k_co_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/x_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/xm3600_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_android_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_english_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_gaming_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_gis_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_mathematica_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_physics_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_programmers_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_stats_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_tex_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_unix_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_webmasters_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_wordpress_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nob/norquad.py +1 -1
- mteb/tasks/retrieval/nob/snl_retrieval.py +1 -1
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -1
- mteb/tasks/retrieval/vie/vie_qu_ad_retrieval.py +1 -1
- mteb/tasks/sts/fao/faroese_sts.py +1 -1
- mteb/tasks/sts/fra/sick_fr_sts.py +1 -1
- mteb/tasks/sts/kor/klue_sts.py +1 -1
- mteb/tasks/sts/por/sick_br_sts.py +1 -1
- mteb/tasks/sts/rus/ru_para_phraser_sts.py +1 -1
- mteb/tasks/zeroshot_classification/eng/sci_mmir.py +1 -1
- {mteb-2.7.3.dist-info → mteb-2.7.5.dist-info}/METADATA +1 -1
- {mteb-2.7.3.dist-info → mteb-2.7.5.dist-info}/RECORD +434 -413
- {mteb-2.7.3.dist-info → mteb-2.7.5.dist-info}/WHEEL +0 -0
- {mteb-2.7.3.dist-info → mteb-2.7.5.dist-info}/entry_points.txt +0 -0
- {mteb-2.7.3.dist-info → mteb-2.7.5.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.7.3.dist-info → mteb-2.7.5.dist-info}/top_level.txt +0 -0
|
@@ -121,6 +121,7 @@ all_minilm_l6_v2 = ModelMeta(
|
|
|
121
121
|
revision="8b3219a92973c328a8e22fadcfa821b5dc75636a",
|
|
122
122
|
release_date="2021-08-30",
|
|
123
123
|
n_parameters=22_700_000,
|
|
124
|
+
n_embedding_parameters=11_720_448,
|
|
124
125
|
memory_usage_mb=87,
|
|
125
126
|
embed_dim=384,
|
|
126
127
|
license="apache-2.0",
|
|
@@ -152,6 +153,7 @@ all_minilm_l12_v2 = ModelMeta(
|
|
|
152
153
|
revision="364dd28d28dcd3359b537f3cf1f5348ba679da62",
|
|
153
154
|
release_date="2021-08-30",
|
|
154
155
|
n_parameters=33_400_000,
|
|
156
|
+
n_embedding_parameters=11_720_448,
|
|
155
157
|
memory_usage_mb=127,
|
|
156
158
|
embed_dim=384,
|
|
157
159
|
license="apache-2.0",
|
|
@@ -183,6 +185,7 @@ paraphrase_multilingual_minilm_l12_v2 = ModelMeta(
|
|
|
183
185
|
revision="bf3bf13ab40c3157080a7ab344c831b9ad18b5eb",
|
|
184
186
|
release_date="2019-11-01", # release date of paper
|
|
185
187
|
n_parameters=118_000_000,
|
|
188
|
+
n_embedding_parameters=96_014_208,
|
|
186
189
|
memory_usage_mb=449,
|
|
187
190
|
embed_dim=768,
|
|
188
191
|
license="apache-2.0",
|
|
@@ -214,6 +217,7 @@ paraphrase_multilingual_mpnet_base_v2 = ModelMeta(
|
|
|
214
217
|
revision="79f2382ceacceacdf38563d7c5d16b9ff8d725d6",
|
|
215
218
|
release_date="2019-11-01", # release date of paper
|
|
216
219
|
n_parameters=278_000_000,
|
|
220
|
+
n_embedding_parameters=192_001_536,
|
|
217
221
|
memory_usage_mb=1061,
|
|
218
222
|
embed_dim=768,
|
|
219
223
|
license="apache-2.0",
|
|
@@ -256,6 +260,7 @@ labse = ModelMeta(
|
|
|
256
260
|
revision="e34fab64a3011d2176c99545a93d5cbddc9a91b7",
|
|
257
261
|
release_date="2019-11-01", # release date of paper
|
|
258
262
|
n_parameters=471_000_000,
|
|
263
|
+
n_embedding_parameters=384_885_504,
|
|
259
264
|
memory_usage_mb=1796,
|
|
260
265
|
embed_dim=768,
|
|
261
266
|
license="apache-2.0",
|
|
@@ -294,6 +299,7 @@ multi_qa_minilm_l6_cos_v1 = ModelMeta(
|
|
|
294
299
|
revision="b207367332321f8e44f96e224ef15bc607f4dbf0",
|
|
295
300
|
release_date="2021-08-30",
|
|
296
301
|
n_parameters=22_700_000,
|
|
302
|
+
n_embedding_parameters=11_720_448,
|
|
297
303
|
memory_usage_mb=87,
|
|
298
304
|
embed_dim=384,
|
|
299
305
|
license="apache-2.0",
|
|
@@ -325,6 +331,7 @@ all_mpnet_base_v2 = ModelMeta(
|
|
|
325
331
|
revision="9a3225965996d404b775526de6dbfe85d3368642",
|
|
326
332
|
release_date="2021-08-30",
|
|
327
333
|
n_parameters=109_000_000,
|
|
334
|
+
n_embedding_parameters=23_444_736,
|
|
328
335
|
memory_usage_mb=418,
|
|
329
336
|
embed_dim=768,
|
|
330
337
|
license="apache-2.0",
|
|
@@ -435,6 +442,7 @@ static_similarity_mrl_multilingual_v1 = ModelMeta(
|
|
|
435
442
|
revision="7264ea07c5365a11d7e6d87dbb6195889a13054f",
|
|
436
443
|
release_date="2025-01-15",
|
|
437
444
|
n_parameters=108_420_096,
|
|
445
|
+
n_embedding_parameters=None,
|
|
438
446
|
memory_usage_mb=413,
|
|
439
447
|
embed_dim=1024,
|
|
440
448
|
license="apache-2.0",
|
|
@@ -468,6 +476,7 @@ contriever = ModelMeta(
|
|
|
468
476
|
revision="abe8c1493371369031bcb1e02acb754cf4e162fa",
|
|
469
477
|
release_date="2022-06-25", # release date of model on HF
|
|
470
478
|
n_parameters=150_000_000,
|
|
479
|
+
n_embedding_parameters=23_440_896,
|
|
471
480
|
memory_usage_mb=572,
|
|
472
481
|
embed_dim=768,
|
|
473
482
|
license=None,
|
|
@@ -498,6 +507,7 @@ microllama_text_embedding = ModelMeta(
|
|
|
498
507
|
revision="98f70f14cdf12d7ea217ed2fd4e808b0195f1e7e",
|
|
499
508
|
release_date="2024-11-10",
|
|
500
509
|
n_parameters=272_000_000,
|
|
510
|
+
n_embedding_parameters=32_769_024,
|
|
501
511
|
memory_usage_mb=1037,
|
|
502
512
|
embed_dim=1024,
|
|
503
513
|
license="apache-2.0",
|
|
@@ -544,6 +554,7 @@ sentence_t5_base = ModelMeta(
|
|
|
544
554
|
revision="50c53e206f8b01c9621484a3c0aafce4e55efebf",
|
|
545
555
|
release_date="2022-02-09",
|
|
546
556
|
n_parameters=110_000_000,
|
|
557
|
+
n_embedding_parameters=24_674_304,
|
|
547
558
|
memory_usage_mb=209,
|
|
548
559
|
embed_dim=768,
|
|
549
560
|
license="apache-2.0",
|
|
@@ -567,6 +578,7 @@ sentence_t5_large = ModelMeta(
|
|
|
567
578
|
revision="1fc08ea477205aa54a3e5b13f0971ae16b86410a",
|
|
568
579
|
release_date="2022-02-09",
|
|
569
580
|
n_parameters=335_000_000,
|
|
581
|
+
n_embedding_parameters=32_899_072,
|
|
570
582
|
memory_usage_mb=639,
|
|
571
583
|
embed_dim=768,
|
|
572
584
|
license="apache-2.0",
|
|
@@ -590,6 +602,7 @@ sentence_t5_xl = ModelMeta(
|
|
|
590
602
|
revision="2965d31b368fb14117688e0bde77cbd720e91f53",
|
|
591
603
|
release_date="2024-03-27",
|
|
592
604
|
n_parameters=3_000_000_000,
|
|
605
|
+
n_embedding_parameters=32_899_072,
|
|
593
606
|
memory_usage_mb=2367,
|
|
594
607
|
embed_dim=768,
|
|
595
608
|
license="apache-2.0",
|
|
@@ -613,6 +626,7 @@ sentence_t5_xxl = ModelMeta(
|
|
|
613
626
|
revision="4d122282ba80e807e9e6eb8c358269e92796365d",
|
|
614
627
|
release_date="2024-03-27",
|
|
615
628
|
n_parameters=11_000_000_000,
|
|
629
|
+
n_embedding_parameters=None,
|
|
616
630
|
memory_usage_mb=9279,
|
|
617
631
|
embed_dim=768,
|
|
618
632
|
license="apache-2.0",
|
|
@@ -646,6 +660,7 @@ gtr_t5_large = ModelMeta(
|
|
|
646
660
|
revision="a2c8ac47f998531948d4cbe32a0b577a7037a5e3",
|
|
647
661
|
release_date="2022-02-09",
|
|
648
662
|
n_parameters=335_000_000,
|
|
663
|
+
n_embedding_parameters=32_899_072,
|
|
649
664
|
memory_usage_mb=639,
|
|
650
665
|
embed_dim=768,
|
|
651
666
|
license="apache-2.0",
|
|
@@ -681,6 +696,7 @@ gtr_t5_xl = ModelMeta(
|
|
|
681
696
|
revision="23a8d667a1ad2578af181ce762867003c498d1bf",
|
|
682
697
|
release_date="2022-02-09",
|
|
683
698
|
n_parameters=1_240_000_000,
|
|
699
|
+
n_embedding_parameters=32_899_072,
|
|
684
700
|
memory_usage_mb=2367,
|
|
685
701
|
embed_dim=768,
|
|
686
702
|
license="apache-2.0",
|
|
@@ -715,6 +731,7 @@ gtr_t5_xxl = ModelMeta(
|
|
|
715
731
|
revision="73f2a9156a3dcc2194dfdb2bf201cd7d17e17884",
|
|
716
732
|
release_date="2022-02-09",
|
|
717
733
|
n_parameters=4_860_000_000,
|
|
734
|
+
n_embedding_parameters=None,
|
|
718
735
|
memory_usage_mb=9279,
|
|
719
736
|
embed_dim=768,
|
|
720
737
|
license="apache-2.0",
|
|
@@ -750,6 +767,7 @@ gtr_t5_base = ModelMeta(
|
|
|
750
767
|
revision="7027e9594267928589816394bdd295273ddc0739",
|
|
751
768
|
release_date="2022-02-09",
|
|
752
769
|
n_parameters=110_000_000,
|
|
770
|
+
n_embedding_parameters=24_674_304,
|
|
753
771
|
memory_usage_mb=209,
|
|
754
772
|
embed_dim=768,
|
|
755
773
|
license="apache-2.0",
|
|
@@ -136,6 +136,7 @@ siglip_so400m_patch14_224 = ModelMeta(
|
|
|
136
136
|
release_date="2024-01-08",
|
|
137
137
|
modalities=["image", "text"],
|
|
138
138
|
n_parameters=877_000_000,
|
|
139
|
+
n_embedding_parameters=None,
|
|
139
140
|
memory_usage_mb=3347,
|
|
140
141
|
max_tokens=16,
|
|
141
142
|
embed_dim=1152,
|
|
@@ -160,6 +161,7 @@ siglip_so400m_patch14_384 = ModelMeta(
|
|
|
160
161
|
release_date="2024-01-08",
|
|
161
162
|
modalities=["image", "text"],
|
|
162
163
|
n_parameters=878_000_000,
|
|
164
|
+
n_embedding_parameters=None,
|
|
163
165
|
memory_usage_mb=3349,
|
|
164
166
|
max_tokens=64,
|
|
165
167
|
embed_dim=1152,
|
|
@@ -184,6 +186,7 @@ siglip_so400m_patch16_256_i18n = ModelMeta(
|
|
|
184
186
|
release_date="2024-01-08",
|
|
185
187
|
modalities=["image", "text"],
|
|
186
188
|
n_parameters=1_130_000_000,
|
|
189
|
+
n_embedding_parameters=None,
|
|
187
190
|
memory_usage_mb=4306,
|
|
188
191
|
max_tokens=64,
|
|
189
192
|
embed_dim=1152,
|
|
@@ -208,6 +211,7 @@ siglip_base_patch16_256_multilingual = ModelMeta(
|
|
|
208
211
|
release_date="2024-01-08",
|
|
209
212
|
modalities=["image", "text"],
|
|
210
213
|
n_parameters=371_000_000,
|
|
214
|
+
n_embedding_parameters=None,
|
|
211
215
|
memory_usage_mb=1414,
|
|
212
216
|
max_tokens=64,
|
|
213
217
|
embed_dim=768,
|
|
@@ -232,6 +236,7 @@ siglip_base_patch16_256 = ModelMeta(
|
|
|
232
236
|
release_date="2024-01-08",
|
|
233
237
|
modalities=["image", "text"],
|
|
234
238
|
n_parameters=203_000_000,
|
|
239
|
+
n_embedding_parameters=None,
|
|
235
240
|
memory_usage_mb=775,
|
|
236
241
|
max_tokens=64,
|
|
237
242
|
embed_dim=768,
|
|
@@ -256,6 +261,7 @@ siglip_base_patch16_512 = ModelMeta(
|
|
|
256
261
|
release_date="2024-01-08",
|
|
257
262
|
modalities=["image", "text"],
|
|
258
263
|
n_parameters=204_000_000,
|
|
264
|
+
n_embedding_parameters=None,
|
|
259
265
|
memory_usage_mb=777,
|
|
260
266
|
max_tokens=64,
|
|
261
267
|
embed_dim=768,
|
|
@@ -280,6 +286,7 @@ siglip_base_patch16_384 = ModelMeta(
|
|
|
280
286
|
release_date="2024-01-08",
|
|
281
287
|
modalities=["image", "text"],
|
|
282
288
|
n_parameters=203_000_000,
|
|
289
|
+
n_embedding_parameters=None,
|
|
283
290
|
memory_usage_mb=776,
|
|
284
291
|
max_tokens=64,
|
|
285
292
|
embed_dim=768,
|
|
@@ -304,6 +311,7 @@ siglip_base_patch16_224 = ModelMeta(
|
|
|
304
311
|
release_date="2024-01-08",
|
|
305
312
|
modalities=["image", "text"],
|
|
306
313
|
n_parameters=203_000_000,
|
|
314
|
+
n_embedding_parameters=None,
|
|
307
315
|
memory_usage_mb=775,
|
|
308
316
|
max_tokens=64,
|
|
309
317
|
embed_dim=768,
|
|
@@ -328,6 +336,7 @@ siglip_large_patch16_256 = ModelMeta(
|
|
|
328
336
|
release_date="2024-01-08",
|
|
329
337
|
modalities=["image", "text"],
|
|
330
338
|
n_parameters=652_000_000,
|
|
339
|
+
n_embedding_parameters=None,
|
|
331
340
|
memory_usage_mb=2488,
|
|
332
341
|
max_tokens=64,
|
|
333
342
|
embed_dim=1024,
|
|
@@ -352,6 +361,7 @@ siglip_large_patch16_384 = ModelMeta(
|
|
|
352
361
|
release_date="2024-01-08",
|
|
353
362
|
modalities=["image", "text"],
|
|
354
363
|
n_parameters=652_000_000,
|
|
364
|
+
n_embedding_parameters=None,
|
|
355
365
|
memory_usage_mb=2489,
|
|
356
366
|
max_tokens=64,
|
|
357
367
|
embed_dim=1024,
|
|
@@ -224,7 +224,8 @@ sonar = ModelMeta(
|
|
|
224
224
|
use_instructions=False, # it does take a language code as input
|
|
225
225
|
revision="a551c586dcf4a49c8fd847de369412d556a7f2f2",
|
|
226
226
|
release_date="2021-05-21",
|
|
227
|
-
n_parameters=None,
|
|
227
|
+
n_parameters=None,
|
|
228
|
+
n_embedding_parameters=None, # it is really multiple models so not sure how to calculate this
|
|
228
229
|
max_tokens=512, # https://github.com/facebookresearch/SONAR/blob/549d287466443bd8720f938047882630c1c5c3f7/sonar/models/sonar_text/builder.py#L139
|
|
229
230
|
embed_dim=1024,
|
|
230
231
|
license="mit",
|
|
@@ -12,6 +12,7 @@ spartan8806_atles_champion_embedding = ModelMeta(
|
|
|
12
12
|
revision="d4c74d7000bbd25f3597fc0f2dcde59ef1386e8f",
|
|
13
13
|
release_date="2025-11-15",
|
|
14
14
|
n_parameters=110_000_000,
|
|
15
|
+
n_embedding_parameters=23_444_736,
|
|
15
16
|
memory_usage_mb=420,
|
|
16
17
|
max_tokens=512,
|
|
17
18
|
embed_dim=768,
|
|
@@ -66,6 +66,7 @@ stella_en_400m = ModelMeta(
|
|
|
66
66
|
revision="1bb50bc7bb726810eac2140e62155b88b0df198f",
|
|
67
67
|
release_date="2024-07-12",
|
|
68
68
|
n_parameters=435_000_000,
|
|
69
|
+
n_embedding_parameters=None,
|
|
69
70
|
memory_usage_mb=1660,
|
|
70
71
|
max_tokens=8192,
|
|
71
72
|
embed_dim=4096,
|
|
@@ -101,6 +102,7 @@ stella_en_1_5b = ModelMeta(
|
|
|
101
102
|
revision="d03be74b361d4eb24f42a2fe5bd2e29917df4604",
|
|
102
103
|
release_date="2024-07-12",
|
|
103
104
|
n_parameters=1_540_000_000,
|
|
105
|
+
n_embedding_parameters=232_928_256,
|
|
104
106
|
memory_usage_mb=5887,
|
|
105
107
|
max_tokens=131072,
|
|
106
108
|
embed_dim=8960,
|
|
@@ -130,6 +132,7 @@ stella_large_zh_v3_1792d = ModelMeta(
|
|
|
130
132
|
revision="d5d39eb8cd11c80a63df53314e59997074469f09",
|
|
131
133
|
release_date="2024-02-17",
|
|
132
134
|
n_parameters=None,
|
|
135
|
+
n_embedding_parameters=21_635_072,
|
|
133
136
|
memory_usage_mb=None, # can't see on model card
|
|
134
137
|
embed_dim=1792,
|
|
135
138
|
license="not specified",
|
|
@@ -157,6 +160,7 @@ stella_base_zh_v3_1792d = ModelMeta(
|
|
|
157
160
|
revision="82254892a0fba125aa2abf3a4800d2dd12821343",
|
|
158
161
|
release_date="2024-02-17",
|
|
159
162
|
n_parameters=None,
|
|
163
|
+
n_embedding_parameters=16_226_304,
|
|
160
164
|
memory_usage_mb=None, # can't see on model card
|
|
161
165
|
embed_dim=1792,
|
|
162
166
|
license="mit",
|
|
@@ -185,6 +189,7 @@ stella_mrl_large_zh_v3_5_1792d = ModelMeta(
|
|
|
185
189
|
revision="17bb1c32a93a8fc5f6fc9e91d5ea86da99983cfe",
|
|
186
190
|
release_date="2024-02-27",
|
|
187
191
|
n_parameters=int(326 * 1e6),
|
|
192
|
+
n_embedding_parameters=21_635_072,
|
|
188
193
|
memory_usage_mb=1242,
|
|
189
194
|
embed_dim=1792,
|
|
190
195
|
license="mit",
|
|
@@ -209,6 +214,7 @@ zpoint_large_embedding_zh = ModelMeta(
|
|
|
209
214
|
revision="b1075144f440ab4409c05622c1179130ebd57d03",
|
|
210
215
|
release_date="2024-06-04",
|
|
211
216
|
n_parameters=int(326 * 1e6),
|
|
217
|
+
n_embedding_parameters=21_635_072,
|
|
212
218
|
memory_usage_mb=1242,
|
|
213
219
|
embed_dim=1792,
|
|
214
220
|
license="mit",
|
|
@@ -327,6 +327,7 @@ tarka_embedding_150m_v1 = ModelMeta(
|
|
|
327
327
|
revision="b0ffecc4ef0d873e517507ed080e43b88b2704b9",
|
|
328
328
|
release_date="2025-11-04",
|
|
329
329
|
n_parameters=155_714_304,
|
|
330
|
+
n_embedding_parameters=None,
|
|
330
331
|
embed_dim=768,
|
|
331
332
|
max_tokens=2048,
|
|
332
333
|
license="gemma",
|
|
@@ -361,6 +362,7 @@ tarka_embedding_350m_v1 = ModelMeta(
|
|
|
361
362
|
revision="a850d6a329145474727424fed6b12b62096b8ba3",
|
|
362
363
|
release_date="2025-11-11",
|
|
363
364
|
n_parameters=354_483_968,
|
|
365
|
+
n_embedding_parameters=None,
|
|
364
366
|
memory_usage_mb=676,
|
|
365
367
|
embed_dim=1024,
|
|
366
368
|
max_tokens=128000,
|
|
@@ -22,6 +22,7 @@ text2vec_base_chinese = ModelMeta(
|
|
|
22
22
|
revision="183bb99aa7af74355fb58d16edf8c13ae7c5433e",
|
|
23
23
|
release_date="2022-01-23",
|
|
24
24
|
n_parameters=int(102 * 1e6),
|
|
25
|
+
n_embedding_parameters=16_226_304,
|
|
25
26
|
embed_dim=768,
|
|
26
27
|
license="apache-2.0",
|
|
27
28
|
max_tokens=512,
|
|
@@ -51,6 +52,7 @@ text2vec_base_chinese_paraphrase = ModelMeta(
|
|
|
51
52
|
revision="e90c150a9c7fb55a67712a766d6820c55fb83cdd",
|
|
52
53
|
release_date="2023-06-19",
|
|
53
54
|
n_parameters=118 * 1e6,
|
|
55
|
+
n_embedding_parameters=30_720_000,
|
|
54
56
|
memory_usage_mb=450,
|
|
55
57
|
embed_dim=768,
|
|
56
58
|
license="apache-2.0",
|
|
@@ -95,6 +97,7 @@ text2vec_base_multilingual = ModelMeta(
|
|
|
95
97
|
# So probably best not to.
|
|
96
98
|
loader=sentence_transformers_loader,
|
|
97
99
|
n_parameters=117654272,
|
|
100
|
+
n_embedding_parameters=96_014_208,
|
|
98
101
|
memory_usage_mb=449,
|
|
99
102
|
embed_dim=384,
|
|
100
103
|
license="apache-2.0",
|
|
@@ -72,6 +72,7 @@ uae_large_v1 = ModelMeta(
|
|
|
72
72
|
revision="369c368f70f16a613f19f5598d4f12d9f44235d4",
|
|
73
73
|
release_date="2023-12-04", # initial commit of hf model.
|
|
74
74
|
n_parameters=int(335 * 1e6),
|
|
75
|
+
n_embedding_parameters=31_254_528,
|
|
75
76
|
memory_usage_mb=1278,
|
|
76
77
|
max_tokens=512,
|
|
77
78
|
embed_dim=1024,
|
|
@@ -16,6 +16,7 @@ greennode_embedding_large_vn_v1 = ModelMeta(
|
|
|
16
16
|
loader=sentence_transformers_loader,
|
|
17
17
|
open_weights=True,
|
|
18
18
|
n_parameters=568_000_000,
|
|
19
|
+
n_embedding_parameters=256_002_048,
|
|
19
20
|
memory_usage_mb=2167,
|
|
20
21
|
embed_dim=1024,
|
|
21
22
|
license="cc-by-4.0",
|
|
@@ -41,6 +42,7 @@ greennode_embedding_large_vn_mixed_v1 = ModelMeta(
|
|
|
41
42
|
loader=sentence_transformers_loader,
|
|
42
43
|
open_weights=True,
|
|
43
44
|
n_parameters=568_000_000,
|
|
45
|
+
n_embedding_parameters=256_002_048,
|
|
44
46
|
memory_usage_mb=2167,
|
|
45
47
|
embed_dim=1024,
|
|
46
48
|
license="cc-by-4.0",
|
|
@@ -66,6 +68,7 @@ aiteamvn_vietnamese_embeddings = ModelMeta(
|
|
|
66
68
|
loader=sentence_transformers_loader,
|
|
67
69
|
open_weights=True,
|
|
68
70
|
n_parameters=568_000_000,
|
|
71
|
+
n_embedding_parameters=256_002_048,
|
|
69
72
|
memory_usage_mb=2166,
|
|
70
73
|
embed_dim=1024,
|
|
71
74
|
license="cc-by-4.0",
|
|
@@ -98,6 +101,7 @@ hiieu_halong_embedding = ModelMeta(
|
|
|
98
101
|
use_instructions=False,
|
|
99
102
|
open_weights=True,
|
|
100
103
|
n_parameters=278_000_000,
|
|
104
|
+
n_embedding_parameters=192_001_536,
|
|
101
105
|
memory_usage_mb=1061,
|
|
102
106
|
embed_dim=768,
|
|
103
107
|
license="apache-2.0",
|
|
@@ -129,6 +133,7 @@ sup_simcse_vietnamese_phobert_base_ = ModelMeta(
|
|
|
129
133
|
use_instructions=False,
|
|
130
134
|
open_weights=True,
|
|
131
135
|
n_parameters=135_000_000,
|
|
136
|
+
n_embedding_parameters=49_152_768,
|
|
132
137
|
memory_usage_mb=517,
|
|
133
138
|
max_tokens=256,
|
|
134
139
|
embed_dim=768,
|
|
@@ -167,6 +172,7 @@ bkai_foundation_models_vietnamese_bi_encoder = ModelMeta(
|
|
|
167
172
|
use_instructions=False,
|
|
168
173
|
open_weights=True,
|
|
169
174
|
n_parameters=135_000_000,
|
|
175
|
+
n_embedding_parameters=49_152_768,
|
|
170
176
|
memory_usage_mb=515,
|
|
171
177
|
max_tokens=256,
|
|
172
178
|
embed_dim=768,
|
|
@@ -258,6 +258,7 @@ visualized_bge_base = ModelMeta(
|
|
|
258
258
|
release_date="2024-06-06",
|
|
259
259
|
modalities=["image", "text"],
|
|
260
260
|
n_parameters=196_000_000,
|
|
261
|
+
n_embedding_parameters=None,
|
|
261
262
|
memory_usage_mb=1631,
|
|
262
263
|
max_tokens=512,
|
|
263
264
|
embed_dim=768,
|
|
@@ -286,6 +287,7 @@ visualized_bge_m3 = ModelMeta(
|
|
|
286
287
|
release_date="2024-06-06",
|
|
287
288
|
modalities=["image", "text"],
|
|
288
289
|
n_parameters=872_909_505,
|
|
290
|
+
n_embedding_parameters=None,
|
|
289
291
|
memory_usage_mb=4263,
|
|
290
292
|
max_tokens=8192,
|
|
291
293
|
embed_dim=1024,
|
|
@@ -280,6 +280,7 @@ vlm2vec_lora = ModelMeta(
|
|
|
280
280
|
release_date="2024-10-08",
|
|
281
281
|
modalities=["image", "text"],
|
|
282
282
|
n_parameters=None,
|
|
283
|
+
n_embedding_parameters=None,
|
|
283
284
|
memory_usage_mb=None,
|
|
284
285
|
max_tokens=131072,
|
|
285
286
|
embed_dim=3072,
|
|
@@ -304,6 +305,7 @@ vlm2vec_full = ModelMeta(
|
|
|
304
305
|
release_date="2024-10-08",
|
|
305
306
|
modalities=["image", "text"],
|
|
306
307
|
n_parameters=4_150_000_000,
|
|
308
|
+
n_embedding_parameters=None,
|
|
307
309
|
memory_usage_mb=7909,
|
|
308
310
|
max_tokens=131072,
|
|
309
311
|
embed_dim=3072,
|
|
@@ -308,6 +308,7 @@ voyage_3_large = ModelMeta(
|
|
|
308
308
|
embed_dim=1024,
|
|
309
309
|
open_weights=False,
|
|
310
310
|
n_parameters=None,
|
|
311
|
+
n_embedding_parameters=None,
|
|
311
312
|
memory_usage_mb=None,
|
|
312
313
|
license=None,
|
|
313
314
|
reference="https://blog.voyageai.com/2025/01/07/voyage-3-large/",
|
|
@@ -336,6 +337,7 @@ voyage_3_5 = ModelMeta(
|
|
|
336
337
|
embed_dim=1024,
|
|
337
338
|
open_weights=False,
|
|
338
339
|
n_parameters=None,
|
|
340
|
+
n_embedding_parameters=None,
|
|
339
341
|
memory_usage_mb=None,
|
|
340
342
|
license=None,
|
|
341
343
|
reference="https://blog.voyageai.com/2025/05/20/voyage-3-5/",
|
|
@@ -363,6 +365,7 @@ voyage_3_5_int8 = ModelMeta(
|
|
|
363
365
|
embed_dim=1024,
|
|
364
366
|
open_weights=False,
|
|
365
367
|
n_parameters=None,
|
|
368
|
+
n_embedding_parameters=None,
|
|
366
369
|
memory_usage_mb=None,
|
|
367
370
|
license=None,
|
|
368
371
|
reference="https://blog.voyageai.com/2025/05/20/voyage-3-5/",
|
|
@@ -390,6 +393,7 @@ voyage_3_5_binary = ModelMeta(
|
|
|
390
393
|
embed_dim=1024, # Same as original after unpacking from bits
|
|
391
394
|
open_weights=False,
|
|
392
395
|
n_parameters=None,
|
|
396
|
+
n_embedding_parameters=None,
|
|
393
397
|
memory_usage_mb=None,
|
|
394
398
|
license=None,
|
|
395
399
|
reference="https://blog.voyageai.com/2025/05/20/voyage-3-5/",
|
|
@@ -417,6 +421,7 @@ voyage_large_2_instruct = ModelMeta(
|
|
|
417
421
|
embed_dim=1024,
|
|
418
422
|
open_weights=False,
|
|
419
423
|
n_parameters=None,
|
|
424
|
+
n_embedding_parameters=None,
|
|
420
425
|
memory_usage_mb=None,
|
|
421
426
|
license=None,
|
|
422
427
|
reference="https://blog.voyageai.com/2024/05/05/voyage-large-2-instruct-instruction-tuned-and-rank-1-on-mteb/",
|
|
@@ -443,6 +448,7 @@ voyage_finance_2 = ModelMeta(
|
|
|
443
448
|
embed_dim=1024,
|
|
444
449
|
open_weights=False,
|
|
445
450
|
n_parameters=None,
|
|
451
|
+
n_embedding_parameters=None,
|
|
446
452
|
memory_usage_mb=None,
|
|
447
453
|
license=None,
|
|
448
454
|
reference="https://blog.voyageai.com/2024/06/03/domain-specific-embeddings-finance-edition-voyage-finance-2/",
|
|
@@ -469,6 +475,7 @@ voyage_law_2 = ModelMeta(
|
|
|
469
475
|
embed_dim=1024,
|
|
470
476
|
open_weights=False,
|
|
471
477
|
n_parameters=None,
|
|
478
|
+
n_embedding_parameters=None,
|
|
472
479
|
memory_usage_mb=None,
|
|
473
480
|
license=None,
|
|
474
481
|
reference="https://blog.voyageai.com/2024/04/15/domain-specific-embeddings-and-retrieval-legal-edition-voyage-law-2/",
|
|
@@ -495,6 +502,7 @@ voyage_code_2 = ModelMeta(
|
|
|
495
502
|
embed_dim=1536,
|
|
496
503
|
open_weights=False,
|
|
497
504
|
n_parameters=None,
|
|
505
|
+
n_embedding_parameters=None,
|
|
498
506
|
memory_usage_mb=None,
|
|
499
507
|
license=None,
|
|
500
508
|
reference="https://blog.voyageai.com/2024/01/23/voyage-code-2-elevate-your-code-retrieval/",
|
|
@@ -521,6 +529,7 @@ voyage_code_3 = ModelMeta(
|
|
|
521
529
|
embed_dim=1024,
|
|
522
530
|
open_weights=False,
|
|
523
531
|
n_parameters=None,
|
|
532
|
+
n_embedding_parameters=None,
|
|
524
533
|
memory_usage_mb=None,
|
|
525
534
|
license=None,
|
|
526
535
|
reference="https://blog.voyageai.com/2024/12/04/voyage-code-3/",
|
|
@@ -548,6 +557,7 @@ voyage_large_2 = ModelMeta(
|
|
|
548
557
|
embed_dim=1536,
|
|
549
558
|
open_weights=False,
|
|
550
559
|
n_parameters=None,
|
|
560
|
+
n_embedding_parameters=None,
|
|
551
561
|
memory_usage_mb=None,
|
|
552
562
|
license=None,
|
|
553
563
|
reference="https://blog.voyageai.com/2023/10/29/voyage-embeddings/",
|
|
@@ -574,6 +584,7 @@ voyage_2 = ModelMeta(
|
|
|
574
584
|
embed_dim=1024,
|
|
575
585
|
open_weights=False,
|
|
576
586
|
n_parameters=None,
|
|
587
|
+
n_embedding_parameters=None,
|
|
577
588
|
memory_usage_mb=None,
|
|
578
589
|
license=None,
|
|
579
590
|
reference="https://blog.voyageai.com/2023/10/29/voyage-embeddings/",
|
|
@@ -599,6 +610,7 @@ voyage_multilingual_2 = ModelMeta(
|
|
|
599
610
|
embed_dim=1024,
|
|
600
611
|
open_weights=False,
|
|
601
612
|
n_parameters=None,
|
|
613
|
+
n_embedding_parameters=None,
|
|
602
614
|
memory_usage_mb=None,
|
|
603
615
|
license=None,
|
|
604
616
|
reference="https://blog.voyageai.com/2024/06/10/voyage-multilingual-2-multilingual-embedding-model/",
|
|
@@ -625,6 +637,7 @@ voyage_3 = ModelMeta(
|
|
|
625
637
|
embed_dim=1024,
|
|
626
638
|
open_weights=False,
|
|
627
639
|
n_parameters=None,
|
|
640
|
+
n_embedding_parameters=None,
|
|
628
641
|
memory_usage_mb=None,
|
|
629
642
|
license=None,
|
|
630
643
|
reference="https://blog.voyageai.com/2024/09/18/voyage-3/",
|
|
@@ -651,6 +664,7 @@ voyage_3_lite = ModelMeta(
|
|
|
651
664
|
embed_dim=512,
|
|
652
665
|
open_weights=False,
|
|
653
666
|
n_parameters=None,
|
|
667
|
+
n_embedding_parameters=None,
|
|
654
668
|
memory_usage_mb=None,
|
|
655
669
|
license=None,
|
|
656
670
|
reference="https://blog.voyageai.com/2024/09/18/voyage-3/",
|
|
@@ -679,6 +693,7 @@ voyage_3_exp = ModelMeta(
|
|
|
679
693
|
open_weights=False,
|
|
680
694
|
# from their card https://huggingface.co/voyageai/voyage-3-m-exp#model-information
|
|
681
695
|
n_parameters=int(6918 * 1e6),
|
|
696
|
+
n_embedding_parameters=None,
|
|
682
697
|
memory_usage_mb=None,
|
|
683
698
|
license=None,
|
|
684
699
|
reference="https://huggingface.co/voyageai/voyage-3-m-exp",
|