mteb 2.7.3__py3-none-any.whl → 2.7.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/_create_dataloaders.py +47 -5
- mteb/_evaluators/any_sts_evaluator.py +2 -0
- mteb/_evaluators/clustering_evaluator.py +2 -0
- mteb/_evaluators/evaluator.py +2 -1
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +8 -1
- mteb/_evaluators/pair_classification_evaluator.py +3 -0
- mteb/_evaluators/retrieval_evaluator.py +3 -0
- mteb/_evaluators/sklearn_evaluator.py +6 -1
- mteb/_evaluators/text/bitext_mining_evaluator.py +2 -0
- mteb/_evaluators/text/summarization_evaluator.py +2 -0
- mteb/_evaluators/zeroshot_classification_evaluator.py +2 -0
- mteb/abstasks/abstask.py +31 -12
- mteb/abstasks/classification.py +10 -3
- mteb/abstasks/clustering.py +6 -2
- mteb/abstasks/clustering_legacy.py +8 -2
- mteb/abstasks/image/image_text_pair_classification.py +6 -2
- mteb/abstasks/multilabel_classification.py +2 -0
- mteb/abstasks/pair_classification.py +8 -2
- mteb/abstasks/retrieval.py +27 -12
- mteb/abstasks/retrieval_dataset_loaders.py +29 -19
- mteb/abstasks/sts.py +10 -3
- mteb/abstasks/text/bitext_mining.py +9 -5
- mteb/abstasks/text/reranking.py +2 -2
- mteb/abstasks/text/summarization.py +2 -1
- mteb/abstasks/zeroshot_classification.py +8 -2
- mteb/benchmarks/benchmarks/__init__.py +2 -0
- mteb/benchmarks/benchmarks/benchmarks.py +41 -2
- mteb/descriptive_stats/Retrieval/BrightAopsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightLeetcodeRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQAQuestionsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQATheoremsRetrieval.json +35 -0
- mteb/evaluate.py +10 -2
- mteb/models/model_implementations/align_models.py +1 -0
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +2 -0
- mteb/models/model_implementations/ara_models.py +1 -0
- mteb/models/model_implementations/arctic_models.py +8 -0
- mteb/models/model_implementations/b1ade_models.py +1 -0
- mteb/models/model_implementations/bedrock_models.py +4 -0
- mteb/models/model_implementations/bge_models.py +40 -1
- mteb/models/model_implementations/bica_model.py +1 -0
- mteb/models/model_implementations/blip2_models.py +2 -0
- mteb/models/model_implementations/blip_models.py +8 -0
- mteb/models/model_implementations/bm25.py +10 -5
- mteb/models/model_implementations/bmretriever_models.py +4 -0
- mteb/models/model_implementations/cadet_models.py +1 -0
- mteb/models/model_implementations/cde_models.py +2 -0
- mteb/models/model_implementations/clip_models.py +3 -0
- mteb/models/model_implementations/clips_models.py +3 -0
- mteb/models/model_implementations/codefuse_models.py +5 -0
- mteb/models/model_implementations/codesage_models.py +3 -0
- mteb/models/model_implementations/cohere_models.py +4 -0
- mteb/models/model_implementations/cohere_v.py +5 -0
- mteb/models/model_implementations/colpali_models.py +3 -0
- mteb/models/model_implementations/colqwen_models.py +7 -0
- mteb/models/model_implementations/colsmol_models.py +2 -0
- mteb/models/model_implementations/conan_models.py +1 -0
- mteb/models/model_implementations/dino_models.py +19 -0
- mteb/models/model_implementations/e5_instruct.py +4 -0
- mteb/models/model_implementations/e5_models.py +9 -0
- mteb/models/model_implementations/e5_v.py +1 -0
- mteb/models/model_implementations/eagerworks_models.py +1 -0
- mteb/models/model_implementations/emillykkejensen_models.py +3 -0
- mteb/models/model_implementations/en_code_retriever.py +1 -0
- mteb/models/model_implementations/euler_models.py +1 -0
- mteb/models/model_implementations/evaclip_models.py +4 -0
- mteb/models/model_implementations/fa_models.py +9 -0
- mteb/models/model_implementations/facebookai.py +2 -0
- mteb/models/model_implementations/geogpt_models.py +1 -0
- mteb/models/model_implementations/gme_v_models.py +2 -0
- mteb/models/model_implementations/google_models.py +5 -0
- mteb/models/model_implementations/granite_vision_embedding_models.py +1 -0
- mteb/models/model_implementations/gritlm_models.py +2 -0
- mteb/models/model_implementations/gte_models.py +9 -0
- mteb/models/model_implementations/hinvec_models.py +1 -0
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +6 -0
- mteb/models/model_implementations/inf_models.py +2 -0
- mteb/models/model_implementations/jasper_models.py +2 -0
- mteb/models/model_implementations/jina_clip.py +1 -0
- mteb/models/model_implementations/jina_models.py +7 -0
- mteb/models/model_implementations/kalm_models.py +6 -0
- mteb/models/model_implementations/kblab.py +1 -0
- mteb/models/model_implementations/kennethenevoldsen_models.py +2 -0
- mteb/models/model_implementations/kfst.py +1 -0
- mteb/models/model_implementations/kowshik24_models.py +1 -0
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +1 -0
- mteb/models/model_implementations/linq_models.py +1 -0
- mteb/models/model_implementations/listconranker.py +1 -0
- mteb/models/model_implementations/llm2clip_models.py +3 -0
- mteb/models/model_implementations/llm2vec_models.py +8 -0
- mteb/models/model_implementations/mcinext_models.py +3 -0
- mteb/models/model_implementations/mdbr_models.py +2 -0
- mteb/models/model_implementations/misc_models.py +63 -0
- mteb/models/model_implementations/mixedbread_ai_models.py +3 -0
- mteb/models/model_implementations/mme5_models.py +2 -1
- mteb/models/model_implementations/moco_models.py +2 -0
- mteb/models/model_implementations/mod_models.py +1 -0
- mteb/models/model_implementations/model2vec_models.py +13 -0
- mteb/models/model_implementations/moka_models.py +3 -0
- mteb/models/model_implementations/nbailab.py +3 -0
- mteb/models/model_implementations/no_instruct_sentence_models.py +1 -0
- mteb/models/model_implementations/nomic_models.py +6 -0
- mteb/models/model_implementations/nomic_models_vision.py +1 -0
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +2 -0
- mteb/models/model_implementations/nvidia_models.py +3 -0
- mteb/models/model_implementations/octen_models.py +2 -0
- mteb/models/model_implementations/openai_models.py +5 -0
- mteb/models/model_implementations/openclip_models.py +8 -0
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -0
- mteb/models/model_implementations/ops_moa_models.py +2 -0
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -0
- mteb/models/model_implementations/pawan_models.py +1 -0
- mteb/models/model_implementations/piccolo_models.py +2 -0
- mteb/models/model_implementations/promptriever_models.py +4 -0
- mteb/models/model_implementations/pylate_models.py +13 -0
- mteb/models/model_implementations/qodo_models.py +2 -0
- mteb/models/model_implementations/qtack_models.py +1 -0
- mteb/models/model_implementations/qwen3_models.py +3 -0
- mteb/models/model_implementations/qzhou_models.py +2 -0
- mteb/models/model_implementations/rasgaard_models.py +1 -0
- mteb/models/model_implementations/reasonir_model.py +65 -0
- mteb/models/model_implementations/repllama_models.py +2 -0
- mteb/models/model_implementations/rerankers_custom.py +3 -0
- mteb/models/model_implementations/rerankers_monot5_based.py +14 -0
- mteb/models/model_implementations/richinfoai_models.py +1 -0
- mteb/models/model_implementations/ru_sentence_models.py +20 -0
- mteb/models/model_implementations/ruri_models.py +10 -0
- mteb/models/model_implementations/salesforce_models.py +3 -0
- mteb/models/model_implementations/samilpwc_models.py +1 -0
- mteb/models/model_implementations/sarashina_embedding_models.py +2 -0
- mteb/models/model_implementations/searchmap_models.py +1 -0
- mteb/models/model_implementations/seed_1_6_embedding_models.py +1 -0
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +1 -0
- mteb/models/model_implementations/seed_models.py +1 -0
- mteb/models/model_implementations/sentence_transformers_models.py +18 -0
- mteb/models/model_implementations/shuu_model.py +1 -0
- mteb/models/model_implementations/siglip_models.py +10 -0
- mteb/models/model_implementations/sonar_models.py +2 -1
- mteb/models/model_implementations/spartan8806_atles_champion.py +1 -0
- mteb/models/model_implementations/stella_models.py +6 -0
- mteb/models/model_implementations/tarka_models.py +2 -0
- mteb/models/model_implementations/text2vec_models.py +3 -0
- mteb/models/model_implementations/ua_sentence_models.py +1 -0
- mteb/models/model_implementations/uae_models.py +1 -0
- mteb/models/model_implementations/vdr_models.py +1 -0
- mteb/models/model_implementations/vi_vn_models.py +6 -0
- mteb/models/model_implementations/vista_models.py +2 -0
- mteb/models/model_implementations/vlm2vec_models.py +2 -0
- mteb/models/model_implementations/voyage_models.py +15 -0
- mteb/models/model_implementations/voyage_v.py +1 -0
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +1 -0
- mteb/models/model_implementations/yuan_models.py +1 -0
- mteb/models/model_implementations/yuan_models_en.py +1 -0
- mteb/models/model_meta.py +35 -2
- mteb/models/models_protocols.py +4 -0
- mteb/models/search_wrappers.py +12 -0
- mteb/tasks/bitext_mining/eng/pub_chem_smiles_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/fas/fa_mteb_summary_retrieval.py +3 -3
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/flores_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/in22_conv_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/in22_gen_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/norwegian_courts_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ntrex_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/roma_tales_bitext_mining.py +2 -2
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -1
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -1
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -1
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -1
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -1
- mteb/tasks/classification/bul/bulgarian_store_review_sentiment_classfication.py +1 -1
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -1
- mteb/tasks/classification/dan/dk_hate_classification.py +1 -1
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -1
- mteb/tasks/classification/ell/greek_legal_code_classification.py +1 -1
- mteb/tasks/classification/eng/dbpedia_classification.py +2 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -2
- mteb/tasks/classification/eng/toxic_conversations_classification.py +2 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +1 -1
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -1
- mteb/tasks/classification/eng/yelp_review_full_classification.py +2 -2
- mteb/tasks/classification/est/estonian_valence.py +1 -1
- mteb/tasks/classification/fas/fa_mteb_classification.py +6 -6
- mteb/tasks/classification/fas/persian_food_sentiment_classification.py +1 -1
- mteb/tasks/classification/fil/filipino_shopee_reviews_classification.py +1 -1
- mteb/tasks/classification/fin/fin_toxicity_classification.py +1 -1
- mteb/tasks/classification/fra/french_book_reviews.py +2 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -1
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -1
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -1
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +2 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -1
- mteb/tasks/classification/ita/dado_eval_coarse_classification.py +1 -1
- mteb/tasks/classification/ita/ita_casehold_classification.py +1 -1
- mteb/tasks/classification/ita/sardi_stance_classification.py +1 -1
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -1
- mteb/tasks/classification/jpn/wrime_classification.py +1 -1
- mteb/tasks/classification/kan/kannada_news_classification.py +2 -2
- mteb/tasks/classification/kor/klue_tc.py +2 -2
- mteb/tasks/classification/kor/kor_fin.py +1 -1
- mteb/tasks/classification/kor/kor_hate_classification.py +1 -1
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +1 -1
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -1
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/afri_senti_lang_classification.py +1 -1
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -1
- mteb/tasks/classification/multilingual/cyrillic_turkic_lang_classification.py +1 -1
- mteb/tasks/classification/multilingual/indic_nlp_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/masakha_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -1
- mteb/tasks/classification/multilingual/multilingual_sentiment_classification.py +1 -1
- mteb/tasks/classification/multilingual/scala_classification.py +1 -1
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -1
- mteb/tasks/classification/multilingual/turkic_classification.py +1 -1
- mteb/tasks/classification/multilingual/tweet_sentiment_classification.py +1 -1
- mteb/tasks/classification/nep/nepali_news_classification.py +2 -2
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +1 -1
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +1 -1
- mteb/tasks/classification/ory/odia_news_classification.py +2 -2
- mteb/tasks/classification/pan/punjabi_news_classification.py +1 -1
- mteb/tasks/classification/ron/moroco.py +1 -1
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -1
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -1
- mteb/tasks/classification/rus/georeview_classification.py +1 -1
- mteb/tasks/classification/rus/headline_classification.py +2 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +2 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +2 -2
- mteb/tasks/classification/rus/ru_sci_bench_grnti_classification.py +1 -1
- mteb/tasks/classification/rus/ru_sci_bench_oecd_classification.py +1 -1
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -1
- mteb/tasks/classification/san/sanskrit_shlokas_classification.py +1 -1
- mteb/tasks/classification/sin/sinhala_news_classification.py +2 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +2 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -1
- mteb/tasks/classification/spa/spanish_news_classification.py +2 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -1
- mteb/tasks/classification/tam/tamil_news_classification.py +2 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +2 -2
- mteb/tasks/classification/tha/wongnai_reviews_classification.py +1 -1
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +2 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -2
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -1
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -1
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +2 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -1
- mteb/tasks/clustering/deu/blurbs_clustering_p2p.py +1 -1
- mteb/tasks/clustering/deu/blurbs_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/arxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/arxiv_hierarchical_clustering.py +2 -2
- mteb/tasks/clustering/eng/big_patent_clustering.py +1 -1
- mteb/tasks/clustering/eng/biorxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/biorxiv_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/medrxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/medrxiv_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/reddit_clustering.py +1 -1
- mteb/tasks/clustering/eng/reddit_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/stack_exchange_clustering.py +1 -1
- mteb/tasks/clustering/eng/stack_exchange_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/twenty_newsgroups_clustering.py +1 -1
- mteb/tasks/clustering/fas/fa_mteb_clustering.py +4 -4
- mteb/tasks/clustering/fra/hal_clustering_s2s.py +2 -2
- mteb/tasks/clustering/multilingual/mlsum_clustering_p2p.py +2 -2
- mteb/tasks/clustering/multilingual/mlsum_clustering_s2s.py +2 -2
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -1
- mteb/tasks/clustering/multilingual/wiki_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nob/snl_clustering.py +1 -1
- mteb/tasks/clustering/nob/vg_clustering.py +1 -1
- mteb/tasks/clustering/pol/polish_clustering.py +3 -3
- mteb/tasks/clustering/rus/ru_sci_bench_grnti_clustering_p2p.py +1 -1
- mteb/tasks/clustering/rus/ru_sci_bench_oecd_clustering_p2p.py +1 -1
- mteb/tasks/clustering/zho/cmteb_clustering.py +4 -4
- mteb/tasks/image_text_pair_classification/eng/image_co_de.py +1 -1
- mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +1 -1
- mteb/tasks/instruction_reranking/multilingual/m_follow_ir.py +2 -2
- mteb/tasks/multichoice/eng/cv_bench.py +4 -4
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -1
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -1
- mteb/tasks/multilabel_classification/rus/ru_toixic_multilabelclassification_okmlcup.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -1
- mteb/tasks/pair_classification/ara/ar_entail.py +1 -1
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -1
- mteb/tasks/pair_classification/deu/false_friends_de_en_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_ai_sentence_paraphrase_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_smilespc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_synonym_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_wiki_paragraphs_pc.py +1 -1
- mteb/tasks/pair_classification/eng/sprint_duplicate_questions_pc.py +1 -1
- mteb/tasks/pair_classification/eng/twitter_sem_eval2015_pc.py +1 -1
- mteb/tasks/pair_classification/eng/twitter_url_corpus_pc.py +1 -1
- mteb/tasks/pair_classification/fas/fa_mteb_pair_classification.py +5 -5
- mteb/tasks/pair_classification/fas/fars_tail.py +2 -2
- mteb/tasks/pair_classification/hye/armenian_paraphrase_pc.py +1 -1
- mteb/tasks/pair_classification/ita/dis_co_tex_pair_classification.py +1 -1
- mteb/tasks/pair_classification/kor/klue_nli.py +1 -1
- mteb/tasks/pair_classification/multilingual/rte3.py +2 -2
- mteb/tasks/pair_classification/multilingual/xnli.py +1 -1
- mteb/tasks/pair_classification/pol/polish_pc.py +4 -4
- mteb/tasks/pair_classification/por/assin2_rte.py +1 -1
- mteb/tasks/pair_classification/por/sick_br_pc.py +1 -1
- mteb/tasks/pair_classification/rus/terra.py +2 -2
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -1
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -1
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -1
- mteb/tasks/pair_classification/zho/cmteb_pair_classification.py +2 -2
- mteb/tasks/retrieval/ara/sadeem_question_retrieval.py +1 -1
- mteb/tasks/retrieval/code/code_edit_search_retrieval.py +1 -1
- mteb/tasks/retrieval/code/code_rag.py +4 -4
- mteb/tasks/retrieval/code/code_search_net_cc_retrieval.py +1 -1
- mteb/tasks/retrieval/code/coir_code_search_net_retrieval.py +1 -1
- mteb/tasks/retrieval/code/ds1000_retrieval.py +1 -1
- mteb/tasks/retrieval/code/fresh_stack_retrieval.py +1 -1
- mteb/tasks/retrieval/code/human_eval_retrieval.py +1 -1
- mteb/tasks/retrieval/code/mbpp_retrieval.py +1 -1
- mteb/tasks/retrieval/code/wiki_sql_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +1 -1
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +1 -1
- mteb/tasks/retrieval/deu/german_gov_service_retrieval.py +1 -1
- mteb/tasks/retrieval/deu/german_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/ell/greek_civics_qa.py +1 -1
- mteb/tasks/retrieval/eng/__init__.py +42 -0
- mteb/tasks/retrieval/eng/bright_retrieval.py +10 -2
- mteb/tasks/retrieval/eng/bright_v1_1_retrieval.py +968 -0
- mteb/tasks/retrieval/eng/chat_doctor_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/fin_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/finance_bench_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hateful_memes_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hateful_memes_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hc3_finance_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_narrative_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_needle_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_passkey_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_summ_screen_fd_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_wikim_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lembqm_sum_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/memotion_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/memotion_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/ml_questions.py +1 -1
- mteb/tasks/retrieval/eng/nano_argu_ana_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_climate_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_db_pedia_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_fi_qa2018_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_hotpot_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_msmarco_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_nf_corpus_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_nq_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_quora_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_sci_fact_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_scidocs_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_touche2020_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/narrative_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/r2_med_retrieval.py +8 -8
- mteb/tasks/retrieval/eng/sci_mmir_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/sci_mmir_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +10 -10
- mteb/tasks/retrieval/fra/f_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/fra/syntec_retrieval.py +1 -1
- mteb/tasks/retrieval/hun/hun_sum2.py +1 -1
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt19.py +1 -1
- mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt21.py +1 -1
- mteb/tasks/retrieval/multilingual/cur_ev1_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/miracl_vision_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/mr_tidy_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -2
- mteb/tasks/retrieval/multilingual/statcan_dialogue_dataset_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/vdr_multilingual_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +14 -4
- mteb/tasks/retrieval/multilingual/wit_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/x_flickr30k_co_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/x_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/xm3600_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_android_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_english_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_gaming_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_gis_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_mathematica_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_physics_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_programmers_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_stats_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_tex_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_unix_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_webmasters_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_wordpress_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nob/norquad.py +1 -1
- mteb/tasks/retrieval/nob/snl_retrieval.py +1 -1
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -1
- mteb/tasks/retrieval/vie/vie_qu_ad_retrieval.py +1 -1
- mteb/tasks/sts/fao/faroese_sts.py +1 -1
- mteb/tasks/sts/fra/sick_fr_sts.py +1 -1
- mteb/tasks/sts/kor/klue_sts.py +1 -1
- mteb/tasks/sts/por/sick_br_sts.py +1 -1
- mteb/tasks/sts/rus/ru_para_phraser_sts.py +1 -1
- mteb/tasks/zeroshot_classification/eng/sci_mmir.py +1 -1
- {mteb-2.7.3.dist-info → mteb-2.7.5.dist-info}/METADATA +1 -1
- {mteb-2.7.3.dist-info → mteb-2.7.5.dist-info}/RECORD +434 -413
- {mteb-2.7.3.dist-info → mteb-2.7.5.dist-info}/WHEEL +0 -0
- {mteb-2.7.3.dist-info → mteb-2.7.5.dist-info}/entry_points.txt +0 -0
- {mteb-2.7.3.dist-info → mteb-2.7.5.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.7.3.dist-info → mteb-2.7.5.dist-info}/top_level.txt +0 -0
|
@@ -127,6 +127,7 @@ class AbsTaskZeroShotClassification(AbsTask):
|
|
|
127
127
|
hf_subset: str,
|
|
128
128
|
encode_kwargs: EncodeKwargs,
|
|
129
129
|
prediction_folder: Path | None = None,
|
|
130
|
+
num_proc: int = 1,
|
|
130
131
|
**kwargs,
|
|
131
132
|
) -> ZeroShotClassificationMetrics:
|
|
132
133
|
if not isinstance(model, EncoderProtocol):
|
|
@@ -145,7 +146,11 @@ class AbsTaskZeroShotClassification(AbsTask):
|
|
|
145
146
|
hf_subset=hf_subset,
|
|
146
147
|
**kwargs,
|
|
147
148
|
)
|
|
148
|
-
probs = evaluator(
|
|
149
|
+
probs = evaluator(
|
|
150
|
+
model,
|
|
151
|
+
encode_kwargs=encode_kwargs,
|
|
152
|
+
num_proc=num_proc,
|
|
153
|
+
)
|
|
149
154
|
|
|
150
155
|
if prediction_folder:
|
|
151
156
|
self._save_task_predictions(
|
|
@@ -170,13 +175,14 @@ class AbsTaskZeroShotClassification(AbsTask):
|
|
|
170
175
|
accuracy=metrics.accuracy_score(labels, predictions),
|
|
171
176
|
)
|
|
172
177
|
|
|
173
|
-
def _push_dataset_to_hub(self, repo_name: str) -> None:
|
|
178
|
+
def _push_dataset_to_hub(self, repo_name: str, num_proc: int = 1) -> None:
|
|
174
179
|
self._upload_dataset_to_hub(
|
|
175
180
|
repo_name,
|
|
176
181
|
[
|
|
177
182
|
self.input_column_name,
|
|
178
183
|
self.label_column_name,
|
|
179
184
|
],
|
|
185
|
+
num_proc=num_proc,
|
|
180
186
|
)
|
|
181
187
|
labels_dataset = Dataset.from_dict({"labels": self.get_candidate_labels()})
|
|
182
188
|
labels_dataset.push_to_hub(repo_name, config_name="labels")
|
|
@@ -3,6 +3,7 @@ from mteb.benchmarks.benchmarks.benchmarks import (
|
|
|
3
3
|
BEIR_NL,
|
|
4
4
|
BRIGHT,
|
|
5
5
|
BRIGHT_LONG,
|
|
6
|
+
BRIGHT_V1_1,
|
|
6
7
|
BUILT_MTEB,
|
|
7
8
|
C_MTEB,
|
|
8
9
|
CHEMTEB,
|
|
@@ -69,6 +70,7 @@ __all__ = [
|
|
|
69
70
|
"BEIR_NL",
|
|
70
71
|
"BRIGHT",
|
|
71
72
|
"BRIGHT_LONG",
|
|
73
|
+
"BRIGHT_V1_1",
|
|
72
74
|
"BUILT_MTEB",
|
|
73
75
|
"CHEMTEB",
|
|
74
76
|
"CHEMTEB_V1_1",
|
|
@@ -1330,6 +1330,46 @@ This is the long version of the benchmark, which only filter longer documents.
|
|
|
1330
1330
|
""",
|
|
1331
1331
|
)
|
|
1332
1332
|
|
|
1333
|
+
BRIGHT_V1_1 = Benchmark(
|
|
1334
|
+
name="BRIGHT(v1.1)",
|
|
1335
|
+
display_name="Reasoning Retrieval",
|
|
1336
|
+
tasks=get_tasks(
|
|
1337
|
+
tasks=[
|
|
1338
|
+
"BrightBiologyRetrieval",
|
|
1339
|
+
"BrightEarthScienceRetrieval",
|
|
1340
|
+
"BrightEconomicsRetrieval",
|
|
1341
|
+
"BrightPsychologyRetrieval",
|
|
1342
|
+
"BrightRoboticsRetrieval",
|
|
1343
|
+
"BrightStackoverflowRetrieval",
|
|
1344
|
+
"BrightSustainableLivingRetrieval",
|
|
1345
|
+
"BrightPonyRetrieval",
|
|
1346
|
+
"BrightLeetcodeRetrieval",
|
|
1347
|
+
"BrightAopsRetrieval",
|
|
1348
|
+
"BrightTheoremQATheoremsRetrieval",
|
|
1349
|
+
"BrightTheoremQAQuestionsRetrieval",
|
|
1350
|
+
"BrightBiologyLongRetrieval",
|
|
1351
|
+
"BrightEarthScienceLongRetrieval",
|
|
1352
|
+
"BrightEconomicsLongRetrieval",
|
|
1353
|
+
"BrightPsychologyLongRetrieval",
|
|
1354
|
+
"BrightRoboticsLongRetrieval",
|
|
1355
|
+
"BrightStackoverflowLongRetrieval",
|
|
1356
|
+
"BrightSustainableLivingLongRetrieval",
|
|
1357
|
+
"BrightPonyLongRetrieval",
|
|
1358
|
+
],
|
|
1359
|
+
),
|
|
1360
|
+
description="v1.1 refactors the BRIGHT into a different tasks and added prompt to individual tasks.",
|
|
1361
|
+
reference="https://brightbenchmark.github.io/",
|
|
1362
|
+
citation=r"""
|
|
1363
|
+
@article{su2024bright,
|
|
1364
|
+
author = {Su, Hongjin and Yen, Howard and Xia, Mengzhou and Shi, Weijia and Muennighoff, Niklas and Wang, Han-yu and Liu, Haisu and Shi, Quan and Siegel, Zachary S and Tang, Michael and others},
|
|
1365
|
+
journal = {arXiv preprint arXiv:2407.12883},
|
|
1366
|
+
title = {Bright: A realistic and challenging benchmark for reasoning-intensive retrieval},
|
|
1367
|
+
year = {2024},
|
|
1368
|
+
}
|
|
1369
|
+
""",
|
|
1370
|
+
)
|
|
1371
|
+
|
|
1372
|
+
|
|
1333
1373
|
CODE_RAG = Benchmark(
|
|
1334
1374
|
name="CodeRAG",
|
|
1335
1375
|
tasks=get_tasks(
|
|
@@ -1781,8 +1821,7 @@ BEIR_NL = Benchmark(
|
|
|
1781
1821
|
"TRECCOVID-NL",
|
|
1782
1822
|
],
|
|
1783
1823
|
),
|
|
1784
|
-
description="BEIR-NL is a Dutch adaptation of the publicly available BEIR benchmark, created through automated "
|
|
1785
|
-
"translation.",
|
|
1824
|
+
description="BEIR-NL is a Dutch adaptation of the publicly available BEIR benchmark, created through automated translation.",
|
|
1786
1825
|
reference="https://arxiv.org/abs/2412.08329",
|
|
1787
1826
|
contacts=["nikolay-banar"],
|
|
1788
1827
|
citation=r"""
|
|
@@ -0,0 +1,35 @@
|
|
|
1
|
+
{
|
|
2
|
+
"standard": {
|
|
3
|
+
"num_samples": 188113,
|
|
4
|
+
"number_of_characters": 141769714,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 141734227,
|
|
7
|
+
"min_text_length": 58,
|
|
8
|
+
"average_text_length": 753.8974425803981,
|
|
9
|
+
"max_text_length": 7334,
|
|
10
|
+
"unique_texts": 176508
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 35487,
|
|
15
|
+
"min_text_length": 85,
|
|
16
|
+
"average_text_length": 319.7027027027027,
|
|
17
|
+
"max_text_length": 1167,
|
|
18
|
+
"unique_texts": 111
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 524,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 4.7207207207207205,
|
|
25
|
+
"max_relevant_docs_per_query": 8,
|
|
26
|
+
"unique_relevant_docs": 111
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": {
|
|
29
|
+
"num_top_ranked": 20264921,
|
|
30
|
+
"min_top_ranked_per_query": 176954,
|
|
31
|
+
"average_top_ranked_per_query": 182566.85585585586,
|
|
32
|
+
"max_top_ranked_per_query": 186176
|
|
33
|
+
}
|
|
34
|
+
}
|
|
35
|
+
}
|
|
@@ -0,0 +1,35 @@
|
|
|
1
|
+
{
|
|
2
|
+
"long": {
|
|
3
|
+
"num_samples": 627,
|
|
4
|
+
"number_of_characters": 19398082,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 19344209,
|
|
7
|
+
"min_text_length": 142,
|
|
8
|
+
"average_text_length": 36916.42938931298,
|
|
9
|
+
"max_text_length": 1324201,
|
|
10
|
+
"unique_texts": 498
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 53873,
|
|
15
|
+
"min_text_length": 89,
|
|
16
|
+
"average_text_length": 523.0388349514564,
|
|
17
|
+
"max_text_length": 2195,
|
|
18
|
+
"unique_texts": 103
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 134,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 1.3009708737864079,
|
|
25
|
+
"max_relevant_docs_per_query": 4,
|
|
26
|
+
"unique_relevant_docs": 134
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": {
|
|
29
|
+
"num_top_ranked": 53972,
|
|
30
|
+
"min_top_ranked_per_query": 524,
|
|
31
|
+
"average_top_ranked_per_query": 524.0,
|
|
32
|
+
"max_top_ranked_per_query": 524
|
|
33
|
+
}
|
|
34
|
+
}
|
|
35
|
+
}
|
|
@@ -0,0 +1,35 @@
|
|
|
1
|
+
{
|
|
2
|
+
"standard": {
|
|
3
|
+
"num_samples": 57462,
|
|
4
|
+
"number_of_characters": 18936054,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 18882181,
|
|
7
|
+
"min_text_length": 1,
|
|
8
|
+
"average_text_length": 329.192994996426,
|
|
9
|
+
"max_text_length": 31130,
|
|
10
|
+
"unique_texts": 49434
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 53873,
|
|
15
|
+
"min_text_length": 89,
|
|
16
|
+
"average_text_length": 523.0388349514564,
|
|
17
|
+
"max_text_length": 2195,
|
|
18
|
+
"unique_texts": 103
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 374,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 3.6310679611650487,
|
|
25
|
+
"max_relevant_docs_per_query": 19,
|
|
26
|
+
"unique_relevant_docs": 374
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": {
|
|
29
|
+
"num_top_ranked": 5907977,
|
|
30
|
+
"min_top_ranked_per_query": 57359,
|
|
31
|
+
"average_top_ranked_per_query": 57359.0,
|
|
32
|
+
"max_top_ranked_per_query": 57359
|
|
33
|
+
}
|
|
34
|
+
}
|
|
35
|
+
}
|
|
@@ -0,0 +1,35 @@
|
|
|
1
|
+
{
|
|
2
|
+
"long": {
|
|
3
|
+
"num_samples": 717,
|
|
4
|
+
"number_of_characters": 41696684,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 41641374,
|
|
7
|
+
"min_text_length": 28,
|
|
8
|
+
"average_text_length": 69286.81198003328,
|
|
9
|
+
"max_text_length": 2627262,
|
|
10
|
+
"unique_texts": 587
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 55310,
|
|
15
|
+
"min_text_length": 83,
|
|
16
|
+
"average_text_length": 476.8103448275862,
|
|
17
|
+
"max_text_length": 1565,
|
|
18
|
+
"unique_texts": 116
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 187,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 1.6120689655172413,
|
|
25
|
+
"max_relevant_docs_per_query": 4,
|
|
26
|
+
"unique_relevant_docs": 187
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": {
|
|
29
|
+
"num_top_ranked": 69716,
|
|
30
|
+
"min_top_ranked_per_query": 601,
|
|
31
|
+
"average_top_ranked_per_query": 601.0,
|
|
32
|
+
"max_top_ranked_per_query": 601
|
|
33
|
+
}
|
|
34
|
+
}
|
|
35
|
+
}
|
|
@@ -0,0 +1,35 @@
|
|
|
1
|
+
{
|
|
2
|
+
"standard": {
|
|
3
|
+
"num_samples": 121365,
|
|
4
|
+
"number_of_characters": 40478259,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 40422949,
|
|
7
|
+
"min_text_length": 1,
|
|
8
|
+
"average_text_length": 333.3878959826473,
|
|
9
|
+
"max_text_length": 233622,
|
|
10
|
+
"unique_texts": 117633
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 55310,
|
|
15
|
+
"min_text_length": 83,
|
|
16
|
+
"average_text_length": 476.8103448275862,
|
|
17
|
+
"max_text_length": 1565,
|
|
18
|
+
"unique_texts": 116
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 609,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 5.25,
|
|
25
|
+
"max_relevant_docs_per_query": 23,
|
|
26
|
+
"unique_relevant_docs": 609
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": {
|
|
29
|
+
"num_top_ranked": 14064884,
|
|
30
|
+
"min_top_ranked_per_query": 121249,
|
|
31
|
+
"average_top_ranked_per_query": 121249.0,
|
|
32
|
+
"max_top_ranked_per_query": 121249
|
|
33
|
+
}
|
|
34
|
+
}
|
|
35
|
+
}
|
|
@@ -0,0 +1,35 @@
|
|
|
1
|
+
{
|
|
2
|
+
"long": {
|
|
3
|
+
"num_samples": 619,
|
|
4
|
+
"number_of_characters": 19993261,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 19917079,
|
|
7
|
+
"min_text_length": 43,
|
|
8
|
+
"average_text_length": 38598.99031007752,
|
|
9
|
+
"max_text_length": 429507,
|
|
10
|
+
"unique_texts": 515
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 76182,
|
|
15
|
+
"min_text_length": 164,
|
|
16
|
+
"average_text_length": 739.6310679611651,
|
|
17
|
+
"max_text_length": 2223,
|
|
18
|
+
"unique_texts": 103
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 109,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 1.058252427184466,
|
|
25
|
+
"max_relevant_docs_per_query": 3,
|
|
26
|
+
"unique_relevant_docs": 109
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": {
|
|
29
|
+
"num_top_ranked": 53148,
|
|
30
|
+
"min_top_ranked_per_query": 516,
|
|
31
|
+
"average_top_ranked_per_query": 516.0,
|
|
32
|
+
"max_top_ranked_per_query": 516
|
|
33
|
+
}
|
|
34
|
+
}
|
|
35
|
+
}
|
|
@@ -0,0 +1,35 @@
|
|
|
1
|
+
{
|
|
2
|
+
"standard": {
|
|
3
|
+
"num_samples": 50323,
|
|
4
|
+
"number_of_characters": 19882579,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 19806397,
|
|
7
|
+
"min_text_length": 1,
|
|
8
|
+
"average_text_length": 394.3926125049781,
|
|
9
|
+
"max_text_length": 39672,
|
|
10
|
+
"unique_texts": 40594
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 76182,
|
|
15
|
+
"min_text_length": 164,
|
|
16
|
+
"average_text_length": 739.6310679611651,
|
|
17
|
+
"max_text_length": 2223,
|
|
18
|
+
"unique_texts": 103
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 823,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 7.990291262135922,
|
|
25
|
+
"max_relevant_docs_per_query": 85,
|
|
26
|
+
"unique_relevant_docs": 823
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": {
|
|
29
|
+
"num_top_ranked": 5172660,
|
|
30
|
+
"min_top_ranked_per_query": 50220,
|
|
31
|
+
"average_top_ranked_per_query": 50220.0,
|
|
32
|
+
"max_top_ranked_per_query": 50220
|
|
33
|
+
}
|
|
34
|
+
}
|
|
35
|
+
}
|
|
@@ -0,0 +1,35 @@
|
|
|
1
|
+
{
|
|
2
|
+
"standard": {
|
|
3
|
+
"num_samples": 414074,
|
|
4
|
+
"number_of_characters": 438348000,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 438140779,
|
|
7
|
+
"min_text_length": 75,
|
|
8
|
+
"average_text_length": 1058.4849178125876,
|
|
9
|
+
"max_text_length": 103665,
|
|
10
|
+
"unique_texts": 413932
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 207221,
|
|
15
|
+
"min_text_length": 422,
|
|
16
|
+
"average_text_length": 1459.3028169014085,
|
|
17
|
+
"max_text_length": 3964,
|
|
18
|
+
"unique_texts": 142
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 262,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 1.8450704225352113,
|
|
25
|
+
"max_relevant_docs_per_query": 5,
|
|
26
|
+
"unique_relevant_docs": 216
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": {
|
|
29
|
+
"num_top_ranked": 58744859,
|
|
30
|
+
"min_top_ranked_per_query": 412813,
|
|
31
|
+
"average_top_ranked_per_query": 413696.1901408451,
|
|
32
|
+
"max_top_ranked_per_query": 413923
|
|
33
|
+
}
|
|
34
|
+
}
|
|
35
|
+
}
|
|
@@ -0,0 +1,35 @@
|
|
|
1
|
+
{
|
|
2
|
+
"long": {
|
|
3
|
+
"num_samples": 689,
|
|
4
|
+
"number_of_characters": 2093720,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 2050155,
|
|
7
|
+
"min_text_length": 28,
|
|
8
|
+
"average_text_length": 3553.1282495667247,
|
|
9
|
+
"max_text_length": 108885,
|
|
10
|
+
"unique_texts": 577
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 43565,
|
|
15
|
+
"min_text_length": 182,
|
|
16
|
+
"average_text_length": 388.9732142857143,
|
|
17
|
+
"max_text_length": 946,
|
|
18
|
+
"unique_texts": 112
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 769,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 6.866071428571429,
|
|
25
|
+
"max_relevant_docs_per_query": 12,
|
|
26
|
+
"unique_relevant_docs": 17
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": {
|
|
29
|
+
"num_top_ranked": 64624,
|
|
30
|
+
"min_top_ranked_per_query": 577,
|
|
31
|
+
"average_top_ranked_per_query": 577.0,
|
|
32
|
+
"max_top_ranked_per_query": 577
|
|
33
|
+
}
|
|
34
|
+
}
|
|
35
|
+
}
|
|
@@ -0,0 +1,35 @@
|
|
|
1
|
+
{
|
|
2
|
+
"standard": {
|
|
3
|
+
"num_samples": 8006,
|
|
4
|
+
"number_of_characters": 2082980,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 2039415,
|
|
7
|
+
"min_text_length": 5,
|
|
8
|
+
"average_text_length": 258.350012667849,
|
|
9
|
+
"max_text_length": 2583,
|
|
10
|
+
"unique_texts": 6183
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 43565,
|
|
15
|
+
"min_text_length": 182,
|
|
16
|
+
"average_text_length": 388.9732142857143,
|
|
17
|
+
"max_text_length": 946,
|
|
18
|
+
"unique_texts": 112
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 2519,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 22.491071428571427,
|
|
25
|
+
"max_relevant_docs_per_query": 32,
|
|
26
|
+
"unique_relevant_docs": 47
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": {
|
|
29
|
+
"num_top_ranked": 884128,
|
|
30
|
+
"min_top_ranked_per_query": 7894,
|
|
31
|
+
"average_top_ranked_per_query": 7894.0,
|
|
32
|
+
"max_top_ranked_per_query": 7894
|
|
33
|
+
}
|
|
34
|
+
}
|
|
35
|
+
}
|
|
@@ -0,0 +1,35 @@
|
|
|
1
|
+
{
|
|
2
|
+
"long": {
|
|
3
|
+
"num_samples": 613,
|
|
4
|
+
"number_of_characters": 20489389,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 20419376,
|
|
7
|
+
"min_text_length": 23,
|
|
8
|
+
"average_text_length": 39881.59375,
|
|
9
|
+
"max_text_length": 669575,
|
|
10
|
+
"unique_texts": 509
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 70013,
|
|
15
|
+
"min_text_length": 166,
|
|
16
|
+
"average_text_length": 693.1980198019802,
|
|
17
|
+
"max_text_length": 2334,
|
|
18
|
+
"unique_texts": 101
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 116,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 1.1485148514851484,
|
|
25
|
+
"max_relevant_docs_per_query": 5,
|
|
26
|
+
"unique_relevant_docs": 113
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": {
|
|
29
|
+
"num_top_ranked": 51712,
|
|
30
|
+
"min_top_ranked_per_query": 512,
|
|
31
|
+
"average_top_ranked_per_query": 512.0,
|
|
32
|
+
"max_top_ranked_per_query": 512
|
|
33
|
+
}
|
|
34
|
+
}
|
|
35
|
+
}
|
|
@@ -0,0 +1,35 @@
|
|
|
1
|
+
{
|
|
2
|
+
"standard": {
|
|
3
|
+
"num_samples": 52936,
|
|
4
|
+
"number_of_characters": 20372421,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 20302408,
|
|
7
|
+
"min_text_length": 3,
|
|
8
|
+
"average_text_length": 384.26058483959497,
|
|
9
|
+
"max_text_length": 226941,
|
|
10
|
+
"unique_texts": 43756
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 70013,
|
|
15
|
+
"min_text_length": 166,
|
|
16
|
+
"average_text_length": 693.1980198019802,
|
|
17
|
+
"max_text_length": 2334,
|
|
18
|
+
"unique_texts": 101
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 742,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 7.346534653465347,
|
|
25
|
+
"max_relevant_docs_per_query": 59,
|
|
26
|
+
"unique_relevant_docs": 738
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": {
|
|
29
|
+
"num_top_ranked": 5336335,
|
|
30
|
+
"min_top_ranked_per_query": 52835,
|
|
31
|
+
"average_top_ranked_per_query": 52835.0,
|
|
32
|
+
"max_top_ranked_per_query": 52835
|
|
33
|
+
}
|
|
34
|
+
}
|
|
35
|
+
}
|
|
@@ -0,0 +1,35 @@
|
|
|
1
|
+
{
|
|
2
|
+
"long": {
|
|
3
|
+
"num_samples": 609,
|
|
4
|
+
"number_of_characters": 18386897,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 18166762,
|
|
7
|
+
"min_text_length": 117,
|
|
8
|
+
"average_text_length": 35761.34251968504,
|
|
9
|
+
"max_text_length": 3589928,
|
|
10
|
+
"unique_texts": 505
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 220135,
|
|
15
|
+
"min_text_length": 165,
|
|
16
|
+
"average_text_length": 2179.5544554455446,
|
|
17
|
+
"max_text_length": 19341,
|
|
18
|
+
"unique_texts": 101
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 106,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 1.0495049504950495,
|
|
25
|
+
"max_relevant_docs_per_query": 2,
|
|
26
|
+
"unique_relevant_docs": 106
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": {
|
|
29
|
+
"num_top_ranked": 51308,
|
|
30
|
+
"min_top_ranked_per_query": 508,
|
|
31
|
+
"average_top_ranked_per_query": 508.0,
|
|
32
|
+
"max_top_ranked_per_query": 508
|
|
33
|
+
}
|
|
34
|
+
}
|
|
35
|
+
}
|
|
@@ -0,0 +1,35 @@
|
|
|
1
|
+
{
|
|
2
|
+
"standard": {
|
|
3
|
+
"num_samples": 62062,
|
|
4
|
+
"number_of_characters": 18167360,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 17947225,
|
|
7
|
+
"min_text_length": 1,
|
|
8
|
+
"average_text_length": 289.6535724084505,
|
|
9
|
+
"max_text_length": 28637,
|
|
10
|
+
"unique_texts": 40431
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 220135,
|
|
15
|
+
"min_text_length": 165,
|
|
16
|
+
"average_text_length": 2179.5544554455446,
|
|
17
|
+
"max_text_length": 19341,
|
|
18
|
+
"unique_texts": 101
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 553,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 5.475247524752476,
|
|
25
|
+
"max_relevant_docs_per_query": 36,
|
|
26
|
+
"unique_relevant_docs": 553
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": {
|
|
29
|
+
"num_top_ranked": 6258061,
|
|
30
|
+
"min_top_ranked_per_query": 61961,
|
|
31
|
+
"average_top_ranked_per_query": 61961.0,
|
|
32
|
+
"max_top_ranked_per_query": 61961
|
|
33
|
+
}
|
|
34
|
+
}
|
|
35
|
+
}
|
|
@@ -0,0 +1,35 @@
|
|
|
1
|
+
{
|
|
2
|
+
"long": {
|
|
3
|
+
"num_samples": 1975,
|
|
4
|
+
"number_of_characters": 184326754,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 184175475,
|
|
7
|
+
"min_text_length": 41,
|
|
8
|
+
"average_text_length": 99125.65931108719,
|
|
9
|
+
"max_text_length": 9182738,
|
|
10
|
+
"unique_texts": 1846
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 151279,
|
|
15
|
+
"min_text_length": 185,
|
|
16
|
+
"average_text_length": 1292.982905982906,
|
|
17
|
+
"max_text_length": 12432,
|
|
18
|
+
"unique_texts": 117
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 129,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 1.1025641025641026,
|
|
25
|
+
"max_relevant_docs_per_query": 2,
|
|
26
|
+
"unique_relevant_docs": 125
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": {
|
|
29
|
+
"num_top_ranked": 217386,
|
|
30
|
+
"min_top_ranked_per_query": 1858,
|
|
31
|
+
"average_top_ranked_per_query": 1858.0,
|
|
32
|
+
"max_top_ranked_per_query": 1858
|
|
33
|
+
}
|
|
34
|
+
}
|
|
35
|
+
}
|