mteb 2.7.3__py3-none-any.whl → 2.7.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/_create_dataloaders.py +47 -5
- mteb/_evaluators/any_sts_evaluator.py +2 -0
- mteb/_evaluators/clustering_evaluator.py +2 -0
- mteb/_evaluators/evaluator.py +2 -1
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +8 -1
- mteb/_evaluators/pair_classification_evaluator.py +3 -0
- mteb/_evaluators/retrieval_evaluator.py +3 -0
- mteb/_evaluators/sklearn_evaluator.py +6 -1
- mteb/_evaluators/text/bitext_mining_evaluator.py +2 -0
- mteb/_evaluators/text/summarization_evaluator.py +2 -0
- mteb/_evaluators/zeroshot_classification_evaluator.py +2 -0
- mteb/abstasks/abstask.py +31 -12
- mteb/abstasks/classification.py +10 -3
- mteb/abstasks/clustering.py +6 -2
- mteb/abstasks/clustering_legacy.py +8 -2
- mteb/abstasks/image/image_text_pair_classification.py +6 -2
- mteb/abstasks/multilabel_classification.py +2 -0
- mteb/abstasks/pair_classification.py +8 -2
- mteb/abstasks/retrieval.py +27 -12
- mteb/abstasks/retrieval_dataset_loaders.py +29 -19
- mteb/abstasks/sts.py +10 -3
- mteb/abstasks/text/bitext_mining.py +9 -5
- mteb/abstasks/text/reranking.py +2 -2
- mteb/abstasks/text/summarization.py +2 -1
- mteb/abstasks/zeroshot_classification.py +8 -2
- mteb/benchmarks/benchmarks/__init__.py +2 -0
- mteb/benchmarks/benchmarks/benchmarks.py +41 -2
- mteb/descriptive_stats/Retrieval/BrightAopsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightLeetcodeRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQAQuestionsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQATheoremsRetrieval.json +35 -0
- mteb/evaluate.py +10 -2
- mteb/models/model_implementations/align_models.py +1 -0
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +2 -0
- mteb/models/model_implementations/ara_models.py +1 -0
- mteb/models/model_implementations/arctic_models.py +8 -0
- mteb/models/model_implementations/b1ade_models.py +1 -0
- mteb/models/model_implementations/bedrock_models.py +4 -0
- mteb/models/model_implementations/bge_models.py +40 -1
- mteb/models/model_implementations/bica_model.py +1 -0
- mteb/models/model_implementations/blip2_models.py +2 -0
- mteb/models/model_implementations/blip_models.py +8 -0
- mteb/models/model_implementations/bm25.py +10 -5
- mteb/models/model_implementations/bmretriever_models.py +4 -0
- mteb/models/model_implementations/cadet_models.py +1 -0
- mteb/models/model_implementations/cde_models.py +2 -0
- mteb/models/model_implementations/clip_models.py +3 -0
- mteb/models/model_implementations/clips_models.py +3 -0
- mteb/models/model_implementations/codefuse_models.py +5 -0
- mteb/models/model_implementations/codesage_models.py +3 -0
- mteb/models/model_implementations/cohere_models.py +4 -0
- mteb/models/model_implementations/cohere_v.py +5 -0
- mteb/models/model_implementations/colpali_models.py +3 -0
- mteb/models/model_implementations/colqwen_models.py +7 -0
- mteb/models/model_implementations/colsmol_models.py +2 -0
- mteb/models/model_implementations/conan_models.py +1 -0
- mteb/models/model_implementations/dino_models.py +19 -0
- mteb/models/model_implementations/e5_instruct.py +4 -0
- mteb/models/model_implementations/e5_models.py +9 -0
- mteb/models/model_implementations/e5_v.py +1 -0
- mteb/models/model_implementations/eagerworks_models.py +1 -0
- mteb/models/model_implementations/emillykkejensen_models.py +3 -0
- mteb/models/model_implementations/en_code_retriever.py +1 -0
- mteb/models/model_implementations/euler_models.py +1 -0
- mteb/models/model_implementations/evaclip_models.py +4 -0
- mteb/models/model_implementations/fa_models.py +9 -0
- mteb/models/model_implementations/facebookai.py +2 -0
- mteb/models/model_implementations/geogpt_models.py +1 -0
- mteb/models/model_implementations/gme_v_models.py +2 -0
- mteb/models/model_implementations/google_models.py +5 -0
- mteb/models/model_implementations/granite_vision_embedding_models.py +1 -0
- mteb/models/model_implementations/gritlm_models.py +2 -0
- mteb/models/model_implementations/gte_models.py +9 -0
- mteb/models/model_implementations/hinvec_models.py +1 -0
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +6 -0
- mteb/models/model_implementations/inf_models.py +2 -0
- mteb/models/model_implementations/jasper_models.py +2 -0
- mteb/models/model_implementations/jina_clip.py +1 -0
- mteb/models/model_implementations/jina_models.py +7 -0
- mteb/models/model_implementations/kalm_models.py +6 -0
- mteb/models/model_implementations/kblab.py +1 -0
- mteb/models/model_implementations/kennethenevoldsen_models.py +2 -0
- mteb/models/model_implementations/kfst.py +1 -0
- mteb/models/model_implementations/kowshik24_models.py +1 -0
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +1 -0
- mteb/models/model_implementations/linq_models.py +1 -0
- mteb/models/model_implementations/listconranker.py +1 -0
- mteb/models/model_implementations/llm2clip_models.py +3 -0
- mteb/models/model_implementations/llm2vec_models.py +8 -0
- mteb/models/model_implementations/mcinext_models.py +3 -0
- mteb/models/model_implementations/mdbr_models.py +2 -0
- mteb/models/model_implementations/misc_models.py +63 -0
- mteb/models/model_implementations/mixedbread_ai_models.py +3 -0
- mteb/models/model_implementations/mme5_models.py +2 -1
- mteb/models/model_implementations/moco_models.py +2 -0
- mteb/models/model_implementations/mod_models.py +1 -0
- mteb/models/model_implementations/model2vec_models.py +13 -0
- mteb/models/model_implementations/moka_models.py +3 -0
- mteb/models/model_implementations/nbailab.py +3 -0
- mteb/models/model_implementations/no_instruct_sentence_models.py +1 -0
- mteb/models/model_implementations/nomic_models.py +6 -0
- mteb/models/model_implementations/nomic_models_vision.py +1 -0
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +2 -0
- mteb/models/model_implementations/nvidia_models.py +3 -0
- mteb/models/model_implementations/octen_models.py +2 -0
- mteb/models/model_implementations/openai_models.py +5 -0
- mteb/models/model_implementations/openclip_models.py +8 -0
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -0
- mteb/models/model_implementations/ops_moa_models.py +2 -0
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -0
- mteb/models/model_implementations/pawan_models.py +1 -0
- mteb/models/model_implementations/piccolo_models.py +2 -0
- mteb/models/model_implementations/promptriever_models.py +4 -0
- mteb/models/model_implementations/pylate_models.py +13 -0
- mteb/models/model_implementations/qodo_models.py +2 -0
- mteb/models/model_implementations/qtack_models.py +1 -0
- mteb/models/model_implementations/qwen3_models.py +3 -0
- mteb/models/model_implementations/qzhou_models.py +2 -0
- mteb/models/model_implementations/rasgaard_models.py +1 -0
- mteb/models/model_implementations/reasonir_model.py +65 -0
- mteb/models/model_implementations/repllama_models.py +2 -0
- mteb/models/model_implementations/rerankers_custom.py +3 -0
- mteb/models/model_implementations/rerankers_monot5_based.py +14 -0
- mteb/models/model_implementations/richinfoai_models.py +1 -0
- mteb/models/model_implementations/ru_sentence_models.py +20 -0
- mteb/models/model_implementations/ruri_models.py +10 -0
- mteb/models/model_implementations/salesforce_models.py +3 -0
- mteb/models/model_implementations/samilpwc_models.py +1 -0
- mteb/models/model_implementations/sarashina_embedding_models.py +2 -0
- mteb/models/model_implementations/searchmap_models.py +1 -0
- mteb/models/model_implementations/seed_1_6_embedding_models.py +1 -0
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +1 -0
- mteb/models/model_implementations/seed_models.py +1 -0
- mteb/models/model_implementations/sentence_transformers_models.py +18 -0
- mteb/models/model_implementations/shuu_model.py +1 -0
- mteb/models/model_implementations/siglip_models.py +10 -0
- mteb/models/model_implementations/sonar_models.py +2 -1
- mteb/models/model_implementations/spartan8806_atles_champion.py +1 -0
- mteb/models/model_implementations/stella_models.py +6 -0
- mteb/models/model_implementations/tarka_models.py +2 -0
- mteb/models/model_implementations/text2vec_models.py +3 -0
- mteb/models/model_implementations/ua_sentence_models.py +1 -0
- mteb/models/model_implementations/uae_models.py +1 -0
- mteb/models/model_implementations/vdr_models.py +1 -0
- mteb/models/model_implementations/vi_vn_models.py +6 -0
- mteb/models/model_implementations/vista_models.py +2 -0
- mteb/models/model_implementations/vlm2vec_models.py +2 -0
- mteb/models/model_implementations/voyage_models.py +15 -0
- mteb/models/model_implementations/voyage_v.py +1 -0
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +1 -0
- mteb/models/model_implementations/yuan_models.py +1 -0
- mteb/models/model_implementations/yuan_models_en.py +1 -0
- mteb/models/model_meta.py +35 -2
- mteb/models/models_protocols.py +4 -0
- mteb/models/search_wrappers.py +12 -0
- mteb/tasks/bitext_mining/eng/pub_chem_smiles_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/fas/fa_mteb_summary_retrieval.py +3 -3
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/flores_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/in22_conv_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/in22_gen_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/norwegian_courts_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ntrex_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/roma_tales_bitext_mining.py +2 -2
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -1
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -1
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -1
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -1
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -1
- mteb/tasks/classification/bul/bulgarian_store_review_sentiment_classfication.py +1 -1
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -1
- mteb/tasks/classification/dan/dk_hate_classification.py +1 -1
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -1
- mteb/tasks/classification/ell/greek_legal_code_classification.py +1 -1
- mteb/tasks/classification/eng/dbpedia_classification.py +2 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -2
- mteb/tasks/classification/eng/toxic_conversations_classification.py +2 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +1 -1
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -1
- mteb/tasks/classification/eng/yelp_review_full_classification.py +2 -2
- mteb/tasks/classification/est/estonian_valence.py +1 -1
- mteb/tasks/classification/fas/fa_mteb_classification.py +6 -6
- mteb/tasks/classification/fas/persian_food_sentiment_classification.py +1 -1
- mteb/tasks/classification/fil/filipino_shopee_reviews_classification.py +1 -1
- mteb/tasks/classification/fin/fin_toxicity_classification.py +1 -1
- mteb/tasks/classification/fra/french_book_reviews.py +2 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -1
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -1
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -1
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +2 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -1
- mteb/tasks/classification/ita/dado_eval_coarse_classification.py +1 -1
- mteb/tasks/classification/ita/ita_casehold_classification.py +1 -1
- mteb/tasks/classification/ita/sardi_stance_classification.py +1 -1
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -1
- mteb/tasks/classification/jpn/wrime_classification.py +1 -1
- mteb/tasks/classification/kan/kannada_news_classification.py +2 -2
- mteb/tasks/classification/kor/klue_tc.py +2 -2
- mteb/tasks/classification/kor/kor_fin.py +1 -1
- mteb/tasks/classification/kor/kor_hate_classification.py +1 -1
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +1 -1
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -1
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/afri_senti_lang_classification.py +1 -1
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -1
- mteb/tasks/classification/multilingual/cyrillic_turkic_lang_classification.py +1 -1
- mteb/tasks/classification/multilingual/indic_nlp_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/masakha_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -1
- mteb/tasks/classification/multilingual/multilingual_sentiment_classification.py +1 -1
- mteb/tasks/classification/multilingual/scala_classification.py +1 -1
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -1
- mteb/tasks/classification/multilingual/turkic_classification.py +1 -1
- mteb/tasks/classification/multilingual/tweet_sentiment_classification.py +1 -1
- mteb/tasks/classification/nep/nepali_news_classification.py +2 -2
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +1 -1
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +1 -1
- mteb/tasks/classification/ory/odia_news_classification.py +2 -2
- mteb/tasks/classification/pan/punjabi_news_classification.py +1 -1
- mteb/tasks/classification/ron/moroco.py +1 -1
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -1
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -1
- mteb/tasks/classification/rus/georeview_classification.py +1 -1
- mteb/tasks/classification/rus/headline_classification.py +2 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +2 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +2 -2
- mteb/tasks/classification/rus/ru_sci_bench_grnti_classification.py +1 -1
- mteb/tasks/classification/rus/ru_sci_bench_oecd_classification.py +1 -1
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -1
- mteb/tasks/classification/san/sanskrit_shlokas_classification.py +1 -1
- mteb/tasks/classification/sin/sinhala_news_classification.py +2 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +2 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -1
- mteb/tasks/classification/spa/spanish_news_classification.py +2 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -1
- mteb/tasks/classification/tam/tamil_news_classification.py +2 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +2 -2
- mteb/tasks/classification/tha/wongnai_reviews_classification.py +1 -1
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +2 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -2
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -1
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -1
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +2 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -1
- mteb/tasks/clustering/deu/blurbs_clustering_p2p.py +1 -1
- mteb/tasks/clustering/deu/blurbs_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/arxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/arxiv_hierarchical_clustering.py +2 -2
- mteb/tasks/clustering/eng/big_patent_clustering.py +1 -1
- mteb/tasks/clustering/eng/biorxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/biorxiv_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/medrxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/medrxiv_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/reddit_clustering.py +1 -1
- mteb/tasks/clustering/eng/reddit_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/stack_exchange_clustering.py +1 -1
- mteb/tasks/clustering/eng/stack_exchange_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/twenty_newsgroups_clustering.py +1 -1
- mteb/tasks/clustering/fas/fa_mteb_clustering.py +4 -4
- mteb/tasks/clustering/fra/hal_clustering_s2s.py +2 -2
- mteb/tasks/clustering/multilingual/mlsum_clustering_p2p.py +2 -2
- mteb/tasks/clustering/multilingual/mlsum_clustering_s2s.py +2 -2
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -1
- mteb/tasks/clustering/multilingual/wiki_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nob/snl_clustering.py +1 -1
- mteb/tasks/clustering/nob/vg_clustering.py +1 -1
- mteb/tasks/clustering/pol/polish_clustering.py +3 -3
- mteb/tasks/clustering/rus/ru_sci_bench_grnti_clustering_p2p.py +1 -1
- mteb/tasks/clustering/rus/ru_sci_bench_oecd_clustering_p2p.py +1 -1
- mteb/tasks/clustering/zho/cmteb_clustering.py +4 -4
- mteb/tasks/image_text_pair_classification/eng/image_co_de.py +1 -1
- mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +1 -1
- mteb/tasks/instruction_reranking/multilingual/m_follow_ir.py +2 -2
- mteb/tasks/multichoice/eng/cv_bench.py +4 -4
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -1
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -1
- mteb/tasks/multilabel_classification/rus/ru_toixic_multilabelclassification_okmlcup.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -1
- mteb/tasks/pair_classification/ara/ar_entail.py +1 -1
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -1
- mteb/tasks/pair_classification/deu/false_friends_de_en_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_ai_sentence_paraphrase_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_smilespc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_synonym_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_wiki_paragraphs_pc.py +1 -1
- mteb/tasks/pair_classification/eng/sprint_duplicate_questions_pc.py +1 -1
- mteb/tasks/pair_classification/eng/twitter_sem_eval2015_pc.py +1 -1
- mteb/tasks/pair_classification/eng/twitter_url_corpus_pc.py +1 -1
- mteb/tasks/pair_classification/fas/fa_mteb_pair_classification.py +5 -5
- mteb/tasks/pair_classification/fas/fars_tail.py +2 -2
- mteb/tasks/pair_classification/hye/armenian_paraphrase_pc.py +1 -1
- mteb/tasks/pair_classification/ita/dis_co_tex_pair_classification.py +1 -1
- mteb/tasks/pair_classification/kor/klue_nli.py +1 -1
- mteb/tasks/pair_classification/multilingual/rte3.py +2 -2
- mteb/tasks/pair_classification/multilingual/xnli.py +1 -1
- mteb/tasks/pair_classification/pol/polish_pc.py +4 -4
- mteb/tasks/pair_classification/por/assin2_rte.py +1 -1
- mteb/tasks/pair_classification/por/sick_br_pc.py +1 -1
- mteb/tasks/pair_classification/rus/terra.py +2 -2
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -1
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -1
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -1
- mteb/tasks/pair_classification/zho/cmteb_pair_classification.py +2 -2
- mteb/tasks/retrieval/ara/sadeem_question_retrieval.py +1 -1
- mteb/tasks/retrieval/code/code_edit_search_retrieval.py +1 -1
- mteb/tasks/retrieval/code/code_rag.py +4 -4
- mteb/tasks/retrieval/code/code_search_net_cc_retrieval.py +1 -1
- mteb/tasks/retrieval/code/coir_code_search_net_retrieval.py +1 -1
- mteb/tasks/retrieval/code/ds1000_retrieval.py +1 -1
- mteb/tasks/retrieval/code/fresh_stack_retrieval.py +1 -1
- mteb/tasks/retrieval/code/human_eval_retrieval.py +1 -1
- mteb/tasks/retrieval/code/mbpp_retrieval.py +1 -1
- mteb/tasks/retrieval/code/wiki_sql_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +1 -1
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +1 -1
- mteb/tasks/retrieval/deu/german_gov_service_retrieval.py +1 -1
- mteb/tasks/retrieval/deu/german_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/ell/greek_civics_qa.py +1 -1
- mteb/tasks/retrieval/eng/__init__.py +42 -0
- mteb/tasks/retrieval/eng/bright_retrieval.py +10 -2
- mteb/tasks/retrieval/eng/bright_v1_1_retrieval.py +968 -0
- mteb/tasks/retrieval/eng/chat_doctor_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/fin_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/finance_bench_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hateful_memes_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hateful_memes_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hc3_finance_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_narrative_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_needle_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_passkey_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_summ_screen_fd_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_wikim_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lembqm_sum_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/memotion_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/memotion_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/ml_questions.py +1 -1
- mteb/tasks/retrieval/eng/nano_argu_ana_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_climate_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_db_pedia_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_fi_qa2018_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_hotpot_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_msmarco_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_nf_corpus_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_nq_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_quora_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_sci_fact_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_scidocs_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_touche2020_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/narrative_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/r2_med_retrieval.py +8 -8
- mteb/tasks/retrieval/eng/sci_mmir_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/sci_mmir_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +10 -10
- mteb/tasks/retrieval/fra/f_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/fra/syntec_retrieval.py +1 -1
- mteb/tasks/retrieval/hun/hun_sum2.py +1 -1
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt19.py +1 -1
- mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt21.py +1 -1
- mteb/tasks/retrieval/multilingual/cur_ev1_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/miracl_vision_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/mr_tidy_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -2
- mteb/tasks/retrieval/multilingual/statcan_dialogue_dataset_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/vdr_multilingual_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +14 -4
- mteb/tasks/retrieval/multilingual/wit_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/x_flickr30k_co_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/x_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/xm3600_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_android_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_english_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_gaming_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_gis_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_mathematica_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_physics_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_programmers_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_stats_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_tex_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_unix_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_webmasters_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_wordpress_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nob/norquad.py +1 -1
- mteb/tasks/retrieval/nob/snl_retrieval.py +1 -1
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -1
- mteb/tasks/retrieval/vie/vie_qu_ad_retrieval.py +1 -1
- mteb/tasks/sts/fao/faroese_sts.py +1 -1
- mteb/tasks/sts/fra/sick_fr_sts.py +1 -1
- mteb/tasks/sts/kor/klue_sts.py +1 -1
- mteb/tasks/sts/por/sick_br_sts.py +1 -1
- mteb/tasks/sts/rus/ru_para_phraser_sts.py +1 -1
- mteb/tasks/zeroshot_classification/eng/sci_mmir.py +1 -1
- {mteb-2.7.3.dist-info → mteb-2.7.5.dist-info}/METADATA +1 -1
- {mteb-2.7.3.dist-info → mteb-2.7.5.dist-info}/RECORD +434 -413
- {mteb-2.7.3.dist-info → mteb-2.7.5.dist-info}/WHEEL +0 -0
- {mteb-2.7.3.dist-info → mteb-2.7.5.dist-info}/entry_points.txt +0 -0
- {mteb-2.7.3.dist-info → mteb-2.7.5.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.7.3.dist-info → mteb-2.7.5.dist-info}/top_level.txt +0 -0
|
@@ -145,6 +145,7 @@ llm2vec_llama3_8b_supervised = ModelMeta(
|
|
|
145
145
|
# TODO: Not sure what to put here as a model is made of two peft repos, each with a different revision
|
|
146
146
|
release_date="2024-04-09",
|
|
147
147
|
n_parameters=7_505_000_000,
|
|
148
|
+
n_embedding_parameters=None,
|
|
148
149
|
memory_usage_mb=28629,
|
|
149
150
|
max_tokens=8192,
|
|
150
151
|
embed_dim=4096,
|
|
@@ -174,6 +175,7 @@ llm2vec_llama3_8b_unsupervised = ModelMeta(
|
|
|
174
175
|
revision="1cb7b735326d13a8541db8f57f35da5373f5e9c6",
|
|
175
176
|
release_date="2024-04-09",
|
|
176
177
|
n_parameters=7_505_000_000,
|
|
178
|
+
n_embedding_parameters=None,
|
|
177
179
|
memory_usage_mb=28629,
|
|
178
180
|
max_tokens=8192,
|
|
179
181
|
embed_dim=4096,
|
|
@@ -203,6 +205,7 @@ llm2vec_mistral7b_supervised = ModelMeta(
|
|
|
203
205
|
revision="0ae69bdd5816105778b971c3138e8f8a18eaa3ae",
|
|
204
206
|
release_date="2024-04-09",
|
|
205
207
|
n_parameters=7_111_000_000,
|
|
208
|
+
n_embedding_parameters=131_072_000,
|
|
206
209
|
memory_usage_mb=27126,
|
|
207
210
|
max_tokens=32768,
|
|
208
211
|
embed_dim=4096,
|
|
@@ -232,6 +235,7 @@ llm2vec_mistral7b_unsupervised = ModelMeta(
|
|
|
232
235
|
revision="2c055a5d77126c0d3dc6cd8ffa30e2908f4f45f8",
|
|
233
236
|
release_date="2024-04-09",
|
|
234
237
|
n_parameters=7_111_000_000,
|
|
238
|
+
n_embedding_parameters=131_072_000,
|
|
235
239
|
memory_usage_mb=27126,
|
|
236
240
|
max_tokens=32768,
|
|
237
241
|
embed_dim=4096,
|
|
@@ -261,6 +265,7 @@ llm2vec_llama2_7b_supervised = ModelMeta(
|
|
|
261
265
|
revision="2c055a5d77126c0d3dc6cd8ffa30e2908f4f45f8",
|
|
262
266
|
release_date="2024-04-09",
|
|
263
267
|
n_parameters=7_111_000_000,
|
|
268
|
+
n_embedding_parameters=None,
|
|
264
269
|
memory_usage_mb=27126,
|
|
265
270
|
max_tokens=32768,
|
|
266
271
|
embed_dim=4096,
|
|
@@ -290,6 +295,7 @@ llm2vec_llama2_7b_unsupervised = ModelMeta(
|
|
|
290
295
|
revision="a76944871d169ebe7c97eb921764cd063afed785",
|
|
291
296
|
release_date="2024-04-09",
|
|
292
297
|
n_parameters=7_111_000_000,
|
|
298
|
+
n_embedding_parameters=None,
|
|
293
299
|
memory_usage_mb=27126,
|
|
294
300
|
max_tokens=32768,
|
|
295
301
|
embed_dim=4096,
|
|
@@ -319,6 +325,7 @@ llm2vec_sheared_llama_supervised = ModelMeta(
|
|
|
319
325
|
revision="a5943d406c6b016fef3f07906aac183cf1a0b47d",
|
|
320
326
|
release_date="2024-04-09",
|
|
321
327
|
n_parameters=7_111_000_000,
|
|
328
|
+
n_embedding_parameters=65_536_000,
|
|
322
329
|
memory_usage_mb=27126,
|
|
323
330
|
max_tokens=32768,
|
|
324
331
|
embed_dim=4096,
|
|
@@ -348,6 +355,7 @@ llm2vec_sheared_llama_unsupervised = ModelMeta(
|
|
|
348
355
|
revision="a5943d406c6b016fef3f07906aac183cf1a0b47d",
|
|
349
356
|
release_date="2024-04-09",
|
|
350
357
|
n_parameters=7_111_000_000,
|
|
358
|
+
n_embedding_parameters=65_536_000,
|
|
351
359
|
memory_usage_mb=27126,
|
|
352
360
|
max_tokens=32768,
|
|
353
361
|
embed_dim=4096,
|
|
@@ -358,6 +358,7 @@ hakim = ModelMeta(
|
|
|
358
358
|
revision="1",
|
|
359
359
|
release_date="2025-05-10",
|
|
360
360
|
n_parameters=124_441_344,
|
|
361
|
+
n_embedding_parameters=None,
|
|
361
362
|
memory_usage_mb=475,
|
|
362
363
|
embed_dim=768,
|
|
363
364
|
license="not specified",
|
|
@@ -426,6 +427,7 @@ hakim_small = ModelMeta(
|
|
|
426
427
|
revision="1",
|
|
427
428
|
release_date="2025-05-10",
|
|
428
429
|
n_parameters=38_736_384,
|
|
430
|
+
n_embedding_parameters=None,
|
|
429
431
|
memory_usage_mb=148,
|
|
430
432
|
embed_dim=512,
|
|
431
433
|
license="not specified",
|
|
@@ -493,6 +495,7 @@ hakim_unsup = ModelMeta(
|
|
|
493
495
|
revision="1",
|
|
494
496
|
release_date="2025-05-10",
|
|
495
497
|
n_parameters=124_441_344,
|
|
498
|
+
n_embedding_parameters=None,
|
|
496
499
|
memory_usage_mb=475,
|
|
497
500
|
embed_dim=768,
|
|
498
501
|
license="not specified",
|
|
@@ -45,6 +45,7 @@ mdbr_leaf_ir = ModelMeta(
|
|
|
45
45
|
"Transformers",
|
|
46
46
|
],
|
|
47
47
|
n_parameters=22_861_056,
|
|
48
|
+
n_embedding_parameters=11_720_448,
|
|
48
49
|
memory_usage_mb=86,
|
|
49
50
|
max_tokens=512,
|
|
50
51
|
embed_dim=768,
|
|
@@ -79,6 +80,7 @@ mdbr_leaf_mt = ModelMeta(
|
|
|
79
80
|
"Transformers",
|
|
80
81
|
],
|
|
81
82
|
n_parameters=22_958_592,
|
|
83
|
+
n_embedding_parameters=11_720_448,
|
|
82
84
|
memory_usage_mb=86,
|
|
83
85
|
max_tokens=512,
|
|
84
86
|
embed_dim=1024,
|
|
@@ -18,6 +18,7 @@ Haon_Chen__speed_embedding_7b_instruct = ModelMeta(
|
|
|
18
18
|
release_date="2024-10-31",
|
|
19
19
|
languages=["eng-Latn"],
|
|
20
20
|
n_parameters=7110660096,
|
|
21
|
+
n_embedding_parameters=None,
|
|
21
22
|
memory_usage_mb=13563,
|
|
22
23
|
max_tokens=32768.0,
|
|
23
24
|
embed_dim=None,
|
|
@@ -47,6 +48,7 @@ Gameselo__STS_multilingual_mpnet_base_v2 = ModelMeta(
|
|
|
47
48
|
languages=[],
|
|
48
49
|
loader=sentence_transformers_loader,
|
|
49
50
|
n_parameters=278043648,
|
|
51
|
+
n_embedding_parameters=192_001_536,
|
|
50
52
|
memory_usage_mb=1061,
|
|
51
53
|
max_tokens=514.0,
|
|
52
54
|
embed_dim=768,
|
|
@@ -148,6 +150,7 @@ Hum_Works__lodestone_base_4096_v1 = ModelMeta(
|
|
|
148
150
|
languages=["eng-Latn"],
|
|
149
151
|
loader=sentence_transformers_loader,
|
|
150
152
|
n_parameters=None,
|
|
153
|
+
n_embedding_parameters=None,
|
|
151
154
|
memory_usage_mb=None,
|
|
152
155
|
max_tokens=None,
|
|
153
156
|
embed_dim=768,
|
|
@@ -215,6 +218,7 @@ Jaume__gemma_2b_embeddings = ModelMeta(
|
|
|
215
218
|
languages=[],
|
|
216
219
|
loader=sentence_transformers_loader,
|
|
217
220
|
n_parameters=2506172416,
|
|
221
|
+
n_embedding_parameters=None,
|
|
218
222
|
memory_usage_mb=9560,
|
|
219
223
|
max_tokens=8192.0,
|
|
220
224
|
embed_dim=2048,
|
|
@@ -250,6 +254,7 @@ Lajavaness__bilingual_embedding_base = ModelMeta(
|
|
|
250
254
|
trust_remote_code=True,
|
|
251
255
|
),
|
|
252
256
|
n_parameters=278043648,
|
|
257
|
+
n_embedding_parameters=192_001_536,
|
|
253
258
|
memory_usage_mb=1061,
|
|
254
259
|
max_tokens=514.0,
|
|
255
260
|
embed_dim=768,
|
|
@@ -299,6 +304,7 @@ Lajavaness__bilingual_embedding_large = ModelMeta(
|
|
|
299
304
|
trust_remote_code=True,
|
|
300
305
|
),
|
|
301
306
|
n_parameters=559890432,
|
|
307
|
+
n_embedding_parameters=256_002_048,
|
|
302
308
|
memory_usage_mb=2136,
|
|
303
309
|
max_tokens=514.0,
|
|
304
310
|
embed_dim=1024,
|
|
@@ -348,6 +354,7 @@ Lajavaness__bilingual_embedding_small = ModelMeta(
|
|
|
348
354
|
trust_remote_code=True,
|
|
349
355
|
),
|
|
350
356
|
n_parameters=117653760,
|
|
357
|
+
n_embedding_parameters=96_014_208,
|
|
351
358
|
memory_usage_mb=449,
|
|
352
359
|
max_tokens=512.0,
|
|
353
360
|
embed_dim=384,
|
|
@@ -394,6 +401,7 @@ Mihaiii__Bulbasaur = ModelMeta(
|
|
|
394
401
|
languages=None,
|
|
395
402
|
loader=sentence_transformers_loader,
|
|
396
403
|
n_parameters=17389824,
|
|
404
|
+
n_embedding_parameters=11_720_448,
|
|
397
405
|
memory_usage_mb=66,
|
|
398
406
|
max_tokens=512.0,
|
|
399
407
|
embed_dim=384,
|
|
@@ -418,6 +426,7 @@ Mihaiii__Ivysaur = ModelMeta(
|
|
|
418
426
|
languages=None,
|
|
419
427
|
loader=sentence_transformers_loader,
|
|
420
428
|
n_parameters=22713216,
|
|
429
|
+
n_embedding_parameters=11_720_448,
|
|
421
430
|
memory_usage_mb=87,
|
|
422
431
|
max_tokens=512.0,
|
|
423
432
|
embed_dim=384,
|
|
@@ -442,6 +451,7 @@ Mihaiii__Squirtle = ModelMeta(
|
|
|
442
451
|
languages=None,
|
|
443
452
|
loader=sentence_transformers_loader,
|
|
444
453
|
n_parameters=15615360,
|
|
454
|
+
n_embedding_parameters=11_720_448,
|
|
445
455
|
memory_usage_mb=60,
|
|
446
456
|
max_tokens=512.0,
|
|
447
457
|
embed_dim=384,
|
|
@@ -466,6 +476,7 @@ Mihaiii__Venusaur = ModelMeta(
|
|
|
466
476
|
languages=None,
|
|
467
477
|
loader=sentence_transformers_loader,
|
|
468
478
|
n_parameters=15615360,
|
|
479
|
+
n_embedding_parameters=11_720_448,
|
|
469
480
|
memory_usage_mb=60,
|
|
470
481
|
max_tokens=512.0,
|
|
471
482
|
embed_dim=384,
|
|
@@ -490,6 +501,7 @@ Mihaiii__Wartortle = ModelMeta(
|
|
|
490
501
|
languages=None,
|
|
491
502
|
loader=sentence_transformers_loader,
|
|
492
503
|
n_parameters=17389824,
|
|
504
|
+
n_embedding_parameters=11_720_448,
|
|
493
505
|
memory_usage_mb=66,
|
|
494
506
|
max_tokens=512.0,
|
|
495
507
|
embed_dim=384,
|
|
@@ -514,6 +526,7 @@ Mihaiii__gte_micro = ModelMeta(
|
|
|
514
526
|
languages=None,
|
|
515
527
|
loader=sentence_transformers_loader,
|
|
516
528
|
n_parameters=17389824,
|
|
529
|
+
n_embedding_parameters=11_720_448,
|
|
517
530
|
memory_usage_mb=66,
|
|
518
531
|
max_tokens=512.0,
|
|
519
532
|
embed_dim=384,
|
|
@@ -537,6 +550,7 @@ Mihaiii__gte_micro_v4 = ModelMeta(
|
|
|
537
550
|
languages=None,
|
|
538
551
|
loader=sentence_transformers_loader,
|
|
539
552
|
n_parameters=19164288,
|
|
553
|
+
n_embedding_parameters=11_720_448,
|
|
540
554
|
memory_usage_mb=73,
|
|
541
555
|
max_tokens=512.0,
|
|
542
556
|
embed_dim=384,
|
|
@@ -560,6 +574,7 @@ OrdalieTech__Solon_embeddings_large_0_1 = ModelMeta(
|
|
|
560
574
|
languages=["fra-Latn"],
|
|
561
575
|
loader=sentence_transformers_loader,
|
|
562
576
|
n_parameters=559890432,
|
|
577
|
+
n_embedding_parameters=256_002_048,
|
|
563
578
|
memory_usage_mb=2136,
|
|
564
579
|
max_tokens=514.0,
|
|
565
580
|
embed_dim=1024,
|
|
@@ -583,6 +598,7 @@ Omartificial_Intelligence_Space__Arabert_all_nli_triplet_Matryoshka = ModelMeta(
|
|
|
583
598
|
languages=["ara-Arab"],
|
|
584
599
|
loader=sentence_transformers_loader,
|
|
585
600
|
n_parameters=135193344,
|
|
601
|
+
n_embedding_parameters=49_152_000,
|
|
586
602
|
memory_usage_mb=516,
|
|
587
603
|
max_tokens=512.0,
|
|
588
604
|
embed_dim=768,
|
|
@@ -615,6 +631,7 @@ Omartificial_Intelligence_Space__Arabic_MiniLM_L12_v2_all_nli_triplet = ModelMet
|
|
|
615
631
|
languages=["ara-Arab"],
|
|
616
632
|
loader=sentence_transformers_loader,
|
|
617
633
|
n_parameters=117653760,
|
|
634
|
+
n_embedding_parameters=96_014_208,
|
|
618
635
|
memory_usage_mb=449,
|
|
619
636
|
max_tokens=512.0,
|
|
620
637
|
embed_dim=384,
|
|
@@ -640,6 +657,7 @@ Omartificial_Intelligence_Space__Arabic_all_nli_triplet_Matryoshka = ModelMeta(
|
|
|
640
657
|
languages=["ara-Arab"],
|
|
641
658
|
loader=sentence_transformers_loader,
|
|
642
659
|
n_parameters=278043648,
|
|
660
|
+
n_embedding_parameters=192_001_536,
|
|
643
661
|
memory_usage_mb=1061,
|
|
644
662
|
max_tokens=514.0,
|
|
645
663
|
embed_dim=768,
|
|
@@ -674,6 +692,7 @@ Omartificial_Intelligence_Space__Arabic_labse_Matryoshka = ModelMeta(
|
|
|
674
692
|
languages=["ara-Arab"],
|
|
675
693
|
loader=sentence_transformers_loader,
|
|
676
694
|
n_parameters=470926848,
|
|
695
|
+
n_embedding_parameters=384_885_504,
|
|
677
696
|
memory_usage_mb=1796,
|
|
678
697
|
max_tokens=512.0,
|
|
679
698
|
embed_dim=768,
|
|
@@ -708,6 +727,7 @@ Omartificial_Intelligence_Space__Arabic_mpnet_base_all_nli_triplet = ModelMeta(
|
|
|
708
727
|
languages=["ara-Arab"],
|
|
709
728
|
loader=sentence_transformers_loader,
|
|
710
729
|
n_parameters=109486464,
|
|
730
|
+
n_embedding_parameters=23_444_736,
|
|
711
731
|
memory_usage_mb=418,
|
|
712
732
|
max_tokens=514.0,
|
|
713
733
|
embed_dim=768,
|
|
@@ -742,6 +762,7 @@ Omartificial_Intelligence_Space__Marbert_all_nli_triplet_Matryoshka = ModelMeta(
|
|
|
742
762
|
languages=["ara-Arab"],
|
|
743
763
|
loader=sentence_transformers_loader,
|
|
744
764
|
n_parameters=162841344,
|
|
765
|
+
n_embedding_parameters=76_800_000,
|
|
745
766
|
memory_usage_mb=621,
|
|
746
767
|
max_tokens=512.0,
|
|
747
768
|
embed_dim=768,
|
|
@@ -774,6 +795,7 @@ consciousai__cai_lunaris_text_embeddings = ModelMeta(
|
|
|
774
795
|
languages=None,
|
|
775
796
|
loader=sentence_transformers_loader,
|
|
776
797
|
n_parameters=None,
|
|
798
|
+
n_embedding_parameters=31_254_528,
|
|
777
799
|
memory_usage_mb=None,
|
|
778
800
|
max_tokens=512.0,
|
|
779
801
|
embed_dim=1024,
|
|
@@ -797,6 +819,7 @@ consciousai__cai_stellaris_text_embeddings = ModelMeta(
|
|
|
797
819
|
languages=None,
|
|
798
820
|
loader=sentence_transformers_loader,
|
|
799
821
|
n_parameters=None,
|
|
822
|
+
n_embedding_parameters=None,
|
|
800
823
|
memory_usage_mb=None,
|
|
801
824
|
max_tokens=514.0,
|
|
802
825
|
embed_dim=768,
|
|
@@ -829,6 +852,7 @@ manu__sentence_croissant_alpha_v0_2 = ModelMeta(
|
|
|
829
852
|
languages=None,
|
|
830
853
|
loader=sentence_transformers_loader,
|
|
831
854
|
n_parameters=1279887360,
|
|
855
|
+
n_embedding_parameters=65_536_000,
|
|
832
856
|
memory_usage_mb=2441,
|
|
833
857
|
max_tokens=2048.0,
|
|
834
858
|
embed_dim=2048,
|
|
@@ -852,6 +876,7 @@ manu__sentence_croissant_alpha_v0_3 = ModelMeta(
|
|
|
852
876
|
languages=None,
|
|
853
877
|
loader=sentence_transformers_loader,
|
|
854
878
|
n_parameters=1279887360,
|
|
879
|
+
n_embedding_parameters=65_536_000,
|
|
855
880
|
memory_usage_mb=2441,
|
|
856
881
|
max_tokens=2048.0,
|
|
857
882
|
embed_dim=2048,
|
|
@@ -875,6 +900,7 @@ manu__sentence_croissant_alpha_v0_4 = ModelMeta(
|
|
|
875
900
|
languages=["fra-Latn", "eng-Latn"],
|
|
876
901
|
loader=sentence_transformers_loader,
|
|
877
902
|
n_parameters=1279887360,
|
|
903
|
+
n_embedding_parameters=65_536_000,
|
|
878
904
|
memory_usage_mb=2441,
|
|
879
905
|
max_tokens=2048.0,
|
|
880
906
|
embed_dim=2048,
|
|
@@ -899,6 +925,7 @@ thenlper__gte_base = ModelMeta(
|
|
|
899
925
|
languages=["eng-Latn"],
|
|
900
926
|
loader=sentence_transformers_loader,
|
|
901
927
|
n_parameters=109482752,
|
|
928
|
+
n_embedding_parameters=23_440_896,
|
|
902
929
|
memory_usage_mb=209,
|
|
903
930
|
max_tokens=512.0,
|
|
904
931
|
embed_dim=768,
|
|
@@ -928,6 +955,7 @@ thenlper__gte_large = ModelMeta(
|
|
|
928
955
|
languages=["eng-Latn"],
|
|
929
956
|
loader=sentence_transformers_loader,
|
|
930
957
|
n_parameters=335142400,
|
|
958
|
+
n_embedding_parameters=31_254_528,
|
|
931
959
|
memory_usage_mb=639,
|
|
932
960
|
max_tokens=512.0,
|
|
933
961
|
embed_dim=1024,
|
|
@@ -957,6 +985,7 @@ thenlper__gte_small = ModelMeta(
|
|
|
957
985
|
languages=["eng-Latn"],
|
|
958
986
|
loader=sentence_transformers_loader,
|
|
959
987
|
n_parameters=33360512,
|
|
988
|
+
n_embedding_parameters=11_720_448,
|
|
960
989
|
memory_usage_mb=64,
|
|
961
990
|
max_tokens=512.0,
|
|
962
991
|
embed_dim=384,
|
|
@@ -986,6 +1015,7 @@ OrlikB__KartonBERT_USE_base_v1 = ModelMeta(
|
|
|
986
1015
|
languages=["pol-Latn"],
|
|
987
1016
|
loader=sentence_transformers_loader,
|
|
988
1017
|
n_parameters=103705344,
|
|
1018
|
+
n_embedding_parameters=None,
|
|
989
1019
|
memory_usage_mb=396,
|
|
990
1020
|
max_tokens=512.0,
|
|
991
1021
|
embed_dim=768,
|
|
@@ -1009,6 +1039,7 @@ OrlikB__st_polish_kartonberta_base_alpha_v1 = ModelMeta(
|
|
|
1009
1039
|
languages=["pol-Latn"],
|
|
1010
1040
|
loader=sentence_transformers_loader,
|
|
1011
1041
|
n_parameters=None,
|
|
1042
|
+
n_embedding_parameters=None,
|
|
1012
1043
|
memory_usage_mb=None,
|
|
1013
1044
|
max_tokens=514.0,
|
|
1014
1045
|
embed_dim=768,
|
|
@@ -1032,6 +1063,7 @@ sdadas__mmlw_e5_base = ModelMeta(
|
|
|
1032
1063
|
languages=["pol-Latn"],
|
|
1033
1064
|
loader=sentence_transformers_loader,
|
|
1034
1065
|
n_parameters=278043648,
|
|
1066
|
+
n_embedding_parameters=192_001_536,
|
|
1035
1067
|
memory_usage_mb=1061,
|
|
1036
1068
|
max_tokens=514.0,
|
|
1037
1069
|
embed_dim=768,
|
|
@@ -1063,6 +1095,7 @@ dwzhu__e5_base_4k = ModelMeta(
|
|
|
1063
1095
|
languages=["eng-Latn"],
|
|
1064
1096
|
loader=sentence_transformers_loader,
|
|
1065
1097
|
n_parameters=None,
|
|
1098
|
+
n_embedding_parameters=23_440_896,
|
|
1066
1099
|
memory_usage_mb=None,
|
|
1067
1100
|
max_tokens=4096.0,
|
|
1068
1101
|
embed_dim=None,
|
|
@@ -1092,6 +1125,7 @@ sdadas__mmlw_e5_large = ModelMeta(
|
|
|
1092
1125
|
languages=["pol-Latn"],
|
|
1093
1126
|
loader=sentence_transformers_loader,
|
|
1094
1127
|
n_parameters=559890432,
|
|
1128
|
+
n_embedding_parameters=256_002_048,
|
|
1095
1129
|
memory_usage_mb=2136,
|
|
1096
1130
|
max_tokens=514.0,
|
|
1097
1131
|
embed_dim=1024,
|
|
@@ -1123,6 +1157,7 @@ sdadas__mmlw_e5_small = ModelMeta(
|
|
|
1123
1157
|
languages=["pol-Latn"],
|
|
1124
1158
|
loader=sentence_transformers_loader,
|
|
1125
1159
|
n_parameters=117653760,
|
|
1160
|
+
n_embedding_parameters=96_014_208,
|
|
1126
1161
|
memory_usage_mb=449,
|
|
1127
1162
|
max_tokens=512.0,
|
|
1128
1163
|
embed_dim=384,
|
|
@@ -1154,6 +1189,7 @@ sdadas__mmlw_roberta_base = ModelMeta(
|
|
|
1154
1189
|
languages=["pol-Latn"],
|
|
1155
1190
|
loader=sentence_transformers_loader,
|
|
1156
1191
|
n_parameters=124442880,
|
|
1192
|
+
n_embedding_parameters=38_400_768,
|
|
1157
1193
|
memory_usage_mb=475,
|
|
1158
1194
|
max_tokens=514.0,
|
|
1159
1195
|
embed_dim=768,
|
|
@@ -1185,6 +1221,7 @@ sdadas__mmlw_roberta_large = ModelMeta(
|
|
|
1185
1221
|
languages=["pol-Latn"],
|
|
1186
1222
|
loader=sentence_transformers_loader,
|
|
1187
1223
|
n_parameters=434961408,
|
|
1224
|
+
n_embedding_parameters=131_073_024,
|
|
1188
1225
|
memory_usage_mb=1659,
|
|
1189
1226
|
max_tokens=514.0,
|
|
1190
1227
|
embed_dim=1024,
|
|
@@ -1271,6 +1308,7 @@ izhx__udever_bloom_1b1 = ModelMeta(
|
|
|
1271
1308
|
languages=udever_languages,
|
|
1272
1309
|
loader=sentence_transformers_loader,
|
|
1273
1310
|
n_parameters=None,
|
|
1311
|
+
n_embedding_parameters=385_351_680,
|
|
1274
1312
|
memory_usage_mb=None,
|
|
1275
1313
|
max_tokens=None,
|
|
1276
1314
|
embed_dim=None,
|
|
@@ -1300,6 +1338,7 @@ izhx__udever_bloom_3b = ModelMeta(
|
|
|
1300
1338
|
languages=udever_languages,
|
|
1301
1339
|
loader=sentence_transformers_loader,
|
|
1302
1340
|
n_parameters=None,
|
|
1341
|
+
n_embedding_parameters=642_252_800,
|
|
1303
1342
|
memory_usage_mb=None,
|
|
1304
1343
|
max_tokens=None,
|
|
1305
1344
|
embed_dim=None,
|
|
@@ -1329,6 +1368,7 @@ izhx__udever_bloom_560m = ModelMeta(
|
|
|
1329
1368
|
languages=udever_languages,
|
|
1330
1369
|
loader=sentence_transformers_loader,
|
|
1331
1370
|
n_parameters=None,
|
|
1371
|
+
n_embedding_parameters=256_901_120,
|
|
1332
1372
|
memory_usage_mb=None,
|
|
1333
1373
|
max_tokens=None,
|
|
1334
1374
|
embed_dim=None,
|
|
@@ -1358,6 +1398,7 @@ izhx__udever_bloom_7b1 = ModelMeta(
|
|
|
1358
1398
|
languages=udever_languages,
|
|
1359
1399
|
loader=sentence_transformers_loader,
|
|
1360
1400
|
n_parameters=None,
|
|
1401
|
+
n_embedding_parameters=1_027_604_480,
|
|
1361
1402
|
memory_usage_mb=None,
|
|
1362
1403
|
max_tokens=None,
|
|
1363
1404
|
embed_dim=None,
|
|
@@ -1387,6 +1428,7 @@ avsolatorio__gist_embedding_v0 = ModelMeta(
|
|
|
1387
1428
|
languages=["eng-Latn"],
|
|
1388
1429
|
loader=sentence_transformers_loader,
|
|
1389
1430
|
n_parameters=109482240,
|
|
1431
|
+
n_embedding_parameters=23_440_896,
|
|
1390
1432
|
memory_usage_mb=418,
|
|
1391
1433
|
max_tokens=512.0,
|
|
1392
1434
|
embed_dim=768,
|
|
@@ -1437,6 +1479,7 @@ avsolatorio__gist_all_minilm_l6_v2 = ModelMeta(
|
|
|
1437
1479
|
languages=["eng-Latn"],
|
|
1438
1480
|
loader=sentence_transformers_loader,
|
|
1439
1481
|
n_parameters=22713216,
|
|
1482
|
+
n_embedding_parameters=11_720_448,
|
|
1440
1483
|
memory_usage_mb=87,
|
|
1441
1484
|
max_tokens=512.0,
|
|
1442
1485
|
embed_dim=384,
|
|
@@ -1487,6 +1530,7 @@ avsolatorio__gist_large_embedding_v0 = ModelMeta(
|
|
|
1487
1530
|
languages=["eng-Latn"],
|
|
1488
1531
|
loader=sentence_transformers_loader,
|
|
1489
1532
|
n_parameters=335141888,
|
|
1533
|
+
n_embedding_parameters=31_254_528,
|
|
1490
1534
|
memory_usage_mb=1278,
|
|
1491
1535
|
max_tokens=512.0,
|
|
1492
1536
|
embed_dim=1024,
|
|
@@ -1537,6 +1581,7 @@ avsolatorio__gist_small_embedding_v0 = ModelMeta(
|
|
|
1537
1581
|
languages=["eng-Latn"],
|
|
1538
1582
|
loader=sentence_transformers_loader,
|
|
1539
1583
|
n_parameters=33360000,
|
|
1584
|
+
n_embedding_parameters=11_720_448,
|
|
1540
1585
|
memory_usage_mb=127,
|
|
1541
1586
|
max_tokens=512.0,
|
|
1542
1587
|
embed_dim=384,
|
|
@@ -1587,6 +1632,7 @@ bigscience__sgpt_bloom_7b1_msmarco = ModelMeta(
|
|
|
1587
1632
|
languages=None,
|
|
1588
1633
|
loader=sentence_transformers_loader,
|
|
1589
1634
|
n_parameters=None,
|
|
1635
|
+
n_embedding_parameters=1_026_793_472,
|
|
1590
1636
|
memory_usage_mb=None,
|
|
1591
1637
|
max_tokens=None,
|
|
1592
1638
|
embed_dim=4096,
|
|
@@ -1616,6 +1662,7 @@ aari1995__german_semantic_sts_v2 = ModelMeta(
|
|
|
1616
1662
|
languages=["deu-Latn"],
|
|
1617
1663
|
loader=sentence_transformers_loader,
|
|
1618
1664
|
n_parameters=335736320,
|
|
1665
|
+
n_embedding_parameters=31_848_448,
|
|
1619
1666
|
memory_usage_mb=1281,
|
|
1620
1667
|
max_tokens=512.0,
|
|
1621
1668
|
embed_dim=1024,
|
|
@@ -1640,6 +1687,7 @@ abhinand__medembed_small_v0_1 = ModelMeta(
|
|
|
1640
1687
|
languages=["eng-Latn"],
|
|
1641
1688
|
loader=sentence_transformers_loader,
|
|
1642
1689
|
n_parameters=33360000,
|
|
1690
|
+
n_embedding_parameters=11_720_448,
|
|
1643
1691
|
memory_usage_mb=127,
|
|
1644
1692
|
max_tokens=512.0,
|
|
1645
1693
|
embed_dim=384,
|
|
@@ -1678,6 +1726,7 @@ avsolatorio__noinstruct_small_embedding_v0 = ModelMeta(
|
|
|
1678
1726
|
languages=["eng-Latn"],
|
|
1679
1727
|
loader=sentence_transformers_loader,
|
|
1680
1728
|
n_parameters=33360000,
|
|
1729
|
+
n_embedding_parameters=11720448,
|
|
1681
1730
|
memory_usage_mb=127,
|
|
1682
1731
|
max_tokens=512.0,
|
|
1683
1732
|
embed_dim=384,
|
|
@@ -1701,6 +1750,7 @@ brahmairesearch__slx_v0_1 = ModelMeta(
|
|
|
1701
1750
|
languages=["eng-Latn"],
|
|
1702
1751
|
loader=sentence_transformers_loader,
|
|
1703
1752
|
n_parameters=22713216,
|
|
1753
|
+
n_embedding_parameters=11_720_448,
|
|
1704
1754
|
memory_usage_mb=87,
|
|
1705
1755
|
max_tokens=512.0,
|
|
1706
1756
|
embed_dim=384,
|
|
@@ -1724,6 +1774,7 @@ deepfile__embedder_100p = ModelMeta(
|
|
|
1724
1774
|
languages=None,
|
|
1725
1775
|
loader=sentence_transformers_loader,
|
|
1726
1776
|
n_parameters=None,
|
|
1777
|
+
n_embedding_parameters=192_001_536,
|
|
1727
1778
|
memory_usage_mb=1061,
|
|
1728
1779
|
max_tokens=514.0,
|
|
1729
1780
|
embed_dim=768,
|
|
@@ -1747,6 +1798,7 @@ infgrad__stella_base_en_v2 = ModelMeta(
|
|
|
1747
1798
|
languages=["eng-Latn"],
|
|
1748
1799
|
loader=sentence_transformers_loader,
|
|
1749
1800
|
n_parameters=None,
|
|
1801
|
+
n_embedding_parameters=23_440_896,
|
|
1750
1802
|
memory_usage_mb=None,
|
|
1751
1803
|
max_tokens=512.0,
|
|
1752
1804
|
embed_dim=None,
|
|
@@ -1770,6 +1822,7 @@ malenia1__ternary_weight_embedding = ModelMeta(
|
|
|
1770
1822
|
languages=None,
|
|
1771
1823
|
loader=sentence_transformers_loader,
|
|
1772
1824
|
n_parameters=98688000,
|
|
1825
|
+
n_embedding_parameters=None,
|
|
1773
1826
|
memory_usage_mb=158,
|
|
1774
1827
|
max_tokens=512.0,
|
|
1775
1828
|
embed_dim=1024,
|
|
@@ -1793,6 +1846,7 @@ omarelshehy__arabic_english_sts_matryoshka = ModelMeta(
|
|
|
1793
1846
|
languages=["ara-Arab", "eng-Latn"],
|
|
1794
1847
|
loader=sentence_transformers_loader,
|
|
1795
1848
|
n_parameters=559890432,
|
|
1849
|
+
n_embedding_parameters=256_002_048,
|
|
1796
1850
|
memory_usage_mb=2136,
|
|
1797
1851
|
max_tokens=514.0,
|
|
1798
1852
|
embed_dim=1024,
|
|
@@ -1833,6 +1887,7 @@ openbmb__minicpm_embedding = ModelMeta(
|
|
|
1833
1887
|
release_date="2024-09-04",
|
|
1834
1888
|
languages=["zho-Hans", "eng-Latn"],
|
|
1835
1889
|
n_parameters=2724880896,
|
|
1890
|
+
n_embedding_parameters=282_822_912,
|
|
1836
1891
|
memory_usage_mb=5197,
|
|
1837
1892
|
max_tokens=512.0,
|
|
1838
1893
|
embed_dim=2304,
|
|
@@ -1857,6 +1912,7 @@ silma_ai__silma_embedding_matryoshka_v0_1 = ModelMeta(
|
|
|
1857
1912
|
languages=["ara-Arab", "eng-Latn"],
|
|
1858
1913
|
loader=sentence_transformers_loader,
|
|
1859
1914
|
n_parameters=135193344,
|
|
1915
|
+
n_embedding_parameters=49_152_000,
|
|
1860
1916
|
memory_usage_mb=516,
|
|
1861
1917
|
max_tokens=512.0,
|
|
1862
1918
|
embed_dim=768,
|
|
@@ -1888,6 +1944,7 @@ sbert_chinese_general_v1 = ModelMeta(
|
|
|
1888
1944
|
languages=["zho-Hans"],
|
|
1889
1945
|
loader=sentence_transformers_loader,
|
|
1890
1946
|
n_parameters=None,
|
|
1947
|
+
n_embedding_parameters=16_226_304,
|
|
1891
1948
|
memory_usage_mb=None, # Not visible on repo
|
|
1892
1949
|
max_tokens=512,
|
|
1893
1950
|
embed_dim=128,
|
|
@@ -1916,6 +1973,7 @@ dmeta_embedding_zh_small = ModelMeta(
|
|
|
1916
1973
|
languages=["zho-Hans"],
|
|
1917
1974
|
loader=sentence_transformers_loader,
|
|
1918
1975
|
n_parameters=int(74.2 * 1e6),
|
|
1976
|
+
n_embedding_parameters=16_226_304,
|
|
1919
1977
|
memory_usage_mb=283,
|
|
1920
1978
|
max_tokens=1024,
|
|
1921
1979
|
embed_dim=768,
|
|
@@ -1939,6 +1997,7 @@ xiaobu_embedding = ModelMeta(
|
|
|
1939
1997
|
languages=["zho-Hans"],
|
|
1940
1998
|
loader=sentence_transformers_loader,
|
|
1941
1999
|
n_parameters=int(326 * 1e6),
|
|
2000
|
+
n_embedding_parameters=21_635_072,
|
|
1942
2001
|
memory_usage_mb=1244,
|
|
1943
2002
|
max_tokens=512,
|
|
1944
2003
|
embed_dim=1024,
|
|
@@ -1963,6 +2022,7 @@ xiaobu_embedding_v2 = ModelMeta(
|
|
|
1963
2022
|
languages=["zho-Hans"],
|
|
1964
2023
|
loader=sentence_transformers_loader,
|
|
1965
2024
|
n_parameters=int(326 * 1e6),
|
|
2025
|
+
n_embedding_parameters=21_635_072,
|
|
1966
2026
|
memory_usage_mb=1242,
|
|
1967
2027
|
max_tokens=512,
|
|
1968
2028
|
embed_dim=768,
|
|
@@ -1987,6 +2047,7 @@ yinka_embedding = ModelMeta(
|
|
|
1987
2047
|
languages=["zho-Hans"],
|
|
1988
2048
|
loader=sentence_transformers_loader,
|
|
1989
2049
|
n_parameters=int(326 * 1e6),
|
|
2050
|
+
n_embedding_parameters=21_635_072,
|
|
1990
2051
|
memory_usage_mb=1244,
|
|
1991
2052
|
max_tokens=512,
|
|
1992
2053
|
embed_dim=1024,
|
|
@@ -2010,6 +2071,7 @@ conan_embedding = ModelMeta(
|
|
|
2010
2071
|
languages=["zho-Hans"],
|
|
2011
2072
|
loader=sentence_transformers_loader,
|
|
2012
2073
|
n_parameters=int(326 * 1e6),
|
|
2074
|
+
n_embedding_parameters=21_635_072,
|
|
2013
2075
|
memory_usage_mb=1242,
|
|
2014
2076
|
max_tokens=512,
|
|
2015
2077
|
embed_dim=768,
|
|
@@ -2043,6 +2105,7 @@ ember_v1 = ModelMeta(
|
|
|
2043
2105
|
release_date="2023-10-10",
|
|
2044
2106
|
languages=["eng-Latn"],
|
|
2045
2107
|
n_parameters=int(335 * 1e6),
|
|
2108
|
+
n_embedding_parameters=31_254_528,
|
|
2046
2109
|
memory_usage_mb=1278,
|
|
2047
2110
|
max_tokens=512,
|
|
2048
2111
|
embed_dim=1024,
|
|
@@ -31,6 +31,7 @@ mxbai_embed_large_v1 = ModelMeta(
|
|
|
31
31
|
revision="990580e27d329c7408b3741ecff85876e128e203",
|
|
32
32
|
release_date="2024-03-07", # initial commit of hf model.
|
|
33
33
|
n_parameters=335_000_000,
|
|
34
|
+
n_embedding_parameters=31_254_528,
|
|
34
35
|
memory_usage_mb=639,
|
|
35
36
|
max_tokens=512,
|
|
36
37
|
embed_dim=1024,
|
|
@@ -75,6 +76,7 @@ mxbai_embed_2d_large_v1 = ModelMeta(
|
|
|
75
76
|
revision="7e639ca8e344af398876ead3b19ec3c0b9068f49",
|
|
76
77
|
release_date="2024-03-04", # initial commit of hf model.
|
|
77
78
|
n_parameters=335_000_000,
|
|
79
|
+
n_embedding_parameters=31_254_528,
|
|
78
80
|
memory_usage_mb=None,
|
|
79
81
|
max_tokens=512,
|
|
80
82
|
embed_dim=768,
|
|
@@ -106,6 +108,7 @@ mxbai_embed_xsmall_v1 = ModelMeta(
|
|
|
106
108
|
revision="2f741ec33328bb57e4704e1238fc59a4a5745705",
|
|
107
109
|
release_date="2024-08-13", # initial commit of hf model.
|
|
108
110
|
n_parameters=24_100_000,
|
|
111
|
+
n_embedding_parameters=11_720_448,
|
|
109
112
|
memory_usage_mb=None,
|
|
110
113
|
max_tokens=512,
|
|
111
114
|
embed_dim=384,
|
|
@@ -16,7 +16,8 @@ mme5_mllama = ModelMeta(
|
|
|
16
16
|
revision="cbb328b9bf9ff5362c852c3166931903226d46f1",
|
|
17
17
|
release_date="2025-02-12",
|
|
18
18
|
languages=["eng-Latn"],
|
|
19
|
-
n_parameters=10_600_000_000,
|
|
19
|
+
n_parameters=10_600_000_000,
|
|
20
|
+
n_embedding_parameters=None, # 10.6B
|
|
20
21
|
memory_usage_mb=20300,
|
|
21
22
|
max_tokens=128_000,
|
|
22
23
|
embed_dim=4096,
|
|
@@ -130,6 +130,7 @@ mocov3_vit_base = ModelMeta(
|
|
|
130
130
|
release_date="2024-06-03",
|
|
131
131
|
modalities=["image"],
|
|
132
132
|
n_parameters=86_600_000,
|
|
133
|
+
n_embedding_parameters=None,
|
|
133
134
|
memory_usage_mb=330,
|
|
134
135
|
max_tokens=None,
|
|
135
136
|
embed_dim=768,
|
|
@@ -154,6 +155,7 @@ mocov3_vit_large = ModelMeta(
|
|
|
154
155
|
release_date="2024-06-03",
|
|
155
156
|
modalities=["image"],
|
|
156
157
|
n_parameters=304_000_000,
|
|
158
|
+
n_embedding_parameters=None,
|
|
157
159
|
memory_usage_mb=1161,
|
|
158
160
|
max_tokens=None,
|
|
159
161
|
embed_dim=1024,
|