mteb 2.5.2__py3-none-any.whl → 2.7.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +2 -0
- mteb/_create_dataloaders.py +17 -18
- mteb/_evaluators/any_sts_evaluator.py +3 -3
- mteb/_evaluators/clustering_evaluator.py +2 -2
- mteb/_evaluators/evaluator.py +4 -2
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +10 -8
- mteb/_evaluators/pair_classification_evaluator.py +5 -3
- mteb/_evaluators/retrieval_evaluator.py +2 -2
- mteb/_evaluators/retrieval_metrics.py +18 -17
- mteb/_evaluators/sklearn_evaluator.py +11 -10
- mteb/_evaluators/text/bitext_mining_evaluator.py +27 -18
- mteb/_evaluators/text/summarization_evaluator.py +23 -18
- mteb/_evaluators/zeroshot_classification_evaluator.py +5 -3
- mteb/abstasks/_data_filter/filters.py +1 -1
- mteb/abstasks/_data_filter/task_pipelines.py +3 -0
- mteb/abstasks/_statistics_calculation.py +18 -10
- mteb/abstasks/_stratification.py +18 -18
- mteb/abstasks/abstask.py +35 -28
- mteb/abstasks/aggregate_task_metadata.py +1 -9
- mteb/abstasks/aggregated_task.py +10 -29
- mteb/abstasks/classification.py +15 -10
- mteb/abstasks/clustering.py +19 -15
- mteb/abstasks/clustering_legacy.py +10 -10
- mteb/abstasks/image/image_text_pair_classification.py +7 -4
- mteb/abstasks/multilabel_classification.py +23 -19
- mteb/abstasks/pair_classification.py +20 -11
- mteb/abstasks/regression.py +4 -4
- mteb/abstasks/retrieval.py +28 -24
- mteb/abstasks/retrieval_dataset_loaders.py +2 -2
- mteb/abstasks/sts.py +8 -5
- mteb/abstasks/task_metadata.py +31 -33
- mteb/abstasks/text/bitext_mining.py +39 -28
- mteb/abstasks/text/reranking.py +8 -6
- mteb/abstasks/text/summarization.py +10 -5
- mteb/abstasks/zeroshot_classification.py +8 -4
- mteb/benchmarks/benchmark.py +4 -2
- mteb/benchmarks/benchmarks/__init__.py +4 -0
- mteb/benchmarks/benchmarks/benchmarks.py +112 -11
- mteb/benchmarks/get_benchmark.py +14 -55
- mteb/cache.py +182 -29
- mteb/cli/_display_tasks.py +2 -2
- mteb/cli/build_cli.py +110 -14
- mteb/cli/generate_model_card.py +43 -23
- mteb/deprecated_evaluator.py +63 -49
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2CybersecurityRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EconomicRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EnergyRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2HrRetrieval.json +32 -0
- mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json +116 -0
- mteb/descriptive_stats/Retrieval/NanoClimateFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoDBPedia-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoHotpotQA-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoMSMARCO-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoNQ-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/TVPLRetrieval.json +30 -0
- mteb/evaluate.py +44 -33
- mteb/filter_tasks.py +25 -26
- mteb/get_tasks.py +29 -30
- mteb/languages/language_scripts.py +5 -3
- mteb/leaderboard/app.py +162 -34
- mteb/load_results.py +12 -12
- mteb/models/abs_encoder.py +10 -6
- mteb/models/cache_wrappers/cache_backend_protocol.py +3 -5
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +5 -4
- mteb/models/cache_wrappers/cache_backends/faiss_cache.py +6 -2
- mteb/models/cache_wrappers/cache_backends/numpy_cache.py +43 -25
- mteb/models/cache_wrappers/cache_wrapper.py +2 -2
- mteb/models/get_model_meta.py +21 -3
- mteb/models/instruct_wrapper.py +28 -8
- mteb/models/model_implementations/align_models.py +1 -1
- mteb/models/model_implementations/andersborges.py +4 -4
- mteb/models/model_implementations/ara_models.py +1 -1
- mteb/models/model_implementations/arctic_models.py +8 -8
- mteb/models/model_implementations/b1ade_models.py +1 -1
- mteb/models/model_implementations/bge_models.py +45 -21
- mteb/models/model_implementations/bica_model.py +3 -3
- mteb/models/model_implementations/blip2_models.py +2 -2
- mteb/models/model_implementations/blip_models.py +16 -16
- mteb/models/model_implementations/bm25.py +4 -4
- mteb/models/model_implementations/bmretriever_models.py +6 -4
- mteb/models/model_implementations/cadet_models.py +1 -1
- mteb/models/model_implementations/cde_models.py +11 -4
- mteb/models/model_implementations/clip_models.py +6 -6
- mteb/models/model_implementations/clips_models.py +3 -3
- mteb/models/model_implementations/codefuse_models.py +5 -5
- mteb/models/model_implementations/codesage_models.py +3 -3
- mteb/models/model_implementations/cohere_models.py +5 -5
- mteb/models/model_implementations/cohere_v.py +2 -2
- mteb/models/model_implementations/colpali_models.py +3 -3
- mteb/models/model_implementations/colqwen_models.py +8 -8
- mteb/models/model_implementations/colsmol_models.py +2 -2
- mteb/models/model_implementations/conan_models.py +1 -1
- mteb/models/model_implementations/dino_models.py +42 -42
- mteb/models/model_implementations/e5_instruct.py +23 -4
- mteb/models/model_implementations/e5_models.py +9 -9
- mteb/models/model_implementations/e5_v.py +6 -6
- mteb/models/model_implementations/eagerworks_models.py +1 -1
- mteb/models/model_implementations/emillykkejensen_models.py +6 -6
- mteb/models/model_implementations/en_code_retriever.py +1 -1
- mteb/models/model_implementations/euler_models.py +2 -2
- mteb/models/model_implementations/fa_models.py +9 -9
- mteb/models/model_implementations/facebookai.py +14 -2
- mteb/models/model_implementations/geogpt_models.py +1 -1
- mteb/models/model_implementations/gme_v_models.py +6 -5
- mteb/models/model_implementations/google_models.py +1 -1
- mteb/models/model_implementations/granite_vision_embedding_models.py +1 -1
- mteb/models/model_implementations/gritlm_models.py +2 -2
- mteb/models/model_implementations/gte_models.py +25 -13
- mteb/models/model_implementations/hinvec_models.py +1 -1
- mteb/models/model_implementations/ibm_granite_models.py +30 -6
- mteb/models/model_implementations/inf_models.py +2 -2
- mteb/models/model_implementations/jasper_models.py +2 -2
- mteb/models/model_implementations/jina_clip.py +48 -10
- mteb/models/model_implementations/jina_models.py +18 -11
- mteb/models/model_implementations/kblab.py +12 -6
- mteb/models/model_implementations/kennethenevoldsen_models.py +4 -4
- mteb/models/model_implementations/kfst.py +1 -1
- mteb/models/model_implementations/kowshik24_models.py +1 -1
- mteb/models/model_implementations/lgai_embedding_models.py +1 -1
- mteb/models/model_implementations/linq_models.py +1 -1
- mteb/models/model_implementations/listconranker.py +1 -1
- mteb/models/model_implementations/llm2clip_models.py +6 -6
- mteb/models/model_implementations/llm2vec_models.py +8 -8
- mteb/models/model_implementations/mcinext_models.py +4 -1
- mteb/models/model_implementations/mdbr_models.py +17 -3
- mteb/models/model_implementations/misc_models.py +68 -68
- mteb/models/model_implementations/mixedbread_ai_models.py +332 -0
- mteb/models/model_implementations/mme5_models.py +1 -1
- mteb/models/model_implementations/moco_models.py +4 -4
- mteb/models/model_implementations/mod_models.py +1 -1
- mteb/models/model_implementations/model2vec_models.py +14 -14
- mteb/models/model_implementations/moka_models.py +1 -1
- mteb/models/model_implementations/nbailab.py +3 -3
- mteb/models/model_implementations/no_instruct_sentence_models.py +2 -2
- mteb/models/model_implementations/nomic_models.py +30 -15
- mteb/models/model_implementations/nomic_models_vision.py +1 -1
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +15 -9
- mteb/models/model_implementations/nvidia_models.py +151 -19
- mteb/models/model_implementations/octen_models.py +61 -2
- mteb/models/model_implementations/openclip_models.py +13 -13
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -5
- mteb/models/model_implementations/ops_moa_models.py +1 -1
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -1
- mteb/models/model_implementations/pawan_models.py +1 -1
- mteb/models/model_implementations/piccolo_models.py +1 -1
- mteb/models/model_implementations/pixie_models.py +56 -0
- mteb/models/model_implementations/promptriever_models.py +4 -4
- mteb/models/model_implementations/pylate_models.py +10 -9
- mteb/models/model_implementations/qodo_models.py +2 -2
- mteb/models/model_implementations/qtack_models.py +1 -1
- mteb/models/model_implementations/qwen3_models.py +3 -3
- mteb/models/model_implementations/qzhou_models.py +2 -2
- mteb/models/model_implementations/random_baseline.py +3 -3
- mteb/models/model_implementations/rasgaard_models.py +2 -2
- mteb/models/model_implementations/reasonir_model.py +1 -1
- mteb/models/model_implementations/repllama_models.py +3 -3
- mteb/models/model_implementations/rerankers_custom.py +12 -6
- mteb/models/model_implementations/rerankers_monot5_based.py +17 -17
- mteb/models/model_implementations/richinfoai_models.py +1 -1
- mteb/models/model_implementations/ru_sentence_models.py +20 -20
- mteb/models/model_implementations/ruri_models.py +10 -10
- mteb/models/model_implementations/salesforce_models.py +3 -3
- mteb/models/model_implementations/samilpwc_models.py +1 -1
- mteb/models/model_implementations/sarashina_embedding_models.py +2 -2
- mteb/models/model_implementations/searchmap_models.py +1 -1
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +113 -146
- mteb/models/model_implementations/sentence_transformers_models.py +124 -22
- mteb/models/model_implementations/shuu_model.py +1 -1
- mteb/models/model_implementations/siglip_models.py +20 -20
- mteb/models/model_implementations/slm_models.py +416 -0
- mteb/models/model_implementations/spartan8806_atles_champion.py +1 -1
- mteb/models/model_implementations/stella_models.py +17 -4
- mteb/models/model_implementations/tarka_models.py +2 -2
- mteb/models/model_implementations/text2vec_models.py +9 -3
- mteb/models/model_implementations/ua_sentence_models.py +1 -1
- mteb/models/model_implementations/uae_models.py +7 -1
- mteb/models/model_implementations/vdr_models.py +1 -1
- mteb/models/model_implementations/vi_vn_models.py +6 -6
- mteb/models/model_implementations/vlm2vec_models.py +3 -3
- mteb/models/model_implementations/voyage_models.py +84 -0
- mteb/models/model_implementations/voyage_v.py +9 -7
- mteb/models/model_implementations/youtu_models.py +1 -1
- mteb/models/model_implementations/yuan_models.py +1 -1
- mteb/models/model_implementations/yuan_models_en.py +1 -1
- mteb/models/model_meta.py +80 -31
- mteb/models/models_protocols.py +22 -6
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +9 -6
- mteb/models/search_wrappers.py +33 -18
- mteb/models/sentence_transformer_wrapper.py +50 -25
- mteb/models/vllm_wrapper.py +327 -0
- mteb/py.typed +0 -0
- mteb/results/benchmark_results.py +29 -21
- mteb/results/model_result.py +52 -22
- mteb/results/task_result.py +80 -58
- mteb/similarity_functions.py +11 -7
- mteb/tasks/classification/dan/dk_hate_classification.py +1 -1
- mteb/tasks/classification/est/estonian_valence.py +1 -1
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +2 -2
- mteb/tasks/classification/multilingual/scala_classification.py +1 -1
- mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/zho/cmteb_clustering.py +2 -2
- mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +1 -1
- mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
- mteb/tasks/retrieval/code/code_rag.py +12 -12
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +2 -2
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +2 -2
- mteb/tasks/retrieval/eng/__init__.py +2 -0
- mteb/tasks/retrieval/eng/chemrxiv.py +33 -0
- mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
- mteb/tasks/retrieval/kor/__init__.py +15 -1
- mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py +142 -0
- mteb/tasks/retrieval/multilingual/__init__.py +2 -0
- mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py +43 -0
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +90 -100
- mteb/tasks/retrieval/nob/norquad.py +2 -2
- mteb/tasks/retrieval/nob/snl_retrieval.py +2 -2
- mteb/tasks/retrieval/tur/tur_hist_quad.py +1 -1
- mteb/tasks/retrieval/vie/__init__.py +14 -6
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +48 -0
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/tvpl_retrieval.py +42 -0
- mteb/tasks/retrieval/vie/zac_legal_text_retrieval.py +15 -1
- mteb/types/__init__.py +2 -0
- mteb/types/_encoder_io.py +12 -0
- mteb/types/_result.py +2 -1
- mteb/types/statistics.py +9 -3
- {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/METADATA +15 -4
- {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/RECORD +240 -219
- mteb/models/model_implementations/mxbai_models.py +0 -111
- {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/WHEEL +0 -0
- {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/entry_points.txt +0 -0
- {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/top_level.txt +0 -0
|
@@ -1,5 +1,5 @@
|
|
|
1
1
|
from .argu_ana_vn_retrieval import ArguAnaVN
|
|
2
|
-
from .climate_fevervn_retrieval import ClimateFEVERVN
|
|
2
|
+
from .climate_fevervn_retrieval import ClimateFEVERVN, NanoClimateFEVERVN
|
|
3
3
|
from .cqa_dupstack_android_vn_retrieval import CQADupstackAndroidVN
|
|
4
4
|
from .cqa_dupstack_gis_vn_retrieval import CQADupstackGisVN
|
|
5
5
|
from .cqa_dupstack_mathematica_vn_retrieval import CQADupstackMathematicaVN
|
|
@@ -10,19 +10,20 @@ from .cqa_dupstack_tex_vn_retrieval import CQADupstackTexVN
|
|
|
10
10
|
from .cqa_dupstack_unix_vn_retrieval import CQADupstackUnixVN
|
|
11
11
|
from .cqa_dupstack_webmasters_vn_retrieval import CQADupstackWebmastersVN
|
|
12
12
|
from .cqa_dupstack_wordpress_vn_retrieval import CQADupstackWordpressVN
|
|
13
|
-
from .db_pedia_vn_retrieval import DBPediaVN
|
|
14
|
-
from .fevervn_retrieval import FEVERVN
|
|
13
|
+
from .db_pedia_vn_retrieval import DBPediaVN, NanoDBPediaVN
|
|
14
|
+
from .fevervn_retrieval import FEVERVN, NanoFEVERVN
|
|
15
15
|
from .fi_qa2018_vn_retrieval import FiQA2018VN
|
|
16
16
|
from .green_node_table_markdown_retrieval import GreenNodeTableMarkdownRetrieval
|
|
17
|
-
from .hotpot_qavn_retrieval import HotpotQAVN
|
|
18
|
-
from .msmarcovn_retrieval import MSMARCOVN
|
|
17
|
+
from .hotpot_qavn_retrieval import HotpotQAVN, NanoHotpotQAVN
|
|
18
|
+
from .msmarcovn_retrieval import MSMARCOVN, NanoMSMARCOVN
|
|
19
19
|
from .nf_corpus_vn_retrieval import NFCorpusVN
|
|
20
|
-
from .nqvn_retrieval import NQVN
|
|
20
|
+
from .nqvn_retrieval import NQVN, NanoNQVN
|
|
21
21
|
from .quora_vn_retrieval import QuoraVN
|
|
22
22
|
from .sci_fact_vn_retrieval import SciFactVN
|
|
23
23
|
from .scidocsvn_retrieval import SCIDOCSVN
|
|
24
24
|
from .touche2020_vn_retrieval import Touche2020VN
|
|
25
25
|
from .treccovidvn_retrieval import TRECCOVIDVN
|
|
26
|
+
from .tvpl_retrieval import TVPLRetrieval
|
|
26
27
|
from .vie_qu_ad_retrieval import VieQuADRetrieval
|
|
27
28
|
from .zac_legal_text_retrieval import ZacLegalTextRetrieval
|
|
28
29
|
|
|
@@ -49,8 +50,15 @@ __all__ = [
|
|
|
49
50
|
"GreenNodeTableMarkdownRetrieval",
|
|
50
51
|
"HotpotQAVN",
|
|
51
52
|
"NFCorpusVN",
|
|
53
|
+
"NanoClimateFEVERVN",
|
|
54
|
+
"NanoDBPediaVN",
|
|
55
|
+
"NanoFEVERVN",
|
|
56
|
+
"NanoHotpotQAVN",
|
|
57
|
+
"NanoMSMARCOVN",
|
|
58
|
+
"NanoNQVN",
|
|
52
59
|
"QuoraVN",
|
|
53
60
|
"SciFactVN",
|
|
61
|
+
"TVPLRetrieval",
|
|
54
62
|
"Touche2020VN",
|
|
55
63
|
"VieQuADRetrieval",
|
|
56
64
|
"ZacLegalTextRetrieval",
|
|
@@ -36,3 +36,42 @@ class ClimateFEVERVN(AbsTaskRetrieval):
|
|
|
36
36
|
""",
|
|
37
37
|
adapted_from=["ClimateFEVER"],
|
|
38
38
|
)
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
class NanoClimateFEVERVN(AbsTaskRetrieval):
|
|
42
|
+
metadata = TaskMetadata(
|
|
43
|
+
name="NanoClimateFEVER-VN",
|
|
44
|
+
description="NanoClimateFEVERVN is a small version of A translated dataset from CLIMATE-FEVER is a dataset adopting the FEVER methodology that consists of 1,535 real-world claims regarding climate-change. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
|
|
45
|
+
reference="https://www.sustainablefinance.uzh.ch/en/research/climate-fever.html",
|
|
46
|
+
dataset={
|
|
47
|
+
"path": "GreenNode/nano-climate-fever-vn",
|
|
48
|
+
"revision": "1852e852f07403d4529a8520d52b91ff6d57869b",
|
|
49
|
+
},
|
|
50
|
+
type="Retrieval",
|
|
51
|
+
category="t2t",
|
|
52
|
+
eval_splits=["test"],
|
|
53
|
+
eval_langs=["vie-Latn"],
|
|
54
|
+
main_score="ndcg_at_10",
|
|
55
|
+
date=("2025-07-29", "2025-07-30"),
|
|
56
|
+
license="cc-by-sa-4.0",
|
|
57
|
+
annotations_creators="derived",
|
|
58
|
+
dialect=[],
|
|
59
|
+
sample_creation="machine-translated and LM verified",
|
|
60
|
+
domains=["Encyclopaedic", "Written"],
|
|
61
|
+
task_subtypes=["Claim verification"],
|
|
62
|
+
bibtex_citation=r"""
|
|
63
|
+
@misc{pham2025vnmtebvietnamesemassivetext,
|
|
64
|
+
archiveprefix = {arXiv},
|
|
65
|
+
author = {Loc Pham and Tung Luu and Thu Vo and Minh Nguyen and Viet Hoang},
|
|
66
|
+
eprint = {2507.21500},
|
|
67
|
+
primaryclass = {cs.CL},
|
|
68
|
+
title = {VN-MTEB: Vietnamese Massive Text Embedding Benchmark},
|
|
69
|
+
url = {https://arxiv.org/abs/2507.21500},
|
|
70
|
+
year = {2025},
|
|
71
|
+
}
|
|
72
|
+
""",
|
|
73
|
+
prompt={
|
|
74
|
+
"query": "Given a claim about climate change, retrieve documents that support or refute the claim"
|
|
75
|
+
},
|
|
76
|
+
adapted_from=["ClimateFEVER-VN"],
|
|
77
|
+
)
|
|
@@ -36,3 +36,42 @@ class DBPediaVN(AbsTaskRetrieval):
|
|
|
36
36
|
""",
|
|
37
37
|
adapted_from=["DBPedia"],
|
|
38
38
|
)
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
class NanoDBPediaVN(AbsTaskRetrieval):
|
|
42
|
+
metadata = TaskMetadata(
|
|
43
|
+
name="NanoDBPedia-VN",
|
|
44
|
+
description="NanoDBPediaVN is a small version of A translated dataset from DBpedia-Entity is a standard test collection for entity search over the DBpedia knowledge base The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
|
|
45
|
+
reference="https://github.com/iai-group/DBpedia-Entity/",
|
|
46
|
+
dataset={
|
|
47
|
+
"path": "GreenNode/nano-dbpedia-vn",
|
|
48
|
+
"revision": "bbc3259bc63bf1e250d7034024092cc3230d5850",
|
|
49
|
+
},
|
|
50
|
+
type="Retrieval",
|
|
51
|
+
category="t2t",
|
|
52
|
+
eval_splits=["test"],
|
|
53
|
+
eval_langs=["vie-Latn"],
|
|
54
|
+
main_score="ndcg_at_10",
|
|
55
|
+
date=("2025-07-29", "2025-07-30"),
|
|
56
|
+
license="cc-by-sa-4.0",
|
|
57
|
+
annotations_creators="derived",
|
|
58
|
+
dialect=[],
|
|
59
|
+
sample_creation="machine-translated and LM verified",
|
|
60
|
+
domains=["Written", "Encyclopaedic"],
|
|
61
|
+
task_subtypes=[],
|
|
62
|
+
bibtex_citation=r"""
|
|
63
|
+
@misc{pham2025vnmtebvietnamesemassivetext,
|
|
64
|
+
archiveprefix = {arXiv},
|
|
65
|
+
author = {Loc Pham and Tung Luu and Thu Vo and Minh Nguyen and Viet Hoang},
|
|
66
|
+
eprint = {2507.21500},
|
|
67
|
+
primaryclass = {cs.CL},
|
|
68
|
+
title = {VN-MTEB: Vietnamese Massive Text Embedding Benchmark},
|
|
69
|
+
url = {https://arxiv.org/abs/2507.21500},
|
|
70
|
+
year = {2025},
|
|
71
|
+
}
|
|
72
|
+
""",
|
|
73
|
+
prompt={
|
|
74
|
+
"query": "Given a query, retrieve relevant entity descriptions from DBPedia"
|
|
75
|
+
},
|
|
76
|
+
adapted_from=["DBPedia-VN"],
|
|
77
|
+
)
|
|
@@ -36,3 +36,42 @@ class FEVERVN(AbsTaskRetrieval):
|
|
|
36
36
|
""",
|
|
37
37
|
adapted_from=["FEVER"],
|
|
38
38
|
)
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
class NanoFEVERVN(AbsTaskRetrieval):
|
|
42
|
+
metadata = TaskMetadata(
|
|
43
|
+
name="NanoFEVER-VN",
|
|
44
|
+
dataset={
|
|
45
|
+
"path": "GreenNode/nano-fever-vn",
|
|
46
|
+
"revision": "457ca6b058ed19b28f2359e2d816d7527af6bef8",
|
|
47
|
+
},
|
|
48
|
+
description="NanoFEVERVN is a small version of A translated dataset from FEVER (Fact Extraction and VERification) consists of 185,445 claims generated by altering sentences extracted from Wikipedia and subsequently verified without knowledge of the sentence they were derived from. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
|
|
49
|
+
reference="https://fever.ai/",
|
|
50
|
+
type="Retrieval",
|
|
51
|
+
category="t2t",
|
|
52
|
+
eval_splits=["test"],
|
|
53
|
+
eval_langs=["vie-Latn"],
|
|
54
|
+
main_score="ndcg_at_10",
|
|
55
|
+
date=("2025-07-29", "2025-07-30"),
|
|
56
|
+
license="cc-by-sa-4.0",
|
|
57
|
+
annotations_creators="derived",
|
|
58
|
+
dialect=[],
|
|
59
|
+
sample_creation="machine-translated and LM verified",
|
|
60
|
+
domains=["Encyclopaedic", "Written"],
|
|
61
|
+
task_subtypes=["Claim verification"],
|
|
62
|
+
bibtex_citation=r"""
|
|
63
|
+
@misc{pham2025vnmtebvietnamesemassivetext,
|
|
64
|
+
archiveprefix = {arXiv},
|
|
65
|
+
author = {Loc Pham and Tung Luu and Thu Vo and Minh Nguyen and Viet Hoang},
|
|
66
|
+
eprint = {2507.21500},
|
|
67
|
+
primaryclass = {cs.CL},
|
|
68
|
+
title = {VN-MTEB: Vietnamese Massive Text Embedding Benchmark},
|
|
69
|
+
url = {https://arxiv.org/abs/2507.21500},
|
|
70
|
+
year = {2025},
|
|
71
|
+
}
|
|
72
|
+
""",
|
|
73
|
+
prompt={
|
|
74
|
+
"query": "Given a claim, retrieve documents that support or refute the claim"
|
|
75
|
+
},
|
|
76
|
+
adapted_from=["FEVER-VN"],
|
|
77
|
+
)
|
|
@@ -36,3 +36,42 @@ class HotpotQAVN(AbsTaskRetrieval):
|
|
|
36
36
|
""",
|
|
37
37
|
adapted_from=["HotpotQA"],
|
|
38
38
|
)
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
class NanoHotpotQAVN(AbsTaskRetrieval):
|
|
42
|
+
metadata = TaskMetadata(
|
|
43
|
+
name="NanoHotpotQA-VN",
|
|
44
|
+
dataset={
|
|
45
|
+
"path": "GreenNode/nano-hotpotqa-vn",
|
|
46
|
+
"revision": "f4de19a2fae1a582de114e5bcd178bb262183113",
|
|
47
|
+
},
|
|
48
|
+
description="NanoHotpotQAVN is a small version of A translated dataset from HotpotQA is a question answering dataset featuring natural, multi-hop questions, with strong supervision for supporting facts to enable more explainable question answering systems. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
|
|
49
|
+
reference="https://hotpotqa.github.io/",
|
|
50
|
+
type="Retrieval",
|
|
51
|
+
category="t2t",
|
|
52
|
+
eval_splits=["test"],
|
|
53
|
+
eval_langs=["vie-Latn"],
|
|
54
|
+
main_score="ndcg_at_10",
|
|
55
|
+
date=("2025-07-29", "2025-07-30"),
|
|
56
|
+
license="cc-by-sa-4.0",
|
|
57
|
+
annotations_creators="derived",
|
|
58
|
+
dialect=[],
|
|
59
|
+
sample_creation="machine-translated and LM verified",
|
|
60
|
+
domains=["Web", "Written"],
|
|
61
|
+
task_subtypes=["Question answering"],
|
|
62
|
+
bibtex_citation=r"""
|
|
63
|
+
@misc{pham2025vnmtebvietnamesemassivetext,
|
|
64
|
+
archiveprefix = {arXiv},
|
|
65
|
+
author = {Loc Pham and Tung Luu and Thu Vo and Minh Nguyen and Viet Hoang},
|
|
66
|
+
eprint = {2507.21500},
|
|
67
|
+
primaryclass = {cs.CL},
|
|
68
|
+
title = {VN-MTEB: Vietnamese Massive Text Embedding Benchmark},
|
|
69
|
+
url = {https://arxiv.org/abs/2507.21500},
|
|
70
|
+
year = {2025},
|
|
71
|
+
}
|
|
72
|
+
""",
|
|
73
|
+
prompt={
|
|
74
|
+
"query": "Given a multi-hop question, retrieve documents that can help answer the question"
|
|
75
|
+
},
|
|
76
|
+
adapted_from=["HotpotQA-VN"],
|
|
77
|
+
)
|
|
@@ -47,3 +47,51 @@ class MSMARCOVN(AbsTaskRetrieval):
|
|
|
47
47
|
""",
|
|
48
48
|
adapted_from=["MSMARCO"],
|
|
49
49
|
)
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
class NanoMSMARCOVN(AbsTaskRetrieval):
|
|
53
|
+
metadata = TaskMetadata(
|
|
54
|
+
name="NanoMSMARCO-VN",
|
|
55
|
+
dataset={
|
|
56
|
+
"path": "GreenNode/nano-msmarco-vn",
|
|
57
|
+
"revision": "f149369c82ec228b05b0f6677699ab4bfbab73f6",
|
|
58
|
+
},
|
|
59
|
+
description="NanoMSMARCOVN is a small version of A translated dataset from MS MARCO is a collection of datasets focused on deep learning in search The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
|
|
60
|
+
reference="https://microsoft.github.io/msmarco/",
|
|
61
|
+
type="Retrieval",
|
|
62
|
+
category="t2t",
|
|
63
|
+
eval_splits=["dev"],
|
|
64
|
+
eval_langs=["vie-Latn"],
|
|
65
|
+
main_score="ndcg_at_10",
|
|
66
|
+
date=("2025-07-29", "2025-07-30"),
|
|
67
|
+
license="cc-by-sa-4.0",
|
|
68
|
+
annotations_creators="derived",
|
|
69
|
+
dialect=[],
|
|
70
|
+
sample_creation="machine-translated and LM verified",
|
|
71
|
+
domains=[
|
|
72
|
+
"Encyclopaedic",
|
|
73
|
+
"Academic",
|
|
74
|
+
"Blog",
|
|
75
|
+
"News",
|
|
76
|
+
"Medical",
|
|
77
|
+
"Government",
|
|
78
|
+
"Reviews",
|
|
79
|
+
"Non-fiction",
|
|
80
|
+
"Social",
|
|
81
|
+
"Web",
|
|
82
|
+
],
|
|
83
|
+
task_subtypes=["Question answering"],
|
|
84
|
+
bibtex_citation=r"""
|
|
85
|
+
@misc{pham2025vnmtebvietnamesemassivetext,
|
|
86
|
+
archiveprefix = {arXiv},
|
|
87
|
+
author = {Loc Pham and Tung Luu and Thu Vo and Minh Nguyen and Viet Hoang},
|
|
88
|
+
eprint = {2507.21500},
|
|
89
|
+
primaryclass = {cs.CL},
|
|
90
|
+
title = {VN-MTEB: Vietnamese Massive Text Embedding Benchmark},
|
|
91
|
+
url = {https://arxiv.org/abs/2507.21500},
|
|
92
|
+
year = {2025},
|
|
93
|
+
}
|
|
94
|
+
""",
|
|
95
|
+
prompt={"query": "Given a query, retrieve relevant documents from MS MARCO-VN"},
|
|
96
|
+
adapted_from=["MSMARCO-VN"],
|
|
97
|
+
)
|
|
@@ -36,3 +36,42 @@ class NQVN(AbsTaskRetrieval):
|
|
|
36
36
|
""",
|
|
37
37
|
adapted_from=["NQ"],
|
|
38
38
|
)
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
class NanoNQVN(AbsTaskRetrieval):
|
|
42
|
+
metadata = TaskMetadata(
|
|
43
|
+
name="NanoNQ-VN",
|
|
44
|
+
dataset={
|
|
45
|
+
"path": "GreenNode/nano-nq-vn",
|
|
46
|
+
"revision": "1ad4d6556fe0e5314994839089ce070fb0db8b19",
|
|
47
|
+
},
|
|
48
|
+
description="NanoNQVN is a small version of A translated dataset from NFCorpus: A Full-Text Learning to Rank Dataset for Medical Information Retrieval The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
|
|
49
|
+
reference="https://ai.google.com/research/NaturalQuestions/",
|
|
50
|
+
type="Retrieval",
|
|
51
|
+
category="t2t",
|
|
52
|
+
eval_splits=["test"],
|
|
53
|
+
eval_langs=["vie-Latn"],
|
|
54
|
+
main_score="ndcg_at_10",
|
|
55
|
+
date=("2025-07-29", "2025-07-30"),
|
|
56
|
+
license="cc-by-sa-4.0",
|
|
57
|
+
annotations_creators="derived",
|
|
58
|
+
dialect=[],
|
|
59
|
+
sample_creation="machine-translated and LM verified",
|
|
60
|
+
domains=["Written", "Encyclopaedic"],
|
|
61
|
+
task_subtypes=["Question answering"],
|
|
62
|
+
bibtex_citation=r"""
|
|
63
|
+
@misc{pham2025vnmtebvietnamesemassivetext,
|
|
64
|
+
archiveprefix = {arXiv},
|
|
65
|
+
author = {Loc Pham and Tung Luu and Thu Vo and Minh Nguyen and Viet Hoang},
|
|
66
|
+
eprint = {2507.21500},
|
|
67
|
+
primaryclass = {cs.CL},
|
|
68
|
+
title = {VN-MTEB: Vietnamese Massive Text Embedding Benchmark},
|
|
69
|
+
url = {https://arxiv.org/abs/2507.21500},
|
|
70
|
+
year = {2025},
|
|
71
|
+
}
|
|
72
|
+
""",
|
|
73
|
+
prompt={
|
|
74
|
+
"query": "Given a question, retrieve Wikipedia passages that answer the question"
|
|
75
|
+
},
|
|
76
|
+
adapted_from=["NQ-VN"],
|
|
77
|
+
)
|
|
@@ -0,0 +1,42 @@
|
|
|
1
|
+
from mteb.abstasks.retrieval import AbsTaskRetrieval
|
|
2
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
3
|
+
|
|
4
|
+
TEST_SAMPLES = 2048
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
class TVPLRetrieval(AbsTaskRetrieval):
|
|
8
|
+
metadata = TaskMetadata(
|
|
9
|
+
name="TVPLRetrieval",
|
|
10
|
+
description="A Vietnamese dataset for evaluating legal text retrieval. From Thu vien phap luat (TVPL) dataset: Optimizing Answer Generator in Vietnamese Legal Question Answering Systems Using Language Models.",
|
|
11
|
+
reference="https://aclanthology.org/2020.coling-main.233.pdf",
|
|
12
|
+
dataset={
|
|
13
|
+
"path": "GreenNode/TVPL-Retrieval-VN",
|
|
14
|
+
"revision": "6661dba4dfedff606537732d9f35f2c3738b081a",
|
|
15
|
+
},
|
|
16
|
+
type="Retrieval",
|
|
17
|
+
category="t2t",
|
|
18
|
+
modalities=["text"],
|
|
19
|
+
eval_splits=["test"],
|
|
20
|
+
eval_langs=["vie-Latn"],
|
|
21
|
+
main_score="ndcg_at_10",
|
|
22
|
+
date=("2025-07-29", "2025-07-30"),
|
|
23
|
+
license="cc-by-sa-4.0",
|
|
24
|
+
dialect=[],
|
|
25
|
+
annotations_creators="human-annotated",
|
|
26
|
+
domains=["Legal"],
|
|
27
|
+
task_subtypes=["Question answering"],
|
|
28
|
+
sample_creation="found",
|
|
29
|
+
bibtex_citation=r"""
|
|
30
|
+
@article{10.1145/3732938,
|
|
31
|
+
address = {New York, NY, USA},
|
|
32
|
+
author = {Le, Huong and Luu, Ngoc and Nguyen, Thanh and Dao, Tuan and Dinh, Sang},
|
|
33
|
+
doi = {10.1145/3732938},
|
|
34
|
+
issn = {2375-4699},
|
|
35
|
+
journal = {ACM Trans. Asian Low-Resour. Lang. Inf. Process.},
|
|
36
|
+
publisher = {Association for Computing Machinery},
|
|
37
|
+
title = {Optimizing Answer Generator in Vietnamese Legal Question Answering Systems Using Language Models},
|
|
38
|
+
url = {https://doi.org/10.1145/3732938},
|
|
39
|
+
year = {2025},
|
|
40
|
+
}
|
|
41
|
+
""",
|
|
42
|
+
)
|
|
@@ -24,5 +24,19 @@ class ZacLegalTextRetrieval(AbsTaskRetrieval):
|
|
|
24
24
|
annotations_creators="human-annotated",
|
|
25
25
|
dialect=[],
|
|
26
26
|
sample_creation="found",
|
|
27
|
-
bibtex_citation=""
|
|
27
|
+
bibtex_citation=r"""
|
|
28
|
+
@inproceedings{10.1007/978-981-95-1746-6_17,
|
|
29
|
+
address = {Singapore},
|
|
30
|
+
author = {Pham, Bao Loc
|
|
31
|
+
and Hoang, Quoc Viet
|
|
32
|
+
and Luu, Quy Tung
|
|
33
|
+
and Vo, Trong Thu},
|
|
34
|
+
booktitle = {Proceedings of the Fifth International Conference on Intelligent Systems and Networks},
|
|
35
|
+
isbn = {978-981-95-1746-6},
|
|
36
|
+
pages = {153--163},
|
|
37
|
+
publisher = {Springer Nature Singapore},
|
|
38
|
+
title = {GN-TRVN: A Benchmark for Vietnamese Table Markdown Retrieval Task},
|
|
39
|
+
year = {2026},
|
|
40
|
+
}
|
|
41
|
+
""",
|
|
28
42
|
)
|
mteb/types/__init__.py
CHANGED
|
@@ -4,6 +4,7 @@ from ._encoder_io import (
|
|
|
4
4
|
Conversation,
|
|
5
5
|
ConversationTurn,
|
|
6
6
|
CorpusDatasetType,
|
|
7
|
+
EncodeKwargs,
|
|
7
8
|
InstructionDatasetType,
|
|
8
9
|
PromptType,
|
|
9
10
|
QueryDatasetType,
|
|
@@ -30,6 +31,7 @@ __all__ = [
|
|
|
30
31
|
"Conversation",
|
|
31
32
|
"ConversationTurn",
|
|
32
33
|
"CorpusDatasetType",
|
|
34
|
+
"EncodeKwargs",
|
|
33
35
|
"HFSubset",
|
|
34
36
|
"ISOLanguage",
|
|
35
37
|
"ISOLanguageScript",
|
mteb/types/_encoder_io.py
CHANGED
|
@@ -13,6 +13,18 @@ if TYPE_CHECKING:
|
|
|
13
13
|
from PIL import Image
|
|
14
14
|
|
|
15
15
|
|
|
16
|
+
class EncodeKwargs(TypedDict):
|
|
17
|
+
"""Keyword arguments for encoding methods.
|
|
18
|
+
|
|
19
|
+
Attributes:
|
|
20
|
+
batch_size: The batch size to use for encoding.
|
|
21
|
+
show_progress_bar: Whether to show a progress bar during encoding.
|
|
22
|
+
"""
|
|
23
|
+
|
|
24
|
+
batch_size: NotRequired[int]
|
|
25
|
+
show_progress_bar: NotRequired[bool]
|
|
26
|
+
|
|
27
|
+
|
|
16
28
|
# --- Output types ---
|
|
17
29
|
Array = np.ndarray | torch.Tensor
|
|
18
30
|
"""General array type, can be a numpy array or a torch tensor."""
|
mteb/types/_result.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
1
|
+
from collections.abc import Mapping
|
|
1
2
|
from typing import Any, NamedTuple
|
|
2
3
|
|
|
3
4
|
HFSubset = str
|
|
@@ -8,7 +9,7 @@ SplitName = str
|
|
|
8
9
|
Score = Any
|
|
9
10
|
"""A score value, could e.g. be accuracy. Normally it is a float or int, but it can take on any value. Should be json serializable."""
|
|
10
11
|
|
|
11
|
-
ScoresDict =
|
|
12
|
+
ScoresDict = Mapping[str, Score]
|
|
12
13
|
"""A dictionary of scores, typically also include metadata, e.g {'main_score': 0.5, 'accuracy': 0.5, 'f1': 0.6, 'hf_subset': 'en-de', 'languages': ['eng-Latn', 'deu-Latn']}"""
|
|
13
14
|
|
|
14
15
|
|
mteb/types/statistics.py
CHANGED
|
@@ -10,8 +10,14 @@ class SplitDescriptiveStatistics(TypedDict):
|
|
|
10
10
|
|
|
11
11
|
|
|
12
12
|
class DescriptiveStatistics(TypedDict, SplitDescriptiveStatistics):
|
|
13
|
-
"""Class for descriptive statistics for the full task.
|
|
13
|
+
"""Class for descriptive statistics for the full task.
|
|
14
14
|
|
|
15
|
+
Attributes:
|
|
16
|
+
num_samples: Total number of samples
|
|
17
|
+
hf_subset_descriptive_stats: HFSubset descriptive statistics (only for multilingual datasets)
|
|
18
|
+
"""
|
|
19
|
+
|
|
20
|
+
num_samples: int
|
|
15
21
|
hf_subset_descriptive_stats: NotRequired[dict[HFSubset, SplitDescriptiveStatistics]]
|
|
16
22
|
|
|
17
23
|
|
|
@@ -88,9 +94,9 @@ class ScoreStatistics(TypedDict):
|
|
|
88
94
|
max_score: Maximum score
|
|
89
95
|
"""
|
|
90
96
|
|
|
91
|
-
min_score: int
|
|
97
|
+
min_score: int | float
|
|
92
98
|
avg_score: float
|
|
93
|
-
max_score: int
|
|
99
|
+
max_score: int | float
|
|
94
100
|
|
|
95
101
|
|
|
96
102
|
class TopRankedStatistics(TypedDict):
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: mteb
|
|
3
|
-
Version: 2.
|
|
3
|
+
Version: 2.7.2
|
|
4
4
|
Summary: Massive Text Embedding Benchmark
|
|
5
5
|
Author-email: MTEB Contributors <niklas@huggingface.co>, Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Nouamane Tazi <nouamane@huggingface.co>, Nils Reimers <info@nils-reimers.de>
|
|
6
6
|
Maintainer-email: Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Roman Solomatin <risolomatin@gmail.com>, Isaac Chung <chungisaac1217@gmail.com>
|
|
@@ -32,6 +32,8 @@ Requires-Dist: rich>=0.0.0
|
|
|
32
32
|
Requires-Dist: pytrec-eval-terrier>=0.5.6
|
|
33
33
|
Requires-Dist: pydantic>=2.0.0
|
|
34
34
|
Requires-Dist: polars>=0.20.22
|
|
35
|
+
Requires-Dist: torch; python_full_version < "3.14"
|
|
36
|
+
Requires-Dist: torch>=2.9.0; python_full_version >= "3.14"
|
|
35
37
|
Provides-Extra: image
|
|
36
38
|
Requires-Dist: torchvision>0.2.1; extra == "image"
|
|
37
39
|
Requires-Dist: transformers[torch-vision,vision]; extra == "image"
|
|
@@ -60,7 +62,7 @@ Requires-Dist: tiktoken>=0.8.0; extra == "openai"
|
|
|
60
62
|
Provides-Extra: model2vec
|
|
61
63
|
Requires-Dist: model2vec>=0.3.0; extra == "model2vec"
|
|
62
64
|
Provides-Extra: pylate
|
|
63
|
-
Requires-Dist: pylate>=1.3.1;
|
|
65
|
+
Requires-Dist: pylate>=1.3.1; python_full_version < "3.13" and extra == "pylate"
|
|
64
66
|
Provides-Extra: bm25s
|
|
65
67
|
Requires-Dist: bm25s>=0.2.6; extra == "bm25s"
|
|
66
68
|
Requires-Dist: PyStemmer>=2.2.0.3; extra == "bm25s"
|
|
@@ -91,10 +93,12 @@ Provides-Extra: ark
|
|
|
91
93
|
Requires-Dist: volcengine-python-sdk[ark]==3.0.2; extra == "ark"
|
|
92
94
|
Requires-Dist: tiktoken>=0.8.0; extra == "ark"
|
|
93
95
|
Provides-Extra: colpali-engine
|
|
94
|
-
Requires-Dist: colpali_engine>=0.3.12; extra == "colpali-engine"
|
|
96
|
+
Requires-Dist: colpali_engine>=0.3.12; python_full_version < "3.14" and extra == "colpali-engine"
|
|
95
97
|
Provides-Extra: colqwen3
|
|
96
98
|
Requires-Dist: transformers>=4.57; extra == "colqwen3"
|
|
97
99
|
Requires-Dist: torchvision>=0.22.1; extra == "colqwen3"
|
|
100
|
+
Provides-Extra: sauerkrautlm-colpali
|
|
101
|
+
Requires-Dist: sauerkrautlm-colpali>=0.1.0; python_full_version < "3.14" and extra == "sauerkrautlm-colpali"
|
|
98
102
|
Provides-Extra: xet
|
|
99
103
|
Requires-Dist: huggingface_hub>=0.32.0; extra == "xet"
|
|
100
104
|
Provides-Extra: youtu
|
|
@@ -106,6 +110,8 @@ Provides-Extra: faiss-cpu
|
|
|
106
110
|
Requires-Dist: faiss-cpu>=1.12.0; extra == "faiss-cpu"
|
|
107
111
|
Provides-Extra: eager-embed
|
|
108
112
|
Requires-Dist: qwen_vl_utils>=0.0.14; extra == "eager-embed"
|
|
113
|
+
Provides-Extra: vllm
|
|
114
|
+
Requires-Dist: vllm>=0.11.1; extra == "vllm"
|
|
109
115
|
Dynamic: license-file
|
|
110
116
|
|
|
111
117
|
<h1 align="center">
|
|
@@ -144,12 +150,17 @@ Dynamic: license-file
|
|
|
144
150
|
|
|
145
151
|
## Installation
|
|
146
152
|
|
|
147
|
-
You can install mteb simply using pip. For more on installation please see the [documentation](https://embeddings-benchmark.github.io/mteb/installation/).
|
|
153
|
+
You can install mteb simply using pip or uv. For more on installation please see the [documentation](https://embeddings-benchmark.github.io/mteb/installation/).
|
|
148
154
|
|
|
149
155
|
```bash
|
|
150
156
|
pip install mteb
|
|
151
157
|
```
|
|
152
158
|
|
|
159
|
+
For faster installation, you can also use [uv](https://docs.astral.sh/uv/):
|
|
160
|
+
```bash
|
|
161
|
+
uv add mteb
|
|
162
|
+
```
|
|
163
|
+
|
|
153
164
|
|
|
154
165
|
## Example Usage
|
|
155
166
|
|