mteb 2.5.2__py3-none-any.whl → 2.7.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +2 -0
- mteb/_create_dataloaders.py +17 -18
- mteb/_evaluators/any_sts_evaluator.py +3 -3
- mteb/_evaluators/clustering_evaluator.py +2 -2
- mteb/_evaluators/evaluator.py +4 -2
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +10 -8
- mteb/_evaluators/pair_classification_evaluator.py +5 -3
- mteb/_evaluators/retrieval_evaluator.py +2 -2
- mteb/_evaluators/retrieval_metrics.py +18 -17
- mteb/_evaluators/sklearn_evaluator.py +11 -10
- mteb/_evaluators/text/bitext_mining_evaluator.py +27 -18
- mteb/_evaluators/text/summarization_evaluator.py +23 -18
- mteb/_evaluators/zeroshot_classification_evaluator.py +5 -3
- mteb/abstasks/_data_filter/filters.py +1 -1
- mteb/abstasks/_data_filter/task_pipelines.py +3 -0
- mteb/abstasks/_statistics_calculation.py +18 -10
- mteb/abstasks/_stratification.py +18 -18
- mteb/abstasks/abstask.py +35 -28
- mteb/abstasks/aggregate_task_metadata.py +1 -9
- mteb/abstasks/aggregated_task.py +10 -29
- mteb/abstasks/classification.py +15 -10
- mteb/abstasks/clustering.py +19 -15
- mteb/abstasks/clustering_legacy.py +10 -10
- mteb/abstasks/image/image_text_pair_classification.py +7 -4
- mteb/abstasks/multilabel_classification.py +23 -19
- mteb/abstasks/pair_classification.py +20 -11
- mteb/abstasks/regression.py +4 -4
- mteb/abstasks/retrieval.py +28 -24
- mteb/abstasks/retrieval_dataset_loaders.py +2 -2
- mteb/abstasks/sts.py +8 -5
- mteb/abstasks/task_metadata.py +31 -33
- mteb/abstasks/text/bitext_mining.py +39 -28
- mteb/abstasks/text/reranking.py +8 -6
- mteb/abstasks/text/summarization.py +10 -5
- mteb/abstasks/zeroshot_classification.py +8 -4
- mteb/benchmarks/benchmark.py +4 -2
- mteb/benchmarks/benchmarks/__init__.py +4 -0
- mteb/benchmarks/benchmarks/benchmarks.py +112 -11
- mteb/benchmarks/get_benchmark.py +14 -55
- mteb/cache.py +182 -29
- mteb/cli/_display_tasks.py +2 -2
- mteb/cli/build_cli.py +110 -14
- mteb/cli/generate_model_card.py +43 -23
- mteb/deprecated_evaluator.py +63 -49
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2CybersecurityRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EconomicRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EnergyRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2HrRetrieval.json +32 -0
- mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json +116 -0
- mteb/descriptive_stats/Retrieval/NanoClimateFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoDBPedia-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoHotpotQA-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoMSMARCO-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoNQ-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/TVPLRetrieval.json +30 -0
- mteb/evaluate.py +44 -33
- mteb/filter_tasks.py +25 -26
- mteb/get_tasks.py +29 -30
- mteb/languages/language_scripts.py +5 -3
- mteb/leaderboard/app.py +162 -34
- mteb/load_results.py +12 -12
- mteb/models/abs_encoder.py +10 -6
- mteb/models/cache_wrappers/cache_backend_protocol.py +3 -5
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +5 -4
- mteb/models/cache_wrappers/cache_backends/faiss_cache.py +6 -2
- mteb/models/cache_wrappers/cache_backends/numpy_cache.py +43 -25
- mteb/models/cache_wrappers/cache_wrapper.py +2 -2
- mteb/models/get_model_meta.py +21 -3
- mteb/models/instruct_wrapper.py +28 -8
- mteb/models/model_implementations/align_models.py +1 -1
- mteb/models/model_implementations/andersborges.py +4 -4
- mteb/models/model_implementations/ara_models.py +1 -1
- mteb/models/model_implementations/arctic_models.py +8 -8
- mteb/models/model_implementations/b1ade_models.py +1 -1
- mteb/models/model_implementations/bge_models.py +45 -21
- mteb/models/model_implementations/bica_model.py +3 -3
- mteb/models/model_implementations/blip2_models.py +2 -2
- mteb/models/model_implementations/blip_models.py +16 -16
- mteb/models/model_implementations/bm25.py +4 -4
- mteb/models/model_implementations/bmretriever_models.py +6 -4
- mteb/models/model_implementations/cadet_models.py +1 -1
- mteb/models/model_implementations/cde_models.py +11 -4
- mteb/models/model_implementations/clip_models.py +6 -6
- mteb/models/model_implementations/clips_models.py +3 -3
- mteb/models/model_implementations/codefuse_models.py +5 -5
- mteb/models/model_implementations/codesage_models.py +3 -3
- mteb/models/model_implementations/cohere_models.py +5 -5
- mteb/models/model_implementations/cohere_v.py +2 -2
- mteb/models/model_implementations/colpali_models.py +3 -3
- mteb/models/model_implementations/colqwen_models.py +8 -8
- mteb/models/model_implementations/colsmol_models.py +2 -2
- mteb/models/model_implementations/conan_models.py +1 -1
- mteb/models/model_implementations/dino_models.py +42 -42
- mteb/models/model_implementations/e5_instruct.py +23 -4
- mteb/models/model_implementations/e5_models.py +9 -9
- mteb/models/model_implementations/e5_v.py +6 -6
- mteb/models/model_implementations/eagerworks_models.py +1 -1
- mteb/models/model_implementations/emillykkejensen_models.py +6 -6
- mteb/models/model_implementations/en_code_retriever.py +1 -1
- mteb/models/model_implementations/euler_models.py +2 -2
- mteb/models/model_implementations/fa_models.py +9 -9
- mteb/models/model_implementations/facebookai.py +14 -2
- mteb/models/model_implementations/geogpt_models.py +1 -1
- mteb/models/model_implementations/gme_v_models.py +6 -5
- mteb/models/model_implementations/google_models.py +1 -1
- mteb/models/model_implementations/granite_vision_embedding_models.py +1 -1
- mteb/models/model_implementations/gritlm_models.py +2 -2
- mteb/models/model_implementations/gte_models.py +25 -13
- mteb/models/model_implementations/hinvec_models.py +1 -1
- mteb/models/model_implementations/ibm_granite_models.py +30 -6
- mteb/models/model_implementations/inf_models.py +2 -2
- mteb/models/model_implementations/jasper_models.py +2 -2
- mteb/models/model_implementations/jina_clip.py +48 -10
- mteb/models/model_implementations/jina_models.py +18 -11
- mteb/models/model_implementations/kblab.py +12 -6
- mteb/models/model_implementations/kennethenevoldsen_models.py +4 -4
- mteb/models/model_implementations/kfst.py +1 -1
- mteb/models/model_implementations/kowshik24_models.py +1 -1
- mteb/models/model_implementations/lgai_embedding_models.py +1 -1
- mteb/models/model_implementations/linq_models.py +1 -1
- mteb/models/model_implementations/listconranker.py +1 -1
- mteb/models/model_implementations/llm2clip_models.py +6 -6
- mteb/models/model_implementations/llm2vec_models.py +8 -8
- mteb/models/model_implementations/mcinext_models.py +4 -1
- mteb/models/model_implementations/mdbr_models.py +17 -3
- mteb/models/model_implementations/misc_models.py +68 -68
- mteb/models/model_implementations/mixedbread_ai_models.py +332 -0
- mteb/models/model_implementations/mme5_models.py +1 -1
- mteb/models/model_implementations/moco_models.py +4 -4
- mteb/models/model_implementations/mod_models.py +1 -1
- mteb/models/model_implementations/model2vec_models.py +14 -14
- mteb/models/model_implementations/moka_models.py +1 -1
- mteb/models/model_implementations/nbailab.py +3 -3
- mteb/models/model_implementations/no_instruct_sentence_models.py +2 -2
- mteb/models/model_implementations/nomic_models.py +30 -15
- mteb/models/model_implementations/nomic_models_vision.py +1 -1
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +15 -9
- mteb/models/model_implementations/nvidia_models.py +151 -19
- mteb/models/model_implementations/octen_models.py +61 -2
- mteb/models/model_implementations/openclip_models.py +13 -13
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -5
- mteb/models/model_implementations/ops_moa_models.py +1 -1
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -1
- mteb/models/model_implementations/pawan_models.py +1 -1
- mteb/models/model_implementations/piccolo_models.py +1 -1
- mteb/models/model_implementations/pixie_models.py +56 -0
- mteb/models/model_implementations/promptriever_models.py +4 -4
- mteb/models/model_implementations/pylate_models.py +10 -9
- mteb/models/model_implementations/qodo_models.py +2 -2
- mteb/models/model_implementations/qtack_models.py +1 -1
- mteb/models/model_implementations/qwen3_models.py +3 -3
- mteb/models/model_implementations/qzhou_models.py +2 -2
- mteb/models/model_implementations/random_baseline.py +3 -3
- mteb/models/model_implementations/rasgaard_models.py +2 -2
- mteb/models/model_implementations/reasonir_model.py +1 -1
- mteb/models/model_implementations/repllama_models.py +3 -3
- mteb/models/model_implementations/rerankers_custom.py +12 -6
- mteb/models/model_implementations/rerankers_monot5_based.py +17 -17
- mteb/models/model_implementations/richinfoai_models.py +1 -1
- mteb/models/model_implementations/ru_sentence_models.py +20 -20
- mteb/models/model_implementations/ruri_models.py +10 -10
- mteb/models/model_implementations/salesforce_models.py +3 -3
- mteb/models/model_implementations/samilpwc_models.py +1 -1
- mteb/models/model_implementations/sarashina_embedding_models.py +2 -2
- mteb/models/model_implementations/searchmap_models.py +1 -1
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +113 -146
- mteb/models/model_implementations/sentence_transformers_models.py +124 -22
- mteb/models/model_implementations/shuu_model.py +1 -1
- mteb/models/model_implementations/siglip_models.py +20 -20
- mteb/models/model_implementations/slm_models.py +416 -0
- mteb/models/model_implementations/spartan8806_atles_champion.py +1 -1
- mteb/models/model_implementations/stella_models.py +17 -4
- mteb/models/model_implementations/tarka_models.py +2 -2
- mteb/models/model_implementations/text2vec_models.py +9 -3
- mteb/models/model_implementations/ua_sentence_models.py +1 -1
- mteb/models/model_implementations/uae_models.py +7 -1
- mteb/models/model_implementations/vdr_models.py +1 -1
- mteb/models/model_implementations/vi_vn_models.py +6 -6
- mteb/models/model_implementations/vlm2vec_models.py +3 -3
- mteb/models/model_implementations/voyage_models.py +84 -0
- mteb/models/model_implementations/voyage_v.py +9 -7
- mteb/models/model_implementations/youtu_models.py +1 -1
- mteb/models/model_implementations/yuan_models.py +1 -1
- mteb/models/model_implementations/yuan_models_en.py +1 -1
- mteb/models/model_meta.py +80 -31
- mteb/models/models_protocols.py +22 -6
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +9 -6
- mteb/models/search_wrappers.py +33 -18
- mteb/models/sentence_transformer_wrapper.py +50 -25
- mteb/models/vllm_wrapper.py +327 -0
- mteb/py.typed +0 -0
- mteb/results/benchmark_results.py +29 -21
- mteb/results/model_result.py +52 -22
- mteb/results/task_result.py +80 -58
- mteb/similarity_functions.py +11 -7
- mteb/tasks/classification/dan/dk_hate_classification.py +1 -1
- mteb/tasks/classification/est/estonian_valence.py +1 -1
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +2 -2
- mteb/tasks/classification/multilingual/scala_classification.py +1 -1
- mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/zho/cmteb_clustering.py +2 -2
- mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +1 -1
- mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
- mteb/tasks/retrieval/code/code_rag.py +12 -12
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +2 -2
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +2 -2
- mteb/tasks/retrieval/eng/__init__.py +2 -0
- mteb/tasks/retrieval/eng/chemrxiv.py +33 -0
- mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
- mteb/tasks/retrieval/kor/__init__.py +15 -1
- mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py +142 -0
- mteb/tasks/retrieval/multilingual/__init__.py +2 -0
- mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py +43 -0
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +90 -100
- mteb/tasks/retrieval/nob/norquad.py +2 -2
- mteb/tasks/retrieval/nob/snl_retrieval.py +2 -2
- mteb/tasks/retrieval/tur/tur_hist_quad.py +1 -1
- mteb/tasks/retrieval/vie/__init__.py +14 -6
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +48 -0
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/tvpl_retrieval.py +42 -0
- mteb/tasks/retrieval/vie/zac_legal_text_retrieval.py +15 -1
- mteb/types/__init__.py +2 -0
- mteb/types/_encoder_io.py +12 -0
- mteb/types/_result.py +2 -1
- mteb/types/statistics.py +9 -3
- {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/METADATA +15 -4
- {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/RECORD +240 -219
- mteb/models/model_implementations/mxbai_models.py +0 -111
- {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/WHEEL +0 -0
- {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/entry_points.txt +0 -0
- {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/top_level.txt +0 -0
|
@@ -35,7 +35,7 @@ codesage_large = ModelMeta(
|
|
|
35
35
|
open_weights=True,
|
|
36
36
|
public_training_code=None,
|
|
37
37
|
public_training_data=None,
|
|
38
|
-
framework=["PyTorch"],
|
|
38
|
+
framework=["PyTorch", "Transformers"],
|
|
39
39
|
reference="https://huggingface.co/codesage/codesage-large-v2",
|
|
40
40
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
41
41
|
use_instructions=False,
|
|
@@ -62,7 +62,7 @@ codesage_base = ModelMeta(
|
|
|
62
62
|
open_weights=True,
|
|
63
63
|
public_training_code=None,
|
|
64
64
|
public_training_data=None,
|
|
65
|
-
framework=["PyTorch"],
|
|
65
|
+
framework=["PyTorch", "Transformers"],
|
|
66
66
|
reference="https://huggingface.co/codesage/codesage-base-v2",
|
|
67
67
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
68
68
|
use_instructions=False,
|
|
@@ -89,7 +89,7 @@ codesage_small = ModelMeta(
|
|
|
89
89
|
open_weights=True,
|
|
90
90
|
public_training_code=None,
|
|
91
91
|
public_training_data=None,
|
|
92
|
-
framework=["PyTorch"],
|
|
92
|
+
framework=["PyTorch", "Transformers"],
|
|
93
93
|
reference="https://huggingface.co/codesage/codesage-small-v2",
|
|
94
94
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
95
95
|
use_instructions=False,
|
|
@@ -222,7 +222,7 @@ class CohereTextEmbeddingModel(AbsEncoder):
|
|
|
222
222
|
) -> None:
|
|
223
223
|
requires_package(self, "cohere", model_name, "pip install 'mteb[cohere]'")
|
|
224
224
|
|
|
225
|
-
import cohere
|
|
225
|
+
import cohere
|
|
226
226
|
|
|
227
227
|
self.model_name = model_name.removeprefix("Cohere/Cohere-")
|
|
228
228
|
self.sep = sep
|
|
@@ -392,7 +392,7 @@ cohere_mult_3 = ModelMeta(
|
|
|
392
392
|
reference="https://cohere.com/blog/introducing-embed-v3",
|
|
393
393
|
license=None,
|
|
394
394
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
395
|
-
framework=["API"],
|
|
395
|
+
framework=["API", "Transformers"],
|
|
396
396
|
use_instructions=True,
|
|
397
397
|
public_training_code=None,
|
|
398
398
|
public_training_data=None, # assumed
|
|
@@ -417,7 +417,7 @@ cohere_eng_3 = ModelMeta(
|
|
|
417
417
|
embed_dim=1024,
|
|
418
418
|
license=None,
|
|
419
419
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
420
|
-
framework=["API"],
|
|
420
|
+
framework=["API", "Transformers"],
|
|
421
421
|
use_instructions=True,
|
|
422
422
|
public_training_code=None,
|
|
423
423
|
public_training_data=None, # assumed
|
|
@@ -442,7 +442,7 @@ cohere_mult_light_3 = ModelMeta(
|
|
|
442
442
|
embed_dim=384,
|
|
443
443
|
license=None,
|
|
444
444
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
445
|
-
framework=["API"],
|
|
445
|
+
framework=["API", "Transformers"],
|
|
446
446
|
use_instructions=True,
|
|
447
447
|
public_training_code=None,
|
|
448
448
|
public_training_data=None, # assumed
|
|
@@ -467,7 +467,7 @@ cohere_eng_light_3 = ModelMeta(
|
|
|
467
467
|
embed_dim=384,
|
|
468
468
|
license=None,
|
|
469
469
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
470
|
-
framework=["API"],
|
|
470
|
+
framework=["API", "Transformers"],
|
|
471
471
|
use_instructions=True,
|
|
472
472
|
public_training_code=None,
|
|
473
473
|
public_training_data=None, # assumed
|
|
@@ -378,7 +378,7 @@ def cohere_v_loader(model_name, **kwargs):
|
|
|
378
378
|
|
|
379
379
|
|
|
380
380
|
cohere_mult_3 = ModelMeta(
|
|
381
|
-
loader=cohere_v_loader,
|
|
381
|
+
loader=cohere_v_loader,
|
|
382
382
|
loader_kwargs={"model_name": "embed-multilingual-v3.0"},
|
|
383
383
|
name="cohere/embed-multilingual-v3.0",
|
|
384
384
|
model_type=["dense"],
|
|
@@ -402,7 +402,7 @@ cohere_mult_3 = ModelMeta(
|
|
|
402
402
|
)
|
|
403
403
|
|
|
404
404
|
cohere_eng_3 = ModelMeta(
|
|
405
|
-
loader=cohere_v_loader,
|
|
405
|
+
loader=cohere_v_loader,
|
|
406
406
|
loader_kwargs={"model_name": "embed-english-v3.0"},
|
|
407
407
|
name="cohere/embed-english-v3.0",
|
|
408
408
|
model_type=["dense"],
|
|
@@ -226,7 +226,7 @@ colpali_v1_1 = ModelMeta(
|
|
|
226
226
|
open_weights=True,
|
|
227
227
|
public_training_code="https://github.com/illuin-tech/colpali",
|
|
228
228
|
public_training_data="https://huggingface.co/datasets/vidore/colpali_train_set",
|
|
229
|
-
framework=["ColPali"],
|
|
229
|
+
framework=["ColPali", "safetensors"],
|
|
230
230
|
reference="https://huggingface.co/vidore/colpali-v1.1",
|
|
231
231
|
similarity_fn_name=ScoringFunction.MAX_SIM,
|
|
232
232
|
use_instructions=True,
|
|
@@ -253,7 +253,7 @@ colpali_v1_2 = ModelMeta(
|
|
|
253
253
|
open_weights=True,
|
|
254
254
|
public_training_code="https://github.com/illuin-tech/colpali",
|
|
255
255
|
public_training_data="https://huggingface.co/datasets/vidore/colpali_train_set",
|
|
256
|
-
framework=["ColPali"],
|
|
256
|
+
framework=["ColPali", "safetensors"],
|
|
257
257
|
reference="https://huggingface.co/vidore/colpali-v1.2",
|
|
258
258
|
similarity_fn_name=ScoringFunction.MAX_SIM,
|
|
259
259
|
use_instructions=True,
|
|
@@ -280,7 +280,7 @@ colpali_v1_3 = ModelMeta(
|
|
|
280
280
|
open_weights=True,
|
|
281
281
|
public_training_code="https://github.com/illuin-tech/colpali",
|
|
282
282
|
public_training_data="https://huggingface.co/datasets/vidore/colpali_train_set",
|
|
283
|
-
framework=["ColPali"],
|
|
283
|
+
framework=["ColPali", "safetensors"],
|
|
284
284
|
reference="https://huggingface.co/vidore/colpali-v1.3",
|
|
285
285
|
similarity_fn_name=ScoringFunction.MAX_SIM,
|
|
286
286
|
use_instructions=True,
|
|
@@ -226,7 +226,7 @@ colqwen2 = ModelMeta(
|
|
|
226
226
|
open_weights=True,
|
|
227
227
|
public_training_code="https://github.com/illuin-tech/colpali",
|
|
228
228
|
public_training_data="https://huggingface.co/datasets/vidore/colpali_train_set",
|
|
229
|
-
framework=["ColPali"],
|
|
229
|
+
framework=["ColPali", "safetensors"],
|
|
230
230
|
reference="https://huggingface.co/vidore/colqwen2-v1.0",
|
|
231
231
|
similarity_fn_name="MaxSim",
|
|
232
232
|
use_instructions=True,
|
|
@@ -253,7 +253,7 @@ colqwen2_5 = ModelMeta(
|
|
|
253
253
|
open_weights=True,
|
|
254
254
|
public_training_code="https://github.com/illuin-tech/colpali",
|
|
255
255
|
public_training_data="https://huggingface.co/datasets/vidore/colpali_train_set",
|
|
256
|
-
framework=["ColPali"],
|
|
256
|
+
framework=["ColPali", "safetensors"],
|
|
257
257
|
reference="https://huggingface.co/vidore/colqwen2.5-v0.2",
|
|
258
258
|
similarity_fn_name="MaxSim",
|
|
259
259
|
use_instructions=True,
|
|
@@ -297,7 +297,7 @@ colqwen3_8b = ModelMeta(
|
|
|
297
297
|
open_weights=True,
|
|
298
298
|
public_training_code="https://github.com/illuin-tech/colpali",
|
|
299
299
|
public_training_data=None,
|
|
300
|
-
framework=["PyTorch"],
|
|
300
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
301
301
|
reference="https://huggingface.co/TomoroAI/tomoro-colqwen3-embed-8b",
|
|
302
302
|
similarity_fn_name=ScoringFunction.MAX_SIM,
|
|
303
303
|
use_instructions=True,
|
|
@@ -321,7 +321,7 @@ colqwen3_4b = ModelMeta(
|
|
|
321
321
|
open_weights=True,
|
|
322
322
|
public_training_code="https://github.com/illuin-tech/colpali",
|
|
323
323
|
public_training_data=None,
|
|
324
|
-
framework=["PyTorch"],
|
|
324
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
325
325
|
reference="https://huggingface.co/TomoroAI/tomoro-colqwen3-embed-4b",
|
|
326
326
|
similarity_fn_name=ScoringFunction.MAX_SIM,
|
|
327
327
|
use_instructions=True,
|
|
@@ -348,7 +348,7 @@ colnomic_7b = ModelMeta(
|
|
|
348
348
|
open_weights=True,
|
|
349
349
|
public_training_code="https://github.com/nomic-ai/colpali",
|
|
350
350
|
public_training_data="https://huggingface.co/datasets/vidore/colpali_train_set",
|
|
351
|
-
framework=["ColPali"],
|
|
351
|
+
framework=["ColPali", "safetensors"],
|
|
352
352
|
reference="https://huggingface.co/nomic-ai/colnomic-embed-multimodal-7b",
|
|
353
353
|
similarity_fn_name="MaxSim",
|
|
354
354
|
use_instructions=True,
|
|
@@ -393,7 +393,7 @@ colnomic_3b = ModelMeta(
|
|
|
393
393
|
open_weights=True,
|
|
394
394
|
public_training_code="https://github.com/nomic-ai/colpali",
|
|
395
395
|
public_training_data="https://huggingface.co/datasets/vidore/colpali_train_set",
|
|
396
|
-
framework=["ColPali"],
|
|
396
|
+
framework=["ColPali", "safetensors"],
|
|
397
397
|
reference="https://huggingface.co/nomic-ai/colnomic-embed-multimodal-3b",
|
|
398
398
|
similarity_fn_name="MaxSim",
|
|
399
399
|
use_instructions=True,
|
|
@@ -458,7 +458,7 @@ evoqwen25_vl_retriever_3b_v1 = ModelMeta(
|
|
|
458
458
|
open_weights=True,
|
|
459
459
|
public_training_code="https://github.com/illuin-tech/colpali",
|
|
460
460
|
public_training_data="https://huggingface.co/datasets/vidore/colpali_train_set",
|
|
461
|
-
framework=["ColPali"],
|
|
461
|
+
framework=["ColPali", "safetensors"],
|
|
462
462
|
reference="https://huggingface.co/ApsaraStackMaaS/EvoQwen2.5-VL-Retriever-3B-v1",
|
|
463
463
|
similarity_fn_name="MaxSim",
|
|
464
464
|
use_instructions=True,
|
|
@@ -484,7 +484,7 @@ evoqwen25_vl_retriever_7b_v1 = ModelMeta(
|
|
|
484
484
|
open_weights=True,
|
|
485
485
|
public_training_code="https://github.com/illuin-tech/colpali",
|
|
486
486
|
public_training_data="https://huggingface.co/datasets/vidore/colpali_train_set",
|
|
487
|
-
framework=["ColPali"],
|
|
487
|
+
framework=["ColPali", "safetensors"],
|
|
488
488
|
reference="https://huggingface.co/ApsaraStackMaaS/EvoQwen2.5-VL-Retriever-7B-v1",
|
|
489
489
|
similarity_fn_name="MaxSim",
|
|
490
490
|
use_instructions=True,
|
|
@@ -67,7 +67,7 @@ colsmol_256m = ModelMeta(
|
|
|
67
67
|
open_weights=True,
|
|
68
68
|
public_training_code="https://github.com/illuin-tech/colpali",
|
|
69
69
|
public_training_data="https://huggingface.co/datasets/vidore/colpali_train_set",
|
|
70
|
-
framework=["ColPali"],
|
|
70
|
+
framework=["ColPali", "safetensors"],
|
|
71
71
|
reference="https://huggingface.co/vidore/colSmol-256M",
|
|
72
72
|
similarity_fn_name="MaxSim",
|
|
73
73
|
use_instructions=True,
|
|
@@ -94,7 +94,7 @@ colsmol_500m = ModelMeta(
|
|
|
94
94
|
open_weights=True,
|
|
95
95
|
public_training_code="https://github.com/illuin-tech/colpali",
|
|
96
96
|
public_training_data="https://huggingface.co/datasets/vidore/colpali_train_set",
|
|
97
|
-
framework=["ColPali"],
|
|
97
|
+
framework=["ColPali", "safetensors"],
|
|
98
98
|
reference="https://huggingface.co/vidore/colSmol-500M",
|
|
99
99
|
similarity_fn_name="MaxSim",
|
|
100
100
|
use_instructions=True,
|
|
@@ -209,7 +209,7 @@ Conan_embedding_v2 = ModelMeta(
|
|
|
209
209
|
license="apache-2.0",
|
|
210
210
|
reference="https://huggingface.co/TencentBAC/Conan-embedding-v2",
|
|
211
211
|
similarity_fn_name="cosine",
|
|
212
|
-
framework=["API"],
|
|
212
|
+
framework=["API", "Sentence Transformers", "Transformers"],
|
|
213
213
|
use_instructions=True,
|
|
214
214
|
training_datasets=E5_MISTRAL_TRAINING_DATA | bge_full_data | conan_zh_datasets,
|
|
215
215
|
public_training_code=None,
|
|
@@ -104,7 +104,7 @@ dinov2_training_datasets = set(
|
|
|
104
104
|
|
|
105
105
|
|
|
106
106
|
dinov2_small = ModelMeta(
|
|
107
|
-
loader=DINOModel,
|
|
107
|
+
loader=DINOModel,
|
|
108
108
|
name="facebook/dinov2-small",
|
|
109
109
|
model_type=["dense"],
|
|
110
110
|
languages=["eng-Latn"],
|
|
@@ -119,13 +119,13 @@ dinov2_small = ModelMeta(
|
|
|
119
119
|
open_weights=True,
|
|
120
120
|
public_training_code="https://github.com/facebookresearch/dinov2",
|
|
121
121
|
public_training_data=None,
|
|
122
|
-
framework=["PyTorch"],
|
|
122
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
123
123
|
reference="https://huggingface.co/facebook/dinov2-small",
|
|
124
124
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
125
125
|
use_instructions=False,
|
|
126
126
|
training_datasets=dinov2_training_datasets,
|
|
127
127
|
citation="""@misc{oquab2023dinov2,
|
|
128
|
-
title={DINOv2: Learning Robust Visual Features without Supervision},
|
|
128
|
+
title={DINOv2: Learning Robust Visual Features without Supervision},
|
|
129
129
|
author={Maxime Oquab and Timothée Darcet and Théo Moutakanni and Huy Vo and Marc Szafraniec and Vasil Khalidov and Pierre Fernandez and Daniel Haziza and Francisco Massa and Alaaeldin El-Nouby and Mahmoud Assran and Nicolas Ballas and Wojciech Galuba and Russell Howes and Po-Yao Huang and Shang-Wen Li and Ishan Misra and Michael Rabbat and Vasu Sharma and Gabriel Synnaeve and Hu Xu and Hervé Jegou and Julien Mairal and Patrick Labatut and Armand Joulin and Piotr Bojanowski},
|
|
130
130
|
year={2023},
|
|
131
131
|
eprint={2304.07193},
|
|
@@ -135,7 +135,7 @@ dinov2_small = ModelMeta(
|
|
|
135
135
|
)
|
|
136
136
|
|
|
137
137
|
dinov2_base = ModelMeta(
|
|
138
|
-
loader=DINOModel,
|
|
138
|
+
loader=DINOModel,
|
|
139
139
|
name="facebook/dinov2-base",
|
|
140
140
|
model_type=["dense"],
|
|
141
141
|
languages=["eng-Latn"],
|
|
@@ -150,13 +150,13 @@ dinov2_base = ModelMeta(
|
|
|
150
150
|
open_weights=True,
|
|
151
151
|
public_training_code="https://github.com/facebookresearch/dinov2",
|
|
152
152
|
public_training_data=None,
|
|
153
|
-
framework=["PyTorch"],
|
|
153
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
154
154
|
reference="https://huggingface.co/facebook/dinov2-base",
|
|
155
155
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
156
156
|
use_instructions=False,
|
|
157
157
|
training_datasets=dinov2_training_datasets,
|
|
158
158
|
citation="""@misc{oquab2023dinov2,
|
|
159
|
-
title={DINOv2: Learning Robust Visual Features without Supervision},
|
|
159
|
+
title={DINOv2: Learning Robust Visual Features without Supervision},
|
|
160
160
|
author={Maxime Oquab and Timothée Darcet and Théo Moutakanni and Huy Vo and Marc Szafraniec and Vasil Khalidov and Pierre Fernandez and Daniel Haziza and Francisco Massa and Alaaeldin El-Nouby and Mahmoud Assran and Nicolas Ballas and Wojciech Galuba and Russell Howes and Po-Yao Huang and Shang-Wen Li and Ishan Misra and Michael Rabbat and Vasu Sharma and Gabriel Synnaeve and Hu Xu and Hervé Jegou and Julien Mairal and Patrick Labatut and Armand Joulin and Piotr Bojanowski},
|
|
161
161
|
year={2023},
|
|
162
162
|
eprint={2304.07193},
|
|
@@ -166,7 +166,7 @@ dinov2_base = ModelMeta(
|
|
|
166
166
|
)
|
|
167
167
|
|
|
168
168
|
dinov2_large = ModelMeta(
|
|
169
|
-
loader=DINOModel,
|
|
169
|
+
loader=DINOModel,
|
|
170
170
|
name="facebook/dinov2-large",
|
|
171
171
|
model_type=["dense"],
|
|
172
172
|
languages=["eng-Latn"],
|
|
@@ -181,13 +181,13 @@ dinov2_large = ModelMeta(
|
|
|
181
181
|
open_weights=True,
|
|
182
182
|
public_training_code="https://github.com/facebookresearch/dinov2",
|
|
183
183
|
public_training_data=None,
|
|
184
|
-
framework=["PyTorch"],
|
|
184
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
185
185
|
reference="https://huggingface.co/facebook/dinov2-large",
|
|
186
186
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
187
187
|
use_instructions=False,
|
|
188
188
|
training_datasets=dinov2_training_datasets,
|
|
189
189
|
citation="""@misc{oquab2023dinov2,
|
|
190
|
-
title={DINOv2: Learning Robust Visual Features without Supervision},
|
|
190
|
+
title={DINOv2: Learning Robust Visual Features without Supervision},
|
|
191
191
|
author={Maxime Oquab and Timothée Darcet and Théo Moutakanni and Huy Vo and Marc Szafraniec and Vasil Khalidov and Pierre Fernandez and Daniel Haziza and Francisco Massa and Alaaeldin El-Nouby and Mahmoud Assran and Nicolas Ballas and Wojciech Galuba and Russell Howes and Po-Yao Huang and Shang-Wen Li and Ishan Misra and Michael Rabbat and Vasu Sharma and Gabriel Synnaeve and Hu Xu and Hervé Jegou and Julien Mairal and Patrick Labatut and Armand Joulin and Piotr Bojanowski},
|
|
192
192
|
year={2023},
|
|
193
193
|
eprint={2304.07193},
|
|
@@ -197,7 +197,7 @@ dinov2_large = ModelMeta(
|
|
|
197
197
|
)
|
|
198
198
|
|
|
199
199
|
dinov2_giant = ModelMeta(
|
|
200
|
-
loader=DINOModel,
|
|
200
|
+
loader=DINOModel,
|
|
201
201
|
name="facebook/dinov2-giant",
|
|
202
202
|
model_type=["dense"],
|
|
203
203
|
languages=["eng-Latn"],
|
|
@@ -212,13 +212,13 @@ dinov2_giant = ModelMeta(
|
|
|
212
212
|
open_weights=True,
|
|
213
213
|
public_training_code="https://github.com/facebookresearch/dinov2",
|
|
214
214
|
public_training_data=None,
|
|
215
|
-
framework=["PyTorch"],
|
|
215
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
216
216
|
reference="https://huggingface.co/facebook/dinov2-giant",
|
|
217
217
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
218
218
|
use_instructions=False,
|
|
219
219
|
training_datasets=dinov2_training_datasets,
|
|
220
220
|
citation="""@misc{oquab2023dinov2,
|
|
221
|
-
title={DINOv2: Learning Robust Visual Features without Supervision},
|
|
221
|
+
title={DINOv2: Learning Robust Visual Features without Supervision},
|
|
222
222
|
author={Maxime Oquab and Timothée Darcet and Théo Moutakanni and Huy Vo and Marc Szafraniec and Vasil Khalidov and Pierre Fernandez and Daniel Haziza and Francisco Massa and Alaaeldin El-Nouby and Mahmoud Assran and Nicolas Ballas and Wojciech Galuba and Russell Howes and Po-Yao Huang and Shang-Wen Li and Ishan Misra and Michael Rabbat and Vasu Sharma and Gabriel Synnaeve and Hu Xu and Hervé Jegou and Julien Mairal and Patrick Labatut and Armand Joulin and Piotr Bojanowski},
|
|
223
223
|
year={2023},
|
|
224
224
|
eprint={2304.07193},
|
|
@@ -247,13 +247,13 @@ webssl_dino300m_full2b = ModelMeta(
|
|
|
247
247
|
open_weights=True,
|
|
248
248
|
public_training_code="",
|
|
249
249
|
public_training_data=None,
|
|
250
|
-
framework=["PyTorch"],
|
|
250
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
251
251
|
reference="https://huggingface.co/facebook/webssl-dino300m-full2b-224",
|
|
252
252
|
similarity_fn_name=None,
|
|
253
253
|
use_instructions=False,
|
|
254
254
|
training_datasets=webssl_dino_training_datasets,
|
|
255
255
|
citation="""@article{fan2025scaling,
|
|
256
|
-
title={Scaling Language-Free Visual Representation Learning},
|
|
256
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
257
257
|
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
258
258
|
year={2025},
|
|
259
259
|
eprint={2504.01017},
|
|
@@ -278,13 +278,13 @@ webssl_dino1b_full2b = ModelMeta(
|
|
|
278
278
|
open_weights=True,
|
|
279
279
|
public_training_code="",
|
|
280
280
|
public_training_data=None,
|
|
281
|
-
framework=["PyTorch"],
|
|
281
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
282
282
|
reference="https://huggingface.co/facebook/webssl-dino1b-full2b-224",
|
|
283
283
|
similarity_fn_name=None,
|
|
284
284
|
use_instructions=False,
|
|
285
285
|
training_datasets=webssl_dino_training_datasets,
|
|
286
286
|
citation="""@article{fan2025scaling,
|
|
287
|
-
title={Scaling Language-Free Visual Representation Learning},
|
|
287
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
288
288
|
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
289
289
|
year={2025},
|
|
290
290
|
eprint={2504.01017},
|
|
@@ -309,13 +309,13 @@ webssl_dino2b_full2b = ModelMeta(
|
|
|
309
309
|
open_weights=True,
|
|
310
310
|
public_training_code="",
|
|
311
311
|
public_training_data=None,
|
|
312
|
-
framework=["PyTorch"],
|
|
312
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
313
313
|
reference="https://huggingface.co/facebook/webssl-dino2b-full2b-224",
|
|
314
314
|
similarity_fn_name=None,
|
|
315
315
|
use_instructions=False,
|
|
316
316
|
training_datasets=webssl_dino_training_datasets,
|
|
317
317
|
citation="""@article{fan2025scaling,
|
|
318
|
-
title={Scaling Language-Free Visual Representation Learning},
|
|
318
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
319
319
|
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
320
320
|
year={2025},
|
|
321
321
|
eprint={2504.01017},
|
|
@@ -340,13 +340,13 @@ webssl_dino3b_full2b = ModelMeta(
|
|
|
340
340
|
open_weights=True,
|
|
341
341
|
public_training_code="",
|
|
342
342
|
public_training_data=None,
|
|
343
|
-
framework=["PyTorch"],
|
|
343
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
344
344
|
reference="https://huggingface.co/facebook/webssl-dino3b-full2b-224",
|
|
345
345
|
similarity_fn_name=None,
|
|
346
346
|
use_instructions=False,
|
|
347
347
|
training_datasets=webssl_dino_training_datasets,
|
|
348
348
|
citation="""@article{fan2025scaling,
|
|
349
|
-
title={Scaling Language-Free Visual Representation Learning},
|
|
349
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
350
350
|
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
351
351
|
year={2025},
|
|
352
352
|
eprint={2504.01017},
|
|
@@ -371,13 +371,13 @@ webssl_dino5b_full2b = ModelMeta(
|
|
|
371
371
|
open_weights=True,
|
|
372
372
|
public_training_code="",
|
|
373
373
|
public_training_data=None,
|
|
374
|
-
framework=["PyTorch"],
|
|
374
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
375
375
|
reference="https://huggingface.co/facebook/webssl-dino5b-full2b-224",
|
|
376
376
|
similarity_fn_name=None,
|
|
377
377
|
use_instructions=False,
|
|
378
378
|
training_datasets=webssl_dino_training_datasets,
|
|
379
379
|
citation="""@article{fan2025scaling,
|
|
380
|
-
title={Scaling Language-Free Visual Representation Learning},
|
|
380
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
381
381
|
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
382
382
|
year={2025},
|
|
383
383
|
eprint={2504.01017},
|
|
@@ -402,13 +402,13 @@ webssl_dino7b_full8b_224 = ModelMeta(
|
|
|
402
402
|
open_weights=True,
|
|
403
403
|
public_training_code="",
|
|
404
404
|
public_training_data=None,
|
|
405
|
-
framework=["PyTorch"],
|
|
405
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
406
406
|
reference="https://huggingface.co/facebook/webssl-dino7b-full8b-224",
|
|
407
407
|
similarity_fn_name=None,
|
|
408
408
|
use_instructions=False,
|
|
409
409
|
training_datasets=webssl_dino_training_datasets,
|
|
410
410
|
citation="""@article{fan2025scaling,
|
|
411
|
-
title={Scaling Language-Free Visual Representation Learning},
|
|
411
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
412
412
|
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
413
413
|
year={2025},
|
|
414
414
|
eprint={2504.01017},
|
|
@@ -433,13 +433,13 @@ webssl_dino7b_full8b_378 = ModelMeta(
|
|
|
433
433
|
open_weights=True,
|
|
434
434
|
public_training_code="",
|
|
435
435
|
public_training_data=None,
|
|
436
|
-
framework=["PyTorch"],
|
|
436
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
437
437
|
reference="https://huggingface.co/facebook/webssl-dino7b-full8b-378",
|
|
438
438
|
similarity_fn_name=None,
|
|
439
439
|
use_instructions=False,
|
|
440
440
|
training_datasets=webssl_dino_training_datasets,
|
|
441
441
|
citation="""@article{fan2025scaling,
|
|
442
|
-
title={Scaling Language-Free Visual Representation Learning},
|
|
442
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
443
443
|
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
444
444
|
year={2025},
|
|
445
445
|
eprint={2504.01017},
|
|
@@ -464,13 +464,13 @@ webssl_dino7b_full8b_518 = ModelMeta(
|
|
|
464
464
|
open_weights=True,
|
|
465
465
|
public_training_code="",
|
|
466
466
|
public_training_data=None,
|
|
467
|
-
framework=["PyTorch"],
|
|
467
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
468
468
|
reference="https://huggingface.co/facebook/webssl-dino7b-full8b-518",
|
|
469
469
|
similarity_fn_name=None,
|
|
470
470
|
use_instructions=False,
|
|
471
471
|
training_datasets=webssl_dino_training_datasets,
|
|
472
472
|
citation="""@article{fan2025scaling,
|
|
473
|
-
title={Scaling Language-Free Visual Representation Learning},
|
|
473
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
474
474
|
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
475
475
|
year={2025},
|
|
476
476
|
eprint={2504.01017},
|
|
@@ -496,13 +496,13 @@ webssl_dino2b_light2b = ModelMeta(
|
|
|
496
496
|
open_weights=True,
|
|
497
497
|
public_training_code="",
|
|
498
498
|
public_training_data=None,
|
|
499
|
-
framework=["PyTorch"],
|
|
499
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
500
500
|
reference="https://huggingface.co/facebook/webssl-dino2b-light2b-224",
|
|
501
501
|
similarity_fn_name=None,
|
|
502
502
|
use_instructions=False,
|
|
503
503
|
training_datasets=webssl_dino_training_datasets,
|
|
504
504
|
citation="""@article{fan2025scaling,
|
|
505
|
-
title={Scaling Language-Free Visual Representation Learning},
|
|
505
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
506
506
|
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
507
507
|
year={2025},
|
|
508
508
|
eprint={2504.01017},
|
|
@@ -527,13 +527,13 @@ webssl_dino2b_heavy2b = ModelMeta(
|
|
|
527
527
|
open_weights=True,
|
|
528
528
|
public_training_code="",
|
|
529
529
|
public_training_data=None,
|
|
530
|
-
framework=["PyTorch"],
|
|
530
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
531
531
|
reference="https://huggingface.co/facebook/webssl-dino2b-heavy2b-224",
|
|
532
532
|
similarity_fn_name=None,
|
|
533
533
|
use_instructions=False,
|
|
534
534
|
training_datasets=webssl_dino_training_datasets,
|
|
535
535
|
citation="""@article{fan2025scaling,
|
|
536
|
-
title={Scaling Language-Free Visual Representation Learning},
|
|
536
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
537
537
|
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
538
538
|
year={2025},
|
|
539
539
|
eprint={2504.01017},
|
|
@@ -558,13 +558,13 @@ webssl_dino3b_light2b = ModelMeta(
|
|
|
558
558
|
open_weights=True,
|
|
559
559
|
public_training_code="",
|
|
560
560
|
public_training_data=None,
|
|
561
|
-
framework=["PyTorch"],
|
|
561
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
562
562
|
reference="https://huggingface.co/facebook/webssl-dino3b-light2b-224",
|
|
563
563
|
similarity_fn_name=None,
|
|
564
564
|
use_instructions=False,
|
|
565
565
|
training_datasets=webssl_dino_training_datasets,
|
|
566
566
|
citation="""@article{fan2025scaling,
|
|
567
|
-
title={Scaling Language-Free Visual Representation Learning},
|
|
567
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
568
568
|
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
569
569
|
year={2025},
|
|
570
570
|
eprint={2504.01017},
|
|
@@ -589,13 +589,13 @@ webssl_dino3b_heavy2b = ModelMeta(
|
|
|
589
589
|
open_weights=True,
|
|
590
590
|
public_training_code="",
|
|
591
591
|
public_training_data=None,
|
|
592
|
-
framework=["PyTorch"],
|
|
592
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
593
593
|
reference="https://huggingface.co/facebook/webssl-dino3b-heavy2b-224",
|
|
594
594
|
similarity_fn_name=None,
|
|
595
595
|
use_instructions=False,
|
|
596
596
|
training_datasets=webssl_dino_training_datasets,
|
|
597
597
|
citation="""@article{fan2025scaling,
|
|
598
|
-
title={Scaling Language-Free Visual Representation Learning},
|
|
598
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
599
599
|
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
600
600
|
year={2025},
|
|
601
601
|
eprint={2504.01017},
|
|
@@ -620,13 +620,13 @@ webssl_mae300m_full2b = ModelMeta(
|
|
|
620
620
|
open_weights=True,
|
|
621
621
|
public_training_code="",
|
|
622
622
|
public_training_data=None,
|
|
623
|
-
framework=["PyTorch"],
|
|
623
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
624
624
|
reference="https://huggingface.co/facebook/webssl-mae300m-full2b-224",
|
|
625
625
|
similarity_fn_name=None,
|
|
626
626
|
use_instructions=False,
|
|
627
627
|
training_datasets=webssl_dino_training_datasets,
|
|
628
628
|
citation="""@article{fan2025scaling,
|
|
629
|
-
title={Scaling Language-Free Visual Representation Learning},
|
|
629
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
630
630
|
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
631
631
|
year={2025},
|
|
632
632
|
eprint={2504.01017},
|
|
@@ -651,13 +651,13 @@ webssl_mae700m_full2b = ModelMeta(
|
|
|
651
651
|
open_weights=True,
|
|
652
652
|
public_training_code="",
|
|
653
653
|
public_training_data=None,
|
|
654
|
-
framework=["PyTorch"],
|
|
654
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
655
655
|
reference="https://huggingface.co/facebook/webssl-mae700m-full2b-224",
|
|
656
656
|
similarity_fn_name=None,
|
|
657
657
|
use_instructions=False,
|
|
658
658
|
training_datasets=webssl_dino_training_datasets,
|
|
659
659
|
citation="""@article{fan2025scaling,
|
|
660
|
-
title={Scaling Language-Free Visual Representation Learning},
|
|
660
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
661
661
|
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
662
662
|
year={2025},
|
|
663
663
|
eprint={2504.01017},
|
|
@@ -682,13 +682,13 @@ webssl_mae1b_full2b = ModelMeta(
|
|
|
682
682
|
open_weights=True,
|
|
683
683
|
public_training_code="",
|
|
684
684
|
public_training_data=None,
|
|
685
|
-
framework=["PyTorch"],
|
|
685
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
686
686
|
reference="https://huggingface.co/facebook/webssl-mae1b-full2b-224",
|
|
687
687
|
similarity_fn_name=None,
|
|
688
688
|
use_instructions=False,
|
|
689
689
|
training_datasets=webssl_dino_training_datasets,
|
|
690
690
|
citation="""@article{fan2025scaling,
|
|
691
|
-
title={Scaling Language-Free Visual Representation Learning},
|
|
691
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
692
692
|
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
693
693
|
year={2025},
|
|
694
694
|
eprint={2504.01017},
|
|
@@ -45,7 +45,14 @@ e5_instruct = ModelMeta(
|
|
|
45
45
|
open_weights=True,
|
|
46
46
|
revision="baa7be480a7de1539afce709c8f13f833a510e0a",
|
|
47
47
|
release_date=E5_PAPER_RELEASE_DATE,
|
|
48
|
-
framework=[
|
|
48
|
+
framework=[
|
|
49
|
+
"GritLM",
|
|
50
|
+
"PyTorch",
|
|
51
|
+
"Sentence Transformers",
|
|
52
|
+
"ONNX",
|
|
53
|
+
"safetensors",
|
|
54
|
+
"Transformers",
|
|
55
|
+
],
|
|
49
56
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
50
57
|
use_instructions=True,
|
|
51
58
|
reference="https://huggingface.co/intfloat/multilingual-e5-large-instruct",
|
|
@@ -84,7 +91,13 @@ e5_mistral = ModelMeta(
|
|
|
84
91
|
open_weights=True,
|
|
85
92
|
revision="07163b72af1488142a360786df853f237b1a3ca1",
|
|
86
93
|
release_date=E5_PAPER_RELEASE_DATE,
|
|
87
|
-
framework=[
|
|
94
|
+
framework=[
|
|
95
|
+
"GritLM",
|
|
96
|
+
"PyTorch",
|
|
97
|
+
"Sentence Transformers",
|
|
98
|
+
"safetensors",
|
|
99
|
+
"Transformers",
|
|
100
|
+
],
|
|
88
101
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
89
102
|
use_instructions=True,
|
|
90
103
|
reference="https://huggingface.co/intfloat/e5-mistral-7b-instruct",
|
|
@@ -139,7 +152,13 @@ zeta_alpha_ai__zeta_alpha_e5_mistral = ModelMeta(
|
|
|
139
152
|
open_weights=True,
|
|
140
153
|
public_training_data=None,
|
|
141
154
|
public_training_code=None,
|
|
142
|
-
framework=[
|
|
155
|
+
framework=[
|
|
156
|
+
"PyTorch",
|
|
157
|
+
"Sentence Transformers",
|
|
158
|
+
"GritLM",
|
|
159
|
+
"safetensors",
|
|
160
|
+
"Transformers",
|
|
161
|
+
],
|
|
143
162
|
reference="https://huggingface.co/zeta-alpha-ai/Zeta-Alpha-E5-Mistral",
|
|
144
163
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
145
164
|
use_instructions=True,
|
|
@@ -216,7 +235,7 @@ BeastyZ__e5_R_mistral_7b = ModelMeta(
|
|
|
216
235
|
open_weights=True,
|
|
217
236
|
public_training_code="https://github.com/LeeSureman/E5-Retrieval-Reproduction",
|
|
218
237
|
public_training_data="https://huggingface.co/datasets/BeastyZ/E5-R",
|
|
219
|
-
framework=["PyTorch"],
|
|
238
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
220
239
|
reference="https://huggingface.co/BeastyZ/e5-R-mistral-7b",
|
|
221
240
|
similarity_fn_name="cosine",
|
|
222
241
|
use_instructions=True,
|