mteb 2.5.2__py3-none-any.whl → 2.7.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (241) hide show
  1. mteb/__init__.py +2 -0
  2. mteb/_create_dataloaders.py +17 -18
  3. mteb/_evaluators/any_sts_evaluator.py +3 -3
  4. mteb/_evaluators/clustering_evaluator.py +2 -2
  5. mteb/_evaluators/evaluator.py +4 -2
  6. mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +10 -8
  7. mteb/_evaluators/pair_classification_evaluator.py +5 -3
  8. mteb/_evaluators/retrieval_evaluator.py +2 -2
  9. mteb/_evaluators/retrieval_metrics.py +18 -17
  10. mteb/_evaluators/sklearn_evaluator.py +11 -10
  11. mteb/_evaluators/text/bitext_mining_evaluator.py +27 -18
  12. mteb/_evaluators/text/summarization_evaluator.py +23 -18
  13. mteb/_evaluators/zeroshot_classification_evaluator.py +5 -3
  14. mteb/abstasks/_data_filter/filters.py +1 -1
  15. mteb/abstasks/_data_filter/task_pipelines.py +3 -0
  16. mteb/abstasks/_statistics_calculation.py +18 -10
  17. mteb/abstasks/_stratification.py +18 -18
  18. mteb/abstasks/abstask.py +35 -28
  19. mteb/abstasks/aggregate_task_metadata.py +1 -9
  20. mteb/abstasks/aggregated_task.py +10 -29
  21. mteb/abstasks/classification.py +15 -10
  22. mteb/abstasks/clustering.py +19 -15
  23. mteb/abstasks/clustering_legacy.py +10 -10
  24. mteb/abstasks/image/image_text_pair_classification.py +7 -4
  25. mteb/abstasks/multilabel_classification.py +23 -19
  26. mteb/abstasks/pair_classification.py +20 -11
  27. mteb/abstasks/regression.py +4 -4
  28. mteb/abstasks/retrieval.py +28 -24
  29. mteb/abstasks/retrieval_dataset_loaders.py +2 -2
  30. mteb/abstasks/sts.py +8 -5
  31. mteb/abstasks/task_metadata.py +31 -33
  32. mteb/abstasks/text/bitext_mining.py +39 -28
  33. mteb/abstasks/text/reranking.py +8 -6
  34. mteb/abstasks/text/summarization.py +10 -5
  35. mteb/abstasks/zeroshot_classification.py +8 -4
  36. mteb/benchmarks/benchmark.py +4 -2
  37. mteb/benchmarks/benchmarks/__init__.py +4 -0
  38. mteb/benchmarks/benchmarks/benchmarks.py +112 -11
  39. mteb/benchmarks/get_benchmark.py +14 -55
  40. mteb/cache.py +182 -29
  41. mteb/cli/_display_tasks.py +2 -2
  42. mteb/cli/build_cli.py +110 -14
  43. mteb/cli/generate_model_card.py +43 -23
  44. mteb/deprecated_evaluator.py +63 -49
  45. mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2CybersecurityRetrieval.json +32 -0
  46. mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EconomicRetrieval.json +32 -0
  47. mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EnergyRetrieval.json +32 -0
  48. mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2HrRetrieval.json +32 -0
  49. mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json +30 -0
  50. mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json +116 -0
  51. mteb/descriptive_stats/Retrieval/NanoClimateFEVER-VN.json +30 -0
  52. mteb/descriptive_stats/Retrieval/NanoDBPedia-VN.json +30 -0
  53. mteb/descriptive_stats/Retrieval/NanoFEVER-VN.json +30 -0
  54. mteb/descriptive_stats/Retrieval/NanoHotpotQA-VN.json +30 -0
  55. mteb/descriptive_stats/Retrieval/NanoMSMARCO-VN.json +30 -0
  56. mteb/descriptive_stats/Retrieval/NanoNQ-VN.json +30 -0
  57. mteb/descriptive_stats/Retrieval/TVPLRetrieval.json +30 -0
  58. mteb/evaluate.py +44 -33
  59. mteb/filter_tasks.py +25 -26
  60. mteb/get_tasks.py +29 -30
  61. mteb/languages/language_scripts.py +5 -3
  62. mteb/leaderboard/app.py +162 -34
  63. mteb/load_results.py +12 -12
  64. mteb/models/abs_encoder.py +10 -6
  65. mteb/models/cache_wrappers/cache_backend_protocol.py +3 -5
  66. mteb/models/cache_wrappers/cache_backends/_hash_utils.py +5 -4
  67. mteb/models/cache_wrappers/cache_backends/faiss_cache.py +6 -2
  68. mteb/models/cache_wrappers/cache_backends/numpy_cache.py +43 -25
  69. mteb/models/cache_wrappers/cache_wrapper.py +2 -2
  70. mteb/models/get_model_meta.py +21 -3
  71. mteb/models/instruct_wrapper.py +28 -8
  72. mteb/models/model_implementations/align_models.py +1 -1
  73. mteb/models/model_implementations/andersborges.py +4 -4
  74. mteb/models/model_implementations/ara_models.py +1 -1
  75. mteb/models/model_implementations/arctic_models.py +8 -8
  76. mteb/models/model_implementations/b1ade_models.py +1 -1
  77. mteb/models/model_implementations/bge_models.py +45 -21
  78. mteb/models/model_implementations/bica_model.py +3 -3
  79. mteb/models/model_implementations/blip2_models.py +2 -2
  80. mteb/models/model_implementations/blip_models.py +16 -16
  81. mteb/models/model_implementations/bm25.py +4 -4
  82. mteb/models/model_implementations/bmretriever_models.py +6 -4
  83. mteb/models/model_implementations/cadet_models.py +1 -1
  84. mteb/models/model_implementations/cde_models.py +11 -4
  85. mteb/models/model_implementations/clip_models.py +6 -6
  86. mteb/models/model_implementations/clips_models.py +3 -3
  87. mteb/models/model_implementations/codefuse_models.py +5 -5
  88. mteb/models/model_implementations/codesage_models.py +3 -3
  89. mteb/models/model_implementations/cohere_models.py +5 -5
  90. mteb/models/model_implementations/cohere_v.py +2 -2
  91. mteb/models/model_implementations/colpali_models.py +3 -3
  92. mteb/models/model_implementations/colqwen_models.py +8 -8
  93. mteb/models/model_implementations/colsmol_models.py +2 -2
  94. mteb/models/model_implementations/conan_models.py +1 -1
  95. mteb/models/model_implementations/dino_models.py +42 -42
  96. mteb/models/model_implementations/e5_instruct.py +23 -4
  97. mteb/models/model_implementations/e5_models.py +9 -9
  98. mteb/models/model_implementations/e5_v.py +6 -6
  99. mteb/models/model_implementations/eagerworks_models.py +1 -1
  100. mteb/models/model_implementations/emillykkejensen_models.py +6 -6
  101. mteb/models/model_implementations/en_code_retriever.py +1 -1
  102. mteb/models/model_implementations/euler_models.py +2 -2
  103. mteb/models/model_implementations/fa_models.py +9 -9
  104. mteb/models/model_implementations/facebookai.py +14 -2
  105. mteb/models/model_implementations/geogpt_models.py +1 -1
  106. mteb/models/model_implementations/gme_v_models.py +6 -5
  107. mteb/models/model_implementations/google_models.py +1 -1
  108. mteb/models/model_implementations/granite_vision_embedding_models.py +1 -1
  109. mteb/models/model_implementations/gritlm_models.py +2 -2
  110. mteb/models/model_implementations/gte_models.py +25 -13
  111. mteb/models/model_implementations/hinvec_models.py +1 -1
  112. mteb/models/model_implementations/ibm_granite_models.py +30 -6
  113. mteb/models/model_implementations/inf_models.py +2 -2
  114. mteb/models/model_implementations/jasper_models.py +2 -2
  115. mteb/models/model_implementations/jina_clip.py +48 -10
  116. mteb/models/model_implementations/jina_models.py +18 -11
  117. mteb/models/model_implementations/kblab.py +12 -6
  118. mteb/models/model_implementations/kennethenevoldsen_models.py +4 -4
  119. mteb/models/model_implementations/kfst.py +1 -1
  120. mteb/models/model_implementations/kowshik24_models.py +1 -1
  121. mteb/models/model_implementations/lgai_embedding_models.py +1 -1
  122. mteb/models/model_implementations/linq_models.py +1 -1
  123. mteb/models/model_implementations/listconranker.py +1 -1
  124. mteb/models/model_implementations/llm2clip_models.py +6 -6
  125. mteb/models/model_implementations/llm2vec_models.py +8 -8
  126. mteb/models/model_implementations/mcinext_models.py +4 -1
  127. mteb/models/model_implementations/mdbr_models.py +17 -3
  128. mteb/models/model_implementations/misc_models.py +68 -68
  129. mteb/models/model_implementations/mixedbread_ai_models.py +332 -0
  130. mteb/models/model_implementations/mme5_models.py +1 -1
  131. mteb/models/model_implementations/moco_models.py +4 -4
  132. mteb/models/model_implementations/mod_models.py +1 -1
  133. mteb/models/model_implementations/model2vec_models.py +14 -14
  134. mteb/models/model_implementations/moka_models.py +1 -1
  135. mteb/models/model_implementations/nbailab.py +3 -3
  136. mteb/models/model_implementations/no_instruct_sentence_models.py +2 -2
  137. mteb/models/model_implementations/nomic_models.py +30 -15
  138. mteb/models/model_implementations/nomic_models_vision.py +1 -1
  139. mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +15 -9
  140. mteb/models/model_implementations/nvidia_models.py +151 -19
  141. mteb/models/model_implementations/octen_models.py +61 -2
  142. mteb/models/model_implementations/openclip_models.py +13 -13
  143. mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -5
  144. mteb/models/model_implementations/ops_moa_models.py +1 -1
  145. mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -1
  146. mteb/models/model_implementations/pawan_models.py +1 -1
  147. mteb/models/model_implementations/piccolo_models.py +1 -1
  148. mteb/models/model_implementations/pixie_models.py +56 -0
  149. mteb/models/model_implementations/promptriever_models.py +4 -4
  150. mteb/models/model_implementations/pylate_models.py +10 -9
  151. mteb/models/model_implementations/qodo_models.py +2 -2
  152. mteb/models/model_implementations/qtack_models.py +1 -1
  153. mteb/models/model_implementations/qwen3_models.py +3 -3
  154. mteb/models/model_implementations/qzhou_models.py +2 -2
  155. mteb/models/model_implementations/random_baseline.py +3 -3
  156. mteb/models/model_implementations/rasgaard_models.py +2 -2
  157. mteb/models/model_implementations/reasonir_model.py +1 -1
  158. mteb/models/model_implementations/repllama_models.py +3 -3
  159. mteb/models/model_implementations/rerankers_custom.py +12 -6
  160. mteb/models/model_implementations/rerankers_monot5_based.py +17 -17
  161. mteb/models/model_implementations/richinfoai_models.py +1 -1
  162. mteb/models/model_implementations/ru_sentence_models.py +20 -20
  163. mteb/models/model_implementations/ruri_models.py +10 -10
  164. mteb/models/model_implementations/salesforce_models.py +3 -3
  165. mteb/models/model_implementations/samilpwc_models.py +1 -1
  166. mteb/models/model_implementations/sarashina_embedding_models.py +2 -2
  167. mteb/models/model_implementations/searchmap_models.py +1 -1
  168. mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +113 -146
  169. mteb/models/model_implementations/sentence_transformers_models.py +124 -22
  170. mteb/models/model_implementations/shuu_model.py +1 -1
  171. mteb/models/model_implementations/siglip_models.py +20 -20
  172. mteb/models/model_implementations/slm_models.py +416 -0
  173. mteb/models/model_implementations/spartan8806_atles_champion.py +1 -1
  174. mteb/models/model_implementations/stella_models.py +17 -4
  175. mteb/models/model_implementations/tarka_models.py +2 -2
  176. mteb/models/model_implementations/text2vec_models.py +9 -3
  177. mteb/models/model_implementations/ua_sentence_models.py +1 -1
  178. mteb/models/model_implementations/uae_models.py +7 -1
  179. mteb/models/model_implementations/vdr_models.py +1 -1
  180. mteb/models/model_implementations/vi_vn_models.py +6 -6
  181. mteb/models/model_implementations/vlm2vec_models.py +3 -3
  182. mteb/models/model_implementations/voyage_models.py +84 -0
  183. mteb/models/model_implementations/voyage_v.py +9 -7
  184. mteb/models/model_implementations/youtu_models.py +1 -1
  185. mteb/models/model_implementations/yuan_models.py +1 -1
  186. mteb/models/model_implementations/yuan_models_en.py +1 -1
  187. mteb/models/model_meta.py +80 -31
  188. mteb/models/models_protocols.py +22 -6
  189. mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +9 -6
  190. mteb/models/search_wrappers.py +33 -18
  191. mteb/models/sentence_transformer_wrapper.py +50 -25
  192. mteb/models/vllm_wrapper.py +327 -0
  193. mteb/py.typed +0 -0
  194. mteb/results/benchmark_results.py +29 -21
  195. mteb/results/model_result.py +52 -22
  196. mteb/results/task_result.py +80 -58
  197. mteb/similarity_functions.py +11 -7
  198. mteb/tasks/classification/dan/dk_hate_classification.py +1 -1
  199. mteb/tasks/classification/est/estonian_valence.py +1 -1
  200. mteb/tasks/classification/kur/kurdish_sentiment_classification.py +2 -2
  201. mteb/tasks/classification/multilingual/scala_classification.py +1 -1
  202. mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
  203. mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
  204. mteb/tasks/clustering/zho/cmteb_clustering.py +2 -2
  205. mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +1 -1
  206. mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
  207. mteb/tasks/retrieval/code/code_rag.py +12 -12
  208. mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
  209. mteb/tasks/retrieval/dan/tv2_nordretrieval.py +2 -2
  210. mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +2 -2
  211. mteb/tasks/retrieval/eng/__init__.py +2 -0
  212. mteb/tasks/retrieval/eng/chemrxiv.py +33 -0
  213. mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
  214. mteb/tasks/retrieval/kor/__init__.py +15 -1
  215. mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py +142 -0
  216. mteb/tasks/retrieval/multilingual/__init__.py +2 -0
  217. mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py +43 -0
  218. mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +90 -100
  219. mteb/tasks/retrieval/nob/norquad.py +2 -2
  220. mteb/tasks/retrieval/nob/snl_retrieval.py +2 -2
  221. mteb/tasks/retrieval/tur/tur_hist_quad.py +1 -1
  222. mteb/tasks/retrieval/vie/__init__.py +14 -6
  223. mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +39 -0
  224. mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +39 -0
  225. mteb/tasks/retrieval/vie/fevervn_retrieval.py +39 -0
  226. mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +39 -0
  227. mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +48 -0
  228. mteb/tasks/retrieval/vie/nqvn_retrieval.py +39 -0
  229. mteb/tasks/retrieval/vie/tvpl_retrieval.py +42 -0
  230. mteb/tasks/retrieval/vie/zac_legal_text_retrieval.py +15 -1
  231. mteb/types/__init__.py +2 -0
  232. mteb/types/_encoder_io.py +12 -0
  233. mteb/types/_result.py +2 -1
  234. mteb/types/statistics.py +9 -3
  235. {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/METADATA +15 -4
  236. {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/RECORD +240 -219
  237. mteb/models/model_implementations/mxbai_models.py +0 -111
  238. {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/WHEEL +0 -0
  239. {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/entry_points.txt +0 -0
  240. {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/licenses/LICENSE +0 -0
  241. {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/top_level.txt +0 -0
@@ -82,7 +82,7 @@ e5_mult_small = ModelMeta(
82
82
  max_tokens=512,
83
83
  reference="https://huggingface.co/intfloat/multilingual-e5-small",
84
84
  similarity_fn_name=ScoringFunction.COSINE,
85
- framework=["Sentence Transformers", "PyTorch"],
85
+ framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
86
86
  use_instructions=True,
87
87
  public_training_code=None, # couldn't find
88
88
  public_training_data=None,
@@ -109,7 +109,7 @@ e5_mult_base = ModelMeta(
109
109
  max_tokens=514,
110
110
  reference="https://huggingface.co/intfloat/multilingual-e5-base",
111
111
  similarity_fn_name=ScoringFunction.COSINE,
112
- framework=["Sentence Transformers", "PyTorch"],
112
+ framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
113
113
  use_instructions=True,
114
114
  public_training_code=None,
115
115
  public_training_data=None,
@@ -136,7 +136,7 @@ e5_mult_large = ModelMeta(
136
136
  max_tokens=514,
137
137
  reference="https://huggingface.co/intfloat/multilingual-e5-large",
138
138
  similarity_fn_name=ScoringFunction.COSINE,
139
- framework=["Sentence Transformers", "PyTorch"],
139
+ framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
140
140
  use_instructions=True,
141
141
  public_training_code=None,
142
142
  public_training_data=None,
@@ -163,7 +163,7 @@ e5_eng_small_v2 = ModelMeta(
163
163
  max_tokens=512,
164
164
  reference="https://huggingface.co/intfloat/e5-small-v2",
165
165
  similarity_fn_name=ScoringFunction.COSINE,
166
- framework=["Sentence Transformers", "PyTorch"],
166
+ framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
167
167
  use_instructions=True,
168
168
  public_training_code=None,
169
169
  public_training_data=None,
@@ -190,7 +190,7 @@ e5_eng_small = ModelMeta(
190
190
  max_tokens=512,
191
191
  reference="https://huggingface.co/intfloat/e5-small",
192
192
  similarity_fn_name=ScoringFunction.COSINE,
193
- framework=["Sentence Transformers", "PyTorch"],
193
+ framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
194
194
  use_instructions=True,
195
195
  public_training_code=None,
196
196
  public_training_data=None,
@@ -217,7 +217,7 @@ e5_eng_base_v2 = ModelMeta(
217
217
  max_tokens=512,
218
218
  reference="https://huggingface.co/intfloat/e5-base-v2",
219
219
  similarity_fn_name=ScoringFunction.COSINE,
220
- framework=["Sentence Transformers", "PyTorch"],
220
+ framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
221
221
  use_instructions=True,
222
222
  superseded_by=None,
223
223
  adapted_from="intfloat/e5-base",
@@ -245,7 +245,7 @@ e5_eng_large_v2 = ModelMeta(
245
245
  max_tokens=514,
246
246
  reference="https://huggingface.co/intfloat/e5-large-v2",
247
247
  similarity_fn_name=ScoringFunction.COSINE,
248
- framework=["Sentence Transformers", "PyTorch"],
248
+ framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
249
249
  use_instructions=True,
250
250
  superseded_by=None,
251
251
  adapted_from="intfloat/e5-large",
@@ -273,7 +273,7 @@ e5_large = ModelMeta(
273
273
  max_tokens=512,
274
274
  reference="https://huggingface.co/intfloat/e5-large",
275
275
  similarity_fn_name=ScoringFunction.COSINE,
276
- framework=["Sentence Transformers", "PyTorch"],
276
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
277
277
  use_instructions=True,
278
278
  superseded_by="intfloat/e5-large-v2",
279
279
  adapted_from="google-bert/bert-large-uncased-whole-word-masking",
@@ -301,7 +301,7 @@ e5_base = ModelMeta(
301
301
  max_tokens=512,
302
302
  reference="https://huggingface.co/intfloat/e5-base",
303
303
  similarity_fn_name=ScoringFunction.COSINE,
304
- framework=["Sentence Transformers", "PyTorch"],
304
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
305
305
  use_instructions=True,
306
306
  superseded_by="intfloat/e5-base-v2",
307
307
  adapted_from="google-bert/bert-base-uncased",
@@ -30,6 +30,7 @@ class E5VModel(AbsEncoder):
30
30
  self,
31
31
  model_name: str,
32
32
  revision: str,
33
+ device: str | None = None,
33
34
  composed_prompt=None,
34
35
  **kwargs: Any,
35
36
  ):
@@ -47,8 +48,7 @@ class E5VModel(AbsEncoder):
47
48
  self.processor = LlavaNextProcessor.from_pretrained(
48
49
  model_name, revision=revision
49
50
  )
50
- if "device" in kwargs:
51
- self.device = kwargs.pop("device")
51
+ self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
52
52
  self.model = LlavaNextForConditionalGeneration.from_pretrained(
53
53
  model_name, revision=revision, **kwargs
54
54
  )
@@ -87,7 +87,7 @@ class E5VModel(AbsEncoder):
87
87
  ],
88
88
  return_tensors="pt",
89
89
  padding=True,
90
- ).to("cuda")
90
+ ).to(self.device)
91
91
  text_outputs = self.model(
92
92
  **text_inputs, output_hidden_states=True, return_dict=True
93
93
  ).hidden_states[-1][:, -1, :]
@@ -111,7 +111,7 @@ class E5VModel(AbsEncoder):
111
111
  batch["image"],
112
112
  return_tensors="pt",
113
113
  padding=True,
114
- ).to("cuda")
114
+ ).to(self.device)
115
115
  image_outputs = self.model(
116
116
  **img_inputs, output_hidden_states=True, return_dict=True
117
117
  ).hidden_states[-1][:, -1, :]
@@ -141,7 +141,7 @@ class E5VModel(AbsEncoder):
141
141
  ]
142
142
  inputs = self.processor(
143
143
  prompts, batch["image"], return_tensors="pt", padding=True
144
- ).to("cuda")
144
+ ).to(self.device)
145
145
  outputs = self.model(
146
146
  **inputs, output_hidden_states=True, return_dict=True
147
147
  ).hidden_states[-1][:, -1, :]
@@ -173,7 +173,7 @@ e5_v = ModelMeta(
173
173
  open_weights=True,
174
174
  public_training_code="https://github.com/kongds/E5-V",
175
175
  public_training_data="https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse",
176
- framework=["PyTorch"],
176
+ framework=["PyTorch", "Transformers", "safetensors"],
177
177
  reference="https://huggingface.co/royokong/e5-v",
178
178
  similarity_fn_name=ScoringFunction.COSINE,
179
179
  use_instructions=True,
@@ -152,7 +152,7 @@ Eager_Embed_V1 = ModelMeta(
152
152
  embed_dim=2560,
153
153
  license="apache-2.0",
154
154
  open_weights=True,
155
- framework=["Tevatron"],
155
+ framework=["Tevatron", "safetensors"],
156
156
  reference="https://huggingface.co/eagerworks/eager-embed-v1",
157
157
  similarity_fn_name=ScoringFunction.COSINE,
158
158
  use_instructions=True,
@@ -2,7 +2,7 @@ from mteb.models.model_meta import ModelMeta
2
2
  from mteb.models.sentence_transformer_wrapper import sentence_transformers_loader
3
3
 
4
4
  embedding_gemma_300m_scandi = ModelMeta(
5
- loader=sentence_transformers_loader, # type: ignore
5
+ loader=sentence_transformers_loader,
6
6
  name="emillykkejensen/EmbeddingGemma-Scandi-300m",
7
7
  model_type=["dense"],
8
8
  languages=["dan-Latn", "swe-Latn", "nor-Latn", "nob-Latn", "nno-Latn"],
@@ -14,7 +14,7 @@ embedding_gemma_300m_scandi = ModelMeta(
14
14
  max_tokens=2048,
15
15
  license="apache-2.0",
16
16
  reference="https://huggingface.co/emillykkejensen/EmbeddingGemma-Scandi-300m",
17
- framework=["Sentence Transformers", "PyTorch"],
17
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
18
18
  use_instructions=True,
19
19
  public_training_code=None,
20
20
  public_training_data="https://huggingface.co/datasets/DDSC/nordic-embedding-training-data",
@@ -35,7 +35,7 @@ embedding_gemma_300m_scandi = ModelMeta(
35
35
 
36
36
 
37
37
  qwen_scandi = ModelMeta(
38
- loader=sentence_transformers_loader, # type: ignore
38
+ loader=sentence_transformers_loader,
39
39
  name="emillykkejensen/Qwen3-Embedding-Scandi-0.6B",
40
40
  model_type=["dense"],
41
41
  languages=["dan-Latn", "swe-Latn", "nor-Latn", "nob-Latn", "nno-Latn"],
@@ -48,7 +48,7 @@ qwen_scandi = ModelMeta(
48
48
  max_tokens=32768,
49
49
  license="apache-2.0",
50
50
  reference="https://huggingface.co/emillykkejensen/Qwen3-Embedding-Scandi-0.6B",
51
- framework=["Sentence Transformers", "PyTorch"],
51
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
52
52
  use_instructions=True,
53
53
  public_training_code=None,
54
54
  public_training_data="https://huggingface.co/datasets/DDSC/nordic-embedding-training-data",
@@ -59,7 +59,7 @@ qwen_scandi = ModelMeta(
59
59
 
60
60
 
61
61
  mmbert_scandi = ModelMeta(
62
- loader=sentence_transformers_loader, # type: ignore
62
+ loader=sentence_transformers_loader,
63
63
  name="emillykkejensen/mmBERTscandi-base-embedding",
64
64
  model_type=["dense"],
65
65
  languages=["dan-Latn", "swe-Latn", "nor-Latn", "nob-Latn", "nno-Latn"],
@@ -72,7 +72,7 @@ mmbert_scandi = ModelMeta(
72
72
  max_tokens=8192,
73
73
  license="apache-2.0",
74
74
  reference="https://huggingface.co/emillykkejensen/Qwen3-Embedding-Scandi-0.6B",
75
- framework=["Sentence Transformers", "PyTorch"],
75
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
76
76
  use_instructions=True,
77
77
  public_training_code=None,
78
78
  public_training_data="https://huggingface.co/datasets/DDSC/nordic-embedding-training-data",
@@ -24,7 +24,7 @@ english_code_retriever = ModelMeta(
24
24
  max_tokens=8192,
25
25
  reference="https://huggingface.co/fyaronskiy/english_code_retriever",
26
26
  similarity_fn_name="cosine",
27
- framework=["Sentence Transformers", "PyTorch"],
27
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
28
28
  use_instructions=True,
29
29
  public_training_code=None,
30
30
  public_training_data="https://huggingface.co/datasets/code-search-net/code_search_net",
@@ -16,7 +16,7 @@ Euler_Legal_Embedding_V1 = ModelMeta(
16
16
  open_weights=True,
17
17
  public_training_code=None,
18
18
  public_training_data=None,
19
- framework=["PyTorch", "Sentence Transformers"],
19
+ framework=["PyTorch", "Sentence Transformers", "safetensors", "Transformers"],
20
20
  reference="https://huggingface.co/Mira190/Euler-Legal-Embedding-V1",
21
21
  similarity_fn_name="cosine",
22
22
  use_instructions=False,
@@ -24,7 +24,7 @@ Euler_Legal_Embedding_V1 = ModelMeta(
24
24
  adapted_from="Qwen/Qwen3-Embedding-8B",
25
25
  superseded_by=None,
26
26
  citation="""@misc{euler2025legal,
27
- title={Euler-Legal-Embedding: Advanced Legal Representation Learning},
27
+ title={Euler-Legal-Embedding: Advanced Legal Representation Learning},
28
28
  author={LawRank Team},
29
29
  year={2025},
30
30
  publisher={Hugging Face}
@@ -18,7 +18,7 @@ parsbert = ModelMeta(
18
18
  max_tokens=512,
19
19
  reference="https://huggingface.co/HooshvareLab/bert-base-parsbert-uncased",
20
20
  similarity_fn_name=ScoringFunction.COSINE,
21
- framework=["Sentence Transformers", "PyTorch"],
21
+ framework=["Sentence Transformers", "PyTorch", "Transformers"],
22
22
  use_instructions=False,
23
23
  public_training_code=None,
24
24
  public_training_data=None,
@@ -54,7 +54,7 @@ bert_zwnj = ModelMeta(
54
54
  max_tokens=512,
55
55
  reference="https://huggingface.co/m3hrdadfi/bert-zwnj-wnli-mean-tokens",
56
56
  similarity_fn_name=ScoringFunction.COSINE,
57
- framework=["Sentence Transformers", "PyTorch"],
57
+ framework=["Sentence Transformers", "PyTorch", "Transformers"],
58
58
  use_instructions=False,
59
59
  public_training_code=None,
60
60
  public_training_data=None,
@@ -80,7 +80,7 @@ roberta_zwnj = ModelMeta(
80
80
  max_tokens=514,
81
81
  reference="https://huggingface.co/m3hrdadfi/roberta-zwnj-wnli-mean-tokens",
82
82
  similarity_fn_name=ScoringFunction.COSINE,
83
- framework=["Sentence Transformers", "PyTorch"],
83
+ framework=["Sentence Transformers", "PyTorch", "Transformers"],
84
84
  use_instructions=False,
85
85
  public_training_code=None,
86
86
  public_training_data=None,
@@ -105,7 +105,7 @@ sentence_transformer_parsbert = ModelMeta(
105
105
  max_tokens=512,
106
106
  reference="https://huggingface.co/myrkur/sentence-transformer-parsbert-fa",
107
107
  similarity_fn_name=ScoringFunction.COSINE,
108
- framework=["Sentence Transformers", "PyTorch"],
108
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
109
109
  use_instructions=False,
110
110
  public_training_code=None,
111
111
  public_training_data=None,
@@ -129,7 +129,7 @@ tooka_bert_base = ModelMeta(
129
129
  max_tokens=512,
130
130
  reference="https://huggingface.co/PartAI/TookaBERT-Base",
131
131
  similarity_fn_name=ScoringFunction.COSINE,
132
- framework=["Sentence Transformers", "PyTorch"],
132
+ framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
133
133
  use_instructions=False,
134
134
  public_training_code=None,
135
135
  public_training_data=None,
@@ -156,7 +156,7 @@ tooka_sbert = ModelMeta(
156
156
  max_tokens=512,
157
157
  reference="https://huggingface.co/PartAI/Tooka-SBERT",
158
158
  similarity_fn_name=ScoringFunction.COSINE,
159
- framework=["Sentence Transformers", "PyTorch"],
159
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
160
160
  use_instructions=False,
161
161
  public_training_code=None,
162
162
  public_training_data=None,
@@ -187,7 +187,7 @@ fa_bert = ModelMeta(
187
187
  max_tokens=512,
188
188
  reference="https://huggingface.co/sbunlp/fabert",
189
189
  similarity_fn_name=ScoringFunction.COSINE,
190
- framework=["Sentence Transformers", "PyTorch"],
190
+ framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
191
191
  use_instructions=False,
192
192
  public_training_code=None,
193
193
  public_training_data=None,
@@ -235,7 +235,7 @@ tooka_sbert_v2_small = ModelMeta(
235
235
  max_tokens=512,
236
236
  reference="https://huggingface.co/PartAI/Tooka-SBERT-V2-Small",
237
237
  similarity_fn_name="cosine",
238
- framework=["Sentence Transformers", "PyTorch"],
238
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
239
239
  use_instructions=False,
240
240
  public_training_code=None,
241
241
  public_training_data=None,
@@ -266,7 +266,7 @@ tooka_sbert_v2_large = ModelMeta(
266
266
  max_tokens=512,
267
267
  reference="https://huggingface.co/PartAI/Tooka-SBERT-V2-Large",
268
268
  similarity_fn_name="cosine",
269
- framework=["Sentence Transformers", "PyTorch"],
269
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
270
270
  use_instructions=False,
271
271
  public_training_code=None,
272
272
  public_training_data=None,
@@ -119,7 +119,13 @@ xlmr_base = ModelMeta(
119
119
  max_tokens=512,
120
120
  reference="https://huggingface.co/FacebookAI/xlm-roberta-base",
121
121
  similarity_fn_name=ScoringFunction.COSINE,
122
- framework=["Sentence Transformers", "PyTorch"],
122
+ framework=[
123
+ "Sentence Transformers",
124
+ "PyTorch",
125
+ "Transformers",
126
+ "ONNX",
127
+ "safetensors",
128
+ ],
123
129
  use_instructions=False,
124
130
  public_training_code=None,
125
131
  public_training_data=None,
@@ -163,7 +169,13 @@ xlmr_large = ModelMeta(
163
169
  max_tokens=512,
164
170
  reference="https://huggingface.co/FacebookAI/xlm-roberta-large",
165
171
  similarity_fn_name=ScoringFunction.COSINE,
166
- framework=["Sentence Transformers", "PyTorch"],
172
+ framework=[
173
+ "Sentence Transformers",
174
+ "PyTorch",
175
+ "Transformers",
176
+ "ONNX",
177
+ "safetensors",
178
+ ],
167
179
  use_instructions=False,
168
180
  public_training_code=None,
169
181
  public_training_data=None,
@@ -26,7 +26,7 @@ geoembedding = ModelMeta(
26
26
  max_tokens=32768,
27
27
  reference="https://huggingface.co/GeoGPT-Research-Project/GeoEmbedding",
28
28
  similarity_fn_name="cosine",
29
- framework=["Sentence Transformers", "PyTorch"],
29
+ framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
30
30
  use_instructions=True,
31
31
  public_training_code=None,
32
32
  public_training_data=None,
@@ -2,6 +2,7 @@ from __future__ import annotations
2
2
 
3
3
  import logging
4
4
  import math
5
+ import warnings
5
6
  from typing import TYPE_CHECKING, Any
6
7
 
7
8
  import torch
@@ -261,9 +262,9 @@ def smart_resize(
261
262
  w_bar = ceil_by_factor(width * beta, factor)
262
263
 
263
264
  if max(h_bar, w_bar) / min(h_bar, w_bar) > MAX_RATIO:
264
- logger.warning(
265
- f"Absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(h_bar, w_bar) / min(h_bar, w_bar)}"
266
- )
265
+ msg = f"Absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(h_bar, w_bar) / min(h_bar, w_bar)}"
266
+ logger.warning(msg)
267
+ warnings.warn(msg)
267
268
  if h_bar > w_bar:
268
269
  h_bar = w_bar * MAX_RATIO
269
270
  else:
@@ -359,7 +360,7 @@ gme_qwen2vl_2b = ModelMeta(
359
360
  max_tokens=32768,
360
361
  reference="https://huggingface.co/Alibaba-NLP/gme-Qwen2-VL-2B-Instruct",
361
362
  similarity_fn_name=ScoringFunction.COSINE,
362
- framework=["PyTorch"],
363
+ framework=["PyTorch", "Sentence Transformers", "safetensors", "Transformers"],
363
364
  use_instructions=True,
364
365
  public_training_code=None,
365
366
  public_training_data=None,
@@ -383,7 +384,7 @@ gme_qwen2vl_7b = ModelMeta(
383
384
  max_tokens=32768,
384
385
  reference="https://huggingface.co/Alibaba-NLP/gme-Qwen2-VL-7B-Instruct",
385
386
  similarity_fn_name=ScoringFunction.COSINE,
386
- framework=["PyTorch"],
387
+ framework=["PyTorch", "Sentence Transformers", "safetensors", "Transformers"],
387
388
  use_instructions=True,
388
389
  public_training_code=None,
389
390
  public_training_data=None,
@@ -270,7 +270,7 @@ embedding_gemma_300m = ModelMeta(
270
270
  max_tokens=2048,
271
271
  license="gemma",
272
272
  reference="https://ai.google.dev/gemma/docs/embeddinggemma/model_card",
273
- framework=["Sentence Transformers", "PyTorch"],
273
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
274
274
  use_instructions=True,
275
275
  public_training_code=None,
276
276
  public_training_data=None,
@@ -179,7 +179,7 @@ granite_vision_embedding = ModelMeta(
179
179
  open_weights=True,
180
180
  public_training_code=None,
181
181
  public_training_data=None,
182
- framework=["PyTorch"],
182
+ framework=["PyTorch", "Transformers", "safetensors"],
183
183
  reference="https://huggingface.co/ibm-granite/granite-vision-3.3-2b-embedding",
184
184
  similarity_fn_name="MaxSim",
185
185
  use_instructions=True,
@@ -50,7 +50,7 @@ gritlm7b = ModelMeta(
50
50
  max_tokens=32768,
51
51
  reference="https://huggingface.co/GritLM/GritLM-7B",
52
52
  similarity_fn_name=ScoringFunction.COSINE,
53
- framework=["GritLM", "PyTorch"],
53
+ framework=["GritLM", "PyTorch", "Transformers", "safetensors"],
54
54
  use_instructions=True,
55
55
  training_datasets=GRIT_LM_TRAINING_DATA,
56
56
  # section 3.1 "We finetune our final models from Mistral 7B [68] and Mixtral 8x7B [69] using adaptations of E5 [160] and the Tülu 2 data
@@ -79,7 +79,7 @@ gritlm8x7b = ModelMeta(
79
79
  max_tokens=32768,
80
80
  reference="https://huggingface.co/GritLM/GritLM-8x7B",
81
81
  similarity_fn_name=ScoringFunction.COSINE,
82
- framework=["GritLM", "PyTorch"],
82
+ framework=["GritLM", "PyTorch", "Transformers", "safetensors"],
83
83
  use_instructions=True,
84
84
  training_datasets=GRIT_LM_TRAINING_DATA,
85
85
  citation=GRITLM_CITATION,
@@ -53,7 +53,7 @@ gte_qwen2_7b_instruct = ModelMeta(
53
53
  license="apache-2.0",
54
54
  reference="https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct",
55
55
  similarity_fn_name=ScoringFunction.COSINE,
56
- framework=["Sentence Transformers", "PyTorch"],
56
+ framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
57
57
  use_instructions=True,
58
58
  citation=GTE_CITATION,
59
59
  public_training_code=None,
@@ -86,7 +86,7 @@ gte_qwen1_5_7b_instruct = ModelMeta(
86
86
  max_tokens=32_768,
87
87
  reference="https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-instruct",
88
88
  similarity_fn_name=ScoringFunction.COSINE,
89
- framework=["Sentence Transformers", "PyTorch"],
89
+ framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
90
90
  use_instructions=True,
91
91
  public_training_code=None,
92
92
  public_training_data=None,
@@ -123,7 +123,7 @@ gte_qwen2_1_5b_instruct = ModelMeta(
123
123
  max_tokens=32_768,
124
124
  reference="https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct",
125
125
  similarity_fn_name=ScoringFunction.COSINE,
126
- framework=["Sentence Transformers", "PyTorch"],
126
+ framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
127
127
  use_instructions=True,
128
128
  public_training_code=None,
129
129
  public_training_data=None,
@@ -151,7 +151,7 @@ gte_small_zh = ModelMeta(
151
151
  max_tokens=512,
152
152
  reference="https://huggingface.co/thenlper/gte-small-zh",
153
153
  similarity_fn_name=ScoringFunction.COSINE,
154
- framework=["Sentence Transformers", "PyTorch"],
154
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
155
155
  use_instructions=False,
156
156
  public_training_code=None,
157
157
  public_training_data=None,
@@ -179,7 +179,7 @@ gte_base_zh = ModelMeta(
179
179
  max_tokens=512,
180
180
  reference="https://huggingface.co/thenlper/gte-base-zh",
181
181
  similarity_fn_name=ScoringFunction.COSINE,
182
- framework=["Sentence Transformers", "PyTorch"],
182
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
183
183
  use_instructions=False,
184
184
  public_training_code=None,
185
185
  public_training_data=None,
@@ -207,7 +207,7 @@ gte_large_zh = ModelMeta(
207
207
  max_tokens=512,
208
208
  reference="https://huggingface.co/thenlper/gte-large-zh",
209
209
  similarity_fn_name=ScoringFunction.COSINE,
210
- framework=["Sentence Transformers", "PyTorch"],
210
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
211
211
  use_instructions=False,
212
212
  public_training_code=None,
213
213
  public_training_data=None,
@@ -336,7 +336,7 @@ gte_multilingual_base = ModelMeta(
336
336
  max_tokens=8192,
337
337
  reference="https://huggingface.co/Alibaba-NLP/gte-multilingual-base",
338
338
  similarity_fn_name=ScoringFunction.COSINE,
339
- framework=["Sentence Transformers", "PyTorch"],
339
+ framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
340
340
  use_instructions=False,
341
341
  public_training_code=None,
342
342
  public_training_data=None, # couldn't find
@@ -365,7 +365,13 @@ gte_modernbert_base = ModelMeta(
365
365
  max_tokens=8192,
366
366
  reference="https://huggingface.co/Alibaba-NLP/gte-modernbert-base",
367
367
  similarity_fn_name=ScoringFunction.COSINE,
368
- framework=["Sentence Transformers", "PyTorch"],
368
+ framework=[
369
+ "Sentence Transformers",
370
+ "PyTorch",
371
+ "Transformers",
372
+ "ONNX",
373
+ "safetensors",
374
+ ],
369
375
  use_instructions=False,
370
376
  public_training_code=None, # couldn't find
371
377
  public_training_data=None,
@@ -402,7 +408,13 @@ gte_base_en_v15 = ModelMeta(
402
408
  max_tokens=8192,
403
409
  reference="https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5",
404
410
  similarity_fn_name=ScoringFunction.COSINE,
405
- framework=["Sentence Transformers", "PyTorch"],
411
+ framework=[
412
+ "Sentence Transformers",
413
+ "PyTorch",
414
+ "Transformers",
415
+ "ONNX",
416
+ "safetensors",
417
+ ],
406
418
  use_instructions=False,
407
419
  superseded_by=None,
408
420
  adapted_from=None,
@@ -410,21 +422,21 @@ gte_base_en_v15 = ModelMeta(
410
422
  public_training_data=None,
411
423
  training_datasets=None,
412
424
  citation="""@misc{zhang2024mgte,
413
- title={mGTE: Generalized Long-Context Text Representation and Reranking Models for Multilingual Text Retrieval},
425
+ title={mGTE: Generalized Long-Context Text Representation and Reranking Models for Multilingual Text Retrieval},
414
426
  author={Xin Zhang and Yanzhao Zhang and Dingkun Long and Wen Xie and Ziqi Dai and Jialong Tang and Huan Lin and Baosong Yang and Pengjun Xie and Fei Huang and Meishan Zhang and Wenjie Li and Min Zhang},
415
427
  year={2024},
416
428
  eprint={2407.19669},
417
429
  archivePrefix={arXiv},
418
430
  primaryClass={cs.CL},
419
- url={https://arxiv.org/abs/2407.19669},
431
+ url={https://arxiv.org/abs/2407.19669},
420
432
  }
421
433
  @misc{li2023gte,
422
- title={Towards General Text Embeddings with Multi-stage Contrastive Learning},
434
+ title={Towards General Text Embeddings with Multi-stage Contrastive Learning},
423
435
  author={Zehan Li and Xin Zhang and Yanzhao Zhang and Dingkun Long and Pengjun Xie and Meishan Zhang},
424
436
  year={2023},
425
437
  eprint={2308.03281},
426
438
  archivePrefix={arXiv},
427
439
  primaryClass={cs.CL},
428
- url={https://arxiv.org/abs/2308.03281},
440
+ url={https://arxiv.org/abs/2308.03281},
429
441
  }""",
430
442
  )
@@ -49,7 +49,7 @@ Hinvec_bidir = ModelMeta(
49
49
  max_tokens=2048,
50
50
  reference="https://huggingface.co/Sailesh97/Hinvec",
51
51
  similarity_fn_name="cosine",
52
- framework=["Sentence Transformers", "PyTorch"],
52
+ framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
53
53
  use_instructions=True,
54
54
  training_datasets=hinvec_training_datasets,
55
55
  public_training_code=None,
@@ -106,7 +106,13 @@ granite_107m_multilingual = ModelMeta(
106
106
  max_tokens=512,
107
107
  reference="https://huggingface.co/ibm-granite/granite-embedding-107m-multilingual",
108
108
  similarity_fn_name=ScoringFunction.COSINE,
109
- framework=["Sentence Transformers", "PyTorch"],
109
+ framework=[
110
+ "Sentence Transformers",
111
+ "PyTorch",
112
+ "Transformers",
113
+ "ONNX",
114
+ "safetensors",
115
+ ],
110
116
  adapted_from=None,
111
117
  superseded_by=None,
112
118
  public_training_code=None,
@@ -131,7 +137,13 @@ granite_278m_multilingual = ModelMeta(
131
137
  max_tokens=512,
132
138
  reference="https://huggingface.co/ibm-granite/granite-embedding-278m-multilingual",
133
139
  similarity_fn_name=ScoringFunction.COSINE,
134
- framework=["Sentence Transformers", "PyTorch"],
140
+ framework=[
141
+ "Sentence Transformers",
142
+ "PyTorch",
143
+ "Transformers",
144
+ "ONNX",
145
+ "safetensors",
146
+ ],
135
147
  adapted_from=None,
136
148
  superseded_by=None,
137
149
  public_training_code=None,
@@ -156,7 +168,13 @@ granite_30m_english = ModelMeta(
156
168
  max_tokens=512,
157
169
  reference="https://huggingface.co/ibm-granite/granite-embedding-30m-english",
158
170
  similarity_fn_name=ScoringFunction.COSINE,
159
- framework=["Sentence Transformers", "PyTorch"],
171
+ framework=[
172
+ "Sentence Transformers",
173
+ "PyTorch",
174
+ "ONNX",
175
+ "safetensors",
176
+ "Transformers",
177
+ ],
160
178
  adapted_from=None,
161
179
  superseded_by=None,
162
180
  public_training_code=None,
@@ -181,7 +199,13 @@ granite_125m_english = ModelMeta(
181
199
  max_tokens=512,
182
200
  reference="https://huggingface.co/ibm-granite/granite-embedding-125m-english",
183
201
  similarity_fn_name=ScoringFunction.COSINE,
184
- framework=["Sentence Transformers", "PyTorch"],
202
+ framework=[
203
+ "Sentence Transformers",
204
+ "PyTorch",
205
+ "ONNX",
206
+ "safetensors",
207
+ "Transformers",
208
+ ],
185
209
  adapted_from=None,
186
210
  superseded_by=None,
187
211
  public_training_code=None,
@@ -207,7 +231,7 @@ granite_english_r2 = ModelMeta(
207
231
  max_tokens=8192,
208
232
  reference="https://huggingface.co/ibm-granite/granite-embedding-english-r2",
209
233
  similarity_fn_name="cosine",
210
- framework=["Sentence Transformers", "PyTorch"],
234
+ framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
211
235
  adapted_from=None,
212
236
  superseded_by=None,
213
237
  public_training_code=None,
@@ -232,7 +256,7 @@ granite_small_english_r2 = ModelMeta(
232
256
  max_tokens=8192,
233
257
  reference="https://huggingface.co/ibm-granite/granite-embedding-small-english-r2",
234
258
  similarity_fn_name="cosine",
235
- framework=["Sentence Transformers", "PyTorch"],
259
+ framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
236
260
  adapted_from=None,
237
261
  superseded_by=None,
238
262
  public_training_code=None,
@@ -62,7 +62,7 @@ inf_retriever_v1 = ModelMeta(
62
62
  max_tokens=32768,
63
63
  reference="https://huggingface.co/infly/inf-retriever-v1",
64
64
  similarity_fn_name=ScoringFunction.COSINE,
65
- framework=["Sentence Transformers", "PyTorch"],
65
+ framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
66
66
  use_instructions=True,
67
67
  adapted_from="Alibaba-NLP/gte-Qwen2-7B-instruct",
68
68
  public_training_code=None,
@@ -89,7 +89,7 @@ inf_retriever_v1_1_5b = ModelMeta(
89
89
  max_tokens=32768,
90
90
  reference="https://huggingface.co/infly/inf-retriever-v1-1.5b",
91
91
  similarity_fn_name=ScoringFunction.COSINE,
92
- framework=["Sentence Transformers", "PyTorch"],
92
+ framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
93
93
  use_instructions=True,
94
94
  adapted_from="Alibaba-NLP/gte-Qwen2-1.5B-instruct",
95
95
  public_training_code=None,