mteb 2.5.2__py3-none-any.whl → 2.7.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (241) hide show
  1. mteb/__init__.py +2 -0
  2. mteb/_create_dataloaders.py +17 -18
  3. mteb/_evaluators/any_sts_evaluator.py +3 -3
  4. mteb/_evaluators/clustering_evaluator.py +2 -2
  5. mteb/_evaluators/evaluator.py +4 -2
  6. mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +10 -8
  7. mteb/_evaluators/pair_classification_evaluator.py +5 -3
  8. mteb/_evaluators/retrieval_evaluator.py +2 -2
  9. mteb/_evaluators/retrieval_metrics.py +18 -17
  10. mteb/_evaluators/sklearn_evaluator.py +11 -10
  11. mteb/_evaluators/text/bitext_mining_evaluator.py +27 -18
  12. mteb/_evaluators/text/summarization_evaluator.py +23 -18
  13. mteb/_evaluators/zeroshot_classification_evaluator.py +5 -3
  14. mteb/abstasks/_data_filter/filters.py +1 -1
  15. mteb/abstasks/_data_filter/task_pipelines.py +3 -0
  16. mteb/abstasks/_statistics_calculation.py +18 -10
  17. mteb/abstasks/_stratification.py +18 -18
  18. mteb/abstasks/abstask.py +35 -28
  19. mteb/abstasks/aggregate_task_metadata.py +1 -9
  20. mteb/abstasks/aggregated_task.py +10 -29
  21. mteb/abstasks/classification.py +15 -10
  22. mteb/abstasks/clustering.py +19 -15
  23. mteb/abstasks/clustering_legacy.py +10 -10
  24. mteb/abstasks/image/image_text_pair_classification.py +7 -4
  25. mteb/abstasks/multilabel_classification.py +23 -19
  26. mteb/abstasks/pair_classification.py +20 -11
  27. mteb/abstasks/regression.py +4 -4
  28. mteb/abstasks/retrieval.py +28 -24
  29. mteb/abstasks/retrieval_dataset_loaders.py +2 -2
  30. mteb/abstasks/sts.py +8 -5
  31. mteb/abstasks/task_metadata.py +31 -33
  32. mteb/abstasks/text/bitext_mining.py +39 -28
  33. mteb/abstasks/text/reranking.py +8 -6
  34. mteb/abstasks/text/summarization.py +10 -5
  35. mteb/abstasks/zeroshot_classification.py +8 -4
  36. mteb/benchmarks/benchmark.py +4 -2
  37. mteb/benchmarks/benchmarks/__init__.py +4 -0
  38. mteb/benchmarks/benchmarks/benchmarks.py +112 -11
  39. mteb/benchmarks/get_benchmark.py +14 -55
  40. mteb/cache.py +182 -29
  41. mteb/cli/_display_tasks.py +2 -2
  42. mteb/cli/build_cli.py +110 -14
  43. mteb/cli/generate_model_card.py +43 -23
  44. mteb/deprecated_evaluator.py +63 -49
  45. mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2CybersecurityRetrieval.json +32 -0
  46. mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EconomicRetrieval.json +32 -0
  47. mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EnergyRetrieval.json +32 -0
  48. mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2HrRetrieval.json +32 -0
  49. mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json +30 -0
  50. mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json +116 -0
  51. mteb/descriptive_stats/Retrieval/NanoClimateFEVER-VN.json +30 -0
  52. mteb/descriptive_stats/Retrieval/NanoDBPedia-VN.json +30 -0
  53. mteb/descriptive_stats/Retrieval/NanoFEVER-VN.json +30 -0
  54. mteb/descriptive_stats/Retrieval/NanoHotpotQA-VN.json +30 -0
  55. mteb/descriptive_stats/Retrieval/NanoMSMARCO-VN.json +30 -0
  56. mteb/descriptive_stats/Retrieval/NanoNQ-VN.json +30 -0
  57. mteb/descriptive_stats/Retrieval/TVPLRetrieval.json +30 -0
  58. mteb/evaluate.py +44 -33
  59. mteb/filter_tasks.py +25 -26
  60. mteb/get_tasks.py +29 -30
  61. mteb/languages/language_scripts.py +5 -3
  62. mteb/leaderboard/app.py +162 -34
  63. mteb/load_results.py +12 -12
  64. mteb/models/abs_encoder.py +10 -6
  65. mteb/models/cache_wrappers/cache_backend_protocol.py +3 -5
  66. mteb/models/cache_wrappers/cache_backends/_hash_utils.py +5 -4
  67. mteb/models/cache_wrappers/cache_backends/faiss_cache.py +6 -2
  68. mteb/models/cache_wrappers/cache_backends/numpy_cache.py +43 -25
  69. mteb/models/cache_wrappers/cache_wrapper.py +2 -2
  70. mteb/models/get_model_meta.py +21 -3
  71. mteb/models/instruct_wrapper.py +28 -8
  72. mteb/models/model_implementations/align_models.py +1 -1
  73. mteb/models/model_implementations/andersborges.py +4 -4
  74. mteb/models/model_implementations/ara_models.py +1 -1
  75. mteb/models/model_implementations/arctic_models.py +8 -8
  76. mteb/models/model_implementations/b1ade_models.py +1 -1
  77. mteb/models/model_implementations/bge_models.py +45 -21
  78. mteb/models/model_implementations/bica_model.py +3 -3
  79. mteb/models/model_implementations/blip2_models.py +2 -2
  80. mteb/models/model_implementations/blip_models.py +16 -16
  81. mteb/models/model_implementations/bm25.py +4 -4
  82. mteb/models/model_implementations/bmretriever_models.py +6 -4
  83. mteb/models/model_implementations/cadet_models.py +1 -1
  84. mteb/models/model_implementations/cde_models.py +11 -4
  85. mteb/models/model_implementations/clip_models.py +6 -6
  86. mteb/models/model_implementations/clips_models.py +3 -3
  87. mteb/models/model_implementations/codefuse_models.py +5 -5
  88. mteb/models/model_implementations/codesage_models.py +3 -3
  89. mteb/models/model_implementations/cohere_models.py +5 -5
  90. mteb/models/model_implementations/cohere_v.py +2 -2
  91. mteb/models/model_implementations/colpali_models.py +3 -3
  92. mteb/models/model_implementations/colqwen_models.py +8 -8
  93. mteb/models/model_implementations/colsmol_models.py +2 -2
  94. mteb/models/model_implementations/conan_models.py +1 -1
  95. mteb/models/model_implementations/dino_models.py +42 -42
  96. mteb/models/model_implementations/e5_instruct.py +23 -4
  97. mteb/models/model_implementations/e5_models.py +9 -9
  98. mteb/models/model_implementations/e5_v.py +6 -6
  99. mteb/models/model_implementations/eagerworks_models.py +1 -1
  100. mteb/models/model_implementations/emillykkejensen_models.py +6 -6
  101. mteb/models/model_implementations/en_code_retriever.py +1 -1
  102. mteb/models/model_implementations/euler_models.py +2 -2
  103. mteb/models/model_implementations/fa_models.py +9 -9
  104. mteb/models/model_implementations/facebookai.py +14 -2
  105. mteb/models/model_implementations/geogpt_models.py +1 -1
  106. mteb/models/model_implementations/gme_v_models.py +6 -5
  107. mteb/models/model_implementations/google_models.py +1 -1
  108. mteb/models/model_implementations/granite_vision_embedding_models.py +1 -1
  109. mteb/models/model_implementations/gritlm_models.py +2 -2
  110. mteb/models/model_implementations/gte_models.py +25 -13
  111. mteb/models/model_implementations/hinvec_models.py +1 -1
  112. mteb/models/model_implementations/ibm_granite_models.py +30 -6
  113. mteb/models/model_implementations/inf_models.py +2 -2
  114. mteb/models/model_implementations/jasper_models.py +2 -2
  115. mteb/models/model_implementations/jina_clip.py +48 -10
  116. mteb/models/model_implementations/jina_models.py +18 -11
  117. mteb/models/model_implementations/kblab.py +12 -6
  118. mteb/models/model_implementations/kennethenevoldsen_models.py +4 -4
  119. mteb/models/model_implementations/kfst.py +1 -1
  120. mteb/models/model_implementations/kowshik24_models.py +1 -1
  121. mteb/models/model_implementations/lgai_embedding_models.py +1 -1
  122. mteb/models/model_implementations/linq_models.py +1 -1
  123. mteb/models/model_implementations/listconranker.py +1 -1
  124. mteb/models/model_implementations/llm2clip_models.py +6 -6
  125. mteb/models/model_implementations/llm2vec_models.py +8 -8
  126. mteb/models/model_implementations/mcinext_models.py +4 -1
  127. mteb/models/model_implementations/mdbr_models.py +17 -3
  128. mteb/models/model_implementations/misc_models.py +68 -68
  129. mteb/models/model_implementations/mixedbread_ai_models.py +332 -0
  130. mteb/models/model_implementations/mme5_models.py +1 -1
  131. mteb/models/model_implementations/moco_models.py +4 -4
  132. mteb/models/model_implementations/mod_models.py +1 -1
  133. mteb/models/model_implementations/model2vec_models.py +14 -14
  134. mteb/models/model_implementations/moka_models.py +1 -1
  135. mteb/models/model_implementations/nbailab.py +3 -3
  136. mteb/models/model_implementations/no_instruct_sentence_models.py +2 -2
  137. mteb/models/model_implementations/nomic_models.py +30 -15
  138. mteb/models/model_implementations/nomic_models_vision.py +1 -1
  139. mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +15 -9
  140. mteb/models/model_implementations/nvidia_models.py +151 -19
  141. mteb/models/model_implementations/octen_models.py +61 -2
  142. mteb/models/model_implementations/openclip_models.py +13 -13
  143. mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -5
  144. mteb/models/model_implementations/ops_moa_models.py +1 -1
  145. mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -1
  146. mteb/models/model_implementations/pawan_models.py +1 -1
  147. mteb/models/model_implementations/piccolo_models.py +1 -1
  148. mteb/models/model_implementations/pixie_models.py +56 -0
  149. mteb/models/model_implementations/promptriever_models.py +4 -4
  150. mteb/models/model_implementations/pylate_models.py +10 -9
  151. mteb/models/model_implementations/qodo_models.py +2 -2
  152. mteb/models/model_implementations/qtack_models.py +1 -1
  153. mteb/models/model_implementations/qwen3_models.py +3 -3
  154. mteb/models/model_implementations/qzhou_models.py +2 -2
  155. mteb/models/model_implementations/random_baseline.py +3 -3
  156. mteb/models/model_implementations/rasgaard_models.py +2 -2
  157. mteb/models/model_implementations/reasonir_model.py +1 -1
  158. mteb/models/model_implementations/repllama_models.py +3 -3
  159. mteb/models/model_implementations/rerankers_custom.py +12 -6
  160. mteb/models/model_implementations/rerankers_monot5_based.py +17 -17
  161. mteb/models/model_implementations/richinfoai_models.py +1 -1
  162. mteb/models/model_implementations/ru_sentence_models.py +20 -20
  163. mteb/models/model_implementations/ruri_models.py +10 -10
  164. mteb/models/model_implementations/salesforce_models.py +3 -3
  165. mteb/models/model_implementations/samilpwc_models.py +1 -1
  166. mteb/models/model_implementations/sarashina_embedding_models.py +2 -2
  167. mteb/models/model_implementations/searchmap_models.py +1 -1
  168. mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +113 -146
  169. mteb/models/model_implementations/sentence_transformers_models.py +124 -22
  170. mteb/models/model_implementations/shuu_model.py +1 -1
  171. mteb/models/model_implementations/siglip_models.py +20 -20
  172. mteb/models/model_implementations/slm_models.py +416 -0
  173. mteb/models/model_implementations/spartan8806_atles_champion.py +1 -1
  174. mteb/models/model_implementations/stella_models.py +17 -4
  175. mteb/models/model_implementations/tarka_models.py +2 -2
  176. mteb/models/model_implementations/text2vec_models.py +9 -3
  177. mteb/models/model_implementations/ua_sentence_models.py +1 -1
  178. mteb/models/model_implementations/uae_models.py +7 -1
  179. mteb/models/model_implementations/vdr_models.py +1 -1
  180. mteb/models/model_implementations/vi_vn_models.py +6 -6
  181. mteb/models/model_implementations/vlm2vec_models.py +3 -3
  182. mteb/models/model_implementations/voyage_models.py +84 -0
  183. mteb/models/model_implementations/voyage_v.py +9 -7
  184. mteb/models/model_implementations/youtu_models.py +1 -1
  185. mteb/models/model_implementations/yuan_models.py +1 -1
  186. mteb/models/model_implementations/yuan_models_en.py +1 -1
  187. mteb/models/model_meta.py +80 -31
  188. mteb/models/models_protocols.py +22 -6
  189. mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +9 -6
  190. mteb/models/search_wrappers.py +33 -18
  191. mteb/models/sentence_transformer_wrapper.py +50 -25
  192. mteb/models/vllm_wrapper.py +327 -0
  193. mteb/py.typed +0 -0
  194. mteb/results/benchmark_results.py +29 -21
  195. mteb/results/model_result.py +52 -22
  196. mteb/results/task_result.py +80 -58
  197. mteb/similarity_functions.py +11 -7
  198. mteb/tasks/classification/dan/dk_hate_classification.py +1 -1
  199. mteb/tasks/classification/est/estonian_valence.py +1 -1
  200. mteb/tasks/classification/kur/kurdish_sentiment_classification.py +2 -2
  201. mteb/tasks/classification/multilingual/scala_classification.py +1 -1
  202. mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
  203. mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
  204. mteb/tasks/clustering/zho/cmteb_clustering.py +2 -2
  205. mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +1 -1
  206. mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
  207. mteb/tasks/retrieval/code/code_rag.py +12 -12
  208. mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
  209. mteb/tasks/retrieval/dan/tv2_nordretrieval.py +2 -2
  210. mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +2 -2
  211. mteb/tasks/retrieval/eng/__init__.py +2 -0
  212. mteb/tasks/retrieval/eng/chemrxiv.py +33 -0
  213. mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
  214. mteb/tasks/retrieval/kor/__init__.py +15 -1
  215. mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py +142 -0
  216. mteb/tasks/retrieval/multilingual/__init__.py +2 -0
  217. mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py +43 -0
  218. mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +90 -100
  219. mteb/tasks/retrieval/nob/norquad.py +2 -2
  220. mteb/tasks/retrieval/nob/snl_retrieval.py +2 -2
  221. mteb/tasks/retrieval/tur/tur_hist_quad.py +1 -1
  222. mteb/tasks/retrieval/vie/__init__.py +14 -6
  223. mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +39 -0
  224. mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +39 -0
  225. mteb/tasks/retrieval/vie/fevervn_retrieval.py +39 -0
  226. mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +39 -0
  227. mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +48 -0
  228. mteb/tasks/retrieval/vie/nqvn_retrieval.py +39 -0
  229. mteb/tasks/retrieval/vie/tvpl_retrieval.py +42 -0
  230. mteb/tasks/retrieval/vie/zac_legal_text_retrieval.py +15 -1
  231. mteb/types/__init__.py +2 -0
  232. mteb/types/_encoder_io.py +12 -0
  233. mteb/types/_result.py +2 -1
  234. mteb/types/statistics.py +9 -3
  235. {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/METADATA +15 -4
  236. {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/RECORD +240 -219
  237. mteb/models/model_implementations/mxbai_models.py +0 -111
  238. {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/WHEEL +0 -0
  239. {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/entry_points.txt +0 -0
  240. {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/licenses/LICENSE +0 -0
  241. {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/top_level.txt +0 -0
@@ -331,7 +331,13 @@ bge_small_en_v1_5 = ModelMeta(
331
331
  max_tokens=512,
332
332
  reference="https://huggingface.co/BAAI/bge-small-en-v1.5",
333
333
  similarity_fn_name=ScoringFunction.COSINE,
334
- framework=["Sentence Transformers", "PyTorch"],
334
+ framework=[
335
+ "Sentence Transformers",
336
+ "PyTorch",
337
+ "ONNX",
338
+ "safetensors",
339
+ "Transformers",
340
+ ],
335
341
  use_instructions=True,
336
342
  public_training_code=None,
337
343
  public_training_data="https://data.baai.ac.cn/details/BAAI-MTP",
@@ -357,7 +363,13 @@ bge_base_en_v1_5 = ModelMeta(
357
363
  max_tokens=512,
358
364
  reference="https://huggingface.co/BAAI/bge-base-en-v1.5",
359
365
  similarity_fn_name=ScoringFunction.COSINE,
360
- framework=["Sentence Transformers", "PyTorch"],
366
+ framework=[
367
+ "Sentence Transformers",
368
+ "PyTorch",
369
+ "ONNX",
370
+ "safetensors",
371
+ "Transformers",
372
+ ],
361
373
  use_instructions=True,
362
374
  public_training_code=None, # seemingly released (at least for some models, but the link is broken
363
375
  public_training_data="https://data.baai.ac.cn/details/BAAI-MTP",
@@ -383,7 +395,13 @@ bge_large_en_v1_5 = ModelMeta(
383
395
  max_tokens=512,
384
396
  reference="https://huggingface.co/BAAI/bge-large-en-v1.5",
385
397
  similarity_fn_name=ScoringFunction.COSINE,
386
- framework=["Sentence Transformers", "PyTorch"],
398
+ framework=[
399
+ "Sentence Transformers",
400
+ "PyTorch",
401
+ "ONNX",
402
+ "safetensors",
403
+ "Transformers",
404
+ ],
387
405
  use_instructions=True,
388
406
  citation=BGE_15_CITATION,
389
407
  public_training_code=None, # seemingly released (at least for some models, but the link is broken
@@ -409,7 +427,7 @@ bge_small_zh = ModelMeta(
409
427
  max_tokens=512,
410
428
  reference="https://huggingface.co/BAAI/bge-small-zh",
411
429
  similarity_fn_name=ScoringFunction.COSINE,
412
- framework=["Sentence Transformers", "PyTorch"],
430
+ framework=["Sentence Transformers", "PyTorch", "Transformers"],
413
431
  use_instructions=True,
414
432
  public_training_code=None,
415
433
  public_training_data=None,
@@ -436,7 +454,7 @@ bge_base_zh = ModelMeta(
436
454
  max_tokens=512,
437
455
  reference="https://huggingface.co/BAAI/bge-base-zh",
438
456
  similarity_fn_name=ScoringFunction.COSINE,
439
- framework=["Sentence Transformers", "PyTorch"],
457
+ framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
440
458
  use_instructions=True,
441
459
  public_training_code=None,
442
460
  public_training_data=None,
@@ -463,7 +481,7 @@ bge_large_zh = ModelMeta(
463
481
  max_tokens=512,
464
482
  reference="https://huggingface.co/BAAI/bge-large-zh",
465
483
  similarity_fn_name=ScoringFunction.COSINE,
466
- framework=["Sentence Transformers", "PyTorch"],
484
+ framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
467
485
  use_instructions=True,
468
486
  public_training_code=None,
469
487
  public_training_data=None,
@@ -490,7 +508,7 @@ bge_small_en = ModelMeta(
490
508
  max_tokens=512,
491
509
  reference="https://huggingface.co/BAAI/bge-small-en",
492
510
  similarity_fn_name=ScoringFunction.COSINE,
493
- framework=["Sentence Transformers", "PyTorch"],
511
+ framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
494
512
  use_instructions=True,
495
513
  public_training_code=None,
496
514
  public_training_data="https://data.baai.ac.cn/details/BAAI-MTP",
@@ -517,7 +535,13 @@ bge_base_en = ModelMeta(
517
535
  max_tokens=512,
518
536
  reference="https://huggingface.co/BAAI/bge-base-en",
519
537
  similarity_fn_name=ScoringFunction.COSINE,
520
- framework=["Sentence Transformers", "PyTorch"],
538
+ framework=[
539
+ "Sentence Transformers",
540
+ "PyTorch",
541
+ "Transformers",
542
+ "ONNX",
543
+ "safetensors",
544
+ ],
521
545
  use_instructions=True,
522
546
  public_training_code=None, # seemingly released (at least for some models, but the link is broken
523
547
  public_training_data="https://data.baai.ac.cn/details/BAAI-MTP",
@@ -544,7 +568,7 @@ bge_large_en = ModelMeta(
544
568
  max_tokens=512,
545
569
  reference="https://huggingface.co/BAAI/bge-large-en",
546
570
  similarity_fn_name=ScoringFunction.COSINE,
547
- framework=["Sentence Transformers", "PyTorch"],
571
+ framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
548
572
  use_instructions=True,
549
573
  public_training_code=None, # seemingly released (at least for some models, but the link is broken
550
574
  public_training_data="https://data.baai.ac.cn/details/BAAI-MTP",
@@ -572,7 +596,7 @@ bge_small_zh_v1_5 = ModelMeta(
572
596
  max_tokens=512,
573
597
  reference="https://huggingface.co/BAAI/bge-small-zh-v1.5",
574
598
  similarity_fn_name=ScoringFunction.COSINE,
575
- framework=["Sentence Transformers", "PyTorch"],
599
+ framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
576
600
  use_instructions=True,
577
601
  public_training_code=None,
578
602
  public_training_data=None,
@@ -598,7 +622,7 @@ bge_base_zh_v1_5 = ModelMeta(
598
622
  max_tokens=512,
599
623
  reference="https://huggingface.co/BAAI/bge-base-zh-v1.5",
600
624
  similarity_fn_name=ScoringFunction.COSINE,
601
- framework=["Sentence Transformers", "PyTorch"],
625
+ framework=["Sentence Transformers", "PyTorch", "Transformers"],
602
626
  use_instructions=True,
603
627
  public_training_code=None,
604
628
  public_training_data=None,
@@ -624,7 +648,7 @@ bge_large_zh_v1_5 = ModelMeta(
624
648
  max_tokens=512,
625
649
  reference="https://huggingface.co/BAAI/bge-large-zh-v1.5",
626
650
  similarity_fn_name=ScoringFunction.COSINE,
627
- framework=["Sentence Transformers", "PyTorch"],
651
+ framework=["Sentence Transformers", "PyTorch", "Transformers"],
628
652
  use_instructions=True,
629
653
  public_training_code=None,
630
654
  public_training_data=None,
@@ -647,13 +671,13 @@ bge_m3 = ModelMeta(
647
671
  max_tokens=8194,
648
672
  reference="https://huggingface.co/BAAI/bge-m3",
649
673
  similarity_fn_name=ScoringFunction.COSINE,
650
- framework=["Sentence Transformers", "PyTorch"],
674
+ framework=["Sentence Transformers", "PyTorch", "ONNX"],
651
675
  use_instructions=False,
652
676
  public_training_code=None,
653
677
  public_training_data="https://huggingface.co/datasets/cfli/bge-full-data",
654
678
  training_datasets=bge_m3_training_data,
655
679
  citation="""@misc{bge-m3,
656
- title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
680
+ title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
657
681
  author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
658
682
  year={2024},
659
683
  eprint={2402.03216},
@@ -743,7 +767,7 @@ bge_multilingual_gemma2 = ModelMeta(
743
767
  max_tokens=8192, # from old C-MTEB leaderboard
744
768
  reference="https://huggingface.co/BAAI/bge-multilingual-gemma2",
745
769
  similarity_fn_name=ScoringFunction.COSINE,
746
- framework=["Sentence Transformers", "PyTorch"],
770
+ framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
747
771
  use_instructions=False,
748
772
  public_training_code=None,
749
773
  public_training_data=None,
@@ -754,7 +778,7 @@ bge_multilingual_gemma2 = ModelMeta(
754
778
  | bge_full_data
755
779
  | bge_m3_training_data,
756
780
  citation="""@misc{bge-m3,
757
- title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
781
+ title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
758
782
  author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
759
783
  year={2024},
760
784
  eprint={2402.03216},
@@ -764,7 +788,7 @@ bge_multilingual_gemma2 = ModelMeta(
764
788
 
765
789
 
766
790
  @misc{bge_embedding,
767
- title={C-Pack: Packaged Resources To Advance General Chinese Embedding},
791
+ title={C-Pack: Packaged Resources To Advance General Chinese Embedding},
768
792
  author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff},
769
793
  year={2023},
770
794
  eprint={2309.07597},
@@ -790,7 +814,7 @@ bge_en_icl = ModelMeta(
790
814
  max_tokens=32768,
791
815
  reference="https://huggingface.co/BAAI/bge-en-icl",
792
816
  similarity_fn_name=ScoringFunction.COSINE,
793
- framework=["Sentence Transformers", "PyTorch"],
817
+ framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
794
818
  use_instructions=False,
795
819
  public_training_code="https://github.com/FlagOpen/FlagEmbedding",
796
820
  public_training_data="https://huggingface.co/datasets/cfli/bge-full-data",
@@ -824,13 +848,13 @@ bge_m3_unsupervised = ModelMeta(
824
848
  max_tokens=8192,
825
849
  reference="https://huggingface.co/BAAI/bge-m3-unsupervised",
826
850
  similarity_fn_name="cosine",
827
- framework=["Sentence Transformers", "PyTorch"],
851
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
828
852
  use_instructions=False,
829
853
  public_training_code="https://github.com/FlagOpen/FlagEmbedding",
830
854
  public_training_data="https://huggingface.co/datasets/cfli/bge-full-data",
831
855
  training_datasets=bge_m3_training_data,
832
856
  citation="""@misc{bge-m3,
833
- title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
857
+ title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
834
858
  author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
835
859
  year={2024},
836
860
  eprint={2402.03216},
@@ -854,7 +878,7 @@ manu__bge_m3_custom_fr = ModelMeta(
854
878
  open_weights=True,
855
879
  public_training_code=None,
856
880
  public_training_data=None,
857
- framework=["PyTorch", "Sentence Transformers"],
881
+ framework=["PyTorch", "Sentence Transformers", "safetensors"],
858
882
  reference="https://huggingface.co/manu/bge-m3-custom-fr",
859
883
  similarity_fn_name=ScoringFunction.COSINE,
860
884
  use_instructions=None,
@@ -15,20 +15,20 @@ bica_base = ModelMeta(
15
15
  max_tokens=512,
16
16
  reference="https://huggingface.co/bisectgroup/BiCA-base",
17
17
  similarity_fn_name="cosine",
18
- framework=["Sentence Transformers", "PyTorch"],
18
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
19
19
  use_instructions=False,
20
20
  public_training_code="https://github.com/NiravBhattLab/BiCA",
21
21
  public_training_data="https://huggingface.co/datasets/bisectgroup/hard-negatives-traversal",
22
22
  adapted_from="thenlper/gte-base",
23
23
  citation="""
24
24
  @misc{sinha2025bicaeffectivebiomedicaldense,
25
- title={BiCA: Effective Biomedical Dense Retrieval with Citation-Aware Hard Negatives},
25
+ title={BiCA: Effective Biomedical Dense Retrieval with Citation-Aware Hard Negatives},
26
26
  author={Aarush Sinha and Pavan Kumar S and Roshan Balaji and Nirav Pravinbhai Bhatt},
27
27
  year={2025},
28
28
  eprint={2511.08029},
29
29
  archivePrefix={arXiv},
30
30
  primaryClass={cs.IR},
31
- url={https://arxiv.org/abs/2511.08029},
31
+ url={https://arxiv.org/abs/2511.08029},
32
32
  }
33
33
  """,
34
34
  training_datasets=set(),
@@ -179,7 +179,7 @@ blip2_opt_2_7b = ModelMeta(
179
179
  open_weights=True,
180
180
  public_training_code="https://github.com/salesforce/LAVIS/tree/main/projects/blip2",
181
181
  public_training_data=None,
182
- framework=["PyTorch"],
182
+ framework=["PyTorch", "Transformers", "safetensors"],
183
183
  reference="https://huggingface.co/Salesforce/blip2-opt-2.7b",
184
184
  similarity_fn_name=ScoringFunction.COSINE,
185
185
  use_instructions=False,
@@ -203,7 +203,7 @@ blip2_opt_6_7b_coco = ModelMeta(
203
203
  open_weights=True,
204
204
  public_training_code="https://github.com/salesforce/LAVIS/tree/main/projects/blip2",
205
205
  public_training_data=None,
206
- framework=["PyTorch"],
206
+ framework=["PyTorch", "Transformers", "safetensors"],
207
207
  reference="https://huggingface.co/Salesforce/blip2-opt-6.7b-coco",
208
208
  similarity_fn_name=ScoringFunction.COSINE,
209
209
  use_instructions=False,
@@ -128,7 +128,7 @@ class BLIPModel(AbsEncoder):
128
128
 
129
129
  # in descending order of usage (downloads from huggingface)
130
130
  blip_image_captioning_large = ModelMeta(
131
- loader=BLIPModel, # type: ignore
131
+ loader=BLIPModel,
132
132
  name="Salesforce/blip-image-captioning-large",
133
133
  model_type=["dense"],
134
134
  languages=["eng-Latn"],
@@ -143,7 +143,7 @@ blip_image_captioning_large = ModelMeta(
143
143
  open_weights=True,
144
144
  public_training_code="https://github.com/salesforce/BLIP",
145
145
  public_training_data="https://github.com/salesforce/BLIP",
146
- framework=["PyTorch"],
146
+ framework=["PyTorch", "Transformers", "safetensors"],
147
147
  reference="https://huggingface.co/Salesforce/blip-image-captioning-large",
148
148
  similarity_fn_name=ScoringFunction.COSINE,
149
149
  use_instructions=False,
@@ -156,7 +156,7 @@ blip_image_captioning_large = ModelMeta(
156
156
  )
157
157
 
158
158
  blip_image_captioning_base = ModelMeta(
159
- loader=BLIPModel, # type: ignore
159
+ loader=BLIPModel,
160
160
  name="Salesforce/blip-image-captioning-base",
161
161
  model_type=["dense"],
162
162
  languages=["eng-Latn"],
@@ -171,7 +171,7 @@ blip_image_captioning_base = ModelMeta(
171
171
  open_weights=True,
172
172
  public_training_code="https://github.com/salesforce/BLIP",
173
173
  public_training_data="https://github.com/salesforce/BLIP",
174
- framework=["PyTorch"],
174
+ framework=["PyTorch", "Transformers"],
175
175
  reference="https://huggingface.co/Salesforce/blip-image-captioning-base",
176
176
  similarity_fn_name=ScoringFunction.COSINE,
177
177
  use_instructions=False,
@@ -185,7 +185,7 @@ blip_image_captioning_base = ModelMeta(
185
185
 
186
186
 
187
187
  blip_vqa_base = ModelMeta(
188
- loader=BLIPModel, # type: ignore
188
+ loader=BLIPModel,
189
189
  name="Salesforce/blip-vqa-base",
190
190
  model_type=["dense"],
191
191
  languages=["eng-Latn"],
@@ -200,7 +200,7 @@ blip_vqa_base = ModelMeta(
200
200
  open_weights=True,
201
201
  public_training_code="https://github.com/salesforce/BLIP",
202
202
  public_training_data="https://github.com/salesforce/BLIP",
203
- framework=["PyTorch"],
203
+ framework=["PyTorch", "Transformers", "safetensors"],
204
204
  reference="https://huggingface.co/Salesforce/blip-vqa-base",
205
205
  similarity_fn_name=ScoringFunction.COSINE,
206
206
  use_instructions=False,
@@ -212,7 +212,7 @@ blip_vqa_base = ModelMeta(
212
212
  )
213
213
 
214
214
  blip_vqa_capfilt_large = ModelMeta(
215
- loader=BLIPModel, # type: ignore
215
+ loader=BLIPModel,
216
216
  name="Salesforce/blip-vqa-capfilt-large",
217
217
  model_type=["dense"],
218
218
  languages=["eng-Latn"],
@@ -227,7 +227,7 @@ blip_vqa_capfilt_large = ModelMeta(
227
227
  open_weights=True,
228
228
  public_training_code="https://github.com/salesforce/BLIP",
229
229
  public_training_data="https://github.com/salesforce/BLIP",
230
- framework=["PyTorch"],
230
+ framework=["PyTorch", "Transformers"],
231
231
  reference="https://huggingface.co/Salesforce/blip-vqa-capfilt-large",
232
232
  similarity_fn_name=ScoringFunction.COSINE,
233
233
  use_instructions=False,
@@ -239,7 +239,7 @@ blip_vqa_capfilt_large = ModelMeta(
239
239
  )
240
240
 
241
241
  blip_itm_base_coco = ModelMeta(
242
- loader=BLIPModel, # type: ignore
242
+ loader=BLIPModel,
243
243
  name="Salesforce/blip-itm-base-coco",
244
244
  model_type=["dense"],
245
245
  languages=["eng-Latn"],
@@ -254,7 +254,7 @@ blip_itm_base_coco = ModelMeta(
254
254
  open_weights=True,
255
255
  public_training_code="https://github.com/salesforce/BLIP",
256
256
  public_training_data="https://github.com/salesforce/BLIP",
257
- framework=["PyTorch"],
257
+ framework=["PyTorch", "Transformers"],
258
258
  reference="https://huggingface.co/Salesforce/blip-itm-base-coco",
259
259
  similarity_fn_name=ScoringFunction.COSINE,
260
260
  use_instructions=False,
@@ -266,7 +266,7 @@ blip_itm_base_coco = ModelMeta(
266
266
  )
267
267
 
268
268
  blip_itm_large_coco = ModelMeta(
269
- loader=BLIPModel, # type: ignore
269
+ loader=BLIPModel,
270
270
  name="Salesforce/blip-itm-large-coco",
271
271
  model_type=["dense"],
272
272
  languages=["eng-Latn"],
@@ -281,7 +281,7 @@ blip_itm_large_coco = ModelMeta(
281
281
  open_weights=True,
282
282
  public_training_code="https://github.com/salesforce/BLIP",
283
283
  public_training_data="https://github.com/salesforce/BLIP",
284
- framework=["PyTorch"],
284
+ framework=["PyTorch", "Transformers"],
285
285
  reference="https://huggingface.co/Salesforce/blip-itm-large-coco",
286
286
  similarity_fn_name=ScoringFunction.COSINE,
287
287
  use_instructions=False,
@@ -294,7 +294,7 @@ blip_itm_large_coco = ModelMeta(
294
294
  )
295
295
 
296
296
  blip_itm_base_flickr = ModelMeta(
297
- loader=BLIPModel, # type: ignore
297
+ loader=BLIPModel,
298
298
  name="Salesforce/blip-itm-base-flickr",
299
299
  model_type=["dense"],
300
300
  languages=["eng-Latn"],
@@ -309,7 +309,7 @@ blip_itm_base_flickr = ModelMeta(
309
309
  open_weights=True,
310
310
  public_training_code="https://github.com/salesforce/BLIP",
311
311
  public_training_data="https://github.com/salesforce/BLIP",
312
- framework=["PyTorch"],
312
+ framework=["PyTorch", "Transformers"],
313
313
  reference="https://huggingface.co/Salesforce/blip-itm-base-flickr",
314
314
  similarity_fn_name=ScoringFunction.COSINE,
315
315
  use_instructions=False,
@@ -322,7 +322,7 @@ blip_itm_base_flickr = ModelMeta(
322
322
  )
323
323
 
324
324
  blip_itm_large_flickr = ModelMeta(
325
- loader=BLIPModel, # type: ignore
325
+ loader=BLIPModel,
326
326
  name="Salesforce/blip-itm-large-flickr",
327
327
  model_type=["dense"],
328
328
  languages=["eng-Latn"],
@@ -337,7 +337,7 @@ blip_itm_large_flickr = ModelMeta(
337
337
  open_weights=True,
338
338
  public_training_code="https://github.com/salesforce/BLIP",
339
339
  public_training_data="https://github.com/salesforce/BLIP",
340
- framework=["PyTorch"],
340
+ framework=["PyTorch", "Transformers"],
341
341
  reference="https://huggingface.co/Salesforce/blip-itm-large-flickr",
342
342
  similarity_fn_name=ScoringFunction.COSINE,
343
343
  use_instructions=False,
@@ -1,5 +1,4 @@
1
1
  import logging
2
- from typing import Any
3
2
 
4
3
  from mteb._create_dataloaders import _create_text_queries_dataloader
5
4
  from mteb._requires_package import requires_package
@@ -8,6 +7,7 @@ from mteb.models.model_meta import ModelMeta
8
7
  from mteb.models.models_protocols import SearchProtocol
9
8
  from mteb.types import (
10
9
  CorpusDatasetType,
10
+ EncodeKwargs,
11
11
  InstructionDatasetType,
12
12
  QueryDatasetType,
13
13
  RetrievalOutputType,
@@ -49,7 +49,7 @@ def bm25_loader(model_name, **kwargs) -> SearchProtocol:
49
49
  task_metadata: TaskMetadata,
50
50
  hf_split: str,
51
51
  hf_subset: str,
52
- encode_kwargs: dict[str, Any],
52
+ encode_kwargs: EncodeKwargs,
53
53
  ) -> None:
54
54
  logger.info("Encoding Corpus...")
55
55
  corpus_texts = [
@@ -74,7 +74,7 @@ def bm25_loader(model_name, **kwargs) -> SearchProtocol:
74
74
  hf_split: str,
75
75
  hf_subset: str,
76
76
  top_k: int,
77
- encode_kwargs: dict[str, Any],
77
+ encode_kwargs: EncodeKwargs,
78
78
  instructions: InstructionDatasetType | None = None,
79
79
  top_ranked: TopRankedDocumentsType | None = None,
80
80
  ) -> RetrievalOutputType:
@@ -113,7 +113,7 @@ def bm25_loader(model_name, **kwargs) -> SearchProtocol:
113
113
 
114
114
  def encode(self, texts: list[str]):
115
115
  """Encode input text as term vectors"""
116
- return bm25s.tokenize(texts, stopwords=self.stopwords, stemmer=self.stemmer) # type: ignore
116
+ return bm25s.tokenize(texts, stopwords=self.stopwords, stemmer=self.stemmer)
117
117
 
118
118
  return BM25Search(**kwargs)
119
119
 
@@ -25,6 +25,7 @@ class BMRetrieverWrapper(InstructSentenceTransformerModel):
25
25
  self,
26
26
  model_name: str,
27
27
  revision: str,
28
+ device: str | None = None,
28
29
  instruction_template: str
29
30
  | Callable[[str, PromptType | None], str]
30
31
  | None = None,
@@ -52,6 +53,7 @@ class BMRetrieverWrapper(InstructSentenceTransformerModel):
52
53
 
53
54
  transformer = Transformer(
54
55
  model_name,
56
+ device=device,
55
57
  **kwargs,
56
58
  )
57
59
  pooling = Pooling(
@@ -102,7 +104,7 @@ BMRetriever_410M = ModelMeta(
102
104
  license="mit",
103
105
  reference="https://huggingface.co/BMRetriever/BMRetriever-410M",
104
106
  similarity_fn_name="cosine",
105
- framework=["Sentence Transformers", "PyTorch"],
107
+ framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
106
108
  use_instructions=True,
107
109
  public_training_code=None,
108
110
  public_training_data=None,
@@ -132,7 +134,7 @@ BMRetriever_1B = ModelMeta(
132
134
  license="mit",
133
135
  reference="https://huggingface.co/BMRetriever/BMRetriever-1B",
134
136
  similarity_fn_name="cosine",
135
- framework=["Sentence Transformers", "PyTorch"],
137
+ framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
136
138
  use_instructions=True,
137
139
  public_training_code=None,
138
140
  public_training_data=None,
@@ -162,7 +164,7 @@ BMRetriever_2B = ModelMeta(
162
164
  license="mit",
163
165
  reference="https://huggingface.co/BMRetriever/BMRetriever-2B",
164
166
  similarity_fn_name="cosine",
165
- framework=["Sentence Transformers", "PyTorch"],
167
+ framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
166
168
  use_instructions=True,
167
169
  public_training_code=None,
168
170
  public_training_data=None,
@@ -192,7 +194,7 @@ BMRetriever_7B = ModelMeta(
192
194
  license="mit",
193
195
  reference="https://huggingface.co/BMRetriever/BMRetriever-7B",
194
196
  similarity_fn_name="cosine",
195
- framework=["Sentence Transformers", "PyTorch"],
197
+ framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
196
198
  use_instructions=True,
197
199
  public_training_code=None,
198
200
  public_training_data=None,
@@ -47,7 +47,7 @@ cadet_embed = ModelMeta(
47
47
  max_tokens=512,
48
48
  reference="https://huggingface.co/manveertamber/cadet-embed-base-v1",
49
49
  similarity_fn_name="cosine",
50
- framework=["Sentence Transformers", "PyTorch"],
50
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
51
51
  use_instructions=True,
52
52
  public_training_code="https://github.com/manveertamber/cadet-dense-retrieval",
53
53
  # we provide the code to generate the training data
@@ -49,10 +49,17 @@ class CDEWrapper(SentenceTransformerEncoderWrapper):
49
49
  "InstructionReranking",
50
50
  )
51
51
 
52
- def __init__(self, model: str, *args, **kwargs: Any) -> None:
52
+ def __init__(
53
+ self,
54
+ model: str,
55
+ revision: str | None = None,
56
+ device: str | None = None,
57
+ *args,
58
+ **kwargs: Any,
59
+ ) -> None:
53
60
  from transformers import AutoConfig
54
61
 
55
- super().__init__(model, *args, **kwargs)
62
+ super().__init__(model, revision=revision, device=device, *args, **kwargs)
56
63
  model_config = AutoConfig.from_pretrained(model, trust_remote_code=True)
57
64
  self.max_sentences = model_config.transductive_corpus_size
58
65
 
@@ -220,7 +227,7 @@ cde_small_v1 = ModelMeta(
220
227
  embed_dim=768,
221
228
  license="mit",
222
229
  similarity_fn_name=ScoringFunction.COSINE,
223
- framework=["Sentence Transformers"],
230
+ framework=["Sentence Transformers", "safetensors", "Transformers"],
224
231
  reference="https://huggingface.co/jxm/cde-small-v1",
225
232
  use_instructions=True,
226
233
  adapted_from="nomic-ai/nomic-bert-2048",
@@ -249,7 +256,7 @@ cde_small_v2 = ModelMeta(
249
256
  embed_dim=768,
250
257
  license="mit",
251
258
  similarity_fn_name=ScoringFunction.COSINE,
252
- framework=["Sentence Transformers"],
259
+ framework=["Sentence Transformers", "safetensors", "Transformers"],
253
260
  reference="https://huggingface.co/jxm/cde-small-v1",
254
261
  use_instructions=True,
255
262
  adapted_from="answerdotai/ModernBERT-base",
@@ -115,7 +115,7 @@ CLIP_CITATION = """
115
115
 
116
116
 
117
117
  clip_vit_large_patch14 = ModelMeta(
118
- loader=CLIPModel, # type: ignore
118
+ loader=CLIPModel,
119
119
  name="openai/clip-vit-large-patch14",
120
120
  model_type=["dense"],
121
121
  languages=["eng-Latn"],
@@ -130,7 +130,7 @@ clip_vit_large_patch14 = ModelMeta(
130
130
  open_weights=True,
131
131
  public_training_code=None,
132
132
  public_training_data=None,
133
- framework=["PyTorch"],
133
+ framework=["PyTorch", "Transformers", "safetensors"],
134
134
  reference="https://huggingface.co/openai/clip-vit-large-patch14",
135
135
  similarity_fn_name=ScoringFunction.COSINE,
136
136
  use_instructions=False,
@@ -139,7 +139,7 @@ clip_vit_large_patch14 = ModelMeta(
139
139
  )
140
140
 
141
141
  clip_vit_base_patch32 = ModelMeta(
142
- loader=CLIPModel, # type: ignore
142
+ loader=CLIPModel,
143
143
  name="openai/clip-vit-base-patch32",
144
144
  model_type=["dense"],
145
145
  languages=["eng-Latn"],
@@ -154,7 +154,7 @@ clip_vit_base_patch32 = ModelMeta(
154
154
  open_weights=True,
155
155
  public_training_code=None,
156
156
  public_training_data=None,
157
- framework=["PyTorch"],
157
+ framework=["PyTorch", "Transformers"],
158
158
  reference="https://huggingface.co/openai/clip-vit-base-patch32",
159
159
  similarity_fn_name=ScoringFunction.COSINE,
160
160
  use_instructions=False,
@@ -163,7 +163,7 @@ clip_vit_base_patch32 = ModelMeta(
163
163
  )
164
164
 
165
165
  clip_vit_base_patch16 = ModelMeta(
166
- loader=CLIPModel, # type: ignore
166
+ loader=CLIPModel,
167
167
  name="openai/clip-vit-base-patch16",
168
168
  model_type=["dense"],
169
169
  languages=["eng-Latn"],
@@ -178,7 +178,7 @@ clip_vit_base_patch16 = ModelMeta(
178
178
  open_weights=True,
179
179
  public_training_code=None,
180
180
  public_training_data=None,
181
- framework=["PyTorch"],
181
+ framework=["PyTorch", "Transformers"],
182
182
  reference="https://huggingface.co/openai/clip-vit-base-patch16",
183
183
  similarity_fn_name=ScoringFunction.COSINE,
184
184
  use_instructions=False,
@@ -36,7 +36,7 @@ e5_nl_small = ModelMeta(
36
36
  max_tokens=512,
37
37
  reference="https://huggingface.co/clips/e5-small-trm-nl",
38
38
  similarity_fn_name=ScoringFunction.COSINE,
39
- framework=["Sentence Transformers", "PyTorch"],
39
+ framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
40
40
  use_instructions=True,
41
41
  public_training_code="https://github.com/ELotfi/e5-nl",
42
42
  public_training_data="https://huggingface.co/collections/clips/beir-nl",
@@ -63,7 +63,7 @@ e5_nl_base = ModelMeta(
63
63
  max_tokens=514,
64
64
  reference="https://huggingface.co/clips/e5-base-trm-nl",
65
65
  similarity_fn_name=ScoringFunction.COSINE,
66
- framework=["Sentence Transformers", "PyTorch"],
66
+ framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
67
67
  use_instructions=True,
68
68
  public_training_code="https://github.com/ELotfi/e5-nl",
69
69
  public_training_data="https://huggingface.co/collections/clips/beir-nl",
@@ -90,7 +90,7 @@ e5_nl_large = ModelMeta(
90
90
  max_tokens=514,
91
91
  reference="https://huggingface.co/clips/e5-large-trm-nl",
92
92
  similarity_fn_name=ScoringFunction.COSINE,
93
- framework=["Sentence Transformers", "PyTorch"],
93
+ framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
94
94
  use_instructions=True,
95
95
  public_training_code="https://github.com/ELotfi/e5-nl",
96
96
  public_training_data="https://huggingface.co/collections/clips/beir-nl",
@@ -242,7 +242,7 @@ F2LLM_0B6 = ModelMeta(
242
242
  max_tokens=8192,
243
243
  reference="https://huggingface.co/codefuse-ai/F2LLM-0.6B",
244
244
  similarity_fn_name="cosine",
245
- framework=["Sentence Transformers", "PyTorch"],
245
+ framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
246
246
  use_instructions=True,
247
247
  public_training_code="https://github.com/codefuse-ai/F2LLM",
248
248
  public_training_data="https://huggingface.co/datasets/codefuse-ai/F2LLM",
@@ -272,7 +272,7 @@ F2LLM_1B7 = ModelMeta(
272
272
  max_tokens=8192,
273
273
  reference="https://huggingface.co/codefuse-ai/F2LLM-1.7B",
274
274
  similarity_fn_name="cosine",
275
- framework=["Sentence Transformers", "PyTorch"],
275
+ framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
276
276
  use_instructions=True,
277
277
  public_training_code="https://github.com/codefuse-ai/F2LLM",
278
278
  public_training_data="https://huggingface.co/datasets/codefuse-ai/F2LLM",
@@ -302,7 +302,7 @@ F2LLM_4B = ModelMeta(
302
302
  max_tokens=8192,
303
303
  reference="https://huggingface.co/codefuse-ai/F2LLM-4B",
304
304
  similarity_fn_name="cosine",
305
- framework=["Sentence Transformers", "PyTorch"],
305
+ framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
306
306
  use_instructions=True,
307
307
  public_training_code="https://github.com/codefuse-ai/F2LLM",
308
308
  public_training_data="https://huggingface.co/datasets/codefuse-ai/F2LLM",
@@ -325,7 +325,7 @@ C2LLM_0B5 = ModelMeta(
325
325
  open_weights=True,
326
326
  public_training_code=None,
327
327
  public_training_data=None,
328
- framework=["PyTorch", "Sentence Transformers"],
328
+ framework=["PyTorch", "Sentence Transformers", "Transformers", "safetensors"],
329
329
  reference="https://huggingface.co/codefuse-ai/C2LLM-0.5B",
330
330
  similarity_fn_name=ScoringFunction.COSINE,
331
331
  use_instructions=True,
@@ -353,7 +353,7 @@ C2LLM_7B = ModelMeta(
353
353
  open_weights=True,
354
354
  public_training_code=None,
355
355
  public_training_data=None,
356
- framework=["PyTorch", "Sentence Transformers"],
356
+ framework=["PyTorch", "Sentence Transformers", "Transformers", "safetensors"],
357
357
  reference="https://huggingface.co/codefuse-ai/C2LLM-7B",
358
358
  similarity_fn_name=ScoringFunction.COSINE,
359
359
  use_instructions=True,