mteb 2.5.2__py3-none-any.whl → 2.7.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +2 -0
- mteb/_create_dataloaders.py +17 -18
- mteb/_evaluators/any_sts_evaluator.py +3 -3
- mteb/_evaluators/clustering_evaluator.py +2 -2
- mteb/_evaluators/evaluator.py +4 -2
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +10 -8
- mteb/_evaluators/pair_classification_evaluator.py +5 -3
- mteb/_evaluators/retrieval_evaluator.py +2 -2
- mteb/_evaluators/retrieval_metrics.py +18 -17
- mteb/_evaluators/sklearn_evaluator.py +11 -10
- mteb/_evaluators/text/bitext_mining_evaluator.py +27 -18
- mteb/_evaluators/text/summarization_evaluator.py +23 -18
- mteb/_evaluators/zeroshot_classification_evaluator.py +5 -3
- mteb/abstasks/_data_filter/filters.py +1 -1
- mteb/abstasks/_data_filter/task_pipelines.py +3 -0
- mteb/abstasks/_statistics_calculation.py +18 -10
- mteb/abstasks/_stratification.py +18 -18
- mteb/abstasks/abstask.py +35 -28
- mteb/abstasks/aggregate_task_metadata.py +1 -9
- mteb/abstasks/aggregated_task.py +10 -29
- mteb/abstasks/classification.py +15 -10
- mteb/abstasks/clustering.py +19 -15
- mteb/abstasks/clustering_legacy.py +10 -10
- mteb/abstasks/image/image_text_pair_classification.py +7 -4
- mteb/abstasks/multilabel_classification.py +23 -19
- mteb/abstasks/pair_classification.py +20 -11
- mteb/abstasks/regression.py +4 -4
- mteb/abstasks/retrieval.py +28 -24
- mteb/abstasks/retrieval_dataset_loaders.py +2 -2
- mteb/abstasks/sts.py +8 -5
- mteb/abstasks/task_metadata.py +31 -33
- mteb/abstasks/text/bitext_mining.py +39 -28
- mteb/abstasks/text/reranking.py +8 -6
- mteb/abstasks/text/summarization.py +10 -5
- mteb/abstasks/zeroshot_classification.py +8 -4
- mteb/benchmarks/benchmark.py +4 -2
- mteb/benchmarks/benchmarks/__init__.py +4 -0
- mteb/benchmarks/benchmarks/benchmarks.py +112 -11
- mteb/benchmarks/get_benchmark.py +14 -55
- mteb/cache.py +182 -29
- mteb/cli/_display_tasks.py +2 -2
- mteb/cli/build_cli.py +110 -14
- mteb/cli/generate_model_card.py +43 -23
- mteb/deprecated_evaluator.py +63 -49
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2CybersecurityRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EconomicRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EnergyRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2HrRetrieval.json +32 -0
- mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json +116 -0
- mteb/descriptive_stats/Retrieval/NanoClimateFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoDBPedia-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoHotpotQA-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoMSMARCO-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoNQ-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/TVPLRetrieval.json +30 -0
- mteb/evaluate.py +44 -33
- mteb/filter_tasks.py +25 -26
- mteb/get_tasks.py +29 -30
- mteb/languages/language_scripts.py +5 -3
- mteb/leaderboard/app.py +162 -34
- mteb/load_results.py +12 -12
- mteb/models/abs_encoder.py +10 -6
- mteb/models/cache_wrappers/cache_backend_protocol.py +3 -5
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +5 -4
- mteb/models/cache_wrappers/cache_backends/faiss_cache.py +6 -2
- mteb/models/cache_wrappers/cache_backends/numpy_cache.py +43 -25
- mteb/models/cache_wrappers/cache_wrapper.py +2 -2
- mteb/models/get_model_meta.py +21 -3
- mteb/models/instruct_wrapper.py +28 -8
- mteb/models/model_implementations/align_models.py +1 -1
- mteb/models/model_implementations/andersborges.py +4 -4
- mteb/models/model_implementations/ara_models.py +1 -1
- mteb/models/model_implementations/arctic_models.py +8 -8
- mteb/models/model_implementations/b1ade_models.py +1 -1
- mteb/models/model_implementations/bge_models.py +45 -21
- mteb/models/model_implementations/bica_model.py +3 -3
- mteb/models/model_implementations/blip2_models.py +2 -2
- mteb/models/model_implementations/blip_models.py +16 -16
- mteb/models/model_implementations/bm25.py +4 -4
- mteb/models/model_implementations/bmretriever_models.py +6 -4
- mteb/models/model_implementations/cadet_models.py +1 -1
- mteb/models/model_implementations/cde_models.py +11 -4
- mteb/models/model_implementations/clip_models.py +6 -6
- mteb/models/model_implementations/clips_models.py +3 -3
- mteb/models/model_implementations/codefuse_models.py +5 -5
- mteb/models/model_implementations/codesage_models.py +3 -3
- mteb/models/model_implementations/cohere_models.py +5 -5
- mteb/models/model_implementations/cohere_v.py +2 -2
- mteb/models/model_implementations/colpali_models.py +3 -3
- mteb/models/model_implementations/colqwen_models.py +8 -8
- mteb/models/model_implementations/colsmol_models.py +2 -2
- mteb/models/model_implementations/conan_models.py +1 -1
- mteb/models/model_implementations/dino_models.py +42 -42
- mteb/models/model_implementations/e5_instruct.py +23 -4
- mteb/models/model_implementations/e5_models.py +9 -9
- mteb/models/model_implementations/e5_v.py +6 -6
- mteb/models/model_implementations/eagerworks_models.py +1 -1
- mteb/models/model_implementations/emillykkejensen_models.py +6 -6
- mteb/models/model_implementations/en_code_retriever.py +1 -1
- mteb/models/model_implementations/euler_models.py +2 -2
- mteb/models/model_implementations/fa_models.py +9 -9
- mteb/models/model_implementations/facebookai.py +14 -2
- mteb/models/model_implementations/geogpt_models.py +1 -1
- mteb/models/model_implementations/gme_v_models.py +6 -5
- mteb/models/model_implementations/google_models.py +1 -1
- mteb/models/model_implementations/granite_vision_embedding_models.py +1 -1
- mteb/models/model_implementations/gritlm_models.py +2 -2
- mteb/models/model_implementations/gte_models.py +25 -13
- mteb/models/model_implementations/hinvec_models.py +1 -1
- mteb/models/model_implementations/ibm_granite_models.py +30 -6
- mteb/models/model_implementations/inf_models.py +2 -2
- mteb/models/model_implementations/jasper_models.py +2 -2
- mteb/models/model_implementations/jina_clip.py +48 -10
- mteb/models/model_implementations/jina_models.py +18 -11
- mteb/models/model_implementations/kblab.py +12 -6
- mteb/models/model_implementations/kennethenevoldsen_models.py +4 -4
- mteb/models/model_implementations/kfst.py +1 -1
- mteb/models/model_implementations/kowshik24_models.py +1 -1
- mteb/models/model_implementations/lgai_embedding_models.py +1 -1
- mteb/models/model_implementations/linq_models.py +1 -1
- mteb/models/model_implementations/listconranker.py +1 -1
- mteb/models/model_implementations/llm2clip_models.py +6 -6
- mteb/models/model_implementations/llm2vec_models.py +8 -8
- mteb/models/model_implementations/mcinext_models.py +4 -1
- mteb/models/model_implementations/mdbr_models.py +17 -3
- mteb/models/model_implementations/misc_models.py +68 -68
- mteb/models/model_implementations/mixedbread_ai_models.py +332 -0
- mteb/models/model_implementations/mme5_models.py +1 -1
- mteb/models/model_implementations/moco_models.py +4 -4
- mteb/models/model_implementations/mod_models.py +1 -1
- mteb/models/model_implementations/model2vec_models.py +14 -14
- mteb/models/model_implementations/moka_models.py +1 -1
- mteb/models/model_implementations/nbailab.py +3 -3
- mteb/models/model_implementations/no_instruct_sentence_models.py +2 -2
- mteb/models/model_implementations/nomic_models.py +30 -15
- mteb/models/model_implementations/nomic_models_vision.py +1 -1
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +15 -9
- mteb/models/model_implementations/nvidia_models.py +151 -19
- mteb/models/model_implementations/octen_models.py +61 -2
- mteb/models/model_implementations/openclip_models.py +13 -13
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -5
- mteb/models/model_implementations/ops_moa_models.py +1 -1
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -1
- mteb/models/model_implementations/pawan_models.py +1 -1
- mteb/models/model_implementations/piccolo_models.py +1 -1
- mteb/models/model_implementations/pixie_models.py +56 -0
- mteb/models/model_implementations/promptriever_models.py +4 -4
- mteb/models/model_implementations/pylate_models.py +10 -9
- mteb/models/model_implementations/qodo_models.py +2 -2
- mteb/models/model_implementations/qtack_models.py +1 -1
- mteb/models/model_implementations/qwen3_models.py +3 -3
- mteb/models/model_implementations/qzhou_models.py +2 -2
- mteb/models/model_implementations/random_baseline.py +3 -3
- mteb/models/model_implementations/rasgaard_models.py +2 -2
- mteb/models/model_implementations/reasonir_model.py +1 -1
- mteb/models/model_implementations/repllama_models.py +3 -3
- mteb/models/model_implementations/rerankers_custom.py +12 -6
- mteb/models/model_implementations/rerankers_monot5_based.py +17 -17
- mteb/models/model_implementations/richinfoai_models.py +1 -1
- mteb/models/model_implementations/ru_sentence_models.py +20 -20
- mteb/models/model_implementations/ruri_models.py +10 -10
- mteb/models/model_implementations/salesforce_models.py +3 -3
- mteb/models/model_implementations/samilpwc_models.py +1 -1
- mteb/models/model_implementations/sarashina_embedding_models.py +2 -2
- mteb/models/model_implementations/searchmap_models.py +1 -1
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +113 -146
- mteb/models/model_implementations/sentence_transformers_models.py +124 -22
- mteb/models/model_implementations/shuu_model.py +1 -1
- mteb/models/model_implementations/siglip_models.py +20 -20
- mteb/models/model_implementations/slm_models.py +416 -0
- mteb/models/model_implementations/spartan8806_atles_champion.py +1 -1
- mteb/models/model_implementations/stella_models.py +17 -4
- mteb/models/model_implementations/tarka_models.py +2 -2
- mteb/models/model_implementations/text2vec_models.py +9 -3
- mteb/models/model_implementations/ua_sentence_models.py +1 -1
- mteb/models/model_implementations/uae_models.py +7 -1
- mteb/models/model_implementations/vdr_models.py +1 -1
- mteb/models/model_implementations/vi_vn_models.py +6 -6
- mteb/models/model_implementations/vlm2vec_models.py +3 -3
- mteb/models/model_implementations/voyage_models.py +84 -0
- mteb/models/model_implementations/voyage_v.py +9 -7
- mteb/models/model_implementations/youtu_models.py +1 -1
- mteb/models/model_implementations/yuan_models.py +1 -1
- mteb/models/model_implementations/yuan_models_en.py +1 -1
- mteb/models/model_meta.py +80 -31
- mteb/models/models_protocols.py +22 -6
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +9 -6
- mteb/models/search_wrappers.py +33 -18
- mteb/models/sentence_transformer_wrapper.py +50 -25
- mteb/models/vllm_wrapper.py +327 -0
- mteb/py.typed +0 -0
- mteb/results/benchmark_results.py +29 -21
- mteb/results/model_result.py +52 -22
- mteb/results/task_result.py +80 -58
- mteb/similarity_functions.py +11 -7
- mteb/tasks/classification/dan/dk_hate_classification.py +1 -1
- mteb/tasks/classification/est/estonian_valence.py +1 -1
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +2 -2
- mteb/tasks/classification/multilingual/scala_classification.py +1 -1
- mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/zho/cmteb_clustering.py +2 -2
- mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +1 -1
- mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
- mteb/tasks/retrieval/code/code_rag.py +12 -12
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +2 -2
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +2 -2
- mteb/tasks/retrieval/eng/__init__.py +2 -0
- mteb/tasks/retrieval/eng/chemrxiv.py +33 -0
- mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
- mteb/tasks/retrieval/kor/__init__.py +15 -1
- mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py +142 -0
- mteb/tasks/retrieval/multilingual/__init__.py +2 -0
- mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py +43 -0
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +90 -100
- mteb/tasks/retrieval/nob/norquad.py +2 -2
- mteb/tasks/retrieval/nob/snl_retrieval.py +2 -2
- mteb/tasks/retrieval/tur/tur_hist_quad.py +1 -1
- mteb/tasks/retrieval/vie/__init__.py +14 -6
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +48 -0
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/tvpl_retrieval.py +42 -0
- mteb/tasks/retrieval/vie/zac_legal_text_retrieval.py +15 -1
- mteb/types/__init__.py +2 -0
- mteb/types/_encoder_io.py +12 -0
- mteb/types/_result.py +2 -1
- mteb/types/statistics.py +9 -3
- {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/METADATA +15 -4
- {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/RECORD +240 -219
- mteb/models/model_implementations/mxbai_models.py +0 -111
- {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/WHEEL +0 -0
- {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/entry_points.txt +0 -0
- {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/top_level.txt +0 -0
|
@@ -331,7 +331,13 @@ bge_small_en_v1_5 = ModelMeta(
|
|
|
331
331
|
max_tokens=512,
|
|
332
332
|
reference="https://huggingface.co/BAAI/bge-small-en-v1.5",
|
|
333
333
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
334
|
-
framework=[
|
|
334
|
+
framework=[
|
|
335
|
+
"Sentence Transformers",
|
|
336
|
+
"PyTorch",
|
|
337
|
+
"ONNX",
|
|
338
|
+
"safetensors",
|
|
339
|
+
"Transformers",
|
|
340
|
+
],
|
|
335
341
|
use_instructions=True,
|
|
336
342
|
public_training_code=None,
|
|
337
343
|
public_training_data="https://data.baai.ac.cn/details/BAAI-MTP",
|
|
@@ -357,7 +363,13 @@ bge_base_en_v1_5 = ModelMeta(
|
|
|
357
363
|
max_tokens=512,
|
|
358
364
|
reference="https://huggingface.co/BAAI/bge-base-en-v1.5",
|
|
359
365
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
360
|
-
framework=[
|
|
366
|
+
framework=[
|
|
367
|
+
"Sentence Transformers",
|
|
368
|
+
"PyTorch",
|
|
369
|
+
"ONNX",
|
|
370
|
+
"safetensors",
|
|
371
|
+
"Transformers",
|
|
372
|
+
],
|
|
361
373
|
use_instructions=True,
|
|
362
374
|
public_training_code=None, # seemingly released (at least for some models, but the link is broken
|
|
363
375
|
public_training_data="https://data.baai.ac.cn/details/BAAI-MTP",
|
|
@@ -383,7 +395,13 @@ bge_large_en_v1_5 = ModelMeta(
|
|
|
383
395
|
max_tokens=512,
|
|
384
396
|
reference="https://huggingface.co/BAAI/bge-large-en-v1.5",
|
|
385
397
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
386
|
-
framework=[
|
|
398
|
+
framework=[
|
|
399
|
+
"Sentence Transformers",
|
|
400
|
+
"PyTorch",
|
|
401
|
+
"ONNX",
|
|
402
|
+
"safetensors",
|
|
403
|
+
"Transformers",
|
|
404
|
+
],
|
|
387
405
|
use_instructions=True,
|
|
388
406
|
citation=BGE_15_CITATION,
|
|
389
407
|
public_training_code=None, # seemingly released (at least for some models, but the link is broken
|
|
@@ -409,7 +427,7 @@ bge_small_zh = ModelMeta(
|
|
|
409
427
|
max_tokens=512,
|
|
410
428
|
reference="https://huggingface.co/BAAI/bge-small-zh",
|
|
411
429
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
412
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
430
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers"],
|
|
413
431
|
use_instructions=True,
|
|
414
432
|
public_training_code=None,
|
|
415
433
|
public_training_data=None,
|
|
@@ -436,7 +454,7 @@ bge_base_zh = ModelMeta(
|
|
|
436
454
|
max_tokens=512,
|
|
437
455
|
reference="https://huggingface.co/BAAI/bge-base-zh",
|
|
438
456
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
439
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
457
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
440
458
|
use_instructions=True,
|
|
441
459
|
public_training_code=None,
|
|
442
460
|
public_training_data=None,
|
|
@@ -463,7 +481,7 @@ bge_large_zh = ModelMeta(
|
|
|
463
481
|
max_tokens=512,
|
|
464
482
|
reference="https://huggingface.co/BAAI/bge-large-zh",
|
|
465
483
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
466
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
484
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
467
485
|
use_instructions=True,
|
|
468
486
|
public_training_code=None,
|
|
469
487
|
public_training_data=None,
|
|
@@ -490,7 +508,7 @@ bge_small_en = ModelMeta(
|
|
|
490
508
|
max_tokens=512,
|
|
491
509
|
reference="https://huggingface.co/BAAI/bge-small-en",
|
|
492
510
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
493
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
511
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
494
512
|
use_instructions=True,
|
|
495
513
|
public_training_code=None,
|
|
496
514
|
public_training_data="https://data.baai.ac.cn/details/BAAI-MTP",
|
|
@@ -517,7 +535,13 @@ bge_base_en = ModelMeta(
|
|
|
517
535
|
max_tokens=512,
|
|
518
536
|
reference="https://huggingface.co/BAAI/bge-base-en",
|
|
519
537
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
520
|
-
framework=[
|
|
538
|
+
framework=[
|
|
539
|
+
"Sentence Transformers",
|
|
540
|
+
"PyTorch",
|
|
541
|
+
"Transformers",
|
|
542
|
+
"ONNX",
|
|
543
|
+
"safetensors",
|
|
544
|
+
],
|
|
521
545
|
use_instructions=True,
|
|
522
546
|
public_training_code=None, # seemingly released (at least for some models, but the link is broken
|
|
523
547
|
public_training_data="https://data.baai.ac.cn/details/BAAI-MTP",
|
|
@@ -544,7 +568,7 @@ bge_large_en = ModelMeta(
|
|
|
544
568
|
max_tokens=512,
|
|
545
569
|
reference="https://huggingface.co/BAAI/bge-large-en",
|
|
546
570
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
547
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
571
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
548
572
|
use_instructions=True,
|
|
549
573
|
public_training_code=None, # seemingly released (at least for some models, but the link is broken
|
|
550
574
|
public_training_data="https://data.baai.ac.cn/details/BAAI-MTP",
|
|
@@ -572,7 +596,7 @@ bge_small_zh_v1_5 = ModelMeta(
|
|
|
572
596
|
max_tokens=512,
|
|
573
597
|
reference="https://huggingface.co/BAAI/bge-small-zh-v1.5",
|
|
574
598
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
575
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
599
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
576
600
|
use_instructions=True,
|
|
577
601
|
public_training_code=None,
|
|
578
602
|
public_training_data=None,
|
|
@@ -598,7 +622,7 @@ bge_base_zh_v1_5 = ModelMeta(
|
|
|
598
622
|
max_tokens=512,
|
|
599
623
|
reference="https://huggingface.co/BAAI/bge-base-zh-v1.5",
|
|
600
624
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
601
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
625
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers"],
|
|
602
626
|
use_instructions=True,
|
|
603
627
|
public_training_code=None,
|
|
604
628
|
public_training_data=None,
|
|
@@ -624,7 +648,7 @@ bge_large_zh_v1_5 = ModelMeta(
|
|
|
624
648
|
max_tokens=512,
|
|
625
649
|
reference="https://huggingface.co/BAAI/bge-large-zh-v1.5",
|
|
626
650
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
627
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
651
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers"],
|
|
628
652
|
use_instructions=True,
|
|
629
653
|
public_training_code=None,
|
|
630
654
|
public_training_data=None,
|
|
@@ -647,13 +671,13 @@ bge_m3 = ModelMeta(
|
|
|
647
671
|
max_tokens=8194,
|
|
648
672
|
reference="https://huggingface.co/BAAI/bge-m3",
|
|
649
673
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
650
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
674
|
+
framework=["Sentence Transformers", "PyTorch", "ONNX"],
|
|
651
675
|
use_instructions=False,
|
|
652
676
|
public_training_code=None,
|
|
653
677
|
public_training_data="https://huggingface.co/datasets/cfli/bge-full-data",
|
|
654
678
|
training_datasets=bge_m3_training_data,
|
|
655
679
|
citation="""@misc{bge-m3,
|
|
656
|
-
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
|
|
680
|
+
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
|
|
657
681
|
author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
|
|
658
682
|
year={2024},
|
|
659
683
|
eprint={2402.03216},
|
|
@@ -743,7 +767,7 @@ bge_multilingual_gemma2 = ModelMeta(
|
|
|
743
767
|
max_tokens=8192, # from old C-MTEB leaderboard
|
|
744
768
|
reference="https://huggingface.co/BAAI/bge-multilingual-gemma2",
|
|
745
769
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
746
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
770
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
747
771
|
use_instructions=False,
|
|
748
772
|
public_training_code=None,
|
|
749
773
|
public_training_data=None,
|
|
@@ -754,7 +778,7 @@ bge_multilingual_gemma2 = ModelMeta(
|
|
|
754
778
|
| bge_full_data
|
|
755
779
|
| bge_m3_training_data,
|
|
756
780
|
citation="""@misc{bge-m3,
|
|
757
|
-
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
|
|
781
|
+
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
|
|
758
782
|
author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
|
|
759
783
|
year={2024},
|
|
760
784
|
eprint={2402.03216},
|
|
@@ -764,7 +788,7 @@ bge_multilingual_gemma2 = ModelMeta(
|
|
|
764
788
|
|
|
765
789
|
|
|
766
790
|
@misc{bge_embedding,
|
|
767
|
-
title={C-Pack: Packaged Resources To Advance General Chinese Embedding},
|
|
791
|
+
title={C-Pack: Packaged Resources To Advance General Chinese Embedding},
|
|
768
792
|
author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff},
|
|
769
793
|
year={2023},
|
|
770
794
|
eprint={2309.07597},
|
|
@@ -790,7 +814,7 @@ bge_en_icl = ModelMeta(
|
|
|
790
814
|
max_tokens=32768,
|
|
791
815
|
reference="https://huggingface.co/BAAI/bge-en-icl",
|
|
792
816
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
793
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
817
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
794
818
|
use_instructions=False,
|
|
795
819
|
public_training_code="https://github.com/FlagOpen/FlagEmbedding",
|
|
796
820
|
public_training_data="https://huggingface.co/datasets/cfli/bge-full-data",
|
|
@@ -824,13 +848,13 @@ bge_m3_unsupervised = ModelMeta(
|
|
|
824
848
|
max_tokens=8192,
|
|
825
849
|
reference="https://huggingface.co/BAAI/bge-m3-unsupervised",
|
|
826
850
|
similarity_fn_name="cosine",
|
|
827
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
851
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
828
852
|
use_instructions=False,
|
|
829
853
|
public_training_code="https://github.com/FlagOpen/FlagEmbedding",
|
|
830
854
|
public_training_data="https://huggingface.co/datasets/cfli/bge-full-data",
|
|
831
855
|
training_datasets=bge_m3_training_data,
|
|
832
856
|
citation="""@misc{bge-m3,
|
|
833
|
-
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
|
|
857
|
+
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
|
|
834
858
|
author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
|
|
835
859
|
year={2024},
|
|
836
860
|
eprint={2402.03216},
|
|
@@ -854,7 +878,7 @@ manu__bge_m3_custom_fr = ModelMeta(
|
|
|
854
878
|
open_weights=True,
|
|
855
879
|
public_training_code=None,
|
|
856
880
|
public_training_data=None,
|
|
857
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
881
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors"],
|
|
858
882
|
reference="https://huggingface.co/manu/bge-m3-custom-fr",
|
|
859
883
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
860
884
|
use_instructions=None,
|
|
@@ -15,20 +15,20 @@ bica_base = ModelMeta(
|
|
|
15
15
|
max_tokens=512,
|
|
16
16
|
reference="https://huggingface.co/bisectgroup/BiCA-base",
|
|
17
17
|
similarity_fn_name="cosine",
|
|
18
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
18
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
19
19
|
use_instructions=False,
|
|
20
20
|
public_training_code="https://github.com/NiravBhattLab/BiCA",
|
|
21
21
|
public_training_data="https://huggingface.co/datasets/bisectgroup/hard-negatives-traversal",
|
|
22
22
|
adapted_from="thenlper/gte-base",
|
|
23
23
|
citation="""
|
|
24
24
|
@misc{sinha2025bicaeffectivebiomedicaldense,
|
|
25
|
-
title={BiCA: Effective Biomedical Dense Retrieval with Citation-Aware Hard Negatives},
|
|
25
|
+
title={BiCA: Effective Biomedical Dense Retrieval with Citation-Aware Hard Negatives},
|
|
26
26
|
author={Aarush Sinha and Pavan Kumar S and Roshan Balaji and Nirav Pravinbhai Bhatt},
|
|
27
27
|
year={2025},
|
|
28
28
|
eprint={2511.08029},
|
|
29
29
|
archivePrefix={arXiv},
|
|
30
30
|
primaryClass={cs.IR},
|
|
31
|
-
url={https://arxiv.org/abs/2511.08029},
|
|
31
|
+
url={https://arxiv.org/abs/2511.08029},
|
|
32
32
|
}
|
|
33
33
|
""",
|
|
34
34
|
training_datasets=set(),
|
|
@@ -179,7 +179,7 @@ blip2_opt_2_7b = ModelMeta(
|
|
|
179
179
|
open_weights=True,
|
|
180
180
|
public_training_code="https://github.com/salesforce/LAVIS/tree/main/projects/blip2",
|
|
181
181
|
public_training_data=None,
|
|
182
|
-
framework=["PyTorch"],
|
|
182
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
183
183
|
reference="https://huggingface.co/Salesforce/blip2-opt-2.7b",
|
|
184
184
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
185
185
|
use_instructions=False,
|
|
@@ -203,7 +203,7 @@ blip2_opt_6_7b_coco = ModelMeta(
|
|
|
203
203
|
open_weights=True,
|
|
204
204
|
public_training_code="https://github.com/salesforce/LAVIS/tree/main/projects/blip2",
|
|
205
205
|
public_training_data=None,
|
|
206
|
-
framework=["PyTorch"],
|
|
206
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
207
207
|
reference="https://huggingface.co/Salesforce/blip2-opt-6.7b-coco",
|
|
208
208
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
209
209
|
use_instructions=False,
|
|
@@ -128,7 +128,7 @@ class BLIPModel(AbsEncoder):
|
|
|
128
128
|
|
|
129
129
|
# in descending order of usage (downloads from huggingface)
|
|
130
130
|
blip_image_captioning_large = ModelMeta(
|
|
131
|
-
loader=BLIPModel,
|
|
131
|
+
loader=BLIPModel,
|
|
132
132
|
name="Salesforce/blip-image-captioning-large",
|
|
133
133
|
model_type=["dense"],
|
|
134
134
|
languages=["eng-Latn"],
|
|
@@ -143,7 +143,7 @@ blip_image_captioning_large = ModelMeta(
|
|
|
143
143
|
open_weights=True,
|
|
144
144
|
public_training_code="https://github.com/salesforce/BLIP",
|
|
145
145
|
public_training_data="https://github.com/salesforce/BLIP",
|
|
146
|
-
framework=["PyTorch"],
|
|
146
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
147
147
|
reference="https://huggingface.co/Salesforce/blip-image-captioning-large",
|
|
148
148
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
149
149
|
use_instructions=False,
|
|
@@ -156,7 +156,7 @@ blip_image_captioning_large = ModelMeta(
|
|
|
156
156
|
)
|
|
157
157
|
|
|
158
158
|
blip_image_captioning_base = ModelMeta(
|
|
159
|
-
loader=BLIPModel,
|
|
159
|
+
loader=BLIPModel,
|
|
160
160
|
name="Salesforce/blip-image-captioning-base",
|
|
161
161
|
model_type=["dense"],
|
|
162
162
|
languages=["eng-Latn"],
|
|
@@ -171,7 +171,7 @@ blip_image_captioning_base = ModelMeta(
|
|
|
171
171
|
open_weights=True,
|
|
172
172
|
public_training_code="https://github.com/salesforce/BLIP",
|
|
173
173
|
public_training_data="https://github.com/salesforce/BLIP",
|
|
174
|
-
framework=["PyTorch"],
|
|
174
|
+
framework=["PyTorch", "Transformers"],
|
|
175
175
|
reference="https://huggingface.co/Salesforce/blip-image-captioning-base",
|
|
176
176
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
177
177
|
use_instructions=False,
|
|
@@ -185,7 +185,7 @@ blip_image_captioning_base = ModelMeta(
|
|
|
185
185
|
|
|
186
186
|
|
|
187
187
|
blip_vqa_base = ModelMeta(
|
|
188
|
-
loader=BLIPModel,
|
|
188
|
+
loader=BLIPModel,
|
|
189
189
|
name="Salesforce/blip-vqa-base",
|
|
190
190
|
model_type=["dense"],
|
|
191
191
|
languages=["eng-Latn"],
|
|
@@ -200,7 +200,7 @@ blip_vqa_base = ModelMeta(
|
|
|
200
200
|
open_weights=True,
|
|
201
201
|
public_training_code="https://github.com/salesforce/BLIP",
|
|
202
202
|
public_training_data="https://github.com/salesforce/BLIP",
|
|
203
|
-
framework=["PyTorch"],
|
|
203
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
204
204
|
reference="https://huggingface.co/Salesforce/blip-vqa-base",
|
|
205
205
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
206
206
|
use_instructions=False,
|
|
@@ -212,7 +212,7 @@ blip_vqa_base = ModelMeta(
|
|
|
212
212
|
)
|
|
213
213
|
|
|
214
214
|
blip_vqa_capfilt_large = ModelMeta(
|
|
215
|
-
loader=BLIPModel,
|
|
215
|
+
loader=BLIPModel,
|
|
216
216
|
name="Salesforce/blip-vqa-capfilt-large",
|
|
217
217
|
model_type=["dense"],
|
|
218
218
|
languages=["eng-Latn"],
|
|
@@ -227,7 +227,7 @@ blip_vqa_capfilt_large = ModelMeta(
|
|
|
227
227
|
open_weights=True,
|
|
228
228
|
public_training_code="https://github.com/salesforce/BLIP",
|
|
229
229
|
public_training_data="https://github.com/salesforce/BLIP",
|
|
230
|
-
framework=["PyTorch"],
|
|
230
|
+
framework=["PyTorch", "Transformers"],
|
|
231
231
|
reference="https://huggingface.co/Salesforce/blip-vqa-capfilt-large",
|
|
232
232
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
233
233
|
use_instructions=False,
|
|
@@ -239,7 +239,7 @@ blip_vqa_capfilt_large = ModelMeta(
|
|
|
239
239
|
)
|
|
240
240
|
|
|
241
241
|
blip_itm_base_coco = ModelMeta(
|
|
242
|
-
loader=BLIPModel,
|
|
242
|
+
loader=BLIPModel,
|
|
243
243
|
name="Salesforce/blip-itm-base-coco",
|
|
244
244
|
model_type=["dense"],
|
|
245
245
|
languages=["eng-Latn"],
|
|
@@ -254,7 +254,7 @@ blip_itm_base_coco = ModelMeta(
|
|
|
254
254
|
open_weights=True,
|
|
255
255
|
public_training_code="https://github.com/salesforce/BLIP",
|
|
256
256
|
public_training_data="https://github.com/salesforce/BLIP",
|
|
257
|
-
framework=["PyTorch"],
|
|
257
|
+
framework=["PyTorch", "Transformers"],
|
|
258
258
|
reference="https://huggingface.co/Salesforce/blip-itm-base-coco",
|
|
259
259
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
260
260
|
use_instructions=False,
|
|
@@ -266,7 +266,7 @@ blip_itm_base_coco = ModelMeta(
|
|
|
266
266
|
)
|
|
267
267
|
|
|
268
268
|
blip_itm_large_coco = ModelMeta(
|
|
269
|
-
loader=BLIPModel,
|
|
269
|
+
loader=BLIPModel,
|
|
270
270
|
name="Salesforce/blip-itm-large-coco",
|
|
271
271
|
model_type=["dense"],
|
|
272
272
|
languages=["eng-Latn"],
|
|
@@ -281,7 +281,7 @@ blip_itm_large_coco = ModelMeta(
|
|
|
281
281
|
open_weights=True,
|
|
282
282
|
public_training_code="https://github.com/salesforce/BLIP",
|
|
283
283
|
public_training_data="https://github.com/salesforce/BLIP",
|
|
284
|
-
framework=["PyTorch"],
|
|
284
|
+
framework=["PyTorch", "Transformers"],
|
|
285
285
|
reference="https://huggingface.co/Salesforce/blip-itm-large-coco",
|
|
286
286
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
287
287
|
use_instructions=False,
|
|
@@ -294,7 +294,7 @@ blip_itm_large_coco = ModelMeta(
|
|
|
294
294
|
)
|
|
295
295
|
|
|
296
296
|
blip_itm_base_flickr = ModelMeta(
|
|
297
|
-
loader=BLIPModel,
|
|
297
|
+
loader=BLIPModel,
|
|
298
298
|
name="Salesforce/blip-itm-base-flickr",
|
|
299
299
|
model_type=["dense"],
|
|
300
300
|
languages=["eng-Latn"],
|
|
@@ -309,7 +309,7 @@ blip_itm_base_flickr = ModelMeta(
|
|
|
309
309
|
open_weights=True,
|
|
310
310
|
public_training_code="https://github.com/salesforce/BLIP",
|
|
311
311
|
public_training_data="https://github.com/salesforce/BLIP",
|
|
312
|
-
framework=["PyTorch"],
|
|
312
|
+
framework=["PyTorch", "Transformers"],
|
|
313
313
|
reference="https://huggingface.co/Salesforce/blip-itm-base-flickr",
|
|
314
314
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
315
315
|
use_instructions=False,
|
|
@@ -322,7 +322,7 @@ blip_itm_base_flickr = ModelMeta(
|
|
|
322
322
|
)
|
|
323
323
|
|
|
324
324
|
blip_itm_large_flickr = ModelMeta(
|
|
325
|
-
loader=BLIPModel,
|
|
325
|
+
loader=BLIPModel,
|
|
326
326
|
name="Salesforce/blip-itm-large-flickr",
|
|
327
327
|
model_type=["dense"],
|
|
328
328
|
languages=["eng-Latn"],
|
|
@@ -337,7 +337,7 @@ blip_itm_large_flickr = ModelMeta(
|
|
|
337
337
|
open_weights=True,
|
|
338
338
|
public_training_code="https://github.com/salesforce/BLIP",
|
|
339
339
|
public_training_data="https://github.com/salesforce/BLIP",
|
|
340
|
-
framework=["PyTorch"],
|
|
340
|
+
framework=["PyTorch", "Transformers"],
|
|
341
341
|
reference="https://huggingface.co/Salesforce/blip-itm-large-flickr",
|
|
342
342
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
343
343
|
use_instructions=False,
|
|
@@ -1,5 +1,4 @@
|
|
|
1
1
|
import logging
|
|
2
|
-
from typing import Any
|
|
3
2
|
|
|
4
3
|
from mteb._create_dataloaders import _create_text_queries_dataloader
|
|
5
4
|
from mteb._requires_package import requires_package
|
|
@@ -8,6 +7,7 @@ from mteb.models.model_meta import ModelMeta
|
|
|
8
7
|
from mteb.models.models_protocols import SearchProtocol
|
|
9
8
|
from mteb.types import (
|
|
10
9
|
CorpusDatasetType,
|
|
10
|
+
EncodeKwargs,
|
|
11
11
|
InstructionDatasetType,
|
|
12
12
|
QueryDatasetType,
|
|
13
13
|
RetrievalOutputType,
|
|
@@ -49,7 +49,7 @@ def bm25_loader(model_name, **kwargs) -> SearchProtocol:
|
|
|
49
49
|
task_metadata: TaskMetadata,
|
|
50
50
|
hf_split: str,
|
|
51
51
|
hf_subset: str,
|
|
52
|
-
encode_kwargs:
|
|
52
|
+
encode_kwargs: EncodeKwargs,
|
|
53
53
|
) -> None:
|
|
54
54
|
logger.info("Encoding Corpus...")
|
|
55
55
|
corpus_texts = [
|
|
@@ -74,7 +74,7 @@ def bm25_loader(model_name, **kwargs) -> SearchProtocol:
|
|
|
74
74
|
hf_split: str,
|
|
75
75
|
hf_subset: str,
|
|
76
76
|
top_k: int,
|
|
77
|
-
encode_kwargs:
|
|
77
|
+
encode_kwargs: EncodeKwargs,
|
|
78
78
|
instructions: InstructionDatasetType | None = None,
|
|
79
79
|
top_ranked: TopRankedDocumentsType | None = None,
|
|
80
80
|
) -> RetrievalOutputType:
|
|
@@ -113,7 +113,7 @@ def bm25_loader(model_name, **kwargs) -> SearchProtocol:
|
|
|
113
113
|
|
|
114
114
|
def encode(self, texts: list[str]):
|
|
115
115
|
"""Encode input text as term vectors"""
|
|
116
|
-
return bm25s.tokenize(texts, stopwords=self.stopwords, stemmer=self.stemmer)
|
|
116
|
+
return bm25s.tokenize(texts, stopwords=self.stopwords, stemmer=self.stemmer)
|
|
117
117
|
|
|
118
118
|
return BM25Search(**kwargs)
|
|
119
119
|
|
|
@@ -25,6 +25,7 @@ class BMRetrieverWrapper(InstructSentenceTransformerModel):
|
|
|
25
25
|
self,
|
|
26
26
|
model_name: str,
|
|
27
27
|
revision: str,
|
|
28
|
+
device: str | None = None,
|
|
28
29
|
instruction_template: str
|
|
29
30
|
| Callable[[str, PromptType | None], str]
|
|
30
31
|
| None = None,
|
|
@@ -52,6 +53,7 @@ class BMRetrieverWrapper(InstructSentenceTransformerModel):
|
|
|
52
53
|
|
|
53
54
|
transformer = Transformer(
|
|
54
55
|
model_name,
|
|
56
|
+
device=device,
|
|
55
57
|
**kwargs,
|
|
56
58
|
)
|
|
57
59
|
pooling = Pooling(
|
|
@@ -102,7 +104,7 @@ BMRetriever_410M = ModelMeta(
|
|
|
102
104
|
license="mit",
|
|
103
105
|
reference="https://huggingface.co/BMRetriever/BMRetriever-410M",
|
|
104
106
|
similarity_fn_name="cosine",
|
|
105
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
107
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
106
108
|
use_instructions=True,
|
|
107
109
|
public_training_code=None,
|
|
108
110
|
public_training_data=None,
|
|
@@ -132,7 +134,7 @@ BMRetriever_1B = ModelMeta(
|
|
|
132
134
|
license="mit",
|
|
133
135
|
reference="https://huggingface.co/BMRetriever/BMRetriever-1B",
|
|
134
136
|
similarity_fn_name="cosine",
|
|
135
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
137
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
136
138
|
use_instructions=True,
|
|
137
139
|
public_training_code=None,
|
|
138
140
|
public_training_data=None,
|
|
@@ -162,7 +164,7 @@ BMRetriever_2B = ModelMeta(
|
|
|
162
164
|
license="mit",
|
|
163
165
|
reference="https://huggingface.co/BMRetriever/BMRetriever-2B",
|
|
164
166
|
similarity_fn_name="cosine",
|
|
165
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
167
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
166
168
|
use_instructions=True,
|
|
167
169
|
public_training_code=None,
|
|
168
170
|
public_training_data=None,
|
|
@@ -192,7 +194,7 @@ BMRetriever_7B = ModelMeta(
|
|
|
192
194
|
license="mit",
|
|
193
195
|
reference="https://huggingface.co/BMRetriever/BMRetriever-7B",
|
|
194
196
|
similarity_fn_name="cosine",
|
|
195
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
197
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
196
198
|
use_instructions=True,
|
|
197
199
|
public_training_code=None,
|
|
198
200
|
public_training_data=None,
|
|
@@ -47,7 +47,7 @@ cadet_embed = ModelMeta(
|
|
|
47
47
|
max_tokens=512,
|
|
48
48
|
reference="https://huggingface.co/manveertamber/cadet-embed-base-v1",
|
|
49
49
|
similarity_fn_name="cosine",
|
|
50
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
50
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
51
51
|
use_instructions=True,
|
|
52
52
|
public_training_code="https://github.com/manveertamber/cadet-dense-retrieval",
|
|
53
53
|
# we provide the code to generate the training data
|
|
@@ -49,10 +49,17 @@ class CDEWrapper(SentenceTransformerEncoderWrapper):
|
|
|
49
49
|
"InstructionReranking",
|
|
50
50
|
)
|
|
51
51
|
|
|
52
|
-
def __init__(
|
|
52
|
+
def __init__(
|
|
53
|
+
self,
|
|
54
|
+
model: str,
|
|
55
|
+
revision: str | None = None,
|
|
56
|
+
device: str | None = None,
|
|
57
|
+
*args,
|
|
58
|
+
**kwargs: Any,
|
|
59
|
+
) -> None:
|
|
53
60
|
from transformers import AutoConfig
|
|
54
61
|
|
|
55
|
-
super().__init__(model, *args, **kwargs)
|
|
62
|
+
super().__init__(model, revision=revision, device=device, *args, **kwargs)
|
|
56
63
|
model_config = AutoConfig.from_pretrained(model, trust_remote_code=True)
|
|
57
64
|
self.max_sentences = model_config.transductive_corpus_size
|
|
58
65
|
|
|
@@ -220,7 +227,7 @@ cde_small_v1 = ModelMeta(
|
|
|
220
227
|
embed_dim=768,
|
|
221
228
|
license="mit",
|
|
222
229
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
223
|
-
framework=["Sentence Transformers"],
|
|
230
|
+
framework=["Sentence Transformers", "safetensors", "Transformers"],
|
|
224
231
|
reference="https://huggingface.co/jxm/cde-small-v1",
|
|
225
232
|
use_instructions=True,
|
|
226
233
|
adapted_from="nomic-ai/nomic-bert-2048",
|
|
@@ -249,7 +256,7 @@ cde_small_v2 = ModelMeta(
|
|
|
249
256
|
embed_dim=768,
|
|
250
257
|
license="mit",
|
|
251
258
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
252
|
-
framework=["Sentence Transformers"],
|
|
259
|
+
framework=["Sentence Transformers", "safetensors", "Transformers"],
|
|
253
260
|
reference="https://huggingface.co/jxm/cde-small-v1",
|
|
254
261
|
use_instructions=True,
|
|
255
262
|
adapted_from="answerdotai/ModernBERT-base",
|
|
@@ -115,7 +115,7 @@ CLIP_CITATION = """
|
|
|
115
115
|
|
|
116
116
|
|
|
117
117
|
clip_vit_large_patch14 = ModelMeta(
|
|
118
|
-
loader=CLIPModel,
|
|
118
|
+
loader=CLIPModel,
|
|
119
119
|
name="openai/clip-vit-large-patch14",
|
|
120
120
|
model_type=["dense"],
|
|
121
121
|
languages=["eng-Latn"],
|
|
@@ -130,7 +130,7 @@ clip_vit_large_patch14 = ModelMeta(
|
|
|
130
130
|
open_weights=True,
|
|
131
131
|
public_training_code=None,
|
|
132
132
|
public_training_data=None,
|
|
133
|
-
framework=["PyTorch"],
|
|
133
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
134
134
|
reference="https://huggingface.co/openai/clip-vit-large-patch14",
|
|
135
135
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
136
136
|
use_instructions=False,
|
|
@@ -139,7 +139,7 @@ clip_vit_large_patch14 = ModelMeta(
|
|
|
139
139
|
)
|
|
140
140
|
|
|
141
141
|
clip_vit_base_patch32 = ModelMeta(
|
|
142
|
-
loader=CLIPModel,
|
|
142
|
+
loader=CLIPModel,
|
|
143
143
|
name="openai/clip-vit-base-patch32",
|
|
144
144
|
model_type=["dense"],
|
|
145
145
|
languages=["eng-Latn"],
|
|
@@ -154,7 +154,7 @@ clip_vit_base_patch32 = ModelMeta(
|
|
|
154
154
|
open_weights=True,
|
|
155
155
|
public_training_code=None,
|
|
156
156
|
public_training_data=None,
|
|
157
|
-
framework=["PyTorch"],
|
|
157
|
+
framework=["PyTorch", "Transformers"],
|
|
158
158
|
reference="https://huggingface.co/openai/clip-vit-base-patch32",
|
|
159
159
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
160
160
|
use_instructions=False,
|
|
@@ -163,7 +163,7 @@ clip_vit_base_patch32 = ModelMeta(
|
|
|
163
163
|
)
|
|
164
164
|
|
|
165
165
|
clip_vit_base_patch16 = ModelMeta(
|
|
166
|
-
loader=CLIPModel,
|
|
166
|
+
loader=CLIPModel,
|
|
167
167
|
name="openai/clip-vit-base-patch16",
|
|
168
168
|
model_type=["dense"],
|
|
169
169
|
languages=["eng-Latn"],
|
|
@@ -178,7 +178,7 @@ clip_vit_base_patch16 = ModelMeta(
|
|
|
178
178
|
open_weights=True,
|
|
179
179
|
public_training_code=None,
|
|
180
180
|
public_training_data=None,
|
|
181
|
-
framework=["PyTorch"],
|
|
181
|
+
framework=["PyTorch", "Transformers"],
|
|
182
182
|
reference="https://huggingface.co/openai/clip-vit-base-patch16",
|
|
183
183
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
184
184
|
use_instructions=False,
|
|
@@ -36,7 +36,7 @@ e5_nl_small = ModelMeta(
|
|
|
36
36
|
max_tokens=512,
|
|
37
37
|
reference="https://huggingface.co/clips/e5-small-trm-nl",
|
|
38
38
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
39
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
39
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
40
40
|
use_instructions=True,
|
|
41
41
|
public_training_code="https://github.com/ELotfi/e5-nl",
|
|
42
42
|
public_training_data="https://huggingface.co/collections/clips/beir-nl",
|
|
@@ -63,7 +63,7 @@ e5_nl_base = ModelMeta(
|
|
|
63
63
|
max_tokens=514,
|
|
64
64
|
reference="https://huggingface.co/clips/e5-base-trm-nl",
|
|
65
65
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
66
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
66
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
67
67
|
use_instructions=True,
|
|
68
68
|
public_training_code="https://github.com/ELotfi/e5-nl",
|
|
69
69
|
public_training_data="https://huggingface.co/collections/clips/beir-nl",
|
|
@@ -90,7 +90,7 @@ e5_nl_large = ModelMeta(
|
|
|
90
90
|
max_tokens=514,
|
|
91
91
|
reference="https://huggingface.co/clips/e5-large-trm-nl",
|
|
92
92
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
93
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
93
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
94
94
|
use_instructions=True,
|
|
95
95
|
public_training_code="https://github.com/ELotfi/e5-nl",
|
|
96
96
|
public_training_data="https://huggingface.co/collections/clips/beir-nl",
|
|
@@ -242,7 +242,7 @@ F2LLM_0B6 = ModelMeta(
|
|
|
242
242
|
max_tokens=8192,
|
|
243
243
|
reference="https://huggingface.co/codefuse-ai/F2LLM-0.6B",
|
|
244
244
|
similarity_fn_name="cosine",
|
|
245
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
245
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
246
246
|
use_instructions=True,
|
|
247
247
|
public_training_code="https://github.com/codefuse-ai/F2LLM",
|
|
248
248
|
public_training_data="https://huggingface.co/datasets/codefuse-ai/F2LLM",
|
|
@@ -272,7 +272,7 @@ F2LLM_1B7 = ModelMeta(
|
|
|
272
272
|
max_tokens=8192,
|
|
273
273
|
reference="https://huggingface.co/codefuse-ai/F2LLM-1.7B",
|
|
274
274
|
similarity_fn_name="cosine",
|
|
275
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
275
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
276
276
|
use_instructions=True,
|
|
277
277
|
public_training_code="https://github.com/codefuse-ai/F2LLM",
|
|
278
278
|
public_training_data="https://huggingface.co/datasets/codefuse-ai/F2LLM",
|
|
@@ -302,7 +302,7 @@ F2LLM_4B = ModelMeta(
|
|
|
302
302
|
max_tokens=8192,
|
|
303
303
|
reference="https://huggingface.co/codefuse-ai/F2LLM-4B",
|
|
304
304
|
similarity_fn_name="cosine",
|
|
305
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
305
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
306
306
|
use_instructions=True,
|
|
307
307
|
public_training_code="https://github.com/codefuse-ai/F2LLM",
|
|
308
308
|
public_training_data="https://huggingface.co/datasets/codefuse-ai/F2LLM",
|
|
@@ -325,7 +325,7 @@ C2LLM_0B5 = ModelMeta(
|
|
|
325
325
|
open_weights=True,
|
|
326
326
|
public_training_code=None,
|
|
327
327
|
public_training_data=None,
|
|
328
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
328
|
+
framework=["PyTorch", "Sentence Transformers", "Transformers", "safetensors"],
|
|
329
329
|
reference="https://huggingface.co/codefuse-ai/C2LLM-0.5B",
|
|
330
330
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
331
331
|
use_instructions=True,
|
|
@@ -353,7 +353,7 @@ C2LLM_7B = ModelMeta(
|
|
|
353
353
|
open_weights=True,
|
|
354
354
|
public_training_code=None,
|
|
355
355
|
public_training_data=None,
|
|
356
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
356
|
+
framework=["PyTorch", "Sentence Transformers", "Transformers", "safetensors"],
|
|
357
357
|
reference="https://huggingface.co/codefuse-ai/C2LLM-7B",
|
|
358
358
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
359
359
|
use_instructions=True,
|