mteb 2.5.2__py3-none-any.whl → 2.7.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +2 -0
- mteb/_create_dataloaders.py +17 -18
- mteb/_evaluators/any_sts_evaluator.py +3 -3
- mteb/_evaluators/clustering_evaluator.py +2 -2
- mteb/_evaluators/evaluator.py +4 -2
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +10 -8
- mteb/_evaluators/pair_classification_evaluator.py +5 -3
- mteb/_evaluators/retrieval_evaluator.py +2 -2
- mteb/_evaluators/retrieval_metrics.py +18 -17
- mteb/_evaluators/sklearn_evaluator.py +11 -10
- mteb/_evaluators/text/bitext_mining_evaluator.py +27 -18
- mteb/_evaluators/text/summarization_evaluator.py +23 -18
- mteb/_evaluators/zeroshot_classification_evaluator.py +5 -3
- mteb/abstasks/_data_filter/filters.py +1 -1
- mteb/abstasks/_data_filter/task_pipelines.py +3 -0
- mteb/abstasks/_statistics_calculation.py +18 -10
- mteb/abstasks/_stratification.py +18 -18
- mteb/abstasks/abstask.py +35 -28
- mteb/abstasks/aggregate_task_metadata.py +1 -9
- mteb/abstasks/aggregated_task.py +10 -29
- mteb/abstasks/classification.py +15 -10
- mteb/abstasks/clustering.py +19 -15
- mteb/abstasks/clustering_legacy.py +10 -10
- mteb/abstasks/image/image_text_pair_classification.py +7 -4
- mteb/abstasks/multilabel_classification.py +23 -19
- mteb/abstasks/pair_classification.py +20 -11
- mteb/abstasks/regression.py +4 -4
- mteb/abstasks/retrieval.py +28 -24
- mteb/abstasks/retrieval_dataset_loaders.py +2 -2
- mteb/abstasks/sts.py +8 -5
- mteb/abstasks/task_metadata.py +31 -33
- mteb/abstasks/text/bitext_mining.py +39 -28
- mteb/abstasks/text/reranking.py +8 -6
- mteb/abstasks/text/summarization.py +10 -5
- mteb/abstasks/zeroshot_classification.py +8 -4
- mteb/benchmarks/benchmark.py +4 -2
- mteb/benchmarks/benchmarks/__init__.py +4 -0
- mteb/benchmarks/benchmarks/benchmarks.py +112 -11
- mteb/benchmarks/get_benchmark.py +14 -55
- mteb/cache.py +182 -29
- mteb/cli/_display_tasks.py +2 -2
- mteb/cli/build_cli.py +110 -14
- mteb/cli/generate_model_card.py +43 -23
- mteb/deprecated_evaluator.py +63 -49
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2CybersecurityRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EconomicRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EnergyRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2HrRetrieval.json +32 -0
- mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json +116 -0
- mteb/descriptive_stats/Retrieval/NanoClimateFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoDBPedia-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoHotpotQA-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoMSMARCO-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoNQ-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/TVPLRetrieval.json +30 -0
- mteb/evaluate.py +44 -33
- mteb/filter_tasks.py +25 -26
- mteb/get_tasks.py +29 -30
- mteb/languages/language_scripts.py +5 -3
- mteb/leaderboard/app.py +162 -34
- mteb/load_results.py +12 -12
- mteb/models/abs_encoder.py +10 -6
- mteb/models/cache_wrappers/cache_backend_protocol.py +3 -5
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +5 -4
- mteb/models/cache_wrappers/cache_backends/faiss_cache.py +6 -2
- mteb/models/cache_wrappers/cache_backends/numpy_cache.py +43 -25
- mteb/models/cache_wrappers/cache_wrapper.py +2 -2
- mteb/models/get_model_meta.py +21 -3
- mteb/models/instruct_wrapper.py +28 -8
- mteb/models/model_implementations/align_models.py +1 -1
- mteb/models/model_implementations/andersborges.py +4 -4
- mteb/models/model_implementations/ara_models.py +1 -1
- mteb/models/model_implementations/arctic_models.py +8 -8
- mteb/models/model_implementations/b1ade_models.py +1 -1
- mteb/models/model_implementations/bge_models.py +45 -21
- mteb/models/model_implementations/bica_model.py +3 -3
- mteb/models/model_implementations/blip2_models.py +2 -2
- mteb/models/model_implementations/blip_models.py +16 -16
- mteb/models/model_implementations/bm25.py +4 -4
- mteb/models/model_implementations/bmretriever_models.py +6 -4
- mteb/models/model_implementations/cadet_models.py +1 -1
- mteb/models/model_implementations/cde_models.py +11 -4
- mteb/models/model_implementations/clip_models.py +6 -6
- mteb/models/model_implementations/clips_models.py +3 -3
- mteb/models/model_implementations/codefuse_models.py +5 -5
- mteb/models/model_implementations/codesage_models.py +3 -3
- mteb/models/model_implementations/cohere_models.py +5 -5
- mteb/models/model_implementations/cohere_v.py +2 -2
- mteb/models/model_implementations/colpali_models.py +3 -3
- mteb/models/model_implementations/colqwen_models.py +8 -8
- mteb/models/model_implementations/colsmol_models.py +2 -2
- mteb/models/model_implementations/conan_models.py +1 -1
- mteb/models/model_implementations/dino_models.py +42 -42
- mteb/models/model_implementations/e5_instruct.py +23 -4
- mteb/models/model_implementations/e5_models.py +9 -9
- mteb/models/model_implementations/e5_v.py +6 -6
- mteb/models/model_implementations/eagerworks_models.py +1 -1
- mteb/models/model_implementations/emillykkejensen_models.py +6 -6
- mteb/models/model_implementations/en_code_retriever.py +1 -1
- mteb/models/model_implementations/euler_models.py +2 -2
- mteb/models/model_implementations/fa_models.py +9 -9
- mteb/models/model_implementations/facebookai.py +14 -2
- mteb/models/model_implementations/geogpt_models.py +1 -1
- mteb/models/model_implementations/gme_v_models.py +6 -5
- mteb/models/model_implementations/google_models.py +1 -1
- mteb/models/model_implementations/granite_vision_embedding_models.py +1 -1
- mteb/models/model_implementations/gritlm_models.py +2 -2
- mteb/models/model_implementations/gte_models.py +25 -13
- mteb/models/model_implementations/hinvec_models.py +1 -1
- mteb/models/model_implementations/ibm_granite_models.py +30 -6
- mteb/models/model_implementations/inf_models.py +2 -2
- mteb/models/model_implementations/jasper_models.py +2 -2
- mteb/models/model_implementations/jina_clip.py +48 -10
- mteb/models/model_implementations/jina_models.py +18 -11
- mteb/models/model_implementations/kblab.py +12 -6
- mteb/models/model_implementations/kennethenevoldsen_models.py +4 -4
- mteb/models/model_implementations/kfst.py +1 -1
- mteb/models/model_implementations/kowshik24_models.py +1 -1
- mteb/models/model_implementations/lgai_embedding_models.py +1 -1
- mteb/models/model_implementations/linq_models.py +1 -1
- mteb/models/model_implementations/listconranker.py +1 -1
- mteb/models/model_implementations/llm2clip_models.py +6 -6
- mteb/models/model_implementations/llm2vec_models.py +8 -8
- mteb/models/model_implementations/mcinext_models.py +4 -1
- mteb/models/model_implementations/mdbr_models.py +17 -3
- mteb/models/model_implementations/misc_models.py +68 -68
- mteb/models/model_implementations/mixedbread_ai_models.py +332 -0
- mteb/models/model_implementations/mme5_models.py +1 -1
- mteb/models/model_implementations/moco_models.py +4 -4
- mteb/models/model_implementations/mod_models.py +1 -1
- mteb/models/model_implementations/model2vec_models.py +14 -14
- mteb/models/model_implementations/moka_models.py +1 -1
- mteb/models/model_implementations/nbailab.py +3 -3
- mteb/models/model_implementations/no_instruct_sentence_models.py +2 -2
- mteb/models/model_implementations/nomic_models.py +30 -15
- mteb/models/model_implementations/nomic_models_vision.py +1 -1
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +15 -9
- mteb/models/model_implementations/nvidia_models.py +151 -19
- mteb/models/model_implementations/octen_models.py +61 -2
- mteb/models/model_implementations/openclip_models.py +13 -13
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -5
- mteb/models/model_implementations/ops_moa_models.py +1 -1
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -1
- mteb/models/model_implementations/pawan_models.py +1 -1
- mteb/models/model_implementations/piccolo_models.py +1 -1
- mteb/models/model_implementations/pixie_models.py +56 -0
- mteb/models/model_implementations/promptriever_models.py +4 -4
- mteb/models/model_implementations/pylate_models.py +10 -9
- mteb/models/model_implementations/qodo_models.py +2 -2
- mteb/models/model_implementations/qtack_models.py +1 -1
- mteb/models/model_implementations/qwen3_models.py +3 -3
- mteb/models/model_implementations/qzhou_models.py +2 -2
- mteb/models/model_implementations/random_baseline.py +3 -3
- mteb/models/model_implementations/rasgaard_models.py +2 -2
- mteb/models/model_implementations/reasonir_model.py +1 -1
- mteb/models/model_implementations/repllama_models.py +3 -3
- mteb/models/model_implementations/rerankers_custom.py +12 -6
- mteb/models/model_implementations/rerankers_monot5_based.py +17 -17
- mteb/models/model_implementations/richinfoai_models.py +1 -1
- mteb/models/model_implementations/ru_sentence_models.py +20 -20
- mteb/models/model_implementations/ruri_models.py +10 -10
- mteb/models/model_implementations/salesforce_models.py +3 -3
- mteb/models/model_implementations/samilpwc_models.py +1 -1
- mteb/models/model_implementations/sarashina_embedding_models.py +2 -2
- mteb/models/model_implementations/searchmap_models.py +1 -1
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +113 -146
- mteb/models/model_implementations/sentence_transformers_models.py +124 -22
- mteb/models/model_implementations/shuu_model.py +1 -1
- mteb/models/model_implementations/siglip_models.py +20 -20
- mteb/models/model_implementations/slm_models.py +416 -0
- mteb/models/model_implementations/spartan8806_atles_champion.py +1 -1
- mteb/models/model_implementations/stella_models.py +17 -4
- mteb/models/model_implementations/tarka_models.py +2 -2
- mteb/models/model_implementations/text2vec_models.py +9 -3
- mteb/models/model_implementations/ua_sentence_models.py +1 -1
- mteb/models/model_implementations/uae_models.py +7 -1
- mteb/models/model_implementations/vdr_models.py +1 -1
- mteb/models/model_implementations/vi_vn_models.py +6 -6
- mteb/models/model_implementations/vlm2vec_models.py +3 -3
- mteb/models/model_implementations/voyage_models.py +84 -0
- mteb/models/model_implementations/voyage_v.py +9 -7
- mteb/models/model_implementations/youtu_models.py +1 -1
- mteb/models/model_implementations/yuan_models.py +1 -1
- mteb/models/model_implementations/yuan_models_en.py +1 -1
- mteb/models/model_meta.py +80 -31
- mteb/models/models_protocols.py +22 -6
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +9 -6
- mteb/models/search_wrappers.py +33 -18
- mteb/models/sentence_transformer_wrapper.py +50 -25
- mteb/models/vllm_wrapper.py +327 -0
- mteb/py.typed +0 -0
- mteb/results/benchmark_results.py +29 -21
- mteb/results/model_result.py +52 -22
- mteb/results/task_result.py +80 -58
- mteb/similarity_functions.py +11 -7
- mteb/tasks/classification/dan/dk_hate_classification.py +1 -1
- mteb/tasks/classification/est/estonian_valence.py +1 -1
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +2 -2
- mteb/tasks/classification/multilingual/scala_classification.py +1 -1
- mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/zho/cmteb_clustering.py +2 -2
- mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +1 -1
- mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
- mteb/tasks/retrieval/code/code_rag.py +12 -12
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +2 -2
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +2 -2
- mteb/tasks/retrieval/eng/__init__.py +2 -0
- mteb/tasks/retrieval/eng/chemrxiv.py +33 -0
- mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
- mteb/tasks/retrieval/kor/__init__.py +15 -1
- mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py +142 -0
- mteb/tasks/retrieval/multilingual/__init__.py +2 -0
- mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py +43 -0
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +90 -100
- mteb/tasks/retrieval/nob/norquad.py +2 -2
- mteb/tasks/retrieval/nob/snl_retrieval.py +2 -2
- mteb/tasks/retrieval/tur/tur_hist_quad.py +1 -1
- mteb/tasks/retrieval/vie/__init__.py +14 -6
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +48 -0
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/tvpl_retrieval.py +42 -0
- mteb/tasks/retrieval/vie/zac_legal_text_retrieval.py +15 -1
- mteb/types/__init__.py +2 -0
- mteb/types/_encoder_io.py +12 -0
- mteb/types/_result.py +2 -1
- mteb/types/statistics.py +9 -3
- {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/METADATA +15 -4
- {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/RECORD +240 -219
- mteb/models/model_implementations/mxbai_models.py +0 -111
- {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/WHEEL +0 -0
- {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/entry_points.txt +0 -0
- {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,332 @@
|
|
|
1
|
+
from mteb.models.model_implementations.pylate_models import MultiVectorModel
|
|
2
|
+
from mteb.models.model_meta import (
|
|
3
|
+
ModelMeta,
|
|
4
|
+
ScoringFunction,
|
|
5
|
+
)
|
|
6
|
+
from mteb.models.sentence_transformer_wrapper import (
|
|
7
|
+
CrossEncoderWrapper,
|
|
8
|
+
sentence_transformers_loader,
|
|
9
|
+
)
|
|
10
|
+
|
|
11
|
+
mixedbread_training_data = {
|
|
12
|
+
# from correspondence:
|
|
13
|
+
# as mentioned in our blog post
|
|
14
|
+
# (https://www.mixedbread.com/blog/mxbai-embed-large-v1#built-for-rag-and-real-world-use-cases:~:text=During%20the%20whole,related%20use%20cases.)
|
|
15
|
+
# We do not train on any data (except the MSMarco training split) of MTEB. We have a strong filtering process to ensure the OOD setting. That's true
|
|
16
|
+
# for all of our models. Keep up the good work and let me know if you have any questions.
|
|
17
|
+
"MSMARCO",
|
|
18
|
+
}
|
|
19
|
+
|
|
20
|
+
mxbai_embed_large_v1 = ModelMeta(
|
|
21
|
+
loader=sentence_transformers_loader,
|
|
22
|
+
loader_kwargs=dict(
|
|
23
|
+
model_prompts={
|
|
24
|
+
"query": "Represent this sentence for searching relevant passages: "
|
|
25
|
+
},
|
|
26
|
+
),
|
|
27
|
+
name="mixedbread-ai/mxbai-embed-large-v1",
|
|
28
|
+
model_type=["dense"],
|
|
29
|
+
languages=["eng-Latn"],
|
|
30
|
+
open_weights=True,
|
|
31
|
+
revision="990580e27d329c7408b3741ecff85876e128e203",
|
|
32
|
+
release_date="2024-03-07", # initial commit of hf model.
|
|
33
|
+
n_parameters=335_000_000,
|
|
34
|
+
memory_usage_mb=639,
|
|
35
|
+
max_tokens=512,
|
|
36
|
+
embed_dim=1024,
|
|
37
|
+
license="apache-2.0",
|
|
38
|
+
reference="https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1",
|
|
39
|
+
similarity_fn_name=ScoringFunction.COSINE,
|
|
40
|
+
framework=[
|
|
41
|
+
"Sentence Transformers",
|
|
42
|
+
"PyTorch",
|
|
43
|
+
"ONNX",
|
|
44
|
+
"safetensors",
|
|
45
|
+
"GGUF",
|
|
46
|
+
"Transformers",
|
|
47
|
+
],
|
|
48
|
+
use_instructions=True,
|
|
49
|
+
citation="""
|
|
50
|
+
@online{emb2024mxbai,
|
|
51
|
+
title={Open Source Strikes Bread - New Fluffy Embeddings Model},
|
|
52
|
+
author={Sean Lee and Aamir Shakir and Darius Koenig and Julius Lipp},
|
|
53
|
+
year={2024},
|
|
54
|
+
url={https://www.mixedbread.ai/blog/mxbai-embed-large-v1},
|
|
55
|
+
}
|
|
56
|
+
|
|
57
|
+
@article{li2023angle,
|
|
58
|
+
title={AnglE-optimized Text Embeddings},
|
|
59
|
+
author={Li, Xianming and Li, Jing},
|
|
60
|
+
journal={arXiv preprint arXiv:2309.12871},
|
|
61
|
+
year={2023}
|
|
62
|
+
}
|
|
63
|
+
""",
|
|
64
|
+
public_training_code=None,
|
|
65
|
+
public_training_data=None,
|
|
66
|
+
training_datasets=mixedbread_training_data,
|
|
67
|
+
)
|
|
68
|
+
|
|
69
|
+
mxbai_embed_2d_large_v1 = ModelMeta(
|
|
70
|
+
loader=sentence_transformers_loader,
|
|
71
|
+
name="mixedbread-ai/mxbai-embed-2d-large-v1",
|
|
72
|
+
model_type=["dense"],
|
|
73
|
+
languages=["eng-Latn"],
|
|
74
|
+
open_weights=True,
|
|
75
|
+
revision="7e639ca8e344af398876ead3b19ec3c0b9068f49",
|
|
76
|
+
release_date="2024-03-04", # initial commit of hf model.
|
|
77
|
+
n_parameters=335_000_000,
|
|
78
|
+
memory_usage_mb=None,
|
|
79
|
+
max_tokens=512,
|
|
80
|
+
embed_dim=768,
|
|
81
|
+
license="apache-2.0",
|
|
82
|
+
reference="https://huggingface.co/mixedbread-ai/mxbai-embed-2d-large-v1",
|
|
83
|
+
similarity_fn_name=ScoringFunction.COSINE,
|
|
84
|
+
framework=[
|
|
85
|
+
"Sentence Transformers",
|
|
86
|
+
"PyTorch",
|
|
87
|
+
"ONNX",
|
|
88
|
+
"safetensors",
|
|
89
|
+
"Transformers",
|
|
90
|
+
],
|
|
91
|
+
use_instructions=True,
|
|
92
|
+
adapted_from=None,
|
|
93
|
+
superseded_by=None,
|
|
94
|
+
public_training_code=None,
|
|
95
|
+
public_training_data=None,
|
|
96
|
+
training_datasets=None,
|
|
97
|
+
)
|
|
98
|
+
|
|
99
|
+
|
|
100
|
+
mxbai_embed_xsmall_v1 = ModelMeta(
|
|
101
|
+
loader=sentence_transformers_loader,
|
|
102
|
+
name="mixedbread-ai/mxbai-embed-xsmall-v1",
|
|
103
|
+
model_type=["dense"],
|
|
104
|
+
languages=["eng-Latn"],
|
|
105
|
+
open_weights=True,
|
|
106
|
+
revision="2f741ec33328bb57e4704e1238fc59a4a5745705",
|
|
107
|
+
release_date="2024-08-13", # initial commit of hf model.
|
|
108
|
+
n_parameters=24_100_000,
|
|
109
|
+
memory_usage_mb=None,
|
|
110
|
+
max_tokens=512,
|
|
111
|
+
embed_dim=384,
|
|
112
|
+
license="apache-2.0",
|
|
113
|
+
reference="https://huggingface.co/mixedbread-ai/mxbai-embed-xsmall-v1",
|
|
114
|
+
similarity_fn_name=ScoringFunction.COSINE,
|
|
115
|
+
framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors", "GGUF"],
|
|
116
|
+
use_instructions=True,
|
|
117
|
+
adapted_from="sentence-transformers/all-MiniLM-L6-v2",
|
|
118
|
+
superseded_by=None,
|
|
119
|
+
public_training_code=None,
|
|
120
|
+
public_training_data=None,
|
|
121
|
+
training_datasets=mixedbread_training_data,
|
|
122
|
+
citation="""@online{xsmall2024mxbai,
|
|
123
|
+
title={Every Byte Matters: Introducing mxbai-embed-xsmall-v1},
|
|
124
|
+
author={Sean Lee and Julius Lipp and Rui Huang and Darius Koenig},
|
|
125
|
+
year={2024},
|
|
126
|
+
url={https://www.mixedbread.ai/blog/mxbai-embed-xsmall-v1},
|
|
127
|
+
}""",
|
|
128
|
+
)
|
|
129
|
+
|
|
130
|
+
mxbai_rerank_xsmall_v1 = ModelMeta(
|
|
131
|
+
loader=CrossEncoderWrapper,
|
|
132
|
+
name="mixedbread-ai/mxbai-rerank-xsmall-v1",
|
|
133
|
+
revision="b5c6e9da73abc3711f593f705371cdbe9e0fe422",
|
|
134
|
+
release_date="2024-02-29",
|
|
135
|
+
languages=["eng-Latn"],
|
|
136
|
+
n_parameters=70830337,
|
|
137
|
+
memory_usage_mb=135.0,
|
|
138
|
+
max_tokens=512,
|
|
139
|
+
embed_dim=None,
|
|
140
|
+
license="apache-2.0",
|
|
141
|
+
open_weights=True,
|
|
142
|
+
public_training_code=None,
|
|
143
|
+
public_training_data=None,
|
|
144
|
+
framework=[
|
|
145
|
+
"PyTorch",
|
|
146
|
+
"Sentence Transformers",
|
|
147
|
+
"Transformers",
|
|
148
|
+
"ONNX",
|
|
149
|
+
"safetensors",
|
|
150
|
+
],
|
|
151
|
+
reference="https://huggingface.co/mixedbread-ai/mxbai-rerank-xsmall-v1",
|
|
152
|
+
similarity_fn_name=None,
|
|
153
|
+
use_instructions=None,
|
|
154
|
+
training_datasets=None,
|
|
155
|
+
adapted_from=None,
|
|
156
|
+
superseded_by=None,
|
|
157
|
+
modalities=["text"],
|
|
158
|
+
model_type=["cross-encoder"],
|
|
159
|
+
citation="""@online{rerank2024mxbai,
|
|
160
|
+
title={Boost Your Search With The Crispy Mixedbread Rerank Models},
|
|
161
|
+
author={Aamir Shakir and Darius Koenig and Julius Lipp and Sean Lee},
|
|
162
|
+
year={2024},
|
|
163
|
+
url={https://www.mixedbread.ai/blog/mxbai-rerank-v1},
|
|
164
|
+
}""",
|
|
165
|
+
contacts=None,
|
|
166
|
+
)
|
|
167
|
+
|
|
168
|
+
mxbai_rerank_base_v1 = ModelMeta(
|
|
169
|
+
loader=CrossEncoderWrapper,
|
|
170
|
+
name="mixedbread-ai/mxbai-rerank-base-v1",
|
|
171
|
+
revision="800f24c113213a187e65bde9db00c15a2bb12738",
|
|
172
|
+
release_date="2024-02-29",
|
|
173
|
+
languages=["eng-Latn"],
|
|
174
|
+
n_parameters=184422913,
|
|
175
|
+
memory_usage_mb=352.0,
|
|
176
|
+
max_tokens=512,
|
|
177
|
+
embed_dim=None,
|
|
178
|
+
license="apache-2.0",
|
|
179
|
+
open_weights=True,
|
|
180
|
+
public_training_code=None,
|
|
181
|
+
public_training_data=None,
|
|
182
|
+
framework=[
|
|
183
|
+
"PyTorch",
|
|
184
|
+
"Sentence Transformers",
|
|
185
|
+
"Transformers",
|
|
186
|
+
"ONNX",
|
|
187
|
+
"safetensors",
|
|
188
|
+
],
|
|
189
|
+
reference="https://huggingface.co/mixedbread-ai/mxbai-rerank-base-v1",
|
|
190
|
+
similarity_fn_name=None,
|
|
191
|
+
use_instructions=None,
|
|
192
|
+
training_datasets=None,
|
|
193
|
+
adapted_from=None,
|
|
194
|
+
superseded_by=None,
|
|
195
|
+
modalities=["text"],
|
|
196
|
+
model_type=["cross-encoder"],
|
|
197
|
+
citation="""@online{rerank2024mxbai,
|
|
198
|
+
title={Boost Your Search With The Crispy Mixedbread Rerank Models},
|
|
199
|
+
author={Aamir Shakir and Darius Koenig and Julius Lipp and Sean Lee},
|
|
200
|
+
year={2024},
|
|
201
|
+
url={https://www.mixedbread.ai/blog/mxbai-rerank-v1},
|
|
202
|
+
}""",
|
|
203
|
+
contacts=None,
|
|
204
|
+
)
|
|
205
|
+
|
|
206
|
+
mxbai_rerank_large_v1 = ModelMeta(
|
|
207
|
+
loader=CrossEncoderWrapper,
|
|
208
|
+
name="mixedbread-ai/mxbai-rerank-large-v1",
|
|
209
|
+
revision="98f655841d5caf0b16eaff79c2b4ca109d920d17",
|
|
210
|
+
release_date="2024-02-29",
|
|
211
|
+
languages=["eng-Latn"],
|
|
212
|
+
n_parameters=435062785,
|
|
213
|
+
memory_usage_mb=830.0,
|
|
214
|
+
max_tokens=512,
|
|
215
|
+
embed_dim=None,
|
|
216
|
+
license="apache-2.0",
|
|
217
|
+
open_weights=True,
|
|
218
|
+
public_training_code=None,
|
|
219
|
+
public_training_data=None,
|
|
220
|
+
framework=[
|
|
221
|
+
"PyTorch",
|
|
222
|
+
"Sentence Transformers",
|
|
223
|
+
"Transformers",
|
|
224
|
+
"ONNX",
|
|
225
|
+
"safetensors",
|
|
226
|
+
],
|
|
227
|
+
reference="https://huggingface.co/mixedbread-ai/mxbai-rerank-large-v1",
|
|
228
|
+
similarity_fn_name=None,
|
|
229
|
+
use_instructions=None,
|
|
230
|
+
training_datasets=None,
|
|
231
|
+
adapted_from=None,
|
|
232
|
+
superseded_by=None,
|
|
233
|
+
modalities=["text"],
|
|
234
|
+
model_type=["cross-encoder"],
|
|
235
|
+
citation="""@online{rerank2024mxbai,
|
|
236
|
+
title={Boost Your Search With The Crispy Mixedbread Rerank Models},
|
|
237
|
+
author={Aamir Shakir and Darius Koenig and Julius Lipp and Sean Lee},
|
|
238
|
+
year={2024},
|
|
239
|
+
url={https://www.mixedbread.ai/blog/mxbai-rerank-v1},
|
|
240
|
+
}""",
|
|
241
|
+
contacts=None,
|
|
242
|
+
)
|
|
243
|
+
|
|
244
|
+
mxbai_edge_colbert_v0_17m = ModelMeta(
|
|
245
|
+
loader=MultiVectorModel,
|
|
246
|
+
name="mixedbread-ai/mxbai-edge-colbert-v0-17m",
|
|
247
|
+
model_type=["late-interaction"],
|
|
248
|
+
languages=["eng-Latn"],
|
|
249
|
+
open_weights=True,
|
|
250
|
+
revision="23ae07f5bf028bc0d1f80c82e6e2dd2311f13a46",
|
|
251
|
+
public_training_code=None,
|
|
252
|
+
public_training_data=None,
|
|
253
|
+
release_date="2025-10-16",
|
|
254
|
+
n_parameters=int(17 * 1e6),
|
|
255
|
+
memory_usage_mb=64,
|
|
256
|
+
max_tokens=7999,
|
|
257
|
+
embed_dim=None,
|
|
258
|
+
license="apache-2.0",
|
|
259
|
+
similarity_fn_name=ScoringFunction.MAX_SIM,
|
|
260
|
+
framework=["PyLate", "ColBERT", "Transformers", "safetensors"],
|
|
261
|
+
reference="https://huggingface.co/mixedbread-ai/mxbai-edge-colbert-v0-17m",
|
|
262
|
+
use_instructions=False,
|
|
263
|
+
adapted_from="https://huggingface.co/jhu-clsp/ettin-encoder-17m",
|
|
264
|
+
superseded_by=None,
|
|
265
|
+
training_datasets={
|
|
266
|
+
"CornStack",
|
|
267
|
+
"MSMARCO",
|
|
268
|
+
"NQ",
|
|
269
|
+
"HotpotQA",
|
|
270
|
+
"AmazonQA",
|
|
271
|
+
"LoTTE",
|
|
272
|
+
"MultiLongDocRetrieval",
|
|
273
|
+
# "FineWeb",
|
|
274
|
+
# "PubMedQA",
|
|
275
|
+
# "TriviaQA",
|
|
276
|
+
},
|
|
277
|
+
citation="""@misc{takehi2025fantasticsmallretrieverstrain,
|
|
278
|
+
title={Fantastic (small) Retrievers and How to Train Them: mxbai-edge-colbert-v0 Tech Report},
|
|
279
|
+
author={Rikiya Takehi and Benjamin Clavié and Sean Lee and Aamir Shakir},
|
|
280
|
+
year={2025},
|
|
281
|
+
eprint={2510.14880},
|
|
282
|
+
archivePrefix={arXiv},
|
|
283
|
+
primaryClass={cs.IR},
|
|
284
|
+
url={https://arxiv.org/abs/2510.14880},
|
|
285
|
+
}""",
|
|
286
|
+
contacts=None,
|
|
287
|
+
)
|
|
288
|
+
|
|
289
|
+
mxbai_edge_colbert_v0_32m = ModelMeta(
|
|
290
|
+
loader=MultiVectorModel,
|
|
291
|
+
name="mixedbread-ai/mxbai-edge-colbert-v0-32m",
|
|
292
|
+
model_type=["late-interaction"],
|
|
293
|
+
languages=["eng-Latn"],
|
|
294
|
+
open_weights=True,
|
|
295
|
+
revision="2f12870a85dae80680b9babc59992c9a2bc59e4a",
|
|
296
|
+
public_training_code=None,
|
|
297
|
+
public_training_data=None,
|
|
298
|
+
release_date="2025-10-16",
|
|
299
|
+
n_parameters=int(32 * 1e6),
|
|
300
|
+
memory_usage_mb=122,
|
|
301
|
+
max_tokens=511,
|
|
302
|
+
embed_dim=None,
|
|
303
|
+
license="apache-2.0",
|
|
304
|
+
similarity_fn_name=ScoringFunction.MAX_SIM,
|
|
305
|
+
framework=["PyLate", "ColBERT", "Transformers", "safetensors"],
|
|
306
|
+
reference="https://huggingface.co/mixedbread-ai/mxbai-edge-colbert-v0-32m",
|
|
307
|
+
use_instructions=False,
|
|
308
|
+
adapted_from="https://huggingface.co/jhu-clsp/ettin-encoder-32m",
|
|
309
|
+
superseded_by=None,
|
|
310
|
+
training_datasets={
|
|
311
|
+
"CornStack",
|
|
312
|
+
"MSMARCO",
|
|
313
|
+
"NQ",
|
|
314
|
+
"HotpotQA",
|
|
315
|
+
"AmazonQA",
|
|
316
|
+
"LoTTE",
|
|
317
|
+
"MultiLongDocRetrieval",
|
|
318
|
+
# "FineWeb",
|
|
319
|
+
# "PubMedQA",
|
|
320
|
+
# "TriviaQA",
|
|
321
|
+
},
|
|
322
|
+
citation="""@misc{takehi2025fantasticsmallretrieverstrain,
|
|
323
|
+
title={Fantastic (small) Retrievers and How to Train Them: mxbai-edge-colbert-v0 Tech Report},
|
|
324
|
+
author={Rikiya Takehi and Benjamin Clavié and Sean Lee and Aamir Shakir},
|
|
325
|
+
year={2025},
|
|
326
|
+
eprint={2510.14880},
|
|
327
|
+
archivePrefix={arXiv},
|
|
328
|
+
primaryClass={cs.IR},
|
|
329
|
+
url={https://arxiv.org/abs/2510.14880},
|
|
330
|
+
}""",
|
|
331
|
+
contacts=None,
|
|
332
|
+
)
|
|
@@ -25,7 +25,7 @@ mme5_mllama = ModelMeta(
|
|
|
25
25
|
open_weights=True,
|
|
26
26
|
public_training_code=None,
|
|
27
27
|
public_training_data="https://huggingface.co/datasets/intfloat/mmE5-MMEB-hardneg, https://huggingface.co/datasets/intfloat/mmE5-synthetic",
|
|
28
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
28
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
29
29
|
reference="https://huggingface.co/intfloat/mmE5-mllama-11b-instruct",
|
|
30
30
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
31
31
|
use_instructions=True,
|
|
@@ -117,7 +117,7 @@ mocov3_training_datasets = set(
|
|
|
117
117
|
)
|
|
118
118
|
|
|
119
119
|
mocov3_vit_base = ModelMeta(
|
|
120
|
-
loader=mocov3_loader,
|
|
120
|
+
loader=mocov3_loader,
|
|
121
121
|
name="nyu-visionx/moco-v3-vit-b",
|
|
122
122
|
model_type=["dense"],
|
|
123
123
|
languages=["eng-Latn"],
|
|
@@ -132,7 +132,7 @@ mocov3_vit_base = ModelMeta(
|
|
|
132
132
|
open_weights=True,
|
|
133
133
|
public_training_code="https://github.com/facebookresearch/moco-v3",
|
|
134
134
|
public_training_data=None,
|
|
135
|
-
framework=["PyTorch"],
|
|
135
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
136
136
|
reference="https://github.com/facebookresearch/moco-v3",
|
|
137
137
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
138
138
|
use_instructions=False,
|
|
@@ -141,7 +141,7 @@ mocov3_vit_base = ModelMeta(
|
|
|
141
141
|
)
|
|
142
142
|
|
|
143
143
|
mocov3_vit_large = ModelMeta(
|
|
144
|
-
loader=mocov3_loader,
|
|
144
|
+
loader=mocov3_loader,
|
|
145
145
|
name="nyu-visionx/moco-v3-vit-l",
|
|
146
146
|
model_type=["dense"],
|
|
147
147
|
languages=["eng-Latn"],
|
|
@@ -156,7 +156,7 @@ mocov3_vit_large = ModelMeta(
|
|
|
156
156
|
open_weights=True,
|
|
157
157
|
public_training_code="https://github.com/facebookresearch/moco-v3",
|
|
158
158
|
public_training_data=None,
|
|
159
|
-
framework=["PyTorch"],
|
|
159
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
160
160
|
reference="https://github.com/facebookresearch/moco-v3",
|
|
161
161
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
162
162
|
use_instructions=False,
|
|
@@ -181,7 +181,7 @@ MoD_Embedding = ModelMeta(
|
|
|
181
181
|
license="apache-2.0",
|
|
182
182
|
reference="https://huggingface.co/bflhc/MoD-Embedding",
|
|
183
183
|
similarity_fn_name="cosine",
|
|
184
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
184
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
185
185
|
use_instructions=True,
|
|
186
186
|
public_training_code=None,
|
|
187
187
|
public_training_data=None,
|
|
@@ -139,7 +139,7 @@ class Model2VecModel(AbsEncoder):
|
|
|
139
139
|
**kwargs: Additional arguments to pass to the wrapper.
|
|
140
140
|
"""
|
|
141
141
|
requires_package(self, "model2vec", model_name, "pip install 'mteb[model2vec]'")
|
|
142
|
-
from model2vec import StaticModel
|
|
142
|
+
from model2vec import StaticModel
|
|
143
143
|
|
|
144
144
|
self.model_name = model_name
|
|
145
145
|
self.model = StaticModel.from_pretrained(self.model_name)
|
|
@@ -172,7 +172,7 @@ m2v_base_glove_subword = ModelMeta(
|
|
|
172
172
|
embed_dim=256,
|
|
173
173
|
license="mit",
|
|
174
174
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
175
|
-
framework=["NumPy", "Sentence Transformers"],
|
|
175
|
+
framework=["NumPy", "Sentence Transformers", "ONNX", "safetensors"],
|
|
176
176
|
reference="https://huggingface.co/minishlab/M2V_base_glove_subword",
|
|
177
177
|
use_instructions=False,
|
|
178
178
|
adapted_from="BAAI/bge-base-en-v1.5",
|
|
@@ -198,7 +198,7 @@ m2v_base_glove = ModelMeta(
|
|
|
198
198
|
embed_dim=256,
|
|
199
199
|
license="mit",
|
|
200
200
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
201
|
-
framework=["NumPy", "Sentence Transformers"],
|
|
201
|
+
framework=["NumPy", "Sentence Transformers", "safetensors"],
|
|
202
202
|
reference="https://huggingface.co/minishlab/M2V_base_glove",
|
|
203
203
|
use_instructions=False,
|
|
204
204
|
adapted_from="BAAI/bge-base-en-v1.5",
|
|
@@ -223,7 +223,7 @@ m2v_base_output = ModelMeta(
|
|
|
223
223
|
embed_dim=256,
|
|
224
224
|
license="mit",
|
|
225
225
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
226
|
-
framework=["NumPy", "Sentence Transformers"],
|
|
226
|
+
framework=["NumPy", "Sentence Transformers", "ONNX", "safetensors"],
|
|
227
227
|
reference="https://huggingface.co/minishlab/M2V_base_output",
|
|
228
228
|
use_instructions=False,
|
|
229
229
|
adapted_from="BAAI/bge-base-en-v1.5",
|
|
@@ -248,7 +248,7 @@ m2v_multilingual_output = ModelMeta(
|
|
|
248
248
|
embed_dim=256,
|
|
249
249
|
license="mit",
|
|
250
250
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
251
|
-
framework=["NumPy", "Sentence Transformers"],
|
|
251
|
+
framework=["NumPy", "Sentence Transformers", "ONNX", "safetensors"],
|
|
252
252
|
reference="https://huggingface.co/minishlab/M2V_multilingual_output",
|
|
253
253
|
use_instructions=False,
|
|
254
254
|
adapted_from="sentence-transformers/LaBSE",
|
|
@@ -273,7 +273,7 @@ potion_base_2m = ModelMeta(
|
|
|
273
273
|
embed_dim=64,
|
|
274
274
|
license="mit",
|
|
275
275
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
276
|
-
framework=["NumPy", "Sentence Transformers"],
|
|
276
|
+
framework=["NumPy", "Sentence Transformers", "ONNX", "safetensors"],
|
|
277
277
|
reference="https://huggingface.co/minishlab/potion-base-2M",
|
|
278
278
|
use_instructions=False,
|
|
279
279
|
adapted_from="BAAI/bge-base-en-v1.5",
|
|
@@ -298,7 +298,7 @@ potion_base_4m = ModelMeta(
|
|
|
298
298
|
embed_dim=128,
|
|
299
299
|
license="mit",
|
|
300
300
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
301
|
-
framework=["NumPy", "Sentence Transformers"],
|
|
301
|
+
framework=["NumPy", "Sentence Transformers", "ONNX", "safetensors"],
|
|
302
302
|
reference="https://huggingface.co/minishlab/potion-base-4M",
|
|
303
303
|
use_instructions=False,
|
|
304
304
|
adapted_from="BAAI/bge-base-en-v1.5",
|
|
@@ -323,7 +323,7 @@ potion_base_8m = ModelMeta(
|
|
|
323
323
|
embed_dim=256,
|
|
324
324
|
license="mit",
|
|
325
325
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
326
|
-
framework=["NumPy", "Sentence Transformers"],
|
|
326
|
+
framework=["NumPy", "Sentence Transformers", "ONNX", "safetensors"],
|
|
327
327
|
reference="https://huggingface.co/minishlab/potion-base-8M",
|
|
328
328
|
use_instructions=False,
|
|
329
329
|
adapted_from="BAAI/bge-base-en-v1.5",
|
|
@@ -348,7 +348,7 @@ potion_multilingual_128m = ModelMeta(
|
|
|
348
348
|
embed_dim=256,
|
|
349
349
|
license="mit",
|
|
350
350
|
similarity_fn_name="cosine",
|
|
351
|
-
framework=["NumPy"],
|
|
351
|
+
framework=["NumPy", "ONNX", "safetensors", "Sentence Transformers"],
|
|
352
352
|
reference="https://huggingface.co/minishlab/potion-multilingual-128M",
|
|
353
353
|
use_instructions=False,
|
|
354
354
|
adapted_from="BAAI/bge-m3",
|
|
@@ -373,7 +373,7 @@ pubmed_bert_100k = ModelMeta(
|
|
|
373
373
|
embed_dim=64,
|
|
374
374
|
license="apache-2.0",
|
|
375
375
|
similarity_fn_name="cosine",
|
|
376
|
-
framework=["NumPy"],
|
|
376
|
+
framework=["NumPy", "Sentence Transformers", "safetensors", "Transformers"],
|
|
377
377
|
reference="https://huggingface.co/NeuML/pubmedbert-base-embeddings-100K",
|
|
378
378
|
use_instructions=False,
|
|
379
379
|
adapted_from="NeuML/pubmedbert-base-embeddings",
|
|
@@ -397,7 +397,7 @@ pubmed_bert_500k = ModelMeta(
|
|
|
397
397
|
embed_dim=64,
|
|
398
398
|
license="apache-2.0",
|
|
399
399
|
similarity_fn_name="cosine",
|
|
400
|
-
framework=["NumPy"],
|
|
400
|
+
framework=["NumPy", "Sentence Transformers", "safetensors", "Transformers"],
|
|
401
401
|
reference="https://huggingface.co/NeuML/pubmedbert-base-embeddings-500K",
|
|
402
402
|
use_instructions=False,
|
|
403
403
|
adapted_from="NeuML/pubmedbert-base-embeddings",
|
|
@@ -421,7 +421,7 @@ pubmed_bert_1m = ModelMeta(
|
|
|
421
421
|
embed_dim=64,
|
|
422
422
|
license="apache-2.0",
|
|
423
423
|
similarity_fn_name="cosine",
|
|
424
|
-
framework=["NumPy"],
|
|
424
|
+
framework=["NumPy", "Sentence Transformers", "safetensors", "Transformers"],
|
|
425
425
|
reference="https://huggingface.co/NeuML/pubmedbert-base-embeddings-1M",
|
|
426
426
|
use_instructions=False,
|
|
427
427
|
adapted_from="NeuML/pubmedbert-base-embeddings",
|
|
@@ -445,7 +445,7 @@ pubmed_bert_2m = ModelMeta(
|
|
|
445
445
|
embed_dim=64,
|
|
446
446
|
license="apache-2.0",
|
|
447
447
|
similarity_fn_name="cosine",
|
|
448
|
-
framework=["NumPy"],
|
|
448
|
+
framework=["NumPy", "Sentence Transformers", "safetensors", "Transformers"],
|
|
449
449
|
reference="https://huggingface.co/NeuML/pubmedbert-base-embeddings-2M",
|
|
450
450
|
use_instructions=False,
|
|
451
451
|
adapted_from="NeuML/pubmedbert-base-embeddings",
|
|
@@ -469,7 +469,7 @@ pubmed_bert_8m = ModelMeta(
|
|
|
469
469
|
embed_dim=256,
|
|
470
470
|
license="apache-2.0",
|
|
471
471
|
similarity_fn_name="cosine",
|
|
472
|
-
framework=["NumPy"],
|
|
472
|
+
framework=["NumPy", "Sentence Transformers", "safetensors", "Transformers"],
|
|
473
473
|
reference="https://huggingface.co/NeuML/pubmedbert-base-embeddings-8M",
|
|
474
474
|
use_instructions=False,
|
|
475
475
|
adapted_from="NeuML/pubmedbert-base-embeddings",
|
|
@@ -104,7 +104,7 @@ m3e_base = ModelMeta(
|
|
|
104
104
|
max_tokens=512,
|
|
105
105
|
reference="https://huggingface.co/moka-ai/m3e-base",
|
|
106
106
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
107
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
107
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
108
108
|
use_instructions=False,
|
|
109
109
|
superseded_by=None,
|
|
110
110
|
adapted_from=None,
|
|
@@ -18,7 +18,7 @@ nb_sbert = ModelMeta(
|
|
|
18
18
|
max_tokens=75,
|
|
19
19
|
reference="https://huggingface.co/NbAiLab/nb-sbert-base",
|
|
20
20
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
21
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
21
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
22
22
|
use_instructions=False,
|
|
23
23
|
public_training_code=None,
|
|
24
24
|
public_training_data="https://huggingface.co/datasets/NbAiLab/mnli-norwegian",
|
|
@@ -40,7 +40,7 @@ nb_bert_large = ModelMeta(
|
|
|
40
40
|
max_tokens=512,
|
|
41
41
|
reference="https://huggingface.co/NbAiLab/nb-bert-large",
|
|
42
42
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
43
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
43
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
44
44
|
use_instructions=False,
|
|
45
45
|
public_training_code=None,
|
|
46
46
|
public_training_data="https://huggingface.co/NbAiLab/nb-bert-large#training-data",
|
|
@@ -62,7 +62,7 @@ nb_bert_base = ModelMeta(
|
|
|
62
62
|
max_tokens=512,
|
|
63
63
|
reference="https://huggingface.co/NbAiLab/nb-bert-base",
|
|
64
64
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
65
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
65
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
66
66
|
use_instructions=False,
|
|
67
67
|
public_training_code=None,
|
|
68
68
|
public_training_data="https://huggingface.co/NbAiLab/nb-bert-base#training-data",
|
|
@@ -30,13 +30,13 @@ class NoInstructModel(AbsEncoder):
|
|
|
30
30
|
self,
|
|
31
31
|
model_name: str,
|
|
32
32
|
revision: str,
|
|
33
|
+
device: str | None = None,
|
|
33
34
|
model_prompts: dict[str, str] | None = None,
|
|
34
35
|
**kwargs: Any,
|
|
35
36
|
):
|
|
36
37
|
from transformers import AutoModel, AutoTokenizer
|
|
37
38
|
|
|
38
39
|
self.model_name = model_name
|
|
39
|
-
device = kwargs.pop("device", None)
|
|
40
40
|
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
|
|
41
41
|
self.model = AutoModel.from_pretrained(
|
|
42
42
|
model_name, revision=revision, **kwargs
|
|
@@ -109,7 +109,7 @@ no_instruct_small_v0 = ModelMeta(
|
|
|
109
109
|
license="mit",
|
|
110
110
|
reference="https://huggingface.co/avsolatorio/NoInstruct-small-Embedding-v0",
|
|
111
111
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
112
|
-
framework=["PyTorch"],
|
|
112
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors", "Transformers"],
|
|
113
113
|
use_instructions=False,
|
|
114
114
|
adapted_from=None,
|
|
115
115
|
superseded_by=None,
|