mteb 2.5.2__py3-none-any.whl → 2.7.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (241) hide show
  1. mteb/__init__.py +2 -0
  2. mteb/_create_dataloaders.py +17 -18
  3. mteb/_evaluators/any_sts_evaluator.py +3 -3
  4. mteb/_evaluators/clustering_evaluator.py +2 -2
  5. mteb/_evaluators/evaluator.py +4 -2
  6. mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +10 -8
  7. mteb/_evaluators/pair_classification_evaluator.py +5 -3
  8. mteb/_evaluators/retrieval_evaluator.py +2 -2
  9. mteb/_evaluators/retrieval_metrics.py +18 -17
  10. mteb/_evaluators/sklearn_evaluator.py +11 -10
  11. mteb/_evaluators/text/bitext_mining_evaluator.py +27 -18
  12. mteb/_evaluators/text/summarization_evaluator.py +23 -18
  13. mteb/_evaluators/zeroshot_classification_evaluator.py +5 -3
  14. mteb/abstasks/_data_filter/filters.py +1 -1
  15. mteb/abstasks/_data_filter/task_pipelines.py +3 -0
  16. mteb/abstasks/_statistics_calculation.py +18 -10
  17. mteb/abstasks/_stratification.py +18 -18
  18. mteb/abstasks/abstask.py +35 -28
  19. mteb/abstasks/aggregate_task_metadata.py +1 -9
  20. mteb/abstasks/aggregated_task.py +10 -29
  21. mteb/abstasks/classification.py +15 -10
  22. mteb/abstasks/clustering.py +19 -15
  23. mteb/abstasks/clustering_legacy.py +10 -10
  24. mteb/abstasks/image/image_text_pair_classification.py +7 -4
  25. mteb/abstasks/multilabel_classification.py +23 -19
  26. mteb/abstasks/pair_classification.py +20 -11
  27. mteb/abstasks/regression.py +4 -4
  28. mteb/abstasks/retrieval.py +28 -24
  29. mteb/abstasks/retrieval_dataset_loaders.py +2 -2
  30. mteb/abstasks/sts.py +8 -5
  31. mteb/abstasks/task_metadata.py +31 -33
  32. mteb/abstasks/text/bitext_mining.py +39 -28
  33. mteb/abstasks/text/reranking.py +8 -6
  34. mteb/abstasks/text/summarization.py +10 -5
  35. mteb/abstasks/zeroshot_classification.py +8 -4
  36. mteb/benchmarks/benchmark.py +4 -2
  37. mteb/benchmarks/benchmarks/__init__.py +4 -0
  38. mteb/benchmarks/benchmarks/benchmarks.py +112 -11
  39. mteb/benchmarks/get_benchmark.py +14 -55
  40. mteb/cache.py +182 -29
  41. mteb/cli/_display_tasks.py +2 -2
  42. mteb/cli/build_cli.py +110 -14
  43. mteb/cli/generate_model_card.py +43 -23
  44. mteb/deprecated_evaluator.py +63 -49
  45. mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2CybersecurityRetrieval.json +32 -0
  46. mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EconomicRetrieval.json +32 -0
  47. mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EnergyRetrieval.json +32 -0
  48. mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2HrRetrieval.json +32 -0
  49. mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json +30 -0
  50. mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json +116 -0
  51. mteb/descriptive_stats/Retrieval/NanoClimateFEVER-VN.json +30 -0
  52. mteb/descriptive_stats/Retrieval/NanoDBPedia-VN.json +30 -0
  53. mteb/descriptive_stats/Retrieval/NanoFEVER-VN.json +30 -0
  54. mteb/descriptive_stats/Retrieval/NanoHotpotQA-VN.json +30 -0
  55. mteb/descriptive_stats/Retrieval/NanoMSMARCO-VN.json +30 -0
  56. mteb/descriptive_stats/Retrieval/NanoNQ-VN.json +30 -0
  57. mteb/descriptive_stats/Retrieval/TVPLRetrieval.json +30 -0
  58. mteb/evaluate.py +44 -33
  59. mteb/filter_tasks.py +25 -26
  60. mteb/get_tasks.py +29 -30
  61. mteb/languages/language_scripts.py +5 -3
  62. mteb/leaderboard/app.py +162 -34
  63. mteb/load_results.py +12 -12
  64. mteb/models/abs_encoder.py +10 -6
  65. mteb/models/cache_wrappers/cache_backend_protocol.py +3 -5
  66. mteb/models/cache_wrappers/cache_backends/_hash_utils.py +5 -4
  67. mteb/models/cache_wrappers/cache_backends/faiss_cache.py +6 -2
  68. mteb/models/cache_wrappers/cache_backends/numpy_cache.py +43 -25
  69. mteb/models/cache_wrappers/cache_wrapper.py +2 -2
  70. mteb/models/get_model_meta.py +21 -3
  71. mteb/models/instruct_wrapper.py +28 -8
  72. mteb/models/model_implementations/align_models.py +1 -1
  73. mteb/models/model_implementations/andersborges.py +4 -4
  74. mteb/models/model_implementations/ara_models.py +1 -1
  75. mteb/models/model_implementations/arctic_models.py +8 -8
  76. mteb/models/model_implementations/b1ade_models.py +1 -1
  77. mteb/models/model_implementations/bge_models.py +45 -21
  78. mteb/models/model_implementations/bica_model.py +3 -3
  79. mteb/models/model_implementations/blip2_models.py +2 -2
  80. mteb/models/model_implementations/blip_models.py +16 -16
  81. mteb/models/model_implementations/bm25.py +4 -4
  82. mteb/models/model_implementations/bmretriever_models.py +6 -4
  83. mteb/models/model_implementations/cadet_models.py +1 -1
  84. mteb/models/model_implementations/cde_models.py +11 -4
  85. mteb/models/model_implementations/clip_models.py +6 -6
  86. mteb/models/model_implementations/clips_models.py +3 -3
  87. mteb/models/model_implementations/codefuse_models.py +5 -5
  88. mteb/models/model_implementations/codesage_models.py +3 -3
  89. mteb/models/model_implementations/cohere_models.py +5 -5
  90. mteb/models/model_implementations/cohere_v.py +2 -2
  91. mteb/models/model_implementations/colpali_models.py +3 -3
  92. mteb/models/model_implementations/colqwen_models.py +8 -8
  93. mteb/models/model_implementations/colsmol_models.py +2 -2
  94. mteb/models/model_implementations/conan_models.py +1 -1
  95. mteb/models/model_implementations/dino_models.py +42 -42
  96. mteb/models/model_implementations/e5_instruct.py +23 -4
  97. mteb/models/model_implementations/e5_models.py +9 -9
  98. mteb/models/model_implementations/e5_v.py +6 -6
  99. mteb/models/model_implementations/eagerworks_models.py +1 -1
  100. mteb/models/model_implementations/emillykkejensen_models.py +6 -6
  101. mteb/models/model_implementations/en_code_retriever.py +1 -1
  102. mteb/models/model_implementations/euler_models.py +2 -2
  103. mteb/models/model_implementations/fa_models.py +9 -9
  104. mteb/models/model_implementations/facebookai.py +14 -2
  105. mteb/models/model_implementations/geogpt_models.py +1 -1
  106. mteb/models/model_implementations/gme_v_models.py +6 -5
  107. mteb/models/model_implementations/google_models.py +1 -1
  108. mteb/models/model_implementations/granite_vision_embedding_models.py +1 -1
  109. mteb/models/model_implementations/gritlm_models.py +2 -2
  110. mteb/models/model_implementations/gte_models.py +25 -13
  111. mteb/models/model_implementations/hinvec_models.py +1 -1
  112. mteb/models/model_implementations/ibm_granite_models.py +30 -6
  113. mteb/models/model_implementations/inf_models.py +2 -2
  114. mteb/models/model_implementations/jasper_models.py +2 -2
  115. mteb/models/model_implementations/jina_clip.py +48 -10
  116. mteb/models/model_implementations/jina_models.py +18 -11
  117. mteb/models/model_implementations/kblab.py +12 -6
  118. mteb/models/model_implementations/kennethenevoldsen_models.py +4 -4
  119. mteb/models/model_implementations/kfst.py +1 -1
  120. mteb/models/model_implementations/kowshik24_models.py +1 -1
  121. mteb/models/model_implementations/lgai_embedding_models.py +1 -1
  122. mteb/models/model_implementations/linq_models.py +1 -1
  123. mteb/models/model_implementations/listconranker.py +1 -1
  124. mteb/models/model_implementations/llm2clip_models.py +6 -6
  125. mteb/models/model_implementations/llm2vec_models.py +8 -8
  126. mteb/models/model_implementations/mcinext_models.py +4 -1
  127. mteb/models/model_implementations/mdbr_models.py +17 -3
  128. mteb/models/model_implementations/misc_models.py +68 -68
  129. mteb/models/model_implementations/mixedbread_ai_models.py +332 -0
  130. mteb/models/model_implementations/mme5_models.py +1 -1
  131. mteb/models/model_implementations/moco_models.py +4 -4
  132. mteb/models/model_implementations/mod_models.py +1 -1
  133. mteb/models/model_implementations/model2vec_models.py +14 -14
  134. mteb/models/model_implementations/moka_models.py +1 -1
  135. mteb/models/model_implementations/nbailab.py +3 -3
  136. mteb/models/model_implementations/no_instruct_sentence_models.py +2 -2
  137. mteb/models/model_implementations/nomic_models.py +30 -15
  138. mteb/models/model_implementations/nomic_models_vision.py +1 -1
  139. mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +15 -9
  140. mteb/models/model_implementations/nvidia_models.py +151 -19
  141. mteb/models/model_implementations/octen_models.py +61 -2
  142. mteb/models/model_implementations/openclip_models.py +13 -13
  143. mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -5
  144. mteb/models/model_implementations/ops_moa_models.py +1 -1
  145. mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -1
  146. mteb/models/model_implementations/pawan_models.py +1 -1
  147. mteb/models/model_implementations/piccolo_models.py +1 -1
  148. mteb/models/model_implementations/pixie_models.py +56 -0
  149. mteb/models/model_implementations/promptriever_models.py +4 -4
  150. mteb/models/model_implementations/pylate_models.py +10 -9
  151. mteb/models/model_implementations/qodo_models.py +2 -2
  152. mteb/models/model_implementations/qtack_models.py +1 -1
  153. mteb/models/model_implementations/qwen3_models.py +3 -3
  154. mteb/models/model_implementations/qzhou_models.py +2 -2
  155. mteb/models/model_implementations/random_baseline.py +3 -3
  156. mteb/models/model_implementations/rasgaard_models.py +2 -2
  157. mteb/models/model_implementations/reasonir_model.py +1 -1
  158. mteb/models/model_implementations/repllama_models.py +3 -3
  159. mteb/models/model_implementations/rerankers_custom.py +12 -6
  160. mteb/models/model_implementations/rerankers_monot5_based.py +17 -17
  161. mteb/models/model_implementations/richinfoai_models.py +1 -1
  162. mteb/models/model_implementations/ru_sentence_models.py +20 -20
  163. mteb/models/model_implementations/ruri_models.py +10 -10
  164. mteb/models/model_implementations/salesforce_models.py +3 -3
  165. mteb/models/model_implementations/samilpwc_models.py +1 -1
  166. mteb/models/model_implementations/sarashina_embedding_models.py +2 -2
  167. mteb/models/model_implementations/searchmap_models.py +1 -1
  168. mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +113 -146
  169. mteb/models/model_implementations/sentence_transformers_models.py +124 -22
  170. mteb/models/model_implementations/shuu_model.py +1 -1
  171. mteb/models/model_implementations/siglip_models.py +20 -20
  172. mteb/models/model_implementations/slm_models.py +416 -0
  173. mteb/models/model_implementations/spartan8806_atles_champion.py +1 -1
  174. mteb/models/model_implementations/stella_models.py +17 -4
  175. mteb/models/model_implementations/tarka_models.py +2 -2
  176. mteb/models/model_implementations/text2vec_models.py +9 -3
  177. mteb/models/model_implementations/ua_sentence_models.py +1 -1
  178. mteb/models/model_implementations/uae_models.py +7 -1
  179. mteb/models/model_implementations/vdr_models.py +1 -1
  180. mteb/models/model_implementations/vi_vn_models.py +6 -6
  181. mteb/models/model_implementations/vlm2vec_models.py +3 -3
  182. mteb/models/model_implementations/voyage_models.py +84 -0
  183. mteb/models/model_implementations/voyage_v.py +9 -7
  184. mteb/models/model_implementations/youtu_models.py +1 -1
  185. mteb/models/model_implementations/yuan_models.py +1 -1
  186. mteb/models/model_implementations/yuan_models_en.py +1 -1
  187. mteb/models/model_meta.py +80 -31
  188. mteb/models/models_protocols.py +22 -6
  189. mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +9 -6
  190. mteb/models/search_wrappers.py +33 -18
  191. mteb/models/sentence_transformer_wrapper.py +50 -25
  192. mteb/models/vllm_wrapper.py +327 -0
  193. mteb/py.typed +0 -0
  194. mteb/results/benchmark_results.py +29 -21
  195. mteb/results/model_result.py +52 -22
  196. mteb/results/task_result.py +80 -58
  197. mteb/similarity_functions.py +11 -7
  198. mteb/tasks/classification/dan/dk_hate_classification.py +1 -1
  199. mteb/tasks/classification/est/estonian_valence.py +1 -1
  200. mteb/tasks/classification/kur/kurdish_sentiment_classification.py +2 -2
  201. mteb/tasks/classification/multilingual/scala_classification.py +1 -1
  202. mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
  203. mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
  204. mteb/tasks/clustering/zho/cmteb_clustering.py +2 -2
  205. mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +1 -1
  206. mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
  207. mteb/tasks/retrieval/code/code_rag.py +12 -12
  208. mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
  209. mteb/tasks/retrieval/dan/tv2_nordretrieval.py +2 -2
  210. mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +2 -2
  211. mteb/tasks/retrieval/eng/__init__.py +2 -0
  212. mteb/tasks/retrieval/eng/chemrxiv.py +33 -0
  213. mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
  214. mteb/tasks/retrieval/kor/__init__.py +15 -1
  215. mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py +142 -0
  216. mteb/tasks/retrieval/multilingual/__init__.py +2 -0
  217. mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py +43 -0
  218. mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +90 -100
  219. mteb/tasks/retrieval/nob/norquad.py +2 -2
  220. mteb/tasks/retrieval/nob/snl_retrieval.py +2 -2
  221. mteb/tasks/retrieval/tur/tur_hist_quad.py +1 -1
  222. mteb/tasks/retrieval/vie/__init__.py +14 -6
  223. mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +39 -0
  224. mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +39 -0
  225. mteb/tasks/retrieval/vie/fevervn_retrieval.py +39 -0
  226. mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +39 -0
  227. mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +48 -0
  228. mteb/tasks/retrieval/vie/nqvn_retrieval.py +39 -0
  229. mteb/tasks/retrieval/vie/tvpl_retrieval.py +42 -0
  230. mteb/tasks/retrieval/vie/zac_legal_text_retrieval.py +15 -1
  231. mteb/types/__init__.py +2 -0
  232. mteb/types/_encoder_io.py +12 -0
  233. mteb/types/_result.py +2 -1
  234. mteb/types/statistics.py +9 -3
  235. {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/METADATA +15 -4
  236. {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/RECORD +240 -219
  237. mteb/models/model_implementations/mxbai_models.py +0 -111
  238. {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/WHEEL +0 -0
  239. {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/entry_points.txt +0 -0
  240. {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/licenses/LICENSE +0 -0
  241. {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/top_level.txt +0 -0
@@ -1,5 +1,7 @@
1
1
  """Implementation of Sentence Transformers model validated in MTEB."""
2
2
 
3
+ import numpy as np
4
+
3
5
  from mteb.models.model_meta import ModelMeta, ScoringFunction
4
6
  from mteb.models.sentence_transformer_wrapper import (
5
7
  SentenceTransformerEncoderWrapper,
@@ -125,7 +127,13 @@ all_minilm_l6_v2 = ModelMeta(
125
127
  max_tokens=256,
126
128
  reference="https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2",
127
129
  similarity_fn_name=ScoringFunction.COSINE,
128
- framework=["Sentence Transformers", "PyTorch"],
130
+ framework=[
131
+ "Sentence Transformers",
132
+ "PyTorch",
133
+ "ONNX",
134
+ "safetensors",
135
+ "Transformers",
136
+ ],
129
137
  use_instructions=False,
130
138
  superseded_by=None,
131
139
  adapted_from=None,
@@ -150,7 +158,13 @@ all_minilm_l12_v2 = ModelMeta(
150
158
  max_tokens=256,
151
159
  reference="https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2",
152
160
  similarity_fn_name=ScoringFunction.COSINE,
153
- framework=["Sentence Transformers", "PyTorch"],
161
+ framework=[
162
+ "Sentence Transformers",
163
+ "PyTorch",
164
+ "ONNX",
165
+ "safetensors",
166
+ "Transformers",
167
+ ],
154
168
  use_instructions=False,
155
169
  superseded_by=None,
156
170
  adapted_from=None,
@@ -175,7 +189,13 @@ paraphrase_multilingual_minilm_l12_v2 = ModelMeta(
175
189
  max_tokens=512,
176
190
  reference="https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
177
191
  similarity_fn_name=ScoringFunction.COSINE,
178
- framework=["Sentence Transformers", "PyTorch"],
192
+ framework=[
193
+ "Sentence Transformers",
194
+ "PyTorch",
195
+ "ONNX",
196
+ "safetensors",
197
+ "Transformers",
198
+ ],
179
199
  use_instructions=False,
180
200
  superseded_by=None,
181
201
  adapted_from=None,
@@ -200,7 +220,13 @@ paraphrase_multilingual_mpnet_base_v2 = ModelMeta(
200
220
  max_tokens=512,
201
221
  reference="https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
202
222
  similarity_fn_name=ScoringFunction.COSINE,
203
- framework=["Sentence Transformers", "PyTorch"],
223
+ framework=[
224
+ "Sentence Transformers",
225
+ "PyTorch",
226
+ "ONNX",
227
+ "safetensors",
228
+ "Transformers",
229
+ ],
204
230
  use_instructions=False,
205
231
  superseded_by=None,
206
232
  adapted_from=None,
@@ -236,7 +262,7 @@ labse = ModelMeta(
236
262
  max_tokens=512,
237
263
  reference="https://huggingface.co/sentence-transformers/LaBSE",
238
264
  similarity_fn_name=ScoringFunction.COSINE,
239
- framework=["Sentence Transformers", "PyTorch"],
265
+ framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
240
266
  use_instructions=False,
241
267
  superseded_by=None,
242
268
  adapted_from=None,
@@ -274,7 +300,13 @@ multi_qa_minilm_l6_cos_v1 = ModelMeta(
274
300
  max_tokens=512,
275
301
  reference="https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1",
276
302
  similarity_fn_name=ScoringFunction.COSINE,
277
- framework=["Sentence Transformers", "PyTorch"],
303
+ framework=[
304
+ "Sentence Transformers",
305
+ "PyTorch",
306
+ "ONNX",
307
+ "safetensors",
308
+ "Transformers",
309
+ ],
278
310
  use_instructions=False,
279
311
  superseded_by=None,
280
312
  adapted_from="nreimers/MiniLM-L6-H384-uncased",
@@ -299,7 +331,13 @@ all_mpnet_base_v2 = ModelMeta(
299
331
  max_tokens=384,
300
332
  reference="https://huggingface.co/sentence-transformers/all-mpnet-base-v2",
301
333
  similarity_fn_name=ScoringFunction.COSINE,
302
- framework=["Sentence Transformers", "PyTorch"],
334
+ framework=[
335
+ "Sentence Transformers",
336
+ "PyTorch",
337
+ "ONNX",
338
+ "safetensors",
339
+ "Transformers",
340
+ ],
303
341
  use_instructions=False,
304
342
  superseded_by=None,
305
343
  adapted_from=None,
@@ -403,7 +441,7 @@ static_similarity_mrl_multilingual_v1 = ModelMeta(
403
441
  max_tokens=None,
404
442
  reference="https://huggingface.co/sentence-transformers/static-similarity-mrl-multilingual-v1",
405
443
  similarity_fn_name="cosine",
406
- framework=["Sentence Transformers", "PyTorch"],
444
+ framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
407
445
  use_instructions=False,
408
446
  superseded_by=None,
409
447
  adapted_from=None,
@@ -436,7 +474,7 @@ contriever = ModelMeta(
436
474
  max_tokens=512,
437
475
  reference="https://huggingface.co/facebook/contriever-msmarco",
438
476
  similarity_fn_name=ScoringFunction.DOT_PRODUCT,
439
- framework=["Sentence Transformers", "PyTorch"],
477
+ framework=["Sentence Transformers", "PyTorch", "Transformers"],
440
478
  use_instructions=False,
441
479
  citation="""
442
480
  @misc{izacard2021contriever,
@@ -466,7 +504,7 @@ microllama_text_embedding = ModelMeta(
466
504
  max_tokens=2048,
467
505
  reference="https://huggingface.co/keeeeenw/MicroLlama-text-embedding",
468
506
  similarity_fn_name=ScoringFunction.COSINE,
469
- framework=["Sentence Transformers", "PyTorch"],
507
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
470
508
  use_instructions=False,
471
509
  superseded_by=None,
472
510
  adapted_from=None,
@@ -488,13 +526,13 @@ microllama_text_embedding = ModelMeta(
488
526
 
489
527
  SENTENCE_T5_CITATION = """
490
528
  @misc{ni2021sentencet5scalablesentenceencoders,
491
- title={Sentence-T5: Scalable Sentence Encoders from Pre-trained Text-to-Text Models},
529
+ title={Sentence-T5: Scalable Sentence Encoders from Pre-trained Text-to-Text Models},
492
530
  author={Jianmo Ni and Gustavo Hernández Ábrego and Noah Constant and Ji Ma and Keith B. Hall and Daniel Cer and Yinfei Yang},
493
531
  year={2021},
494
532
  eprint={2108.08877},
495
533
  archivePrefix={arXiv},
496
534
  primaryClass={cs.CL},
497
- url={https://arxiv.org/abs/2108.08877},
535
+ url={https://arxiv.org/abs/2108.08877},
498
536
  }
499
537
  """
500
538
  sentence_t5_base = ModelMeta(
@@ -512,7 +550,7 @@ sentence_t5_base = ModelMeta(
512
550
  max_tokens=512,
513
551
  reference="https://huggingface.co/sentence-transformers/sentence-t5-base",
514
552
  similarity_fn_name=ScoringFunction.COSINE,
515
- framework=["Sentence Transformers", "PyTorch"],
553
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
516
554
  use_instructions=False,
517
555
  public_training_code=None,
518
556
  public_training_data=None,
@@ -535,7 +573,7 @@ sentence_t5_large = ModelMeta(
535
573
  max_tokens=512,
536
574
  reference="https://huggingface.co/sentence-transformers/sentence-t5-large",
537
575
  similarity_fn_name=ScoringFunction.COSINE,
538
- framework=["Sentence Transformers", "PyTorch"],
576
+ framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
539
577
  use_instructions=False,
540
578
  public_training_code=None,
541
579
  public_training_data=None,
@@ -558,7 +596,7 @@ sentence_t5_xl = ModelMeta(
558
596
  max_tokens=512,
559
597
  reference="https://huggingface.co/sentence-transformers/sentence-t5-xl",
560
598
  similarity_fn_name=ScoringFunction.COSINE,
561
- framework=["Sentence Transformers", "PyTorch"],
599
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
562
600
  use_instructions=False,
563
601
  public_training_code=None,
564
602
  public_training_data=None,
@@ -581,7 +619,7 @@ sentence_t5_xxl = ModelMeta(
581
619
  max_tokens=512,
582
620
  reference="https://huggingface.co/sentence-transformers/sentence-t5-xxl",
583
621
  similarity_fn_name=ScoringFunction.COSINE,
584
- framework=["Sentence Transformers", "PyTorch"],
622
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
585
623
  use_instructions=False,
586
624
  public_training_code=None,
587
625
  public_training_data=None,
@@ -590,13 +628,13 @@ sentence_t5_xxl = ModelMeta(
590
628
  )
591
629
  GTR_CITATION = """
592
630
  @misc{ni2021largedualencodersgeneralizable,
593
- title={Large Dual Encoders Are Generalizable Retrievers},
631
+ title={Large Dual Encoders Are Generalizable Retrievers},
594
632
  author={Jianmo Ni and Chen Qu and Jing Lu and Zhuyun Dai and Gustavo Hernández Ábrego and Ji Ma and Vincent Y. Zhao and Yi Luan and Keith B. Hall and Ming-Wei Chang and Yinfei Yang},
595
633
  year={2021},
596
634
  eprint={2112.07899},
597
635
  archivePrefix={arXiv},
598
636
  primaryClass={cs.IR},
599
- url={https://arxiv.org/abs/2112.07899},
637
+ url={https://arxiv.org/abs/2112.07899},
600
638
  }
601
639
  """
602
640
  gtr_t5_large = ModelMeta(
@@ -614,7 +652,7 @@ gtr_t5_large = ModelMeta(
614
652
  max_tokens=512,
615
653
  reference="https://huggingface.co/sentence-transformers/gtr-t5-large",
616
654
  similarity_fn_name=ScoringFunction.COSINE,
617
- framework=["Sentence Transformers", "PyTorch"],
655
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
618
656
  use_instructions=False,
619
657
  public_training_code=None,
620
658
  public_training_data=None,
@@ -649,7 +687,7 @@ gtr_t5_xl = ModelMeta(
649
687
  max_tokens=512,
650
688
  reference="https://huggingface.co/sentence-transformers/gtr-t5-xl",
651
689
  similarity_fn_name=ScoringFunction.COSINE,
652
- framework=["Sentence Transformers", "PyTorch"],
690
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
653
691
  use_instructions=False,
654
692
  public_training_code=None,
655
693
  public_training_data=None,
@@ -683,7 +721,7 @@ gtr_t5_xxl = ModelMeta(
683
721
  max_tokens=512,
684
722
  reference="https://huggingface.co/sentence-transformers/gtr-t5-xxl",
685
723
  similarity_fn_name=ScoringFunction.COSINE,
686
- framework=["Sentence Transformers", "PyTorch"],
724
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
687
725
  use_instructions=False,
688
726
  public_training_code=None,
689
727
  public_training_data=None,
@@ -718,7 +756,7 @@ gtr_t5_base = ModelMeta(
718
756
  max_tokens=512,
719
757
  reference="https://huggingface.co/sentence-transformers/gtr-t5-base",
720
758
  similarity_fn_name=ScoringFunction.COSINE,
721
- framework=["Sentence Transformers", "PyTorch"],
759
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
722
760
  use_instructions=False,
723
761
  public_training_code=None,
724
762
  public_training_data=None,
@@ -737,3 +775,67 @@ gtr_t5_base = ModelMeta(
737
775
  },
738
776
  citation=GTR_CITATION,
739
777
  )
778
+
779
+ static_retrieval_mrl_en_v1 = ModelMeta(
780
+ loader=sentence_transformers_loader,
781
+ name="sentence-transformers/static-retrieval-mrl-en-v1",
782
+ revision="f60985c706f192d45d218078e49e5a8b6f15283a",
783
+ release_date="2024-10-24",
784
+ languages=["eng-Latn"],
785
+ n_parameters=3_125_4528,
786
+ memory_usage_mb=119,
787
+ max_tokens=np.inf,
788
+ embed_dim=1024,
789
+ license="apache-2.0",
790
+ open_weights=True,
791
+ public_training_code="https://huggingface.co/sentence-transformers/static-retrieval-mrl-en-v1/blob/main/train.py",
792
+ public_training_data=None,
793
+ framework=["PyTorch", "Sentence Transformers"],
794
+ reference="https://huggingface.co/sentence-transformers/static-retrieval-mrl-en-v1",
795
+ similarity_fn_name=ScoringFunction.COSINE,
796
+ use_instructions=False,
797
+ training_datasets={
798
+ "MSMARCO",
799
+ # gooaq
800
+ # s2orc
801
+ # allnli
802
+ # paq
803
+ # trivia-qa
804
+ # swim-ir-monolingual
805
+ # PubMedQA
806
+ # swim
807
+ "MIRACLRetrieval",
808
+ "MultiLongDocRetrieval",
809
+ "MrTidyRetrieval",
810
+ },
811
+ modalities=["text"],
812
+ model_type=["dense"],
813
+ )
814
+
815
+ multi_qa_mpnet_base_dot_v1 = ModelMeta(
816
+ loader=sentence_transformers_loader,
817
+ name="sentence-transformers/multi-qa-mpnet-base-dot-v1",
818
+ revision="3af7c6da5b3e1bea796ef6c97fe237538cbe6e7f",
819
+ release_date="2021-08-23",
820
+ languages=["eng-Latn"],
821
+ n_parameters=109486978,
822
+ memory_usage_mb=418.0,
823
+ max_tokens=512,
824
+ embed_dim=768,
825
+ license=None,
826
+ open_weights=True,
827
+ public_training_code="https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-dot-v1/blob/main/train_script.py",
828
+ public_training_data=None,
829
+ framework=["PyTorch", "Sentence Transformers"],
830
+ reference="https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-dot-v1",
831
+ similarity_fn_name=ScoringFunction.DOT_PRODUCT,
832
+ use_instructions=False,
833
+ training_datasets={
834
+ "MSMARCO",
835
+ "YahooAnswersTopicsClassification",
836
+ "NQ",
837
+ },
838
+ adapted_from="microsoft/mpnet-base",
839
+ modalities=["text"],
840
+ model_type=["dense"],
841
+ )
@@ -16,7 +16,7 @@ codemodernbert_crow_meta = ModelMeta(
16
16
  max_tokens=1024,
17
17
  reference="https://huggingface.co/Shuu12121/CodeSearch-ModernBERT-Crow-Plus",
18
18
  similarity_fn_name="cosine",
19
- framework=["Sentence Transformers", "PyTorch"],
19
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
20
20
  use_instructions=False,
21
21
  public_training_code=None,
22
22
  public_training_data=None,
@@ -123,7 +123,7 @@ siglip_training_datasets = set(
123
123
  )
124
124
 
125
125
  siglip_so400m_patch14_224 = ModelMeta(
126
- loader=SiglipModelWrapper, # type: ignore
126
+ loader=SiglipModelWrapper,
127
127
  name="google/siglip-so400m-patch14-224",
128
128
  model_type=["dense"],
129
129
  languages=["eng-Latn"],
@@ -138,7 +138,7 @@ siglip_so400m_patch14_224 = ModelMeta(
138
138
  open_weights=True,
139
139
  public_training_code="https://github.com/google-research/big_vision/blob/main/big_vision/trainers/proj/image_text/siglip.py",
140
140
  public_training_data=None,
141
- framework=["PyTorch"],
141
+ framework=["PyTorch", "Transformers", "safetensors"],
142
142
  reference="https://huggingface.co/google/siglip-so400m-patch14-224",
143
143
  similarity_fn_name=ScoringFunction.COSINE,
144
144
  use_instructions=False,
@@ -147,7 +147,7 @@ siglip_so400m_patch14_224 = ModelMeta(
147
147
  )
148
148
 
149
149
  siglip_so400m_patch14_384 = ModelMeta(
150
- loader=SiglipModelWrapper, # type: ignore
150
+ loader=SiglipModelWrapper,
151
151
  name="google/siglip-so400m-patch14-384",
152
152
  model_type=["dense"],
153
153
  languages=["eng-Latn"],
@@ -162,7 +162,7 @@ siglip_so400m_patch14_384 = ModelMeta(
162
162
  open_weights=True,
163
163
  public_training_code="https://github.com/google-research/big_vision/blob/main/big_vision/trainers/proj/image_text/siglip.py",
164
164
  public_training_data=None,
165
- framework=["PyTorch"],
165
+ framework=["PyTorch", "Transformers", "safetensors"],
166
166
  reference="https://huggingface.co/google/siglip-so400m-patch14-384",
167
167
  similarity_fn_name=ScoringFunction.COSINE,
168
168
  use_instructions=False,
@@ -171,7 +171,7 @@ siglip_so400m_patch14_384 = ModelMeta(
171
171
  )
172
172
 
173
173
  siglip_so400m_patch16_256_i18n = ModelMeta(
174
- loader=SiglipModelWrapper, # type: ignore
174
+ loader=SiglipModelWrapper,
175
175
  name="google/siglip-so400m-patch16-256-i18n",
176
176
  model_type=["dense"],
177
177
  languages=["eng-Latn"],
@@ -186,7 +186,7 @@ siglip_so400m_patch16_256_i18n = ModelMeta(
186
186
  open_weights=True,
187
187
  public_training_code="https://github.com/google-research/big_vision/blob/main/big_vision/trainers/proj/image_text/siglip.py",
188
188
  public_training_data=None,
189
- framework=["PyTorch"],
189
+ framework=["PyTorch", "Transformers", "safetensors"],
190
190
  reference="https://huggingface.co/google/siglip-so400m-patch16-256-i18n",
191
191
  similarity_fn_name=ScoringFunction.COSINE,
192
192
  use_instructions=False,
@@ -195,7 +195,7 @@ siglip_so400m_patch16_256_i18n = ModelMeta(
195
195
  )
196
196
 
197
197
  siglip_base_patch16_256_multilingual = ModelMeta(
198
- loader=SiglipModelWrapper, # type: ignore
198
+ loader=SiglipModelWrapper,
199
199
  name="google/siglip-base-patch16-256-multilingual",
200
200
  model_type=["dense"],
201
201
  languages=["eng-Latn"],
@@ -210,7 +210,7 @@ siglip_base_patch16_256_multilingual = ModelMeta(
210
210
  open_weights=True,
211
211
  public_training_code="https://github.com/google-research/big_vision/blob/main/big_vision/trainers/proj/image_text/siglip.py",
212
212
  public_training_data=None,
213
- framework=["PyTorch"],
213
+ framework=["PyTorch", "Transformers", "safetensors"],
214
214
  reference="https://huggingface.co/google/siglip-base-patch16-256-multilingual",
215
215
  similarity_fn_name=ScoringFunction.COSINE,
216
216
  use_instructions=False,
@@ -219,7 +219,7 @@ siglip_base_patch16_256_multilingual = ModelMeta(
219
219
  )
220
220
 
221
221
  siglip_base_patch16_256 = ModelMeta(
222
- loader=SiglipModelWrapper, # type: ignore
222
+ loader=SiglipModelWrapper,
223
223
  name="google/siglip-base-patch16-256",
224
224
  model_type=["dense"],
225
225
  languages=["eng-Latn"],
@@ -234,7 +234,7 @@ siglip_base_patch16_256 = ModelMeta(
234
234
  open_weights=True,
235
235
  public_training_code="https://github.com/google-research/big_vision/blob/main/big_vision/trainers/proj/image_text/siglip.py",
236
236
  public_training_data=None,
237
- framework=["PyTorch"],
237
+ framework=["PyTorch", "Transformers", "safetensors"],
238
238
  reference="https://huggingface.co/google/siglip-base-patch16-256",
239
239
  similarity_fn_name=ScoringFunction.COSINE,
240
240
  use_instructions=False,
@@ -243,7 +243,7 @@ siglip_base_patch16_256 = ModelMeta(
243
243
  )
244
244
 
245
245
  siglip_base_patch16_512 = ModelMeta(
246
- loader=SiglipModelWrapper, # type: ignore
246
+ loader=SiglipModelWrapper,
247
247
  name="google/siglip-base-patch16-512",
248
248
  model_type=["dense"],
249
249
  languages=["eng-Latn"],
@@ -258,7 +258,7 @@ siglip_base_patch16_512 = ModelMeta(
258
258
  open_weights=True,
259
259
  public_training_code="https://github.com/google-research/big_vision/blob/main/big_vision/trainers/proj/image_text/siglip.py",
260
260
  public_training_data=None,
261
- framework=["PyTorch"],
261
+ framework=["PyTorch", "Transformers", "safetensors"],
262
262
  reference="https://huggingface.co/google/siglip-base-patch16-512",
263
263
  similarity_fn_name=ScoringFunction.COSINE,
264
264
  use_instructions=False,
@@ -267,7 +267,7 @@ siglip_base_patch16_512 = ModelMeta(
267
267
  )
268
268
 
269
269
  siglip_base_patch16_384 = ModelMeta(
270
- loader=SiglipModelWrapper, # type: ignore
270
+ loader=SiglipModelWrapper,
271
271
  name="google/siglip-base-patch16-384",
272
272
  model_type=["dense"],
273
273
  languages=["eng-Latn"],
@@ -282,7 +282,7 @@ siglip_base_patch16_384 = ModelMeta(
282
282
  open_weights=True,
283
283
  public_training_code="https://github.com/google-research/big_vision/blob/main/big_vision/trainers/proj/image_text/siglip.py",
284
284
  public_training_data=None,
285
- framework=["PyTorch"],
285
+ framework=["PyTorch", "Transformers", "safetensors"],
286
286
  reference="https://huggingface.co/google/siglip-base-patch16-384",
287
287
  similarity_fn_name=ScoringFunction.COSINE,
288
288
  use_instructions=False,
@@ -291,7 +291,7 @@ siglip_base_patch16_384 = ModelMeta(
291
291
  )
292
292
 
293
293
  siglip_base_patch16_224 = ModelMeta(
294
- loader=SiglipModelWrapper, # type: ignore
294
+ loader=SiglipModelWrapper,
295
295
  name="google/siglip-base-patch16-224",
296
296
  model_type=["dense"],
297
297
  languages=["eng-Latn"],
@@ -306,7 +306,7 @@ siglip_base_patch16_224 = ModelMeta(
306
306
  open_weights=True,
307
307
  public_training_code="https://github.com/google-research/big_vision/blob/main/big_vision/trainers/proj/image_text/siglip.py",
308
308
  public_training_data=None,
309
- framework=["PyTorch"],
309
+ framework=["PyTorch", "Transformers", "safetensors"],
310
310
  reference="https://huggingface.co/google/siglip-base-patch16-224",
311
311
  similarity_fn_name=ScoringFunction.COSINE,
312
312
  use_instructions=False,
@@ -315,7 +315,7 @@ siglip_base_patch16_224 = ModelMeta(
315
315
  )
316
316
 
317
317
  siglip_large_patch16_256 = ModelMeta(
318
- loader=SiglipModelWrapper, # type: ignore
318
+ loader=SiglipModelWrapper,
319
319
  name="google/siglip-large-patch16-256",
320
320
  model_type=["dense"],
321
321
  languages=["eng-Latn"],
@@ -330,7 +330,7 @@ siglip_large_patch16_256 = ModelMeta(
330
330
  open_weights=True,
331
331
  public_training_code="https://github.com/google-research/big_vision/blob/main/big_vision/trainers/proj/image_text/siglip.py",
332
332
  public_training_data=None,
333
- framework=["PyTorch"],
333
+ framework=["PyTorch", "Transformers", "safetensors"],
334
334
  reference="https://huggingface.co/google/siglip-large-patch16-256",
335
335
  similarity_fn_name=ScoringFunction.COSINE,
336
336
  use_instructions=False,
@@ -339,7 +339,7 @@ siglip_large_patch16_256 = ModelMeta(
339
339
  )
340
340
 
341
341
  siglip_large_patch16_384 = ModelMeta(
342
- loader=SiglipModelWrapper, # type: ignore
342
+ loader=SiglipModelWrapper,
343
343
  name="google/siglip-large-patch16-384",
344
344
  model_type=["dense"],
345
345
  languages=["eng-Latn"],
@@ -354,7 +354,7 @@ siglip_large_patch16_384 = ModelMeta(
354
354
  open_weights=True,
355
355
  public_training_code="https://github.com/google-research/big_vision/blob/main/big_vision/trainers/proj/image_text/siglip.py",
356
356
  public_training_data=None,
357
- framework=["PyTorch"],
357
+ framework=["PyTorch", "Transformers", "safetensors"],
358
358
  reference="https://huggingface.co/google/siglip-large-patch16-384",
359
359
  similarity_fn_name=ScoringFunction.COSINE,
360
360
  use_instructions=False,