mteb 2.5.2__py3-none-any.whl → 2.7.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +2 -0
- mteb/_create_dataloaders.py +17 -18
- mteb/_evaluators/any_sts_evaluator.py +3 -3
- mteb/_evaluators/clustering_evaluator.py +2 -2
- mteb/_evaluators/evaluator.py +4 -2
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +10 -8
- mteb/_evaluators/pair_classification_evaluator.py +5 -3
- mteb/_evaluators/retrieval_evaluator.py +2 -2
- mteb/_evaluators/retrieval_metrics.py +18 -17
- mteb/_evaluators/sklearn_evaluator.py +11 -10
- mteb/_evaluators/text/bitext_mining_evaluator.py +27 -18
- mteb/_evaluators/text/summarization_evaluator.py +23 -18
- mteb/_evaluators/zeroshot_classification_evaluator.py +5 -3
- mteb/abstasks/_data_filter/filters.py +1 -1
- mteb/abstasks/_data_filter/task_pipelines.py +3 -0
- mteb/abstasks/_statistics_calculation.py +18 -10
- mteb/abstasks/_stratification.py +18 -18
- mteb/abstasks/abstask.py +35 -28
- mteb/abstasks/aggregate_task_metadata.py +1 -9
- mteb/abstasks/aggregated_task.py +10 -29
- mteb/abstasks/classification.py +15 -10
- mteb/abstasks/clustering.py +19 -15
- mteb/abstasks/clustering_legacy.py +10 -10
- mteb/abstasks/image/image_text_pair_classification.py +7 -4
- mteb/abstasks/multilabel_classification.py +23 -19
- mteb/abstasks/pair_classification.py +20 -11
- mteb/abstasks/regression.py +4 -4
- mteb/abstasks/retrieval.py +28 -24
- mteb/abstasks/retrieval_dataset_loaders.py +2 -2
- mteb/abstasks/sts.py +8 -5
- mteb/abstasks/task_metadata.py +31 -33
- mteb/abstasks/text/bitext_mining.py +39 -28
- mteb/abstasks/text/reranking.py +8 -6
- mteb/abstasks/text/summarization.py +10 -5
- mteb/abstasks/zeroshot_classification.py +8 -4
- mteb/benchmarks/benchmark.py +4 -2
- mteb/benchmarks/benchmarks/__init__.py +4 -0
- mteb/benchmarks/benchmarks/benchmarks.py +112 -11
- mteb/benchmarks/get_benchmark.py +14 -55
- mteb/cache.py +182 -29
- mteb/cli/_display_tasks.py +2 -2
- mteb/cli/build_cli.py +110 -14
- mteb/cli/generate_model_card.py +43 -23
- mteb/deprecated_evaluator.py +63 -49
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2CybersecurityRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EconomicRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EnergyRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2HrRetrieval.json +32 -0
- mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json +116 -0
- mteb/descriptive_stats/Retrieval/NanoClimateFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoDBPedia-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoHotpotQA-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoMSMARCO-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoNQ-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/TVPLRetrieval.json +30 -0
- mteb/evaluate.py +44 -33
- mteb/filter_tasks.py +25 -26
- mteb/get_tasks.py +29 -30
- mteb/languages/language_scripts.py +5 -3
- mteb/leaderboard/app.py +162 -34
- mteb/load_results.py +12 -12
- mteb/models/abs_encoder.py +10 -6
- mteb/models/cache_wrappers/cache_backend_protocol.py +3 -5
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +5 -4
- mteb/models/cache_wrappers/cache_backends/faiss_cache.py +6 -2
- mteb/models/cache_wrappers/cache_backends/numpy_cache.py +43 -25
- mteb/models/cache_wrappers/cache_wrapper.py +2 -2
- mteb/models/get_model_meta.py +21 -3
- mteb/models/instruct_wrapper.py +28 -8
- mteb/models/model_implementations/align_models.py +1 -1
- mteb/models/model_implementations/andersborges.py +4 -4
- mteb/models/model_implementations/ara_models.py +1 -1
- mteb/models/model_implementations/arctic_models.py +8 -8
- mteb/models/model_implementations/b1ade_models.py +1 -1
- mteb/models/model_implementations/bge_models.py +45 -21
- mteb/models/model_implementations/bica_model.py +3 -3
- mteb/models/model_implementations/blip2_models.py +2 -2
- mteb/models/model_implementations/blip_models.py +16 -16
- mteb/models/model_implementations/bm25.py +4 -4
- mteb/models/model_implementations/bmretriever_models.py +6 -4
- mteb/models/model_implementations/cadet_models.py +1 -1
- mteb/models/model_implementations/cde_models.py +11 -4
- mteb/models/model_implementations/clip_models.py +6 -6
- mteb/models/model_implementations/clips_models.py +3 -3
- mteb/models/model_implementations/codefuse_models.py +5 -5
- mteb/models/model_implementations/codesage_models.py +3 -3
- mteb/models/model_implementations/cohere_models.py +5 -5
- mteb/models/model_implementations/cohere_v.py +2 -2
- mteb/models/model_implementations/colpali_models.py +3 -3
- mteb/models/model_implementations/colqwen_models.py +8 -8
- mteb/models/model_implementations/colsmol_models.py +2 -2
- mteb/models/model_implementations/conan_models.py +1 -1
- mteb/models/model_implementations/dino_models.py +42 -42
- mteb/models/model_implementations/e5_instruct.py +23 -4
- mteb/models/model_implementations/e5_models.py +9 -9
- mteb/models/model_implementations/e5_v.py +6 -6
- mteb/models/model_implementations/eagerworks_models.py +1 -1
- mteb/models/model_implementations/emillykkejensen_models.py +6 -6
- mteb/models/model_implementations/en_code_retriever.py +1 -1
- mteb/models/model_implementations/euler_models.py +2 -2
- mteb/models/model_implementations/fa_models.py +9 -9
- mteb/models/model_implementations/facebookai.py +14 -2
- mteb/models/model_implementations/geogpt_models.py +1 -1
- mteb/models/model_implementations/gme_v_models.py +6 -5
- mteb/models/model_implementations/google_models.py +1 -1
- mteb/models/model_implementations/granite_vision_embedding_models.py +1 -1
- mteb/models/model_implementations/gritlm_models.py +2 -2
- mteb/models/model_implementations/gte_models.py +25 -13
- mteb/models/model_implementations/hinvec_models.py +1 -1
- mteb/models/model_implementations/ibm_granite_models.py +30 -6
- mteb/models/model_implementations/inf_models.py +2 -2
- mteb/models/model_implementations/jasper_models.py +2 -2
- mteb/models/model_implementations/jina_clip.py +48 -10
- mteb/models/model_implementations/jina_models.py +18 -11
- mteb/models/model_implementations/kblab.py +12 -6
- mteb/models/model_implementations/kennethenevoldsen_models.py +4 -4
- mteb/models/model_implementations/kfst.py +1 -1
- mteb/models/model_implementations/kowshik24_models.py +1 -1
- mteb/models/model_implementations/lgai_embedding_models.py +1 -1
- mteb/models/model_implementations/linq_models.py +1 -1
- mteb/models/model_implementations/listconranker.py +1 -1
- mteb/models/model_implementations/llm2clip_models.py +6 -6
- mteb/models/model_implementations/llm2vec_models.py +8 -8
- mteb/models/model_implementations/mcinext_models.py +4 -1
- mteb/models/model_implementations/mdbr_models.py +17 -3
- mteb/models/model_implementations/misc_models.py +68 -68
- mteb/models/model_implementations/mixedbread_ai_models.py +332 -0
- mteb/models/model_implementations/mme5_models.py +1 -1
- mteb/models/model_implementations/moco_models.py +4 -4
- mteb/models/model_implementations/mod_models.py +1 -1
- mteb/models/model_implementations/model2vec_models.py +14 -14
- mteb/models/model_implementations/moka_models.py +1 -1
- mteb/models/model_implementations/nbailab.py +3 -3
- mteb/models/model_implementations/no_instruct_sentence_models.py +2 -2
- mteb/models/model_implementations/nomic_models.py +30 -15
- mteb/models/model_implementations/nomic_models_vision.py +1 -1
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +15 -9
- mteb/models/model_implementations/nvidia_models.py +151 -19
- mteb/models/model_implementations/octen_models.py +61 -2
- mteb/models/model_implementations/openclip_models.py +13 -13
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -5
- mteb/models/model_implementations/ops_moa_models.py +1 -1
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -1
- mteb/models/model_implementations/pawan_models.py +1 -1
- mteb/models/model_implementations/piccolo_models.py +1 -1
- mteb/models/model_implementations/pixie_models.py +56 -0
- mteb/models/model_implementations/promptriever_models.py +4 -4
- mteb/models/model_implementations/pylate_models.py +10 -9
- mteb/models/model_implementations/qodo_models.py +2 -2
- mteb/models/model_implementations/qtack_models.py +1 -1
- mteb/models/model_implementations/qwen3_models.py +3 -3
- mteb/models/model_implementations/qzhou_models.py +2 -2
- mteb/models/model_implementations/random_baseline.py +3 -3
- mteb/models/model_implementations/rasgaard_models.py +2 -2
- mteb/models/model_implementations/reasonir_model.py +1 -1
- mteb/models/model_implementations/repllama_models.py +3 -3
- mteb/models/model_implementations/rerankers_custom.py +12 -6
- mteb/models/model_implementations/rerankers_monot5_based.py +17 -17
- mteb/models/model_implementations/richinfoai_models.py +1 -1
- mteb/models/model_implementations/ru_sentence_models.py +20 -20
- mteb/models/model_implementations/ruri_models.py +10 -10
- mteb/models/model_implementations/salesforce_models.py +3 -3
- mteb/models/model_implementations/samilpwc_models.py +1 -1
- mteb/models/model_implementations/sarashina_embedding_models.py +2 -2
- mteb/models/model_implementations/searchmap_models.py +1 -1
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +113 -146
- mteb/models/model_implementations/sentence_transformers_models.py +124 -22
- mteb/models/model_implementations/shuu_model.py +1 -1
- mteb/models/model_implementations/siglip_models.py +20 -20
- mteb/models/model_implementations/slm_models.py +416 -0
- mteb/models/model_implementations/spartan8806_atles_champion.py +1 -1
- mteb/models/model_implementations/stella_models.py +17 -4
- mteb/models/model_implementations/tarka_models.py +2 -2
- mteb/models/model_implementations/text2vec_models.py +9 -3
- mteb/models/model_implementations/ua_sentence_models.py +1 -1
- mteb/models/model_implementations/uae_models.py +7 -1
- mteb/models/model_implementations/vdr_models.py +1 -1
- mteb/models/model_implementations/vi_vn_models.py +6 -6
- mteb/models/model_implementations/vlm2vec_models.py +3 -3
- mteb/models/model_implementations/voyage_models.py +84 -0
- mteb/models/model_implementations/voyage_v.py +9 -7
- mteb/models/model_implementations/youtu_models.py +1 -1
- mteb/models/model_implementations/yuan_models.py +1 -1
- mteb/models/model_implementations/yuan_models_en.py +1 -1
- mteb/models/model_meta.py +80 -31
- mteb/models/models_protocols.py +22 -6
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +9 -6
- mteb/models/search_wrappers.py +33 -18
- mteb/models/sentence_transformer_wrapper.py +50 -25
- mteb/models/vllm_wrapper.py +327 -0
- mteb/py.typed +0 -0
- mteb/results/benchmark_results.py +29 -21
- mteb/results/model_result.py +52 -22
- mteb/results/task_result.py +80 -58
- mteb/similarity_functions.py +11 -7
- mteb/tasks/classification/dan/dk_hate_classification.py +1 -1
- mteb/tasks/classification/est/estonian_valence.py +1 -1
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +2 -2
- mteb/tasks/classification/multilingual/scala_classification.py +1 -1
- mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/zho/cmteb_clustering.py +2 -2
- mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +1 -1
- mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
- mteb/tasks/retrieval/code/code_rag.py +12 -12
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +2 -2
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +2 -2
- mteb/tasks/retrieval/eng/__init__.py +2 -0
- mteb/tasks/retrieval/eng/chemrxiv.py +33 -0
- mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
- mteb/tasks/retrieval/kor/__init__.py +15 -1
- mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py +142 -0
- mteb/tasks/retrieval/multilingual/__init__.py +2 -0
- mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py +43 -0
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +90 -100
- mteb/tasks/retrieval/nob/norquad.py +2 -2
- mteb/tasks/retrieval/nob/snl_retrieval.py +2 -2
- mteb/tasks/retrieval/tur/tur_hist_quad.py +1 -1
- mteb/tasks/retrieval/vie/__init__.py +14 -6
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +48 -0
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/tvpl_retrieval.py +42 -0
- mteb/tasks/retrieval/vie/zac_legal_text_retrieval.py +15 -1
- mteb/types/__init__.py +2 -0
- mteb/types/_encoder_io.py +12 -0
- mteb/types/_result.py +2 -1
- mteb/types/statistics.py +9 -3
- {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/METADATA +15 -4
- {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/RECORD +240 -219
- mteb/models/model_implementations/mxbai_models.py +0 -111
- {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/WHEEL +0 -0
- {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/entry_points.txt +0 -0
- {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/top_level.txt +0 -0
|
@@ -1,5 +1,7 @@
|
|
|
1
1
|
"""Implementation of Sentence Transformers model validated in MTEB."""
|
|
2
2
|
|
|
3
|
+
import numpy as np
|
|
4
|
+
|
|
3
5
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
4
6
|
from mteb.models.sentence_transformer_wrapper import (
|
|
5
7
|
SentenceTransformerEncoderWrapper,
|
|
@@ -125,7 +127,13 @@ all_minilm_l6_v2 = ModelMeta(
|
|
|
125
127
|
max_tokens=256,
|
|
126
128
|
reference="https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2",
|
|
127
129
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
128
|
-
framework=[
|
|
130
|
+
framework=[
|
|
131
|
+
"Sentence Transformers",
|
|
132
|
+
"PyTorch",
|
|
133
|
+
"ONNX",
|
|
134
|
+
"safetensors",
|
|
135
|
+
"Transformers",
|
|
136
|
+
],
|
|
129
137
|
use_instructions=False,
|
|
130
138
|
superseded_by=None,
|
|
131
139
|
adapted_from=None,
|
|
@@ -150,7 +158,13 @@ all_minilm_l12_v2 = ModelMeta(
|
|
|
150
158
|
max_tokens=256,
|
|
151
159
|
reference="https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2",
|
|
152
160
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
153
|
-
framework=[
|
|
161
|
+
framework=[
|
|
162
|
+
"Sentence Transformers",
|
|
163
|
+
"PyTorch",
|
|
164
|
+
"ONNX",
|
|
165
|
+
"safetensors",
|
|
166
|
+
"Transformers",
|
|
167
|
+
],
|
|
154
168
|
use_instructions=False,
|
|
155
169
|
superseded_by=None,
|
|
156
170
|
adapted_from=None,
|
|
@@ -175,7 +189,13 @@ paraphrase_multilingual_minilm_l12_v2 = ModelMeta(
|
|
|
175
189
|
max_tokens=512,
|
|
176
190
|
reference="https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
|
|
177
191
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
178
|
-
framework=[
|
|
192
|
+
framework=[
|
|
193
|
+
"Sentence Transformers",
|
|
194
|
+
"PyTorch",
|
|
195
|
+
"ONNX",
|
|
196
|
+
"safetensors",
|
|
197
|
+
"Transformers",
|
|
198
|
+
],
|
|
179
199
|
use_instructions=False,
|
|
180
200
|
superseded_by=None,
|
|
181
201
|
adapted_from=None,
|
|
@@ -200,7 +220,13 @@ paraphrase_multilingual_mpnet_base_v2 = ModelMeta(
|
|
|
200
220
|
max_tokens=512,
|
|
201
221
|
reference="https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
|
|
202
222
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
203
|
-
framework=[
|
|
223
|
+
framework=[
|
|
224
|
+
"Sentence Transformers",
|
|
225
|
+
"PyTorch",
|
|
226
|
+
"ONNX",
|
|
227
|
+
"safetensors",
|
|
228
|
+
"Transformers",
|
|
229
|
+
],
|
|
204
230
|
use_instructions=False,
|
|
205
231
|
superseded_by=None,
|
|
206
232
|
adapted_from=None,
|
|
@@ -236,7 +262,7 @@ labse = ModelMeta(
|
|
|
236
262
|
max_tokens=512,
|
|
237
263
|
reference="https://huggingface.co/sentence-transformers/LaBSE",
|
|
238
264
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
239
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
265
|
+
framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
|
|
240
266
|
use_instructions=False,
|
|
241
267
|
superseded_by=None,
|
|
242
268
|
adapted_from=None,
|
|
@@ -274,7 +300,13 @@ multi_qa_minilm_l6_cos_v1 = ModelMeta(
|
|
|
274
300
|
max_tokens=512,
|
|
275
301
|
reference="https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1",
|
|
276
302
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
277
|
-
framework=[
|
|
303
|
+
framework=[
|
|
304
|
+
"Sentence Transformers",
|
|
305
|
+
"PyTorch",
|
|
306
|
+
"ONNX",
|
|
307
|
+
"safetensors",
|
|
308
|
+
"Transformers",
|
|
309
|
+
],
|
|
278
310
|
use_instructions=False,
|
|
279
311
|
superseded_by=None,
|
|
280
312
|
adapted_from="nreimers/MiniLM-L6-H384-uncased",
|
|
@@ -299,7 +331,13 @@ all_mpnet_base_v2 = ModelMeta(
|
|
|
299
331
|
max_tokens=384,
|
|
300
332
|
reference="https://huggingface.co/sentence-transformers/all-mpnet-base-v2",
|
|
301
333
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
302
|
-
framework=[
|
|
334
|
+
framework=[
|
|
335
|
+
"Sentence Transformers",
|
|
336
|
+
"PyTorch",
|
|
337
|
+
"ONNX",
|
|
338
|
+
"safetensors",
|
|
339
|
+
"Transformers",
|
|
340
|
+
],
|
|
303
341
|
use_instructions=False,
|
|
304
342
|
superseded_by=None,
|
|
305
343
|
adapted_from=None,
|
|
@@ -403,7 +441,7 @@ static_similarity_mrl_multilingual_v1 = ModelMeta(
|
|
|
403
441
|
max_tokens=None,
|
|
404
442
|
reference="https://huggingface.co/sentence-transformers/static-similarity-mrl-multilingual-v1",
|
|
405
443
|
similarity_fn_name="cosine",
|
|
406
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
444
|
+
framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
|
|
407
445
|
use_instructions=False,
|
|
408
446
|
superseded_by=None,
|
|
409
447
|
adapted_from=None,
|
|
@@ -436,7 +474,7 @@ contriever = ModelMeta(
|
|
|
436
474
|
max_tokens=512,
|
|
437
475
|
reference="https://huggingface.co/facebook/contriever-msmarco",
|
|
438
476
|
similarity_fn_name=ScoringFunction.DOT_PRODUCT,
|
|
439
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
477
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers"],
|
|
440
478
|
use_instructions=False,
|
|
441
479
|
citation="""
|
|
442
480
|
@misc{izacard2021contriever,
|
|
@@ -466,7 +504,7 @@ microllama_text_embedding = ModelMeta(
|
|
|
466
504
|
max_tokens=2048,
|
|
467
505
|
reference="https://huggingface.co/keeeeenw/MicroLlama-text-embedding",
|
|
468
506
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
469
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
507
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
470
508
|
use_instructions=False,
|
|
471
509
|
superseded_by=None,
|
|
472
510
|
adapted_from=None,
|
|
@@ -488,13 +526,13 @@ microllama_text_embedding = ModelMeta(
|
|
|
488
526
|
|
|
489
527
|
SENTENCE_T5_CITATION = """
|
|
490
528
|
@misc{ni2021sentencet5scalablesentenceencoders,
|
|
491
|
-
title={Sentence-T5: Scalable Sentence Encoders from Pre-trained Text-to-Text Models},
|
|
529
|
+
title={Sentence-T5: Scalable Sentence Encoders from Pre-trained Text-to-Text Models},
|
|
492
530
|
author={Jianmo Ni and Gustavo Hernández Ábrego and Noah Constant and Ji Ma and Keith B. Hall and Daniel Cer and Yinfei Yang},
|
|
493
531
|
year={2021},
|
|
494
532
|
eprint={2108.08877},
|
|
495
533
|
archivePrefix={arXiv},
|
|
496
534
|
primaryClass={cs.CL},
|
|
497
|
-
url={https://arxiv.org/abs/2108.08877},
|
|
535
|
+
url={https://arxiv.org/abs/2108.08877},
|
|
498
536
|
}
|
|
499
537
|
"""
|
|
500
538
|
sentence_t5_base = ModelMeta(
|
|
@@ -512,7 +550,7 @@ sentence_t5_base = ModelMeta(
|
|
|
512
550
|
max_tokens=512,
|
|
513
551
|
reference="https://huggingface.co/sentence-transformers/sentence-t5-base",
|
|
514
552
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
515
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
553
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
516
554
|
use_instructions=False,
|
|
517
555
|
public_training_code=None,
|
|
518
556
|
public_training_data=None,
|
|
@@ -535,7 +573,7 @@ sentence_t5_large = ModelMeta(
|
|
|
535
573
|
max_tokens=512,
|
|
536
574
|
reference="https://huggingface.co/sentence-transformers/sentence-t5-large",
|
|
537
575
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
538
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
576
|
+
framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
|
|
539
577
|
use_instructions=False,
|
|
540
578
|
public_training_code=None,
|
|
541
579
|
public_training_data=None,
|
|
@@ -558,7 +596,7 @@ sentence_t5_xl = ModelMeta(
|
|
|
558
596
|
max_tokens=512,
|
|
559
597
|
reference="https://huggingface.co/sentence-transformers/sentence-t5-xl",
|
|
560
598
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
561
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
599
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
562
600
|
use_instructions=False,
|
|
563
601
|
public_training_code=None,
|
|
564
602
|
public_training_data=None,
|
|
@@ -581,7 +619,7 @@ sentence_t5_xxl = ModelMeta(
|
|
|
581
619
|
max_tokens=512,
|
|
582
620
|
reference="https://huggingface.co/sentence-transformers/sentence-t5-xxl",
|
|
583
621
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
584
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
622
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
585
623
|
use_instructions=False,
|
|
586
624
|
public_training_code=None,
|
|
587
625
|
public_training_data=None,
|
|
@@ -590,13 +628,13 @@ sentence_t5_xxl = ModelMeta(
|
|
|
590
628
|
)
|
|
591
629
|
GTR_CITATION = """
|
|
592
630
|
@misc{ni2021largedualencodersgeneralizable,
|
|
593
|
-
title={Large Dual Encoders Are Generalizable Retrievers},
|
|
631
|
+
title={Large Dual Encoders Are Generalizable Retrievers},
|
|
594
632
|
author={Jianmo Ni and Chen Qu and Jing Lu and Zhuyun Dai and Gustavo Hernández Ábrego and Ji Ma and Vincent Y. Zhao and Yi Luan and Keith B. Hall and Ming-Wei Chang and Yinfei Yang},
|
|
595
633
|
year={2021},
|
|
596
634
|
eprint={2112.07899},
|
|
597
635
|
archivePrefix={arXiv},
|
|
598
636
|
primaryClass={cs.IR},
|
|
599
|
-
url={https://arxiv.org/abs/2112.07899},
|
|
637
|
+
url={https://arxiv.org/abs/2112.07899},
|
|
600
638
|
}
|
|
601
639
|
"""
|
|
602
640
|
gtr_t5_large = ModelMeta(
|
|
@@ -614,7 +652,7 @@ gtr_t5_large = ModelMeta(
|
|
|
614
652
|
max_tokens=512,
|
|
615
653
|
reference="https://huggingface.co/sentence-transformers/gtr-t5-large",
|
|
616
654
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
617
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
655
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
618
656
|
use_instructions=False,
|
|
619
657
|
public_training_code=None,
|
|
620
658
|
public_training_data=None,
|
|
@@ -649,7 +687,7 @@ gtr_t5_xl = ModelMeta(
|
|
|
649
687
|
max_tokens=512,
|
|
650
688
|
reference="https://huggingface.co/sentence-transformers/gtr-t5-xl",
|
|
651
689
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
652
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
690
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
653
691
|
use_instructions=False,
|
|
654
692
|
public_training_code=None,
|
|
655
693
|
public_training_data=None,
|
|
@@ -683,7 +721,7 @@ gtr_t5_xxl = ModelMeta(
|
|
|
683
721
|
max_tokens=512,
|
|
684
722
|
reference="https://huggingface.co/sentence-transformers/gtr-t5-xxl",
|
|
685
723
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
686
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
724
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
687
725
|
use_instructions=False,
|
|
688
726
|
public_training_code=None,
|
|
689
727
|
public_training_data=None,
|
|
@@ -718,7 +756,7 @@ gtr_t5_base = ModelMeta(
|
|
|
718
756
|
max_tokens=512,
|
|
719
757
|
reference="https://huggingface.co/sentence-transformers/gtr-t5-base",
|
|
720
758
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
721
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
759
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
722
760
|
use_instructions=False,
|
|
723
761
|
public_training_code=None,
|
|
724
762
|
public_training_data=None,
|
|
@@ -737,3 +775,67 @@ gtr_t5_base = ModelMeta(
|
|
|
737
775
|
},
|
|
738
776
|
citation=GTR_CITATION,
|
|
739
777
|
)
|
|
778
|
+
|
|
779
|
+
static_retrieval_mrl_en_v1 = ModelMeta(
|
|
780
|
+
loader=sentence_transformers_loader,
|
|
781
|
+
name="sentence-transformers/static-retrieval-mrl-en-v1",
|
|
782
|
+
revision="f60985c706f192d45d218078e49e5a8b6f15283a",
|
|
783
|
+
release_date="2024-10-24",
|
|
784
|
+
languages=["eng-Latn"],
|
|
785
|
+
n_parameters=3_125_4528,
|
|
786
|
+
memory_usage_mb=119,
|
|
787
|
+
max_tokens=np.inf,
|
|
788
|
+
embed_dim=1024,
|
|
789
|
+
license="apache-2.0",
|
|
790
|
+
open_weights=True,
|
|
791
|
+
public_training_code="https://huggingface.co/sentence-transformers/static-retrieval-mrl-en-v1/blob/main/train.py",
|
|
792
|
+
public_training_data=None,
|
|
793
|
+
framework=["PyTorch", "Sentence Transformers"],
|
|
794
|
+
reference="https://huggingface.co/sentence-transformers/static-retrieval-mrl-en-v1",
|
|
795
|
+
similarity_fn_name=ScoringFunction.COSINE,
|
|
796
|
+
use_instructions=False,
|
|
797
|
+
training_datasets={
|
|
798
|
+
"MSMARCO",
|
|
799
|
+
# gooaq
|
|
800
|
+
# s2orc
|
|
801
|
+
# allnli
|
|
802
|
+
# paq
|
|
803
|
+
# trivia-qa
|
|
804
|
+
# swim-ir-monolingual
|
|
805
|
+
# PubMedQA
|
|
806
|
+
# swim
|
|
807
|
+
"MIRACLRetrieval",
|
|
808
|
+
"MultiLongDocRetrieval",
|
|
809
|
+
"MrTidyRetrieval",
|
|
810
|
+
},
|
|
811
|
+
modalities=["text"],
|
|
812
|
+
model_type=["dense"],
|
|
813
|
+
)
|
|
814
|
+
|
|
815
|
+
multi_qa_mpnet_base_dot_v1 = ModelMeta(
|
|
816
|
+
loader=sentence_transformers_loader,
|
|
817
|
+
name="sentence-transformers/multi-qa-mpnet-base-dot-v1",
|
|
818
|
+
revision="3af7c6da5b3e1bea796ef6c97fe237538cbe6e7f",
|
|
819
|
+
release_date="2021-08-23",
|
|
820
|
+
languages=["eng-Latn"],
|
|
821
|
+
n_parameters=109486978,
|
|
822
|
+
memory_usage_mb=418.0,
|
|
823
|
+
max_tokens=512,
|
|
824
|
+
embed_dim=768,
|
|
825
|
+
license=None,
|
|
826
|
+
open_weights=True,
|
|
827
|
+
public_training_code="https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-dot-v1/blob/main/train_script.py",
|
|
828
|
+
public_training_data=None,
|
|
829
|
+
framework=["PyTorch", "Sentence Transformers"],
|
|
830
|
+
reference="https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-dot-v1",
|
|
831
|
+
similarity_fn_name=ScoringFunction.DOT_PRODUCT,
|
|
832
|
+
use_instructions=False,
|
|
833
|
+
training_datasets={
|
|
834
|
+
"MSMARCO",
|
|
835
|
+
"YahooAnswersTopicsClassification",
|
|
836
|
+
"NQ",
|
|
837
|
+
},
|
|
838
|
+
adapted_from="microsoft/mpnet-base",
|
|
839
|
+
modalities=["text"],
|
|
840
|
+
model_type=["dense"],
|
|
841
|
+
)
|
|
@@ -16,7 +16,7 @@ codemodernbert_crow_meta = ModelMeta(
|
|
|
16
16
|
max_tokens=1024,
|
|
17
17
|
reference="https://huggingface.co/Shuu12121/CodeSearch-ModernBERT-Crow-Plus",
|
|
18
18
|
similarity_fn_name="cosine",
|
|
19
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
19
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
20
20
|
use_instructions=False,
|
|
21
21
|
public_training_code=None,
|
|
22
22
|
public_training_data=None,
|
|
@@ -123,7 +123,7 @@ siglip_training_datasets = set(
|
|
|
123
123
|
)
|
|
124
124
|
|
|
125
125
|
siglip_so400m_patch14_224 = ModelMeta(
|
|
126
|
-
loader=SiglipModelWrapper,
|
|
126
|
+
loader=SiglipModelWrapper,
|
|
127
127
|
name="google/siglip-so400m-patch14-224",
|
|
128
128
|
model_type=["dense"],
|
|
129
129
|
languages=["eng-Latn"],
|
|
@@ -138,7 +138,7 @@ siglip_so400m_patch14_224 = ModelMeta(
|
|
|
138
138
|
open_weights=True,
|
|
139
139
|
public_training_code="https://github.com/google-research/big_vision/blob/main/big_vision/trainers/proj/image_text/siglip.py",
|
|
140
140
|
public_training_data=None,
|
|
141
|
-
framework=["PyTorch"],
|
|
141
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
142
142
|
reference="https://huggingface.co/google/siglip-so400m-patch14-224",
|
|
143
143
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
144
144
|
use_instructions=False,
|
|
@@ -147,7 +147,7 @@ siglip_so400m_patch14_224 = ModelMeta(
|
|
|
147
147
|
)
|
|
148
148
|
|
|
149
149
|
siglip_so400m_patch14_384 = ModelMeta(
|
|
150
|
-
loader=SiglipModelWrapper,
|
|
150
|
+
loader=SiglipModelWrapper,
|
|
151
151
|
name="google/siglip-so400m-patch14-384",
|
|
152
152
|
model_type=["dense"],
|
|
153
153
|
languages=["eng-Latn"],
|
|
@@ -162,7 +162,7 @@ siglip_so400m_patch14_384 = ModelMeta(
|
|
|
162
162
|
open_weights=True,
|
|
163
163
|
public_training_code="https://github.com/google-research/big_vision/blob/main/big_vision/trainers/proj/image_text/siglip.py",
|
|
164
164
|
public_training_data=None,
|
|
165
|
-
framework=["PyTorch"],
|
|
165
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
166
166
|
reference="https://huggingface.co/google/siglip-so400m-patch14-384",
|
|
167
167
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
168
168
|
use_instructions=False,
|
|
@@ -171,7 +171,7 @@ siglip_so400m_patch14_384 = ModelMeta(
|
|
|
171
171
|
)
|
|
172
172
|
|
|
173
173
|
siglip_so400m_patch16_256_i18n = ModelMeta(
|
|
174
|
-
loader=SiglipModelWrapper,
|
|
174
|
+
loader=SiglipModelWrapper,
|
|
175
175
|
name="google/siglip-so400m-patch16-256-i18n",
|
|
176
176
|
model_type=["dense"],
|
|
177
177
|
languages=["eng-Latn"],
|
|
@@ -186,7 +186,7 @@ siglip_so400m_patch16_256_i18n = ModelMeta(
|
|
|
186
186
|
open_weights=True,
|
|
187
187
|
public_training_code="https://github.com/google-research/big_vision/blob/main/big_vision/trainers/proj/image_text/siglip.py",
|
|
188
188
|
public_training_data=None,
|
|
189
|
-
framework=["PyTorch"],
|
|
189
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
190
190
|
reference="https://huggingface.co/google/siglip-so400m-patch16-256-i18n",
|
|
191
191
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
192
192
|
use_instructions=False,
|
|
@@ -195,7 +195,7 @@ siglip_so400m_patch16_256_i18n = ModelMeta(
|
|
|
195
195
|
)
|
|
196
196
|
|
|
197
197
|
siglip_base_patch16_256_multilingual = ModelMeta(
|
|
198
|
-
loader=SiglipModelWrapper,
|
|
198
|
+
loader=SiglipModelWrapper,
|
|
199
199
|
name="google/siglip-base-patch16-256-multilingual",
|
|
200
200
|
model_type=["dense"],
|
|
201
201
|
languages=["eng-Latn"],
|
|
@@ -210,7 +210,7 @@ siglip_base_patch16_256_multilingual = ModelMeta(
|
|
|
210
210
|
open_weights=True,
|
|
211
211
|
public_training_code="https://github.com/google-research/big_vision/blob/main/big_vision/trainers/proj/image_text/siglip.py",
|
|
212
212
|
public_training_data=None,
|
|
213
|
-
framework=["PyTorch"],
|
|
213
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
214
214
|
reference="https://huggingface.co/google/siglip-base-patch16-256-multilingual",
|
|
215
215
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
216
216
|
use_instructions=False,
|
|
@@ -219,7 +219,7 @@ siglip_base_patch16_256_multilingual = ModelMeta(
|
|
|
219
219
|
)
|
|
220
220
|
|
|
221
221
|
siglip_base_patch16_256 = ModelMeta(
|
|
222
|
-
loader=SiglipModelWrapper,
|
|
222
|
+
loader=SiglipModelWrapper,
|
|
223
223
|
name="google/siglip-base-patch16-256",
|
|
224
224
|
model_type=["dense"],
|
|
225
225
|
languages=["eng-Latn"],
|
|
@@ -234,7 +234,7 @@ siglip_base_patch16_256 = ModelMeta(
|
|
|
234
234
|
open_weights=True,
|
|
235
235
|
public_training_code="https://github.com/google-research/big_vision/blob/main/big_vision/trainers/proj/image_text/siglip.py",
|
|
236
236
|
public_training_data=None,
|
|
237
|
-
framework=["PyTorch"],
|
|
237
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
238
238
|
reference="https://huggingface.co/google/siglip-base-patch16-256",
|
|
239
239
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
240
240
|
use_instructions=False,
|
|
@@ -243,7 +243,7 @@ siglip_base_patch16_256 = ModelMeta(
|
|
|
243
243
|
)
|
|
244
244
|
|
|
245
245
|
siglip_base_patch16_512 = ModelMeta(
|
|
246
|
-
loader=SiglipModelWrapper,
|
|
246
|
+
loader=SiglipModelWrapper,
|
|
247
247
|
name="google/siglip-base-patch16-512",
|
|
248
248
|
model_type=["dense"],
|
|
249
249
|
languages=["eng-Latn"],
|
|
@@ -258,7 +258,7 @@ siglip_base_patch16_512 = ModelMeta(
|
|
|
258
258
|
open_weights=True,
|
|
259
259
|
public_training_code="https://github.com/google-research/big_vision/blob/main/big_vision/trainers/proj/image_text/siglip.py",
|
|
260
260
|
public_training_data=None,
|
|
261
|
-
framework=["PyTorch"],
|
|
261
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
262
262
|
reference="https://huggingface.co/google/siglip-base-patch16-512",
|
|
263
263
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
264
264
|
use_instructions=False,
|
|
@@ -267,7 +267,7 @@ siglip_base_patch16_512 = ModelMeta(
|
|
|
267
267
|
)
|
|
268
268
|
|
|
269
269
|
siglip_base_patch16_384 = ModelMeta(
|
|
270
|
-
loader=SiglipModelWrapper,
|
|
270
|
+
loader=SiglipModelWrapper,
|
|
271
271
|
name="google/siglip-base-patch16-384",
|
|
272
272
|
model_type=["dense"],
|
|
273
273
|
languages=["eng-Latn"],
|
|
@@ -282,7 +282,7 @@ siglip_base_patch16_384 = ModelMeta(
|
|
|
282
282
|
open_weights=True,
|
|
283
283
|
public_training_code="https://github.com/google-research/big_vision/blob/main/big_vision/trainers/proj/image_text/siglip.py",
|
|
284
284
|
public_training_data=None,
|
|
285
|
-
framework=["PyTorch"],
|
|
285
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
286
286
|
reference="https://huggingface.co/google/siglip-base-patch16-384",
|
|
287
287
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
288
288
|
use_instructions=False,
|
|
@@ -291,7 +291,7 @@ siglip_base_patch16_384 = ModelMeta(
|
|
|
291
291
|
)
|
|
292
292
|
|
|
293
293
|
siglip_base_patch16_224 = ModelMeta(
|
|
294
|
-
loader=SiglipModelWrapper,
|
|
294
|
+
loader=SiglipModelWrapper,
|
|
295
295
|
name="google/siglip-base-patch16-224",
|
|
296
296
|
model_type=["dense"],
|
|
297
297
|
languages=["eng-Latn"],
|
|
@@ -306,7 +306,7 @@ siglip_base_patch16_224 = ModelMeta(
|
|
|
306
306
|
open_weights=True,
|
|
307
307
|
public_training_code="https://github.com/google-research/big_vision/blob/main/big_vision/trainers/proj/image_text/siglip.py",
|
|
308
308
|
public_training_data=None,
|
|
309
|
-
framework=["PyTorch"],
|
|
309
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
310
310
|
reference="https://huggingface.co/google/siglip-base-patch16-224",
|
|
311
311
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
312
312
|
use_instructions=False,
|
|
@@ -315,7 +315,7 @@ siglip_base_patch16_224 = ModelMeta(
|
|
|
315
315
|
)
|
|
316
316
|
|
|
317
317
|
siglip_large_patch16_256 = ModelMeta(
|
|
318
|
-
loader=SiglipModelWrapper,
|
|
318
|
+
loader=SiglipModelWrapper,
|
|
319
319
|
name="google/siglip-large-patch16-256",
|
|
320
320
|
model_type=["dense"],
|
|
321
321
|
languages=["eng-Latn"],
|
|
@@ -330,7 +330,7 @@ siglip_large_patch16_256 = ModelMeta(
|
|
|
330
330
|
open_weights=True,
|
|
331
331
|
public_training_code="https://github.com/google-research/big_vision/blob/main/big_vision/trainers/proj/image_text/siglip.py",
|
|
332
332
|
public_training_data=None,
|
|
333
|
-
framework=["PyTorch"],
|
|
333
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
334
334
|
reference="https://huggingface.co/google/siglip-large-patch16-256",
|
|
335
335
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
336
336
|
use_instructions=False,
|
|
@@ -339,7 +339,7 @@ siglip_large_patch16_256 = ModelMeta(
|
|
|
339
339
|
)
|
|
340
340
|
|
|
341
341
|
siglip_large_patch16_384 = ModelMeta(
|
|
342
|
-
loader=SiglipModelWrapper,
|
|
342
|
+
loader=SiglipModelWrapper,
|
|
343
343
|
name="google/siglip-large-patch16-384",
|
|
344
344
|
model_type=["dense"],
|
|
345
345
|
languages=["eng-Latn"],
|
|
@@ -354,7 +354,7 @@ siglip_large_patch16_384 = ModelMeta(
|
|
|
354
354
|
open_weights=True,
|
|
355
355
|
public_training_code="https://github.com/google-research/big_vision/blob/main/big_vision/trainers/proj/image_text/siglip.py",
|
|
356
356
|
public_training_data=None,
|
|
357
|
-
framework=["PyTorch"],
|
|
357
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
358
358
|
reference="https://huggingface.co/google/siglip-large-patch16-384",
|
|
359
359
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
360
360
|
use_instructions=False,
|