mteb 2.5.2__py3-none-any.whl → 2.7.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +2 -0
- mteb/_create_dataloaders.py +17 -18
- mteb/_evaluators/any_sts_evaluator.py +3 -3
- mteb/_evaluators/clustering_evaluator.py +2 -2
- mteb/_evaluators/evaluator.py +4 -2
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +10 -8
- mteb/_evaluators/pair_classification_evaluator.py +5 -3
- mteb/_evaluators/retrieval_evaluator.py +2 -2
- mteb/_evaluators/retrieval_metrics.py +18 -17
- mteb/_evaluators/sklearn_evaluator.py +11 -10
- mteb/_evaluators/text/bitext_mining_evaluator.py +27 -18
- mteb/_evaluators/text/summarization_evaluator.py +23 -18
- mteb/_evaluators/zeroshot_classification_evaluator.py +5 -3
- mteb/abstasks/_data_filter/filters.py +1 -1
- mteb/abstasks/_data_filter/task_pipelines.py +3 -0
- mteb/abstasks/_statistics_calculation.py +18 -10
- mteb/abstasks/_stratification.py +18 -18
- mteb/abstasks/abstask.py +35 -28
- mteb/abstasks/aggregate_task_metadata.py +1 -9
- mteb/abstasks/aggregated_task.py +10 -29
- mteb/abstasks/classification.py +15 -10
- mteb/abstasks/clustering.py +19 -15
- mteb/abstasks/clustering_legacy.py +10 -10
- mteb/abstasks/image/image_text_pair_classification.py +7 -4
- mteb/abstasks/multilabel_classification.py +23 -19
- mteb/abstasks/pair_classification.py +20 -11
- mteb/abstasks/regression.py +4 -4
- mteb/abstasks/retrieval.py +28 -24
- mteb/abstasks/retrieval_dataset_loaders.py +2 -2
- mteb/abstasks/sts.py +8 -5
- mteb/abstasks/task_metadata.py +31 -33
- mteb/abstasks/text/bitext_mining.py +39 -28
- mteb/abstasks/text/reranking.py +8 -6
- mteb/abstasks/text/summarization.py +10 -5
- mteb/abstasks/zeroshot_classification.py +8 -4
- mteb/benchmarks/benchmark.py +4 -2
- mteb/benchmarks/benchmarks/__init__.py +4 -0
- mteb/benchmarks/benchmarks/benchmarks.py +112 -11
- mteb/benchmarks/get_benchmark.py +14 -55
- mteb/cache.py +182 -29
- mteb/cli/_display_tasks.py +2 -2
- mteb/cli/build_cli.py +110 -14
- mteb/cli/generate_model_card.py +43 -23
- mteb/deprecated_evaluator.py +63 -49
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2CybersecurityRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EconomicRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EnergyRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2HrRetrieval.json +32 -0
- mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json +116 -0
- mteb/descriptive_stats/Retrieval/NanoClimateFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoDBPedia-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoHotpotQA-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoMSMARCO-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoNQ-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/TVPLRetrieval.json +30 -0
- mteb/evaluate.py +44 -33
- mteb/filter_tasks.py +25 -26
- mteb/get_tasks.py +29 -30
- mteb/languages/language_scripts.py +5 -3
- mteb/leaderboard/app.py +162 -34
- mteb/load_results.py +12 -12
- mteb/models/abs_encoder.py +10 -6
- mteb/models/cache_wrappers/cache_backend_protocol.py +3 -5
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +5 -4
- mteb/models/cache_wrappers/cache_backends/faiss_cache.py +6 -2
- mteb/models/cache_wrappers/cache_backends/numpy_cache.py +43 -25
- mteb/models/cache_wrappers/cache_wrapper.py +2 -2
- mteb/models/get_model_meta.py +21 -3
- mteb/models/instruct_wrapper.py +28 -8
- mteb/models/model_implementations/align_models.py +1 -1
- mteb/models/model_implementations/andersborges.py +4 -4
- mteb/models/model_implementations/ara_models.py +1 -1
- mteb/models/model_implementations/arctic_models.py +8 -8
- mteb/models/model_implementations/b1ade_models.py +1 -1
- mteb/models/model_implementations/bge_models.py +45 -21
- mteb/models/model_implementations/bica_model.py +3 -3
- mteb/models/model_implementations/blip2_models.py +2 -2
- mteb/models/model_implementations/blip_models.py +16 -16
- mteb/models/model_implementations/bm25.py +4 -4
- mteb/models/model_implementations/bmretriever_models.py +6 -4
- mteb/models/model_implementations/cadet_models.py +1 -1
- mteb/models/model_implementations/cde_models.py +11 -4
- mteb/models/model_implementations/clip_models.py +6 -6
- mteb/models/model_implementations/clips_models.py +3 -3
- mteb/models/model_implementations/codefuse_models.py +5 -5
- mteb/models/model_implementations/codesage_models.py +3 -3
- mteb/models/model_implementations/cohere_models.py +5 -5
- mteb/models/model_implementations/cohere_v.py +2 -2
- mteb/models/model_implementations/colpali_models.py +3 -3
- mteb/models/model_implementations/colqwen_models.py +8 -8
- mteb/models/model_implementations/colsmol_models.py +2 -2
- mteb/models/model_implementations/conan_models.py +1 -1
- mteb/models/model_implementations/dino_models.py +42 -42
- mteb/models/model_implementations/e5_instruct.py +23 -4
- mteb/models/model_implementations/e5_models.py +9 -9
- mteb/models/model_implementations/e5_v.py +6 -6
- mteb/models/model_implementations/eagerworks_models.py +1 -1
- mteb/models/model_implementations/emillykkejensen_models.py +6 -6
- mteb/models/model_implementations/en_code_retriever.py +1 -1
- mteb/models/model_implementations/euler_models.py +2 -2
- mteb/models/model_implementations/fa_models.py +9 -9
- mteb/models/model_implementations/facebookai.py +14 -2
- mteb/models/model_implementations/geogpt_models.py +1 -1
- mteb/models/model_implementations/gme_v_models.py +6 -5
- mteb/models/model_implementations/google_models.py +1 -1
- mteb/models/model_implementations/granite_vision_embedding_models.py +1 -1
- mteb/models/model_implementations/gritlm_models.py +2 -2
- mteb/models/model_implementations/gte_models.py +25 -13
- mteb/models/model_implementations/hinvec_models.py +1 -1
- mteb/models/model_implementations/ibm_granite_models.py +30 -6
- mteb/models/model_implementations/inf_models.py +2 -2
- mteb/models/model_implementations/jasper_models.py +2 -2
- mteb/models/model_implementations/jina_clip.py +48 -10
- mteb/models/model_implementations/jina_models.py +18 -11
- mteb/models/model_implementations/kblab.py +12 -6
- mteb/models/model_implementations/kennethenevoldsen_models.py +4 -4
- mteb/models/model_implementations/kfst.py +1 -1
- mteb/models/model_implementations/kowshik24_models.py +1 -1
- mteb/models/model_implementations/lgai_embedding_models.py +1 -1
- mteb/models/model_implementations/linq_models.py +1 -1
- mteb/models/model_implementations/listconranker.py +1 -1
- mteb/models/model_implementations/llm2clip_models.py +6 -6
- mteb/models/model_implementations/llm2vec_models.py +8 -8
- mteb/models/model_implementations/mcinext_models.py +4 -1
- mteb/models/model_implementations/mdbr_models.py +17 -3
- mteb/models/model_implementations/misc_models.py +68 -68
- mteb/models/model_implementations/mixedbread_ai_models.py +332 -0
- mteb/models/model_implementations/mme5_models.py +1 -1
- mteb/models/model_implementations/moco_models.py +4 -4
- mteb/models/model_implementations/mod_models.py +1 -1
- mteb/models/model_implementations/model2vec_models.py +14 -14
- mteb/models/model_implementations/moka_models.py +1 -1
- mteb/models/model_implementations/nbailab.py +3 -3
- mteb/models/model_implementations/no_instruct_sentence_models.py +2 -2
- mteb/models/model_implementations/nomic_models.py +30 -15
- mteb/models/model_implementations/nomic_models_vision.py +1 -1
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +15 -9
- mteb/models/model_implementations/nvidia_models.py +151 -19
- mteb/models/model_implementations/octen_models.py +61 -2
- mteb/models/model_implementations/openclip_models.py +13 -13
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -5
- mteb/models/model_implementations/ops_moa_models.py +1 -1
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -1
- mteb/models/model_implementations/pawan_models.py +1 -1
- mteb/models/model_implementations/piccolo_models.py +1 -1
- mteb/models/model_implementations/pixie_models.py +56 -0
- mteb/models/model_implementations/promptriever_models.py +4 -4
- mteb/models/model_implementations/pylate_models.py +10 -9
- mteb/models/model_implementations/qodo_models.py +2 -2
- mteb/models/model_implementations/qtack_models.py +1 -1
- mteb/models/model_implementations/qwen3_models.py +3 -3
- mteb/models/model_implementations/qzhou_models.py +2 -2
- mteb/models/model_implementations/random_baseline.py +3 -3
- mteb/models/model_implementations/rasgaard_models.py +2 -2
- mteb/models/model_implementations/reasonir_model.py +1 -1
- mteb/models/model_implementations/repllama_models.py +3 -3
- mteb/models/model_implementations/rerankers_custom.py +12 -6
- mteb/models/model_implementations/rerankers_monot5_based.py +17 -17
- mteb/models/model_implementations/richinfoai_models.py +1 -1
- mteb/models/model_implementations/ru_sentence_models.py +20 -20
- mteb/models/model_implementations/ruri_models.py +10 -10
- mteb/models/model_implementations/salesforce_models.py +3 -3
- mteb/models/model_implementations/samilpwc_models.py +1 -1
- mteb/models/model_implementations/sarashina_embedding_models.py +2 -2
- mteb/models/model_implementations/searchmap_models.py +1 -1
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +113 -146
- mteb/models/model_implementations/sentence_transformers_models.py +124 -22
- mteb/models/model_implementations/shuu_model.py +1 -1
- mteb/models/model_implementations/siglip_models.py +20 -20
- mteb/models/model_implementations/slm_models.py +416 -0
- mteb/models/model_implementations/spartan8806_atles_champion.py +1 -1
- mteb/models/model_implementations/stella_models.py +17 -4
- mteb/models/model_implementations/tarka_models.py +2 -2
- mteb/models/model_implementations/text2vec_models.py +9 -3
- mteb/models/model_implementations/ua_sentence_models.py +1 -1
- mteb/models/model_implementations/uae_models.py +7 -1
- mteb/models/model_implementations/vdr_models.py +1 -1
- mteb/models/model_implementations/vi_vn_models.py +6 -6
- mteb/models/model_implementations/vlm2vec_models.py +3 -3
- mteb/models/model_implementations/voyage_models.py +84 -0
- mteb/models/model_implementations/voyage_v.py +9 -7
- mteb/models/model_implementations/youtu_models.py +1 -1
- mteb/models/model_implementations/yuan_models.py +1 -1
- mteb/models/model_implementations/yuan_models_en.py +1 -1
- mteb/models/model_meta.py +80 -31
- mteb/models/models_protocols.py +22 -6
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +9 -6
- mteb/models/search_wrappers.py +33 -18
- mteb/models/sentence_transformer_wrapper.py +50 -25
- mteb/models/vllm_wrapper.py +327 -0
- mteb/py.typed +0 -0
- mteb/results/benchmark_results.py +29 -21
- mteb/results/model_result.py +52 -22
- mteb/results/task_result.py +80 -58
- mteb/similarity_functions.py +11 -7
- mteb/tasks/classification/dan/dk_hate_classification.py +1 -1
- mteb/tasks/classification/est/estonian_valence.py +1 -1
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +2 -2
- mteb/tasks/classification/multilingual/scala_classification.py +1 -1
- mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/zho/cmteb_clustering.py +2 -2
- mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +1 -1
- mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
- mteb/tasks/retrieval/code/code_rag.py +12 -12
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +2 -2
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +2 -2
- mteb/tasks/retrieval/eng/__init__.py +2 -0
- mteb/tasks/retrieval/eng/chemrxiv.py +33 -0
- mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
- mteb/tasks/retrieval/kor/__init__.py +15 -1
- mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py +142 -0
- mteb/tasks/retrieval/multilingual/__init__.py +2 -0
- mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py +43 -0
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +90 -100
- mteb/tasks/retrieval/nob/norquad.py +2 -2
- mteb/tasks/retrieval/nob/snl_retrieval.py +2 -2
- mteb/tasks/retrieval/tur/tur_hist_quad.py +1 -1
- mteb/tasks/retrieval/vie/__init__.py +14 -6
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +48 -0
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/tvpl_retrieval.py +42 -0
- mteb/tasks/retrieval/vie/zac_legal_text_retrieval.py +15 -1
- mteb/types/__init__.py +2 -0
- mteb/types/_encoder_io.py +12 -0
- mteb/types/_result.py +2 -1
- mteb/types/statistics.py +9 -3
- {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/METADATA +15 -4
- {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/RECORD +240 -219
- mteb/models/model_implementations/mxbai_models.py +0 -111
- {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/WHEEL +0 -0
- {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/entry_points.txt +0 -0
- {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/top_level.txt +0 -0
|
@@ -140,7 +140,7 @@ opensearch_neural_sparse_encoding_doc_v3_gte = ModelMeta(
|
|
|
140
140
|
max_tokens=8192,
|
|
141
141
|
reference="https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v3-gte",
|
|
142
142
|
similarity_fn_name="dot",
|
|
143
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
143
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
144
144
|
public_training_code="https://github.com/zhichao-aws/opensearch-sparse-model-tuning-sample",
|
|
145
145
|
public_training_data=True,
|
|
146
146
|
use_instructions=True,
|
|
@@ -166,7 +166,7 @@ opensearch_neural_sparse_encoding_doc_v3_distill = ModelMeta(
|
|
|
166
166
|
max_tokens=512,
|
|
167
167
|
reference="https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v3-distill",
|
|
168
168
|
similarity_fn_name="dot",
|
|
169
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
169
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
170
170
|
public_training_code="https://github.com/zhichao-aws/opensearch-sparse-model-tuning-sample",
|
|
171
171
|
public_training_data=True,
|
|
172
172
|
use_instructions=True,
|
|
@@ -188,7 +188,7 @@ opensearch_neural_sparse_encoding_doc_v2_distill = ModelMeta(
|
|
|
188
188
|
max_tokens=512,
|
|
189
189
|
reference="https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill",
|
|
190
190
|
similarity_fn_name="dot",
|
|
191
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
191
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
192
192
|
public_training_code="https://github.com/zhichao-aws/opensearch-sparse-model-tuning-sample",
|
|
193
193
|
public_training_data=True,
|
|
194
194
|
use_instructions=True,
|
|
@@ -211,7 +211,7 @@ opensearch_neural_sparse_encoding_doc_v2_mini = ModelMeta(
|
|
|
211
211
|
max_tokens=512,
|
|
212
212
|
reference="https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v2-mini",
|
|
213
213
|
similarity_fn_name="dot",
|
|
214
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
214
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
215
215
|
public_training_code="https://github.com/zhichao-aws/opensearch-sparse-model-tuning-sample",
|
|
216
216
|
public_training_data=True,
|
|
217
217
|
use_instructions=True,
|
|
@@ -233,7 +233,7 @@ opensearch_neural_sparse_encoding_doc_v1 = ModelMeta(
|
|
|
233
233
|
max_tokens=512,
|
|
234
234
|
reference="https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v1",
|
|
235
235
|
similarity_fn_name="dot",
|
|
236
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
236
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
237
237
|
public_training_code="https://github.com/zhichao-aws/opensearch-sparse-model-tuning-sample",
|
|
238
238
|
public_training_data=True,
|
|
239
239
|
use_instructions=True,
|
|
@@ -67,7 +67,7 @@ ops_moa_yuan_embedding = ModelMeta(
|
|
|
67
67
|
open_weights=True,
|
|
68
68
|
public_training_code=None,
|
|
69
69
|
public_training_data=None,
|
|
70
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
70
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors"],
|
|
71
71
|
reference="https://huggingface.co/OpenSearch-AI/Ops-MoA-Yuan-embedding-1.0",
|
|
72
72
|
similarity_fn_name="cosine",
|
|
73
73
|
use_instructions=False,
|
|
@@ -14,7 +14,7 @@ solon_embeddings_1_1 = ModelMeta(
|
|
|
14
14
|
max_tokens=8192,
|
|
15
15
|
reference="https://huggingface.co/OrdalieTech/Solon-embeddings-mini-beta-1.1",
|
|
16
16
|
similarity_fn_name="cosine",
|
|
17
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
17
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
18
18
|
use_instructions=False,
|
|
19
19
|
public_training_data=(
|
|
20
20
|
"https://huggingface.co/datasets/PleIAs/common_corpus; "
|
|
@@ -26,7 +26,7 @@ pawan_embd_68m = ModelMeta(
|
|
|
26
26
|
max_tokens=512,
|
|
27
27
|
reference="https://huggingface.co/dmedhi/PawanEmbd-68M",
|
|
28
28
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
29
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
29
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
30
30
|
adapted_from="ibm-granite/granite-embedding-278m-multilingual",
|
|
31
31
|
superseded_by=None,
|
|
32
32
|
public_training_code=None,
|
|
@@ -18,7 +18,7 @@ piccolo_base_zh = ModelMeta(
|
|
|
18
18
|
max_tokens=512,
|
|
19
19
|
reference="https://huggingface.co/sensenova/piccolo-base-zh",
|
|
20
20
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
21
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
21
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers"],
|
|
22
22
|
use_instructions=False,
|
|
23
23
|
superseded_by=None,
|
|
24
24
|
adapted_from=None,
|
|
@@ -0,0 +1,56 @@
|
|
|
1
|
+
from mteb.models.model_implementations.arctic_models import (
|
|
2
|
+
ARCTIC_V2_CITATION,
|
|
3
|
+
LANGUAGES_V2_0,
|
|
4
|
+
arctic_v2_training_datasets,
|
|
5
|
+
)
|
|
6
|
+
from mteb.models.model_meta import (
|
|
7
|
+
ModelMeta,
|
|
8
|
+
ScoringFunction,
|
|
9
|
+
)
|
|
10
|
+
from mteb.models.sentence_transformer_wrapper import sentence_transformers_loader
|
|
11
|
+
|
|
12
|
+
PIXIE_RUNE_V1_CITATION = """@misc{TelePIX-PIXIE-Rune-v1.0,
|
|
13
|
+
title = {PIXIE-Rune-v1.0},
|
|
14
|
+
author = {TelePIX AI Research Team and Bongmin Kim},
|
|
15
|
+
year = {2026},
|
|
16
|
+
howpublished = {Hugging Face model card},
|
|
17
|
+
url = {https://huggingface.co/telepix/PIXIE-Rune-v1.0}
|
|
18
|
+
}"""
|
|
19
|
+
|
|
20
|
+
PIXIE_RUNE_V1_PROMPTS = {
|
|
21
|
+
"query": "query: ",
|
|
22
|
+
"document": "",
|
|
23
|
+
}
|
|
24
|
+
|
|
25
|
+
# it is further fine-tuned on TelePIX proprietary IR data (not public).
|
|
26
|
+
pixie_rune_v1_training_datasets = set(arctic_v2_training_datasets) | {
|
|
27
|
+
"TelePIX-Proprietary-IR-Triplets",
|
|
28
|
+
}
|
|
29
|
+
|
|
30
|
+
pixie_rune_v1_0 = ModelMeta(
|
|
31
|
+
loader=sentence_transformers_loader,
|
|
32
|
+
loader_kwargs={
|
|
33
|
+
"model_prompts": PIXIE_RUNE_V1_PROMPTS,
|
|
34
|
+
},
|
|
35
|
+
name="telepix/PIXIE-Rune-v1.0",
|
|
36
|
+
model_type=["dense"],
|
|
37
|
+
revision="b2486496da71191626666a88f9bfec844933a134",
|
|
38
|
+
release_date="2026-01-15",
|
|
39
|
+
languages=LANGUAGES_V2_0,
|
|
40
|
+
open_weights=True,
|
|
41
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
42
|
+
n_parameters=567754752,
|
|
43
|
+
memory_usage_mb=2166,
|
|
44
|
+
max_tokens=6144,
|
|
45
|
+
embed_dim=1024,
|
|
46
|
+
license="apache-2.0",
|
|
47
|
+
reference="https://huggingface.co/telepix/PIXIE-Rune-v1.0",
|
|
48
|
+
similarity_fn_name=ScoringFunction.COSINE,
|
|
49
|
+
use_instructions=True,
|
|
50
|
+
adapted_from="Snowflake/snowflake-arctic-embed-l-v2.0",
|
|
51
|
+
superseded_by=None,
|
|
52
|
+
public_training_code=None,
|
|
53
|
+
public_training_data=None,
|
|
54
|
+
training_datasets=pixie_rune_v1_training_datasets,
|
|
55
|
+
citation=PIXIE_RUNE_V1_CITATION + "\n\n" + ARCTIC_V2_CITATION,
|
|
56
|
+
)
|
|
@@ -90,7 +90,7 @@ promptriever_llama2 = ModelMeta(
|
|
|
90
90
|
),
|
|
91
91
|
reference="https://huggingface.co/samaya-ai/promptriever-llama2-7b-v1",
|
|
92
92
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
93
|
-
framework=["PyTorch", "Tevatron"],
|
|
93
|
+
framework=["PyTorch", "Tevatron", "safetensors"],
|
|
94
94
|
use_instructions=True,
|
|
95
95
|
citation=PROMPTRIEVER_CITATION,
|
|
96
96
|
public_training_code=None,
|
|
@@ -123,7 +123,7 @@ promptriever_llama3 = ModelMeta(
|
|
|
123
123
|
license="apache-2.0",
|
|
124
124
|
reference="https://huggingface.co/samaya-ai/promptriever-llama3.1-8b-v1",
|
|
125
125
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
126
|
-
framework=["PyTorch", "Tevatron"],
|
|
126
|
+
framework=["PyTorch", "Tevatron", "safetensors"],
|
|
127
127
|
use_instructions=True,
|
|
128
128
|
citation=PROMPTRIEVER_CITATION,
|
|
129
129
|
public_training_code=None,
|
|
@@ -156,7 +156,7 @@ promptriever_llama3_instruct = ModelMeta(
|
|
|
156
156
|
license="apache-2.0",
|
|
157
157
|
reference="https://huggingface.co/samaya-ai/promptriever-llama3.1-8b-instruct-v1",
|
|
158
158
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
159
|
-
framework=["PyTorch", "Tevatron"],
|
|
159
|
+
framework=["PyTorch", "Tevatron", "safetensors"],
|
|
160
160
|
use_instructions=True,
|
|
161
161
|
citation=PROMPTRIEVER_CITATION,
|
|
162
162
|
public_training_code=None,
|
|
@@ -189,7 +189,7 @@ promptriever_mistral_v1 = ModelMeta(
|
|
|
189
189
|
license="apache-2.0",
|
|
190
190
|
reference="https://huggingface.co/samaya-ai/promptriever-mistral-v0.1-7b-v1",
|
|
191
191
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
192
|
-
framework=["PyTorch", "Tevatron"],
|
|
192
|
+
framework=["PyTorch", "Tevatron", "safetensors"],
|
|
193
193
|
use_instructions=True,
|
|
194
194
|
citation=PROMPTRIEVER_CITATION,
|
|
195
195
|
public_training_code=None,
|
|
@@ -19,6 +19,7 @@ from mteb.types import (
|
|
|
19
19
|
Array,
|
|
20
20
|
BatchedInput,
|
|
21
21
|
CorpusDatasetType,
|
|
22
|
+
EncodeKwargs,
|
|
22
23
|
PromptType,
|
|
23
24
|
QueryDatasetType,
|
|
24
25
|
RetrievalOutputType,
|
|
@@ -29,7 +30,7 @@ logger = logging.getLogger(__name__)
|
|
|
29
30
|
|
|
30
31
|
|
|
31
32
|
class PylateSearchEncoder:
|
|
32
|
-
"""Mixin class to add PyLate-based indexing and search to an encoder. Implements
|
|
33
|
+
"""Mixin class to add PyLate-based indexing and search to an encoder. Implements [SearchProtocol][mteb.models.SearchProtocol]"""
|
|
33
34
|
|
|
34
35
|
base_index_dir: Path | None = None
|
|
35
36
|
_index_dir: Path | None = None
|
|
@@ -45,7 +46,7 @@ class PylateSearchEncoder:
|
|
|
45
46
|
task_metadata: TaskMetadata,
|
|
46
47
|
hf_split: str,
|
|
47
48
|
hf_subset: str,
|
|
48
|
-
encode_kwargs:
|
|
49
|
+
encode_kwargs: EncodeKwargs,
|
|
49
50
|
) -> None:
|
|
50
51
|
"""Index the corpus for retrieval.
|
|
51
52
|
|
|
@@ -78,7 +79,7 @@ class PylateSearchEncoder:
|
|
|
78
79
|
hf_split: str,
|
|
79
80
|
hf_subset: str,
|
|
80
81
|
top_k: int,
|
|
81
|
-
encode_kwargs:
|
|
82
|
+
encode_kwargs: EncodeKwargs,
|
|
82
83
|
top_ranked: TopRankedDocumentsType | None = None,
|
|
83
84
|
) -> RetrievalOutputType:
|
|
84
85
|
queries_dataloader = create_dataloader(
|
|
@@ -136,7 +137,7 @@ class PylateSearchEncoder:
|
|
|
136
137
|
hf_subset: str,
|
|
137
138
|
hf_split: str,
|
|
138
139
|
top_k: int,
|
|
139
|
-
encode_kwargs:
|
|
140
|
+
encode_kwargs: EncodeKwargs,
|
|
140
141
|
) -> dict[str, list[tuple[float, str]]]:
|
|
141
142
|
from pylate import indexes, retrieve
|
|
142
143
|
|
|
@@ -200,7 +201,7 @@ class PylateSearchEncoder:
|
|
|
200
201
|
task_metadata: TaskMetadata,
|
|
201
202
|
hf_subset: str,
|
|
202
203
|
hf_split: str,
|
|
203
|
-
encode_kwargs:
|
|
204
|
+
encode_kwargs: EncodeKwargs,
|
|
204
205
|
) -> dict[str, list[tuple[float, str]]]:
|
|
205
206
|
"""Rerank with PyLate's rank.rerank using per-query candidates.
|
|
206
207
|
|
|
@@ -350,7 +351,7 @@ colbert_v2 = ModelMeta(
|
|
|
350
351
|
embed_dim=None,
|
|
351
352
|
license="mit",
|
|
352
353
|
similarity_fn_name=ScoringFunction.MAX_SIM,
|
|
353
|
-
framework=["PyLate", "ColBERT"],
|
|
354
|
+
framework=["PyLate", "ColBERT", "Transformers", "ONNX", "safetensors"],
|
|
354
355
|
reference="https://huggingface.co/colbert-ir/colbertv2.0",
|
|
355
356
|
use_instructions=False,
|
|
356
357
|
adapted_from=None,
|
|
@@ -406,7 +407,7 @@ jina_colbert_v2 = ModelMeta(
|
|
|
406
407
|
embed_dim=None,
|
|
407
408
|
license="cc-by-nc-4.0",
|
|
408
409
|
similarity_fn_name=ScoringFunction.MAX_SIM,
|
|
409
|
-
framework=["PyLate", "ColBERT"],
|
|
410
|
+
framework=["PyLate", "ColBERT", "ONNX", "safetensors"],
|
|
410
411
|
reference="https://huggingface.co/jinaai/jina-colbert-v2",
|
|
411
412
|
use_instructions=False,
|
|
412
413
|
adapted_from=None,
|
|
@@ -439,7 +440,7 @@ jina_colbert_v2 = ModelMeta(
|
|
|
439
440
|
url = "https://aclanthology.org/2024.mrl-1.11/",
|
|
440
441
|
doi = "10.18653/v1/2024.mrl-1.11",
|
|
441
442
|
pages = "159--166",
|
|
442
|
-
abstract = "Multi-vector dense models, such as ColBERT, have proven highly effective in information retrieval. ColBERT`s late interaction scoring approximates the joint query-document attention seen in cross-encoders while maintaining inference efficiency closer to traditional dense retrieval models, thanks to its bi-encoder architecture and recent optimizations in indexing and search. In this paper, we introduce a novel architecture and a training framework to support long context window and multilingual retrieval. Leveraging Matryoshka Representation Loss, we further demonstrate that the reducing the embedding dimensionality from 128 to 64 has insignificant impact on the model`s retrieval performance and cut storage requirements by up to 50{
|
|
443
|
+
abstract = "Multi-vector dense models, such as ColBERT, have proven highly effective in information retrieval. ColBERT`s late interaction scoring approximates the joint query-document attention seen in cross-encoders while maintaining inference efficiency closer to traditional dense retrieval models, thanks to its bi-encoder architecture and recent optimizations in indexing and search. In this paper, we introduce a novel architecture and a training framework to support long context window and multilingual retrieval. Leveraging Matryoshka Representation Loss, we further demonstrate that the reducing the embedding dimensionality from 128 to 64 has insignificant impact on the model`s retrieval performance and cut storage requirements by up to 50{\\%}. Our new model, Jina-ColBERT-v2, demonstrates strong performance across a range of English and multilingual retrieval tasks,"
|
|
443
444
|
}""",
|
|
444
445
|
)
|
|
445
446
|
|
|
@@ -462,7 +463,7 @@ lightonai__gte_moderncolbert_v1 = ModelMeta(
|
|
|
462
463
|
embed_dim=None,
|
|
463
464
|
license="apache-2.0",
|
|
464
465
|
similarity_fn_name="MaxSim",
|
|
465
|
-
framework=["PyLate", "ColBERT"],
|
|
466
|
+
framework=["PyLate", "ColBERT", "safetensors", "Sentence Transformers"],
|
|
466
467
|
reference="https://huggingface.co/lightonai/GTE-ModernColBERT-v1",
|
|
467
468
|
use_instructions=False,
|
|
468
469
|
adapted_from="Alibaba-NLP/gte-modernbert-base",
|
|
@@ -42,7 +42,7 @@ Qodo_Embed_1_1_5B = ModelMeta(
|
|
|
42
42
|
max_tokens=32768,
|
|
43
43
|
reference="https://huggingface.co/Qodo/Qodo-Embed-1-1.5B",
|
|
44
44
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
45
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
45
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
46
46
|
use_instructions=False,
|
|
47
47
|
public_training_code=None,
|
|
48
48
|
public_training_data=None,
|
|
@@ -65,7 +65,7 @@ Qodo_Embed_1_7B = ModelMeta(
|
|
|
65
65
|
max_tokens=32768,
|
|
66
66
|
reference="https://huggingface.co/Qodo/Qodo-Embed-1-7B",
|
|
67
67
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
68
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
68
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
69
69
|
use_instructions=False,
|
|
70
70
|
public_training_code=None,
|
|
71
71
|
public_training_data=None,
|
|
@@ -37,7 +37,7 @@ mini_gte = ModelMeta(
|
|
|
37
37
|
max_tokens=512,
|
|
38
38
|
reference="https://huggingface.co/prdev/mini-gte",
|
|
39
39
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
40
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
40
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
41
41
|
use_instructions=False,
|
|
42
42
|
public_training_code=None,
|
|
43
43
|
public_training_data=None,
|
|
@@ -146,7 +146,7 @@ Qwen3_Embedding_0B6 = ModelMeta(
|
|
|
146
146
|
license="apache-2.0",
|
|
147
147
|
reference="https://huggingface.co/Qwen/Qwen3-Embedding-0.6B",
|
|
148
148
|
similarity_fn_name="cosine",
|
|
149
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
149
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
150
150
|
use_instructions=True,
|
|
151
151
|
public_training_code=None,
|
|
152
152
|
public_training_data=None,
|
|
@@ -169,7 +169,7 @@ Qwen3_Embedding_4B = ModelMeta(
|
|
|
169
169
|
license="apache-2.0",
|
|
170
170
|
reference="https://huggingface.co/Qwen/Qwen3-Embedding-4B",
|
|
171
171
|
similarity_fn_name="cosine",
|
|
172
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
172
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
173
173
|
use_instructions=True,
|
|
174
174
|
public_training_code=None,
|
|
175
175
|
public_training_data=None,
|
|
@@ -192,7 +192,7 @@ Qwen3_Embedding_8B = ModelMeta(
|
|
|
192
192
|
license="apache-2.0",
|
|
193
193
|
reference="https://huggingface.co/Qwen/Qwen3-Embedding-8B",
|
|
194
194
|
similarity_fn_name="cosine",
|
|
195
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
195
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
196
196
|
use_instructions=True,
|
|
197
197
|
public_training_code=None,
|
|
198
198
|
public_training_data=None,
|
|
@@ -70,7 +70,7 @@ QZhou_Embedding = ModelMeta(
|
|
|
70
70
|
max_tokens=8192,
|
|
71
71
|
reference="https://huggingface.co/Kingsoft-LLM/QZhou-Embedding",
|
|
72
72
|
similarity_fn_name="cosine",
|
|
73
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
73
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
74
74
|
use_instructions=True,
|
|
75
75
|
public_training_code=None,
|
|
76
76
|
public_training_data="https://huggingface.co/datasets/cfli/bge-full-data",
|
|
@@ -104,7 +104,7 @@ QZhou_Embedding_Zh = ModelMeta(
|
|
|
104
104
|
max_tokens=8192,
|
|
105
105
|
reference="http://huggingface.co/Kingsoft-LLM/QZhou-Embedding-Zh",
|
|
106
106
|
similarity_fn_name="cosine",
|
|
107
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
107
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
108
108
|
use_instructions=True,
|
|
109
109
|
public_training_code=None,
|
|
110
110
|
public_training_data=None,
|
|
@@ -68,7 +68,7 @@ _common_mock_metadata = dict(
|
|
|
68
68
|
license="mit",
|
|
69
69
|
max_tokens=np.inf,
|
|
70
70
|
reference=None,
|
|
71
|
-
similarity_fn_name="cosine",
|
|
71
|
+
similarity_fn_name="cosine",
|
|
72
72
|
framework=[],
|
|
73
73
|
use_instructions=False,
|
|
74
74
|
public_training_code=None, # No training code, as this is a random baseline
|
|
@@ -187,7 +187,7 @@ class RandomEncoderBaseline:
|
|
|
187
187
|
|
|
188
188
|
|
|
189
189
|
random_encoder_baseline = ModelMeta(
|
|
190
|
-
loader=RandomEncoderBaseline,
|
|
190
|
+
loader=RandomEncoderBaseline,
|
|
191
191
|
name="baseline/random-encoder-baseline",
|
|
192
192
|
model_type=["dense"],
|
|
193
193
|
modalities=["text", "image"],
|
|
@@ -232,7 +232,7 @@ class RandomCrossEncoderBaseline:
|
|
|
232
232
|
|
|
233
233
|
|
|
234
234
|
random_cross_encoder_baseline = ModelMeta(
|
|
235
|
-
loader=RandomCrossEncoderBaseline,
|
|
235
|
+
loader=RandomCrossEncoderBaseline,
|
|
236
236
|
name="baseline/random-cross-encoder-baseline",
|
|
237
237
|
model_type=["cross-encoder"],
|
|
238
238
|
modalities=["text", "image"],
|
|
@@ -4,7 +4,7 @@ from mteb.models.model_implementations.model2vec_models import Model2VecModel
|
|
|
4
4
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
5
5
|
|
|
6
6
|
potion_base_8m = ModelMeta(
|
|
7
|
-
loader=Model2VecModel,
|
|
7
|
+
loader=Model2VecModel,
|
|
8
8
|
name="rasgaard/m2v-dfm-large",
|
|
9
9
|
model_type=["dense"],
|
|
10
10
|
languages=["dan-Latn"],
|
|
@@ -17,7 +17,7 @@ potion_base_8m = ModelMeta(
|
|
|
17
17
|
embed_dim=256,
|
|
18
18
|
license="mit",
|
|
19
19
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
20
|
-
framework=["NumPy", "Sentence Transformers"],
|
|
20
|
+
framework=["NumPy", "Sentence Transformers", "safetensors"],
|
|
21
21
|
reference="https://huggingface.co/rasgaard/m2v-dfm-large",
|
|
22
22
|
use_instructions=False,
|
|
23
23
|
adapted_from="KennethEnevoldsen/dfm-sentence-encoder-large",
|
|
@@ -56,7 +56,7 @@ ReasonIR_8B = ModelMeta(
|
|
|
56
56
|
max_tokens=131072,
|
|
57
57
|
reference="https://huggingface.co/ReasonIR/ReasonIR-8B",
|
|
58
58
|
similarity_fn_name="cosine",
|
|
59
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
59
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
60
60
|
use_instructions=True,
|
|
61
61
|
training_datasets=REASONIR_TRAINING_DATA,
|
|
62
62
|
public_training_code="https://github.com/facebookresearch/ReasonIR/tree/main/training",
|
|
@@ -154,7 +154,7 @@ REPLLAMA_CITATION = """
|
|
|
154
154
|
"""
|
|
155
155
|
|
|
156
156
|
repllama_llama2_original = ModelMeta(
|
|
157
|
-
loader=RepLLaMAModel,
|
|
157
|
+
loader=RepLLaMAModel,
|
|
158
158
|
loader_kwargs=dict(
|
|
159
159
|
base_model_name_or_path="meta-llama/Llama-2-7b-hf",
|
|
160
160
|
device_map="auto",
|
|
@@ -187,7 +187,7 @@ repllama_llama2_original = ModelMeta(
|
|
|
187
187
|
|
|
188
188
|
|
|
189
189
|
repllama_llama2_reproduced = ModelMeta(
|
|
190
|
-
loader=RepLLaMAModel,
|
|
190
|
+
loader=RepLLaMAModel,
|
|
191
191
|
loader_kwargs=dict(
|
|
192
192
|
base_model_name_or_path="meta-llama/Llama-2-7b-hf",
|
|
193
193
|
device_map="auto",
|
|
@@ -207,7 +207,7 @@ repllama_llama2_reproduced = ModelMeta(
|
|
|
207
207
|
license="apache-2.0",
|
|
208
208
|
reference="https://huggingface.co/samaya-ai/RepLLaMA-reproduced",
|
|
209
209
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
210
|
-
framework=["PyTorch", "Tevatron"],
|
|
210
|
+
framework=["PyTorch", "Tevatron", "safetensors"],
|
|
211
211
|
use_instructions=True,
|
|
212
212
|
citation=REPLLAMA_CITATION,
|
|
213
213
|
public_training_code=None,
|
|
@@ -214,7 +214,7 @@ class JinaReranker(RerankerWrapper):
|
|
|
214
214
|
|
|
215
215
|
|
|
216
216
|
monobert_large = ModelMeta(
|
|
217
|
-
loader=MonoBERTReranker,
|
|
217
|
+
loader=MonoBERTReranker,
|
|
218
218
|
loader_kwargs=dict(
|
|
219
219
|
fp_options="float16",
|
|
220
220
|
),
|
|
@@ -234,12 +234,12 @@ monobert_large = ModelMeta(
|
|
|
234
234
|
similarity_fn_name=None,
|
|
235
235
|
use_instructions=None,
|
|
236
236
|
training_datasets=None,
|
|
237
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
237
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers"],
|
|
238
238
|
)
|
|
239
239
|
|
|
240
240
|
# languages unclear: https://huggingface.co/jinaai/jina-reranker-v2-base-multilingual/discussions/28
|
|
241
241
|
jina_reranker_multilingual = ModelMeta(
|
|
242
|
-
loader=JinaReranker,
|
|
242
|
+
loader=JinaReranker,
|
|
243
243
|
loader_kwargs=dict(
|
|
244
244
|
fp_options="float16",
|
|
245
245
|
),
|
|
@@ -259,11 +259,17 @@ jina_reranker_multilingual = ModelMeta(
|
|
|
259
259
|
similarity_fn_name=None,
|
|
260
260
|
use_instructions=None,
|
|
261
261
|
training_datasets=None,
|
|
262
|
-
framework=[
|
|
262
|
+
framework=[
|
|
263
|
+
"Sentence Transformers",
|
|
264
|
+
"PyTorch",
|
|
265
|
+
"Transformers",
|
|
266
|
+
"ONNX",
|
|
267
|
+
"safetensors",
|
|
268
|
+
],
|
|
263
269
|
)
|
|
264
270
|
|
|
265
271
|
bge_reranker_v2_m3 = ModelMeta(
|
|
266
|
-
loader=BGEReranker,
|
|
272
|
+
loader=BGEReranker,
|
|
267
273
|
loader_kwargs=dict(
|
|
268
274
|
fp_options="float16",
|
|
269
275
|
),
|
|
@@ -316,7 +322,7 @@ bge_reranker_v2_m3 = ModelMeta(
|
|
|
316
322
|
similarity_fn_name=None,
|
|
317
323
|
use_instructions=None,
|
|
318
324
|
training_datasets=bge_m3_training_data,
|
|
319
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
325
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
320
326
|
citation="""
|
|
321
327
|
@misc{li2023making,
|
|
322
328
|
title={Making Large Language Models A Better Foundation For Dense Retrieval},
|
|
@@ -330,7 +330,7 @@ monot5_small = ModelMeta(
|
|
|
330
330
|
similarity_fn_name=None,
|
|
331
331
|
use_instructions=None,
|
|
332
332
|
training_datasets=None,
|
|
333
|
-
framework=["PyTorch"],
|
|
333
|
+
framework=["PyTorch", "Transformers"],
|
|
334
334
|
citation="""@misc{rosa2022parameterleftbehinddistillation,
|
|
335
335
|
title={No Parameter Left Behind: How Distillation and Model Size Affect Zero-Shot Retrieval},
|
|
336
336
|
author={Guilherme Moraes Rosa and Luiz Bonifacio and Vitor Jeronymo and Hugo Abonizio and Marzieh Fadaee and Roberto Lotufo and Rodrigo Nogueira},
|
|
@@ -343,7 +343,7 @@ monot5_small = ModelMeta(
|
|
|
343
343
|
)
|
|
344
344
|
|
|
345
345
|
monot5_base = ModelMeta(
|
|
346
|
-
loader=MonoT5Reranker,
|
|
346
|
+
loader=MonoT5Reranker,
|
|
347
347
|
loader_kwargs=dict(
|
|
348
348
|
fp_options="float16",
|
|
349
349
|
),
|
|
@@ -372,7 +372,7 @@ monot5_base = ModelMeta(
|
|
|
372
372
|
similarity_fn_name=None,
|
|
373
373
|
use_instructions=None,
|
|
374
374
|
training_datasets=None,
|
|
375
|
-
framework=["PyTorch"],
|
|
375
|
+
framework=["PyTorch", "Transformers"],
|
|
376
376
|
)
|
|
377
377
|
|
|
378
378
|
monot5_large = ModelMeta(
|
|
@@ -396,7 +396,7 @@ monot5_large = ModelMeta(
|
|
|
396
396
|
similarity_fn_name=None,
|
|
397
397
|
use_instructions=None,
|
|
398
398
|
training_datasets=None,
|
|
399
|
-
framework=["PyTorch"],
|
|
399
|
+
framework=["PyTorch", "Transformers"],
|
|
400
400
|
citation="""@misc{rosa2022parameterleftbehinddistillation,
|
|
401
401
|
title={No Parameter Left Behind: How Distillation and Model Size Affect Zero-Shot Retrieval},
|
|
402
402
|
author={Guilherme Moraes Rosa and Luiz Bonifacio and Vitor Jeronymo and Hugo Abonizio and Marzieh Fadaee and Roberto Lotufo and Rodrigo Nogueira},
|
|
@@ -429,7 +429,7 @@ monot5_3b = ModelMeta(
|
|
|
429
429
|
similarity_fn_name=None,
|
|
430
430
|
use_instructions=None,
|
|
431
431
|
training_datasets=None,
|
|
432
|
-
framework=["PyTorch"],
|
|
432
|
+
framework=["PyTorch", "Transformers"],
|
|
433
433
|
citation="""@misc{rosa2022parameterleftbehinddistillation,
|
|
434
434
|
title={No Parameter Left Behind: How Distillation and Model Size Affect Zero-Shot Retrieval},
|
|
435
435
|
author={Guilherme Moraes Rosa and Luiz Bonifacio and Vitor Jeronymo and Hugo Abonizio and Marzieh Fadaee and Roberto Lotufo and Rodrigo Nogueira},
|
|
@@ -442,7 +442,7 @@ monot5_3b = ModelMeta(
|
|
|
442
442
|
)
|
|
443
443
|
|
|
444
444
|
flant5_base = ModelMeta(
|
|
445
|
-
loader=FLANT5Reranker,
|
|
445
|
+
loader=FLANT5Reranker,
|
|
446
446
|
loader_kwargs=dict(
|
|
447
447
|
fp_options="float16",
|
|
448
448
|
),
|
|
@@ -484,7 +484,7 @@ flant5_base = ModelMeta(
|
|
|
484
484
|
public_training_data=None,
|
|
485
485
|
similarity_fn_name=None,
|
|
486
486
|
use_instructions=None,
|
|
487
|
-
framework=["PyTorch"],
|
|
487
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
488
488
|
)
|
|
489
489
|
|
|
490
490
|
flant5_large = ModelMeta(
|
|
@@ -530,7 +530,7 @@ flant5_large = ModelMeta(
|
|
|
530
530
|
public_training_data=None,
|
|
531
531
|
similarity_fn_name=None,
|
|
532
532
|
use_instructions=None,
|
|
533
|
-
framework=["PyTorch"],
|
|
533
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
534
534
|
)
|
|
535
535
|
|
|
536
536
|
flant5_xl = ModelMeta(
|
|
@@ -576,7 +576,7 @@ flant5_xl = ModelMeta(
|
|
|
576
576
|
public_training_data=None,
|
|
577
577
|
similarity_fn_name=None,
|
|
578
578
|
use_instructions=None,
|
|
579
|
-
framework=["PyTorch"],
|
|
579
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
580
580
|
)
|
|
581
581
|
|
|
582
582
|
flant5_xxl = ModelMeta(
|
|
@@ -622,7 +622,7 @@ flant5_xxl = ModelMeta(
|
|
|
622
622
|
public_training_data=None,
|
|
623
623
|
similarity_fn_name=None,
|
|
624
624
|
use_instructions=None,
|
|
625
|
-
framework=["PyTorch"],
|
|
625
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
626
626
|
)
|
|
627
627
|
|
|
628
628
|
|
|
@@ -647,7 +647,7 @@ llama2_7b = ModelMeta(
|
|
|
647
647
|
similarity_fn_name=None,
|
|
648
648
|
use_instructions=None,
|
|
649
649
|
training_datasets=None,
|
|
650
|
-
framework=["PyTorch"],
|
|
650
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
651
651
|
citation="""@misc{touvron2023llama2openfoundation,
|
|
652
652
|
title={Llama 2: Open Foundation and Fine-Tuned Chat Models},
|
|
653
653
|
author={Hugo Touvron and Louis Martin and Kevin Stone and Peter Albert and Amjad Almahairi and Yasmine Babaei and Nikolay Bashlykov and Soumya Batra and Prajjwal Bhargava and Shruti Bhosale and Dan Bikel and Lukas Blecher and Cristian Canton Ferrer and Moya Chen and Guillem Cucurull and David Esiobu and Jude Fernandes and Jeremy Fu and Wenyin Fu and Brian Fuller and Cynthia Gao and Vedanuj Goswami and Naman Goyal and Anthony Hartshorn and Saghar Hosseini and Rui Hou and Hakan Inan and Marcin Kardas and Viktor Kerkez and Madian Khabsa and Isabel Kloumann and Artem Korenev and Punit Singh Koura and Marie-Anne Lachaux and Thibaut Lavril and Jenya Lee and Diana Liskovich and Yinghai Lu and Yuning Mao and Xavier Martinet and Todor Mihaylov and Pushkar Mishra and Igor Molybog and Yixin Nie and Andrew Poulton and Jeremy Reizenstein and Rashi Rungta and Kalyan Saladi and Alan Schelten and Ruan Silva and Eric Michael Smith and Ranjan Subramanian and Xiaoqing Ellen Tan and Binh Tang and Ross Taylor and Adina Williams and Jian Xiang Kuan and Puxin Xu and Zheng Yan and Iliyan Zarov and Yuchen Zhang and Angela Fan and Melanie Kambadur and Sharan Narang and Aurelien Rodriguez and Robert Stojnic and Sergey Edunov and Thomas Scialom},
|
|
@@ -689,7 +689,7 @@ llama2_7b_chat = ModelMeta(
|
|
|
689
689
|
similarity_fn_name=None,
|
|
690
690
|
use_instructions=None,
|
|
691
691
|
training_datasets=None,
|
|
692
|
-
framework=["PyTorch"],
|
|
692
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
693
693
|
)
|
|
694
694
|
|
|
695
695
|
mistral_7b = ModelMeta(
|
|
@@ -713,7 +713,7 @@ mistral_7b = ModelMeta(
|
|
|
713
713
|
similarity_fn_name=None,
|
|
714
714
|
use_instructions=None,
|
|
715
715
|
training_datasets=None,
|
|
716
|
-
framework=["PyTorch"],
|
|
716
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
717
717
|
citation="""@misc{jiang2023mistral7b,
|
|
718
718
|
title={Mistral 7B},
|
|
719
719
|
author={Albert Q. Jiang and Alexandre Sablayrolles and Arthur Mensch and Chris Bamford and Devendra Singh Chaplot and Diego de las Casas and Florian Bressand and Gianna Lengyel and Guillaume Lample and Lucile Saulnier and Lélio Renard Lavaud and Marie-Anne Lachaux and Pierre Stock and Teven Le Scao and Thibaut Lavril and Thomas Wang and Timothée Lacroix and William El Sayed},
|
|
@@ -748,7 +748,7 @@ followir_7b = ModelMeta(
|
|
|
748
748
|
public_training_data=None,
|
|
749
749
|
similarity_fn_name=None,
|
|
750
750
|
use_instructions=None,
|
|
751
|
-
framework=["PyTorch"],
|
|
751
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
752
752
|
citation="""
|
|
753
753
|
@misc{weller2024followir,
|
|
754
754
|
title={FollowIR: Evaluating and Teaching Information Retrieval Models to Follow Instructions},
|
|
@@ -898,11 +898,11 @@ mt5_base_mmarco_v2 = ModelMeta(
|
|
|
898
898
|
public_training_data=None,
|
|
899
899
|
similarity_fn_name=None,
|
|
900
900
|
use_instructions=None,
|
|
901
|
-
framework=["PyTorch"],
|
|
901
|
+
framework=["PyTorch", "Transformers"],
|
|
902
902
|
)
|
|
903
903
|
|
|
904
904
|
mt5_13b_mmarco_100k = ModelMeta(
|
|
905
|
-
loader=MonoT5Reranker,
|
|
905
|
+
loader=MonoT5Reranker,
|
|
906
906
|
loader_kwargs=dict(
|
|
907
907
|
fp_options="float16",
|
|
908
908
|
),
|
|
@@ -922,5 +922,5 @@ mt5_13b_mmarco_100k = ModelMeta(
|
|
|
922
922
|
similarity_fn_name=None,
|
|
923
923
|
use_instructions=None,
|
|
924
924
|
training_datasets=None,
|
|
925
|
-
framework=["PyTorch"],
|
|
925
|
+
framework=["PyTorch", "Transformers"],
|
|
926
926
|
)
|
|
@@ -21,7 +21,7 @@ ritrieve_zh_v1 = ModelMeta(
|
|
|
21
21
|
max_tokens=512,
|
|
22
22
|
reference="https://huggingface.co/richinfoai/ritrieve_zh_v1",
|
|
23
23
|
similarity_fn_name="cosine",
|
|
24
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
24
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
25
25
|
use_instructions=False,
|
|
26
26
|
superseded_by=None,
|
|
27
27
|
adapted_from=None,
|