mteb 2.5.2__py3-none-any.whl → 2.7.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (241) hide show
  1. mteb/__init__.py +2 -0
  2. mteb/_create_dataloaders.py +17 -18
  3. mteb/_evaluators/any_sts_evaluator.py +3 -3
  4. mteb/_evaluators/clustering_evaluator.py +2 -2
  5. mteb/_evaluators/evaluator.py +4 -2
  6. mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +10 -8
  7. mteb/_evaluators/pair_classification_evaluator.py +5 -3
  8. mteb/_evaluators/retrieval_evaluator.py +2 -2
  9. mteb/_evaluators/retrieval_metrics.py +18 -17
  10. mteb/_evaluators/sklearn_evaluator.py +11 -10
  11. mteb/_evaluators/text/bitext_mining_evaluator.py +27 -18
  12. mteb/_evaluators/text/summarization_evaluator.py +23 -18
  13. mteb/_evaluators/zeroshot_classification_evaluator.py +5 -3
  14. mteb/abstasks/_data_filter/filters.py +1 -1
  15. mteb/abstasks/_data_filter/task_pipelines.py +3 -0
  16. mteb/abstasks/_statistics_calculation.py +18 -10
  17. mteb/abstasks/_stratification.py +18 -18
  18. mteb/abstasks/abstask.py +35 -28
  19. mteb/abstasks/aggregate_task_metadata.py +1 -9
  20. mteb/abstasks/aggregated_task.py +10 -29
  21. mteb/abstasks/classification.py +15 -10
  22. mteb/abstasks/clustering.py +19 -15
  23. mteb/abstasks/clustering_legacy.py +10 -10
  24. mteb/abstasks/image/image_text_pair_classification.py +7 -4
  25. mteb/abstasks/multilabel_classification.py +23 -19
  26. mteb/abstasks/pair_classification.py +20 -11
  27. mteb/abstasks/regression.py +4 -4
  28. mteb/abstasks/retrieval.py +28 -24
  29. mteb/abstasks/retrieval_dataset_loaders.py +2 -2
  30. mteb/abstasks/sts.py +8 -5
  31. mteb/abstasks/task_metadata.py +31 -33
  32. mteb/abstasks/text/bitext_mining.py +39 -28
  33. mteb/abstasks/text/reranking.py +8 -6
  34. mteb/abstasks/text/summarization.py +10 -5
  35. mteb/abstasks/zeroshot_classification.py +8 -4
  36. mteb/benchmarks/benchmark.py +4 -2
  37. mteb/benchmarks/benchmarks/__init__.py +4 -0
  38. mteb/benchmarks/benchmarks/benchmarks.py +112 -11
  39. mteb/benchmarks/get_benchmark.py +14 -55
  40. mteb/cache.py +182 -29
  41. mteb/cli/_display_tasks.py +2 -2
  42. mteb/cli/build_cli.py +110 -14
  43. mteb/cli/generate_model_card.py +43 -23
  44. mteb/deprecated_evaluator.py +63 -49
  45. mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2CybersecurityRetrieval.json +32 -0
  46. mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EconomicRetrieval.json +32 -0
  47. mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EnergyRetrieval.json +32 -0
  48. mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2HrRetrieval.json +32 -0
  49. mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json +30 -0
  50. mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json +116 -0
  51. mteb/descriptive_stats/Retrieval/NanoClimateFEVER-VN.json +30 -0
  52. mteb/descriptive_stats/Retrieval/NanoDBPedia-VN.json +30 -0
  53. mteb/descriptive_stats/Retrieval/NanoFEVER-VN.json +30 -0
  54. mteb/descriptive_stats/Retrieval/NanoHotpotQA-VN.json +30 -0
  55. mteb/descriptive_stats/Retrieval/NanoMSMARCO-VN.json +30 -0
  56. mteb/descriptive_stats/Retrieval/NanoNQ-VN.json +30 -0
  57. mteb/descriptive_stats/Retrieval/TVPLRetrieval.json +30 -0
  58. mteb/evaluate.py +44 -33
  59. mteb/filter_tasks.py +25 -26
  60. mteb/get_tasks.py +29 -30
  61. mteb/languages/language_scripts.py +5 -3
  62. mteb/leaderboard/app.py +162 -34
  63. mteb/load_results.py +12 -12
  64. mteb/models/abs_encoder.py +10 -6
  65. mteb/models/cache_wrappers/cache_backend_protocol.py +3 -5
  66. mteb/models/cache_wrappers/cache_backends/_hash_utils.py +5 -4
  67. mteb/models/cache_wrappers/cache_backends/faiss_cache.py +6 -2
  68. mteb/models/cache_wrappers/cache_backends/numpy_cache.py +43 -25
  69. mteb/models/cache_wrappers/cache_wrapper.py +2 -2
  70. mteb/models/get_model_meta.py +21 -3
  71. mteb/models/instruct_wrapper.py +28 -8
  72. mteb/models/model_implementations/align_models.py +1 -1
  73. mteb/models/model_implementations/andersborges.py +4 -4
  74. mteb/models/model_implementations/ara_models.py +1 -1
  75. mteb/models/model_implementations/arctic_models.py +8 -8
  76. mteb/models/model_implementations/b1ade_models.py +1 -1
  77. mteb/models/model_implementations/bge_models.py +45 -21
  78. mteb/models/model_implementations/bica_model.py +3 -3
  79. mteb/models/model_implementations/blip2_models.py +2 -2
  80. mteb/models/model_implementations/blip_models.py +16 -16
  81. mteb/models/model_implementations/bm25.py +4 -4
  82. mteb/models/model_implementations/bmretriever_models.py +6 -4
  83. mteb/models/model_implementations/cadet_models.py +1 -1
  84. mteb/models/model_implementations/cde_models.py +11 -4
  85. mteb/models/model_implementations/clip_models.py +6 -6
  86. mteb/models/model_implementations/clips_models.py +3 -3
  87. mteb/models/model_implementations/codefuse_models.py +5 -5
  88. mteb/models/model_implementations/codesage_models.py +3 -3
  89. mteb/models/model_implementations/cohere_models.py +5 -5
  90. mteb/models/model_implementations/cohere_v.py +2 -2
  91. mteb/models/model_implementations/colpali_models.py +3 -3
  92. mteb/models/model_implementations/colqwen_models.py +8 -8
  93. mteb/models/model_implementations/colsmol_models.py +2 -2
  94. mteb/models/model_implementations/conan_models.py +1 -1
  95. mteb/models/model_implementations/dino_models.py +42 -42
  96. mteb/models/model_implementations/e5_instruct.py +23 -4
  97. mteb/models/model_implementations/e5_models.py +9 -9
  98. mteb/models/model_implementations/e5_v.py +6 -6
  99. mteb/models/model_implementations/eagerworks_models.py +1 -1
  100. mteb/models/model_implementations/emillykkejensen_models.py +6 -6
  101. mteb/models/model_implementations/en_code_retriever.py +1 -1
  102. mteb/models/model_implementations/euler_models.py +2 -2
  103. mteb/models/model_implementations/fa_models.py +9 -9
  104. mteb/models/model_implementations/facebookai.py +14 -2
  105. mteb/models/model_implementations/geogpt_models.py +1 -1
  106. mteb/models/model_implementations/gme_v_models.py +6 -5
  107. mteb/models/model_implementations/google_models.py +1 -1
  108. mteb/models/model_implementations/granite_vision_embedding_models.py +1 -1
  109. mteb/models/model_implementations/gritlm_models.py +2 -2
  110. mteb/models/model_implementations/gte_models.py +25 -13
  111. mteb/models/model_implementations/hinvec_models.py +1 -1
  112. mteb/models/model_implementations/ibm_granite_models.py +30 -6
  113. mteb/models/model_implementations/inf_models.py +2 -2
  114. mteb/models/model_implementations/jasper_models.py +2 -2
  115. mteb/models/model_implementations/jina_clip.py +48 -10
  116. mteb/models/model_implementations/jina_models.py +18 -11
  117. mteb/models/model_implementations/kblab.py +12 -6
  118. mteb/models/model_implementations/kennethenevoldsen_models.py +4 -4
  119. mteb/models/model_implementations/kfst.py +1 -1
  120. mteb/models/model_implementations/kowshik24_models.py +1 -1
  121. mteb/models/model_implementations/lgai_embedding_models.py +1 -1
  122. mteb/models/model_implementations/linq_models.py +1 -1
  123. mteb/models/model_implementations/listconranker.py +1 -1
  124. mteb/models/model_implementations/llm2clip_models.py +6 -6
  125. mteb/models/model_implementations/llm2vec_models.py +8 -8
  126. mteb/models/model_implementations/mcinext_models.py +4 -1
  127. mteb/models/model_implementations/mdbr_models.py +17 -3
  128. mteb/models/model_implementations/misc_models.py +68 -68
  129. mteb/models/model_implementations/mixedbread_ai_models.py +332 -0
  130. mteb/models/model_implementations/mme5_models.py +1 -1
  131. mteb/models/model_implementations/moco_models.py +4 -4
  132. mteb/models/model_implementations/mod_models.py +1 -1
  133. mteb/models/model_implementations/model2vec_models.py +14 -14
  134. mteb/models/model_implementations/moka_models.py +1 -1
  135. mteb/models/model_implementations/nbailab.py +3 -3
  136. mteb/models/model_implementations/no_instruct_sentence_models.py +2 -2
  137. mteb/models/model_implementations/nomic_models.py +30 -15
  138. mteb/models/model_implementations/nomic_models_vision.py +1 -1
  139. mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +15 -9
  140. mteb/models/model_implementations/nvidia_models.py +151 -19
  141. mteb/models/model_implementations/octen_models.py +61 -2
  142. mteb/models/model_implementations/openclip_models.py +13 -13
  143. mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -5
  144. mteb/models/model_implementations/ops_moa_models.py +1 -1
  145. mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -1
  146. mteb/models/model_implementations/pawan_models.py +1 -1
  147. mteb/models/model_implementations/piccolo_models.py +1 -1
  148. mteb/models/model_implementations/pixie_models.py +56 -0
  149. mteb/models/model_implementations/promptriever_models.py +4 -4
  150. mteb/models/model_implementations/pylate_models.py +10 -9
  151. mteb/models/model_implementations/qodo_models.py +2 -2
  152. mteb/models/model_implementations/qtack_models.py +1 -1
  153. mteb/models/model_implementations/qwen3_models.py +3 -3
  154. mteb/models/model_implementations/qzhou_models.py +2 -2
  155. mteb/models/model_implementations/random_baseline.py +3 -3
  156. mteb/models/model_implementations/rasgaard_models.py +2 -2
  157. mteb/models/model_implementations/reasonir_model.py +1 -1
  158. mteb/models/model_implementations/repllama_models.py +3 -3
  159. mteb/models/model_implementations/rerankers_custom.py +12 -6
  160. mteb/models/model_implementations/rerankers_monot5_based.py +17 -17
  161. mteb/models/model_implementations/richinfoai_models.py +1 -1
  162. mteb/models/model_implementations/ru_sentence_models.py +20 -20
  163. mteb/models/model_implementations/ruri_models.py +10 -10
  164. mteb/models/model_implementations/salesforce_models.py +3 -3
  165. mteb/models/model_implementations/samilpwc_models.py +1 -1
  166. mteb/models/model_implementations/sarashina_embedding_models.py +2 -2
  167. mteb/models/model_implementations/searchmap_models.py +1 -1
  168. mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +113 -146
  169. mteb/models/model_implementations/sentence_transformers_models.py +124 -22
  170. mteb/models/model_implementations/shuu_model.py +1 -1
  171. mteb/models/model_implementations/siglip_models.py +20 -20
  172. mteb/models/model_implementations/slm_models.py +416 -0
  173. mteb/models/model_implementations/spartan8806_atles_champion.py +1 -1
  174. mteb/models/model_implementations/stella_models.py +17 -4
  175. mteb/models/model_implementations/tarka_models.py +2 -2
  176. mteb/models/model_implementations/text2vec_models.py +9 -3
  177. mteb/models/model_implementations/ua_sentence_models.py +1 -1
  178. mteb/models/model_implementations/uae_models.py +7 -1
  179. mteb/models/model_implementations/vdr_models.py +1 -1
  180. mteb/models/model_implementations/vi_vn_models.py +6 -6
  181. mteb/models/model_implementations/vlm2vec_models.py +3 -3
  182. mteb/models/model_implementations/voyage_models.py +84 -0
  183. mteb/models/model_implementations/voyage_v.py +9 -7
  184. mteb/models/model_implementations/youtu_models.py +1 -1
  185. mteb/models/model_implementations/yuan_models.py +1 -1
  186. mteb/models/model_implementations/yuan_models_en.py +1 -1
  187. mteb/models/model_meta.py +80 -31
  188. mteb/models/models_protocols.py +22 -6
  189. mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +9 -6
  190. mteb/models/search_wrappers.py +33 -18
  191. mteb/models/sentence_transformer_wrapper.py +50 -25
  192. mteb/models/vllm_wrapper.py +327 -0
  193. mteb/py.typed +0 -0
  194. mteb/results/benchmark_results.py +29 -21
  195. mteb/results/model_result.py +52 -22
  196. mteb/results/task_result.py +80 -58
  197. mteb/similarity_functions.py +11 -7
  198. mteb/tasks/classification/dan/dk_hate_classification.py +1 -1
  199. mteb/tasks/classification/est/estonian_valence.py +1 -1
  200. mteb/tasks/classification/kur/kurdish_sentiment_classification.py +2 -2
  201. mteb/tasks/classification/multilingual/scala_classification.py +1 -1
  202. mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
  203. mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
  204. mteb/tasks/clustering/zho/cmteb_clustering.py +2 -2
  205. mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +1 -1
  206. mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
  207. mteb/tasks/retrieval/code/code_rag.py +12 -12
  208. mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
  209. mteb/tasks/retrieval/dan/tv2_nordretrieval.py +2 -2
  210. mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +2 -2
  211. mteb/tasks/retrieval/eng/__init__.py +2 -0
  212. mteb/tasks/retrieval/eng/chemrxiv.py +33 -0
  213. mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
  214. mteb/tasks/retrieval/kor/__init__.py +15 -1
  215. mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py +142 -0
  216. mteb/tasks/retrieval/multilingual/__init__.py +2 -0
  217. mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py +43 -0
  218. mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +90 -100
  219. mteb/tasks/retrieval/nob/norquad.py +2 -2
  220. mteb/tasks/retrieval/nob/snl_retrieval.py +2 -2
  221. mteb/tasks/retrieval/tur/tur_hist_quad.py +1 -1
  222. mteb/tasks/retrieval/vie/__init__.py +14 -6
  223. mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +39 -0
  224. mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +39 -0
  225. mteb/tasks/retrieval/vie/fevervn_retrieval.py +39 -0
  226. mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +39 -0
  227. mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +48 -0
  228. mteb/tasks/retrieval/vie/nqvn_retrieval.py +39 -0
  229. mteb/tasks/retrieval/vie/tvpl_retrieval.py +42 -0
  230. mteb/tasks/retrieval/vie/zac_legal_text_retrieval.py +15 -1
  231. mteb/types/__init__.py +2 -0
  232. mteb/types/_encoder_io.py +12 -0
  233. mteb/types/_result.py +2 -1
  234. mteb/types/statistics.py +9 -3
  235. {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/METADATA +15 -4
  236. {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/RECORD +240 -219
  237. mteb/models/model_implementations/mxbai_models.py +0 -111
  238. {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/WHEEL +0 -0
  239. {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/entry_points.txt +0 -0
  240. {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/licenses/LICENSE +0 -0
  241. {mteb-2.5.2.dist-info → mteb-2.7.2.dist-info}/top_level.txt +0 -0
@@ -140,7 +140,7 @@ opensearch_neural_sparse_encoding_doc_v3_gte = ModelMeta(
140
140
  max_tokens=8192,
141
141
  reference="https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v3-gte",
142
142
  similarity_fn_name="dot",
143
- framework=["Sentence Transformers", "PyTorch"],
143
+ framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
144
144
  public_training_code="https://github.com/zhichao-aws/opensearch-sparse-model-tuning-sample",
145
145
  public_training_data=True,
146
146
  use_instructions=True,
@@ -166,7 +166,7 @@ opensearch_neural_sparse_encoding_doc_v3_distill = ModelMeta(
166
166
  max_tokens=512,
167
167
  reference="https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v3-distill",
168
168
  similarity_fn_name="dot",
169
- framework=["Sentence Transformers", "PyTorch"],
169
+ framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
170
170
  public_training_code="https://github.com/zhichao-aws/opensearch-sparse-model-tuning-sample",
171
171
  public_training_data=True,
172
172
  use_instructions=True,
@@ -188,7 +188,7 @@ opensearch_neural_sparse_encoding_doc_v2_distill = ModelMeta(
188
188
  max_tokens=512,
189
189
  reference="https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill",
190
190
  similarity_fn_name="dot",
191
- framework=["Sentence Transformers", "PyTorch"],
191
+ framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
192
192
  public_training_code="https://github.com/zhichao-aws/opensearch-sparse-model-tuning-sample",
193
193
  public_training_data=True,
194
194
  use_instructions=True,
@@ -211,7 +211,7 @@ opensearch_neural_sparse_encoding_doc_v2_mini = ModelMeta(
211
211
  max_tokens=512,
212
212
  reference="https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v2-mini",
213
213
  similarity_fn_name="dot",
214
- framework=["Sentence Transformers", "PyTorch"],
214
+ framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
215
215
  public_training_code="https://github.com/zhichao-aws/opensearch-sparse-model-tuning-sample",
216
216
  public_training_data=True,
217
217
  use_instructions=True,
@@ -233,7 +233,7 @@ opensearch_neural_sparse_encoding_doc_v1 = ModelMeta(
233
233
  max_tokens=512,
234
234
  reference="https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v1",
235
235
  similarity_fn_name="dot",
236
- framework=["Sentence Transformers", "PyTorch"],
236
+ framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
237
237
  public_training_code="https://github.com/zhichao-aws/opensearch-sparse-model-tuning-sample",
238
238
  public_training_data=True,
239
239
  use_instructions=True,
@@ -67,7 +67,7 @@ ops_moa_yuan_embedding = ModelMeta(
67
67
  open_weights=True,
68
68
  public_training_code=None,
69
69
  public_training_data=None,
70
- framework=["PyTorch", "Sentence Transformers"],
70
+ framework=["PyTorch", "Sentence Transformers", "safetensors"],
71
71
  reference="https://huggingface.co/OpenSearch-AI/Ops-MoA-Yuan-embedding-1.0",
72
72
  similarity_fn_name="cosine",
73
73
  use_instructions=False,
@@ -14,7 +14,7 @@ solon_embeddings_1_1 = ModelMeta(
14
14
  max_tokens=8192,
15
15
  reference="https://huggingface.co/OrdalieTech/Solon-embeddings-mini-beta-1.1",
16
16
  similarity_fn_name="cosine",
17
- framework=["Sentence Transformers", "PyTorch"],
17
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
18
18
  use_instructions=False,
19
19
  public_training_data=(
20
20
  "https://huggingface.co/datasets/PleIAs/common_corpus; "
@@ -26,7 +26,7 @@ pawan_embd_68m = ModelMeta(
26
26
  max_tokens=512,
27
27
  reference="https://huggingface.co/dmedhi/PawanEmbd-68M",
28
28
  similarity_fn_name=ScoringFunction.COSINE,
29
- framework=["Sentence Transformers", "PyTorch"],
29
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
30
30
  adapted_from="ibm-granite/granite-embedding-278m-multilingual",
31
31
  superseded_by=None,
32
32
  public_training_code=None,
@@ -18,7 +18,7 @@ piccolo_base_zh = ModelMeta(
18
18
  max_tokens=512,
19
19
  reference="https://huggingface.co/sensenova/piccolo-base-zh",
20
20
  similarity_fn_name=ScoringFunction.COSINE,
21
- framework=["Sentence Transformers", "PyTorch"],
21
+ framework=["Sentence Transformers", "PyTorch", "Transformers"],
22
22
  use_instructions=False,
23
23
  superseded_by=None,
24
24
  adapted_from=None,
@@ -0,0 +1,56 @@
1
+ from mteb.models.model_implementations.arctic_models import (
2
+ ARCTIC_V2_CITATION,
3
+ LANGUAGES_V2_0,
4
+ arctic_v2_training_datasets,
5
+ )
6
+ from mteb.models.model_meta import (
7
+ ModelMeta,
8
+ ScoringFunction,
9
+ )
10
+ from mteb.models.sentence_transformer_wrapper import sentence_transformers_loader
11
+
12
+ PIXIE_RUNE_V1_CITATION = """@misc{TelePIX-PIXIE-Rune-v1.0,
13
+ title = {PIXIE-Rune-v1.0},
14
+ author = {TelePIX AI Research Team and Bongmin Kim},
15
+ year = {2026},
16
+ howpublished = {Hugging Face model card},
17
+ url = {https://huggingface.co/telepix/PIXIE-Rune-v1.0}
18
+ }"""
19
+
20
+ PIXIE_RUNE_V1_PROMPTS = {
21
+ "query": "query: ",
22
+ "document": "",
23
+ }
24
+
25
+ # it is further fine-tuned on TelePIX proprietary IR data (not public).
26
+ pixie_rune_v1_training_datasets = set(arctic_v2_training_datasets) | {
27
+ "TelePIX-Proprietary-IR-Triplets",
28
+ }
29
+
30
+ pixie_rune_v1_0 = ModelMeta(
31
+ loader=sentence_transformers_loader,
32
+ loader_kwargs={
33
+ "model_prompts": PIXIE_RUNE_V1_PROMPTS,
34
+ },
35
+ name="telepix/PIXIE-Rune-v1.0",
36
+ model_type=["dense"],
37
+ revision="b2486496da71191626666a88f9bfec844933a134",
38
+ release_date="2026-01-15",
39
+ languages=LANGUAGES_V2_0,
40
+ open_weights=True,
41
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
42
+ n_parameters=567754752,
43
+ memory_usage_mb=2166,
44
+ max_tokens=6144,
45
+ embed_dim=1024,
46
+ license="apache-2.0",
47
+ reference="https://huggingface.co/telepix/PIXIE-Rune-v1.0",
48
+ similarity_fn_name=ScoringFunction.COSINE,
49
+ use_instructions=True,
50
+ adapted_from="Snowflake/snowflake-arctic-embed-l-v2.0",
51
+ superseded_by=None,
52
+ public_training_code=None,
53
+ public_training_data=None,
54
+ training_datasets=pixie_rune_v1_training_datasets,
55
+ citation=PIXIE_RUNE_V1_CITATION + "\n\n" + ARCTIC_V2_CITATION,
56
+ )
@@ -90,7 +90,7 @@ promptriever_llama2 = ModelMeta(
90
90
  ),
91
91
  reference="https://huggingface.co/samaya-ai/promptriever-llama2-7b-v1",
92
92
  similarity_fn_name=ScoringFunction.COSINE,
93
- framework=["PyTorch", "Tevatron"],
93
+ framework=["PyTorch", "Tevatron", "safetensors"],
94
94
  use_instructions=True,
95
95
  citation=PROMPTRIEVER_CITATION,
96
96
  public_training_code=None,
@@ -123,7 +123,7 @@ promptriever_llama3 = ModelMeta(
123
123
  license="apache-2.0",
124
124
  reference="https://huggingface.co/samaya-ai/promptriever-llama3.1-8b-v1",
125
125
  similarity_fn_name=ScoringFunction.COSINE,
126
- framework=["PyTorch", "Tevatron"],
126
+ framework=["PyTorch", "Tevatron", "safetensors"],
127
127
  use_instructions=True,
128
128
  citation=PROMPTRIEVER_CITATION,
129
129
  public_training_code=None,
@@ -156,7 +156,7 @@ promptriever_llama3_instruct = ModelMeta(
156
156
  license="apache-2.0",
157
157
  reference="https://huggingface.co/samaya-ai/promptriever-llama3.1-8b-instruct-v1",
158
158
  similarity_fn_name=ScoringFunction.COSINE,
159
- framework=["PyTorch", "Tevatron"],
159
+ framework=["PyTorch", "Tevatron", "safetensors"],
160
160
  use_instructions=True,
161
161
  citation=PROMPTRIEVER_CITATION,
162
162
  public_training_code=None,
@@ -189,7 +189,7 @@ promptriever_mistral_v1 = ModelMeta(
189
189
  license="apache-2.0",
190
190
  reference="https://huggingface.co/samaya-ai/promptriever-mistral-v0.1-7b-v1",
191
191
  similarity_fn_name=ScoringFunction.COSINE,
192
- framework=["PyTorch", "Tevatron"],
192
+ framework=["PyTorch", "Tevatron", "safetensors"],
193
193
  use_instructions=True,
194
194
  citation=PROMPTRIEVER_CITATION,
195
195
  public_training_code=None,
@@ -19,6 +19,7 @@ from mteb.types import (
19
19
  Array,
20
20
  BatchedInput,
21
21
  CorpusDatasetType,
22
+ EncodeKwargs,
22
23
  PromptType,
23
24
  QueryDatasetType,
24
25
  RetrievalOutputType,
@@ -29,7 +30,7 @@ logger = logging.getLogger(__name__)
29
30
 
30
31
 
31
32
  class PylateSearchEncoder:
32
- """Mixin class to add PyLate-based indexing and search to an encoder. Implements :class:`SearchProtocol`"""
33
+ """Mixin class to add PyLate-based indexing and search to an encoder. Implements [SearchProtocol][mteb.models.SearchProtocol]"""
33
34
 
34
35
  base_index_dir: Path | None = None
35
36
  _index_dir: Path | None = None
@@ -45,7 +46,7 @@ class PylateSearchEncoder:
45
46
  task_metadata: TaskMetadata,
46
47
  hf_split: str,
47
48
  hf_subset: str,
48
- encode_kwargs: dict[str, Any],
49
+ encode_kwargs: EncodeKwargs,
49
50
  ) -> None:
50
51
  """Index the corpus for retrieval.
51
52
 
@@ -78,7 +79,7 @@ class PylateSearchEncoder:
78
79
  hf_split: str,
79
80
  hf_subset: str,
80
81
  top_k: int,
81
- encode_kwargs: dict[str, Any],
82
+ encode_kwargs: EncodeKwargs,
82
83
  top_ranked: TopRankedDocumentsType | None = None,
83
84
  ) -> RetrievalOutputType:
84
85
  queries_dataloader = create_dataloader(
@@ -136,7 +137,7 @@ class PylateSearchEncoder:
136
137
  hf_subset: str,
137
138
  hf_split: str,
138
139
  top_k: int,
139
- encode_kwargs: dict[str, Any],
140
+ encode_kwargs: EncodeKwargs,
140
141
  ) -> dict[str, list[tuple[float, str]]]:
141
142
  from pylate import indexes, retrieve
142
143
 
@@ -200,7 +201,7 @@ class PylateSearchEncoder:
200
201
  task_metadata: TaskMetadata,
201
202
  hf_subset: str,
202
203
  hf_split: str,
203
- encode_kwargs: dict[str, Any],
204
+ encode_kwargs: EncodeKwargs,
204
205
  ) -> dict[str, list[tuple[float, str]]]:
205
206
  """Rerank with PyLate's rank.rerank using per-query candidates.
206
207
 
@@ -350,7 +351,7 @@ colbert_v2 = ModelMeta(
350
351
  embed_dim=None,
351
352
  license="mit",
352
353
  similarity_fn_name=ScoringFunction.MAX_SIM,
353
- framework=["PyLate", "ColBERT"],
354
+ framework=["PyLate", "ColBERT", "Transformers", "ONNX", "safetensors"],
354
355
  reference="https://huggingface.co/colbert-ir/colbertv2.0",
355
356
  use_instructions=False,
356
357
  adapted_from=None,
@@ -406,7 +407,7 @@ jina_colbert_v2 = ModelMeta(
406
407
  embed_dim=None,
407
408
  license="cc-by-nc-4.0",
408
409
  similarity_fn_name=ScoringFunction.MAX_SIM,
409
- framework=["PyLate", "ColBERT"],
410
+ framework=["PyLate", "ColBERT", "ONNX", "safetensors"],
410
411
  reference="https://huggingface.co/jinaai/jina-colbert-v2",
411
412
  use_instructions=False,
412
413
  adapted_from=None,
@@ -439,7 +440,7 @@ jina_colbert_v2 = ModelMeta(
439
440
  url = "https://aclanthology.org/2024.mrl-1.11/",
440
441
  doi = "10.18653/v1/2024.mrl-1.11",
441
442
  pages = "159--166",
442
- abstract = "Multi-vector dense models, such as ColBERT, have proven highly effective in information retrieval. ColBERT`s late interaction scoring approximates the joint query-document attention seen in cross-encoders while maintaining inference efficiency closer to traditional dense retrieval models, thanks to its bi-encoder architecture and recent optimizations in indexing and search. In this paper, we introduce a novel architecture and a training framework to support long context window and multilingual retrieval. Leveraging Matryoshka Representation Loss, we further demonstrate that the reducing the embedding dimensionality from 128 to 64 has insignificant impact on the model`s retrieval performance and cut storage requirements by up to 50{\%}. Our new model, Jina-ColBERT-v2, demonstrates strong performance across a range of English and multilingual retrieval tasks,"
443
+ abstract = "Multi-vector dense models, such as ColBERT, have proven highly effective in information retrieval. ColBERT`s late interaction scoring approximates the joint query-document attention seen in cross-encoders while maintaining inference efficiency closer to traditional dense retrieval models, thanks to its bi-encoder architecture and recent optimizations in indexing and search. In this paper, we introduce a novel architecture and a training framework to support long context window and multilingual retrieval. Leveraging Matryoshka Representation Loss, we further demonstrate that the reducing the embedding dimensionality from 128 to 64 has insignificant impact on the model`s retrieval performance and cut storage requirements by up to 50{\\%}. Our new model, Jina-ColBERT-v2, demonstrates strong performance across a range of English and multilingual retrieval tasks,"
443
444
  }""",
444
445
  )
445
446
 
@@ -462,7 +463,7 @@ lightonai__gte_moderncolbert_v1 = ModelMeta(
462
463
  embed_dim=None,
463
464
  license="apache-2.0",
464
465
  similarity_fn_name="MaxSim",
465
- framework=["PyLate", "ColBERT"],
466
+ framework=["PyLate", "ColBERT", "safetensors", "Sentence Transformers"],
466
467
  reference="https://huggingface.co/lightonai/GTE-ModernColBERT-v1",
467
468
  use_instructions=False,
468
469
  adapted_from="Alibaba-NLP/gte-modernbert-base",
@@ -42,7 +42,7 @@ Qodo_Embed_1_1_5B = ModelMeta(
42
42
  max_tokens=32768,
43
43
  reference="https://huggingface.co/Qodo/Qodo-Embed-1-1.5B",
44
44
  similarity_fn_name=ScoringFunction.COSINE,
45
- framework=["Sentence Transformers", "PyTorch"],
45
+ framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
46
46
  use_instructions=False,
47
47
  public_training_code=None,
48
48
  public_training_data=None,
@@ -65,7 +65,7 @@ Qodo_Embed_1_7B = ModelMeta(
65
65
  max_tokens=32768,
66
66
  reference="https://huggingface.co/Qodo/Qodo-Embed-1-7B",
67
67
  similarity_fn_name=ScoringFunction.COSINE,
68
- framework=["Sentence Transformers", "PyTorch"],
68
+ framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
69
69
  use_instructions=False,
70
70
  public_training_code=None,
71
71
  public_training_data=None,
@@ -37,7 +37,7 @@ mini_gte = ModelMeta(
37
37
  max_tokens=512,
38
38
  reference="https://huggingface.co/prdev/mini-gte",
39
39
  similarity_fn_name=ScoringFunction.COSINE,
40
- framework=["Sentence Transformers", "PyTorch"],
40
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
41
41
  use_instructions=False,
42
42
  public_training_code=None,
43
43
  public_training_data=None,
@@ -146,7 +146,7 @@ Qwen3_Embedding_0B6 = ModelMeta(
146
146
  license="apache-2.0",
147
147
  reference="https://huggingface.co/Qwen/Qwen3-Embedding-0.6B",
148
148
  similarity_fn_name="cosine",
149
- framework=["Sentence Transformers", "PyTorch"],
149
+ framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
150
150
  use_instructions=True,
151
151
  public_training_code=None,
152
152
  public_training_data=None,
@@ -169,7 +169,7 @@ Qwen3_Embedding_4B = ModelMeta(
169
169
  license="apache-2.0",
170
170
  reference="https://huggingface.co/Qwen/Qwen3-Embedding-4B",
171
171
  similarity_fn_name="cosine",
172
- framework=["Sentence Transformers", "PyTorch"],
172
+ framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
173
173
  use_instructions=True,
174
174
  public_training_code=None,
175
175
  public_training_data=None,
@@ -192,7 +192,7 @@ Qwen3_Embedding_8B = ModelMeta(
192
192
  license="apache-2.0",
193
193
  reference="https://huggingface.co/Qwen/Qwen3-Embedding-8B",
194
194
  similarity_fn_name="cosine",
195
- framework=["Sentence Transformers", "PyTorch"],
195
+ framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
196
196
  use_instructions=True,
197
197
  public_training_code=None,
198
198
  public_training_data=None,
@@ -70,7 +70,7 @@ QZhou_Embedding = ModelMeta(
70
70
  max_tokens=8192,
71
71
  reference="https://huggingface.co/Kingsoft-LLM/QZhou-Embedding",
72
72
  similarity_fn_name="cosine",
73
- framework=["Sentence Transformers", "PyTorch"],
73
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
74
74
  use_instructions=True,
75
75
  public_training_code=None,
76
76
  public_training_data="https://huggingface.co/datasets/cfli/bge-full-data",
@@ -104,7 +104,7 @@ QZhou_Embedding_Zh = ModelMeta(
104
104
  max_tokens=8192,
105
105
  reference="http://huggingface.co/Kingsoft-LLM/QZhou-Embedding-Zh",
106
106
  similarity_fn_name="cosine",
107
- framework=["Sentence Transformers", "PyTorch"],
107
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
108
108
  use_instructions=True,
109
109
  public_training_code=None,
110
110
  public_training_data=None,
@@ -68,7 +68,7 @@ _common_mock_metadata = dict(
68
68
  license="mit",
69
69
  max_tokens=np.inf,
70
70
  reference=None,
71
- similarity_fn_name="cosine", # type: ignore
71
+ similarity_fn_name="cosine",
72
72
  framework=[],
73
73
  use_instructions=False,
74
74
  public_training_code=None, # No training code, as this is a random baseline
@@ -187,7 +187,7 @@ class RandomEncoderBaseline:
187
187
 
188
188
 
189
189
  random_encoder_baseline = ModelMeta(
190
- loader=RandomEncoderBaseline, # type: ignore
190
+ loader=RandomEncoderBaseline,
191
191
  name="baseline/random-encoder-baseline",
192
192
  model_type=["dense"],
193
193
  modalities=["text", "image"],
@@ -232,7 +232,7 @@ class RandomCrossEncoderBaseline:
232
232
 
233
233
 
234
234
  random_cross_encoder_baseline = ModelMeta(
235
- loader=RandomCrossEncoderBaseline, # type: ignore
235
+ loader=RandomCrossEncoderBaseline,
236
236
  name="baseline/random-cross-encoder-baseline",
237
237
  model_type=["cross-encoder"],
238
238
  modalities=["text", "image"],
@@ -4,7 +4,7 @@ from mteb.models.model_implementations.model2vec_models import Model2VecModel
4
4
  from mteb.models.model_meta import ModelMeta, ScoringFunction
5
5
 
6
6
  potion_base_8m = ModelMeta(
7
- loader=Model2VecModel, # type: ignore
7
+ loader=Model2VecModel,
8
8
  name="rasgaard/m2v-dfm-large",
9
9
  model_type=["dense"],
10
10
  languages=["dan-Latn"],
@@ -17,7 +17,7 @@ potion_base_8m = ModelMeta(
17
17
  embed_dim=256,
18
18
  license="mit",
19
19
  similarity_fn_name=ScoringFunction.COSINE,
20
- framework=["NumPy", "Sentence Transformers"],
20
+ framework=["NumPy", "Sentence Transformers", "safetensors"],
21
21
  reference="https://huggingface.co/rasgaard/m2v-dfm-large",
22
22
  use_instructions=False,
23
23
  adapted_from="KennethEnevoldsen/dfm-sentence-encoder-large",
@@ -56,7 +56,7 @@ ReasonIR_8B = ModelMeta(
56
56
  max_tokens=131072,
57
57
  reference="https://huggingface.co/ReasonIR/ReasonIR-8B",
58
58
  similarity_fn_name="cosine",
59
- framework=["Sentence Transformers", "PyTorch"],
59
+ framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
60
60
  use_instructions=True,
61
61
  training_datasets=REASONIR_TRAINING_DATA,
62
62
  public_training_code="https://github.com/facebookresearch/ReasonIR/tree/main/training",
@@ -154,7 +154,7 @@ REPLLAMA_CITATION = """
154
154
  """
155
155
 
156
156
  repllama_llama2_original = ModelMeta(
157
- loader=RepLLaMAModel, # type: ignore
157
+ loader=RepLLaMAModel,
158
158
  loader_kwargs=dict(
159
159
  base_model_name_or_path="meta-llama/Llama-2-7b-hf",
160
160
  device_map="auto",
@@ -187,7 +187,7 @@ repllama_llama2_original = ModelMeta(
187
187
 
188
188
 
189
189
  repllama_llama2_reproduced = ModelMeta(
190
- loader=RepLLaMAModel, # type: ignore
190
+ loader=RepLLaMAModel,
191
191
  loader_kwargs=dict(
192
192
  base_model_name_or_path="meta-llama/Llama-2-7b-hf",
193
193
  device_map="auto",
@@ -207,7 +207,7 @@ repllama_llama2_reproduced = ModelMeta(
207
207
  license="apache-2.0",
208
208
  reference="https://huggingface.co/samaya-ai/RepLLaMA-reproduced",
209
209
  similarity_fn_name=ScoringFunction.COSINE,
210
- framework=["PyTorch", "Tevatron"],
210
+ framework=["PyTorch", "Tevatron", "safetensors"],
211
211
  use_instructions=True,
212
212
  citation=REPLLAMA_CITATION,
213
213
  public_training_code=None,
@@ -214,7 +214,7 @@ class JinaReranker(RerankerWrapper):
214
214
 
215
215
 
216
216
  monobert_large = ModelMeta(
217
- loader=MonoBERTReranker, # type: ignore
217
+ loader=MonoBERTReranker,
218
218
  loader_kwargs=dict(
219
219
  fp_options="float16",
220
220
  ),
@@ -234,12 +234,12 @@ monobert_large = ModelMeta(
234
234
  similarity_fn_name=None,
235
235
  use_instructions=None,
236
236
  training_datasets=None,
237
- framework=["Sentence Transformers", "PyTorch"],
237
+ framework=["Sentence Transformers", "PyTorch", "Transformers"],
238
238
  )
239
239
 
240
240
  # languages unclear: https://huggingface.co/jinaai/jina-reranker-v2-base-multilingual/discussions/28
241
241
  jina_reranker_multilingual = ModelMeta(
242
- loader=JinaReranker, # type: ignore
242
+ loader=JinaReranker,
243
243
  loader_kwargs=dict(
244
244
  fp_options="float16",
245
245
  ),
@@ -259,11 +259,17 @@ jina_reranker_multilingual = ModelMeta(
259
259
  similarity_fn_name=None,
260
260
  use_instructions=None,
261
261
  training_datasets=None,
262
- framework=["Sentence Transformers", "PyTorch"],
262
+ framework=[
263
+ "Sentence Transformers",
264
+ "PyTorch",
265
+ "Transformers",
266
+ "ONNX",
267
+ "safetensors",
268
+ ],
263
269
  )
264
270
 
265
271
  bge_reranker_v2_m3 = ModelMeta(
266
- loader=BGEReranker, # type: ignore
272
+ loader=BGEReranker,
267
273
  loader_kwargs=dict(
268
274
  fp_options="float16",
269
275
  ),
@@ -316,7 +322,7 @@ bge_reranker_v2_m3 = ModelMeta(
316
322
  similarity_fn_name=None,
317
323
  use_instructions=None,
318
324
  training_datasets=bge_m3_training_data,
319
- framework=["Sentence Transformers", "PyTorch"],
325
+ framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
320
326
  citation="""
321
327
  @misc{li2023making,
322
328
  title={Making Large Language Models A Better Foundation For Dense Retrieval},
@@ -330,7 +330,7 @@ monot5_small = ModelMeta(
330
330
  similarity_fn_name=None,
331
331
  use_instructions=None,
332
332
  training_datasets=None,
333
- framework=["PyTorch"],
333
+ framework=["PyTorch", "Transformers"],
334
334
  citation="""@misc{rosa2022parameterleftbehinddistillation,
335
335
  title={No Parameter Left Behind: How Distillation and Model Size Affect Zero-Shot Retrieval},
336
336
  author={Guilherme Moraes Rosa and Luiz Bonifacio and Vitor Jeronymo and Hugo Abonizio and Marzieh Fadaee and Roberto Lotufo and Rodrigo Nogueira},
@@ -343,7 +343,7 @@ monot5_small = ModelMeta(
343
343
  )
344
344
 
345
345
  monot5_base = ModelMeta(
346
- loader=MonoT5Reranker, # type: ignore
346
+ loader=MonoT5Reranker,
347
347
  loader_kwargs=dict(
348
348
  fp_options="float16",
349
349
  ),
@@ -372,7 +372,7 @@ monot5_base = ModelMeta(
372
372
  similarity_fn_name=None,
373
373
  use_instructions=None,
374
374
  training_datasets=None,
375
- framework=["PyTorch"],
375
+ framework=["PyTorch", "Transformers"],
376
376
  )
377
377
 
378
378
  monot5_large = ModelMeta(
@@ -396,7 +396,7 @@ monot5_large = ModelMeta(
396
396
  similarity_fn_name=None,
397
397
  use_instructions=None,
398
398
  training_datasets=None,
399
- framework=["PyTorch"],
399
+ framework=["PyTorch", "Transformers"],
400
400
  citation="""@misc{rosa2022parameterleftbehinddistillation,
401
401
  title={No Parameter Left Behind: How Distillation and Model Size Affect Zero-Shot Retrieval},
402
402
  author={Guilherme Moraes Rosa and Luiz Bonifacio and Vitor Jeronymo and Hugo Abonizio and Marzieh Fadaee and Roberto Lotufo and Rodrigo Nogueira},
@@ -429,7 +429,7 @@ monot5_3b = ModelMeta(
429
429
  similarity_fn_name=None,
430
430
  use_instructions=None,
431
431
  training_datasets=None,
432
- framework=["PyTorch"],
432
+ framework=["PyTorch", "Transformers"],
433
433
  citation="""@misc{rosa2022parameterleftbehinddistillation,
434
434
  title={No Parameter Left Behind: How Distillation and Model Size Affect Zero-Shot Retrieval},
435
435
  author={Guilherme Moraes Rosa and Luiz Bonifacio and Vitor Jeronymo and Hugo Abonizio and Marzieh Fadaee and Roberto Lotufo and Rodrigo Nogueira},
@@ -442,7 +442,7 @@ monot5_3b = ModelMeta(
442
442
  )
443
443
 
444
444
  flant5_base = ModelMeta(
445
- loader=FLANT5Reranker, # type: ignore
445
+ loader=FLANT5Reranker,
446
446
  loader_kwargs=dict(
447
447
  fp_options="float16",
448
448
  ),
@@ -484,7 +484,7 @@ flant5_base = ModelMeta(
484
484
  public_training_data=None,
485
485
  similarity_fn_name=None,
486
486
  use_instructions=None,
487
- framework=["PyTorch"],
487
+ framework=["PyTorch", "Transformers", "safetensors"],
488
488
  )
489
489
 
490
490
  flant5_large = ModelMeta(
@@ -530,7 +530,7 @@ flant5_large = ModelMeta(
530
530
  public_training_data=None,
531
531
  similarity_fn_name=None,
532
532
  use_instructions=None,
533
- framework=["PyTorch"],
533
+ framework=["PyTorch", "Transformers", "safetensors"],
534
534
  )
535
535
 
536
536
  flant5_xl = ModelMeta(
@@ -576,7 +576,7 @@ flant5_xl = ModelMeta(
576
576
  public_training_data=None,
577
577
  similarity_fn_name=None,
578
578
  use_instructions=None,
579
- framework=["PyTorch"],
579
+ framework=["PyTorch", "Transformers", "safetensors"],
580
580
  )
581
581
 
582
582
  flant5_xxl = ModelMeta(
@@ -622,7 +622,7 @@ flant5_xxl = ModelMeta(
622
622
  public_training_data=None,
623
623
  similarity_fn_name=None,
624
624
  use_instructions=None,
625
- framework=["PyTorch"],
625
+ framework=["PyTorch", "Transformers", "safetensors"],
626
626
  )
627
627
 
628
628
 
@@ -647,7 +647,7 @@ llama2_7b = ModelMeta(
647
647
  similarity_fn_name=None,
648
648
  use_instructions=None,
649
649
  training_datasets=None,
650
- framework=["PyTorch"],
650
+ framework=["PyTorch", "Transformers", "safetensors"],
651
651
  citation="""@misc{touvron2023llama2openfoundation,
652
652
  title={Llama 2: Open Foundation and Fine-Tuned Chat Models},
653
653
  author={Hugo Touvron and Louis Martin and Kevin Stone and Peter Albert and Amjad Almahairi and Yasmine Babaei and Nikolay Bashlykov and Soumya Batra and Prajjwal Bhargava and Shruti Bhosale and Dan Bikel and Lukas Blecher and Cristian Canton Ferrer and Moya Chen and Guillem Cucurull and David Esiobu and Jude Fernandes and Jeremy Fu and Wenyin Fu and Brian Fuller and Cynthia Gao and Vedanuj Goswami and Naman Goyal and Anthony Hartshorn and Saghar Hosseini and Rui Hou and Hakan Inan and Marcin Kardas and Viktor Kerkez and Madian Khabsa and Isabel Kloumann and Artem Korenev and Punit Singh Koura and Marie-Anne Lachaux and Thibaut Lavril and Jenya Lee and Diana Liskovich and Yinghai Lu and Yuning Mao and Xavier Martinet and Todor Mihaylov and Pushkar Mishra and Igor Molybog and Yixin Nie and Andrew Poulton and Jeremy Reizenstein and Rashi Rungta and Kalyan Saladi and Alan Schelten and Ruan Silva and Eric Michael Smith and Ranjan Subramanian and Xiaoqing Ellen Tan and Binh Tang and Ross Taylor and Adina Williams and Jian Xiang Kuan and Puxin Xu and Zheng Yan and Iliyan Zarov and Yuchen Zhang and Angela Fan and Melanie Kambadur and Sharan Narang and Aurelien Rodriguez and Robert Stojnic and Sergey Edunov and Thomas Scialom},
@@ -689,7 +689,7 @@ llama2_7b_chat = ModelMeta(
689
689
  similarity_fn_name=None,
690
690
  use_instructions=None,
691
691
  training_datasets=None,
692
- framework=["PyTorch"],
692
+ framework=["PyTorch", "Transformers", "safetensors"],
693
693
  )
694
694
 
695
695
  mistral_7b = ModelMeta(
@@ -713,7 +713,7 @@ mistral_7b = ModelMeta(
713
713
  similarity_fn_name=None,
714
714
  use_instructions=None,
715
715
  training_datasets=None,
716
- framework=["PyTorch"],
716
+ framework=["PyTorch", "Transformers", "safetensors"],
717
717
  citation="""@misc{jiang2023mistral7b,
718
718
  title={Mistral 7B},
719
719
  author={Albert Q. Jiang and Alexandre Sablayrolles and Arthur Mensch and Chris Bamford and Devendra Singh Chaplot and Diego de las Casas and Florian Bressand and Gianna Lengyel and Guillaume Lample and Lucile Saulnier and Lélio Renard Lavaud and Marie-Anne Lachaux and Pierre Stock and Teven Le Scao and Thibaut Lavril and Thomas Wang and Timothée Lacroix and William El Sayed},
@@ -748,7 +748,7 @@ followir_7b = ModelMeta(
748
748
  public_training_data=None,
749
749
  similarity_fn_name=None,
750
750
  use_instructions=None,
751
- framework=["PyTorch"],
751
+ framework=["PyTorch", "Transformers", "safetensors"],
752
752
  citation="""
753
753
  @misc{weller2024followir,
754
754
  title={FollowIR: Evaluating and Teaching Information Retrieval Models to Follow Instructions},
@@ -898,11 +898,11 @@ mt5_base_mmarco_v2 = ModelMeta(
898
898
  public_training_data=None,
899
899
  similarity_fn_name=None,
900
900
  use_instructions=None,
901
- framework=["PyTorch"],
901
+ framework=["PyTorch", "Transformers"],
902
902
  )
903
903
 
904
904
  mt5_13b_mmarco_100k = ModelMeta(
905
- loader=MonoT5Reranker, # type: ignore
905
+ loader=MonoT5Reranker,
906
906
  loader_kwargs=dict(
907
907
  fp_options="float16",
908
908
  ),
@@ -922,5 +922,5 @@ mt5_13b_mmarco_100k = ModelMeta(
922
922
  similarity_fn_name=None,
923
923
  use_instructions=None,
924
924
  training_datasets=None,
925
- framework=["PyTorch"],
925
+ framework=["PyTorch", "Transformers"],
926
926
  )
@@ -21,7 +21,7 @@ ritrieve_zh_v1 = ModelMeta(
21
21
  max_tokens=512,
22
22
  reference="https://huggingface.co/richinfoai/ritrieve_zh_v1",
23
23
  similarity_fn_name="cosine",
24
- framework=["Sentence Transformers", "PyTorch"],
24
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
25
25
  use_instructions=False,
26
26
  superseded_by=None,
27
27
  adapted_from=None,