meta-edc 0.3.15__py3-none-any.whl → 0.3.50__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (333) hide show
  1. meta_ae/action_items.py +2 -2
  2. meta_ae/migrations/0017_auto_20221130_2257.py +12 -7
  3. meta_ae/tests/holidays.csv +1 -1
  4. meta_analytics/README.rst +17 -0
  5. meta_analytics/dataframes/__init__.py +19 -0
  6. meta_analytics/dataframes/constants.py +33 -0
  7. meta_analytics/dataframes/enrolled/__init__.py +1 -0
  8. meta_analytics/dataframes/enrolled/get_glucose_df.py +122 -0
  9. meta_analytics/dataframes/get_eos_df.py +26 -0
  10. meta_analytics/dataframes/get_last_imp_visits_df.py +101 -0
  11. meta_analytics/dataframes/glucose_endpoints/__init__.py +2 -0
  12. meta_analytics/dataframes/glucose_endpoints/endpoint_by_date.py +183 -0
  13. meta_analytics/dataframes/glucose_endpoints/glucose_endpoints_by_date.py +531 -0
  14. meta_analytics/dataframes/screening/__init__.py +2 -0
  15. meta_analytics/dataframes/screening/get_glucose_tested_only_df.py +20 -0
  16. meta_analytics/dataframes/screening/get_screening_df.py +163 -0
  17. meta_analytics/dataframes/utils.py +65 -0
  18. meta_analytics/get_tables.py +81 -0
  19. meta_analytics/tables/__init__.py +2 -0
  20. meta_analytics/tables/eligible.py +106 -0
  21. meta_analytics/tables/enrolled/__init__.py +0 -0
  22. meta_analytics/tables/enrolled/glucose.py +28 -0
  23. meta_analytics/tables/has_dm.py +61 -0
  24. meta_analytics/tests/__init__.py +0 -0
  25. meta_analytics/tests/test_endpoints_by_date.py +94 -0
  26. meta_auth/auth_objects.py +22 -0
  27. meta_auth/auths.py +18 -3
  28. meta_consent/action_items.py +18 -1
  29. meta_consent/admin/__init__.py +1 -0
  30. meta_consent/admin/subject_consent_v1_ext_admin.py +45 -0
  31. meta_consent/baker_recipes.py +1 -0
  32. meta_consent/consents.py +20 -1
  33. meta_consent/constants.py +1 -0
  34. meta_consent/forms/__init__.py +1 -0
  35. meta_consent/forms/subject_consent_v1_ext_form.py +16 -0
  36. meta_consent/locale/lg/LC_MESSAGES/django.po +69 -0
  37. meta_consent/locale/sw/LC_MESSAGES/django.po +12 -12
  38. meta_consent/migrations/0026_historicalsubjectconsentv1ext_subjectconsentv1ext.py +544 -0
  39. meta_consent/migrations/0027_auto_20250111_0344.py +30 -0
  40. meta_consent/models/__init__.py +1 -0
  41. meta_consent/models/signals.py +18 -0
  42. meta_consent/models/subject_consent_v1_ext.py +29 -0
  43. meta_consent/tests/holidays.csv +1 -1
  44. meta_dashboard/locale/lg/LC_MESSAGES/django.po +30 -0
  45. meta_dashboard/locale/sw/LC_MESSAGES/django.po +11 -2
  46. meta_dashboard/navbars.py +3 -1
  47. meta_dashboard/templates/meta_dashboard/bootstrap3/buttons/eligibility_button.html +1 -1
  48. meta_dashboard/templates/meta_dashboard/bootstrap3/buttons/screening_button.html +1 -1
  49. meta_dashboard/templates/meta_dashboard/bootstrap3/subject/dashboard/sidebar.html +24 -0
  50. meta_dashboard/templates/meta_dashboard/bootstrap3/subject/dashboard.html +3 -0
  51. meta_dashboard/templatetags/meta_dashboard_extras.py +1 -1
  52. meta_dashboard/tests/holidays.csv +1 -1
  53. meta_dashboard/tests/urls.py +0 -1
  54. meta_dashboard/view_utils/__init__.py +6 -0
  55. meta_dashboard/view_utils/subject_screening_button.py +2 -2
  56. meta_dashboard/views/subject/dashboard/dashboard_view.py +38 -0
  57. meta_edc/__init__.py +7 -0
  58. meta_edc/celery.py +4 -13
  59. meta_edc/celery_live.py +18 -0
  60. meta_edc/celery_uat.py +24 -0
  61. meta_edc/management/commands/update_forms_reference.py +6 -2
  62. meta_edc/migrations/__init__.py +0 -0
  63. meta_edc/navbars.py +2 -1
  64. meta_edc/settings/debug.py +10 -2
  65. meta_edc/settings/defaults.py +58 -43
  66. meta_edc/templates/meta_edc/bootstrap3/home.html +5 -2
  67. meta_edc/tests/tests/test_endpoints.py +2 -0
  68. meta_edc/urls.py +4 -1
  69. meta_edc/wsgi.py +1 -1
  70. meta_edc/wsgi_live.py +1 -1
  71. meta_edc/wsgi_uat.py +1 -1
  72. meta_edc-0.3.50.dist-info/AUTHORS +0 -0
  73. meta_edc-0.3.50.dist-info/METADATA +766 -0
  74. {meta_edc-0.3.15.dist-info → meta_edc-0.3.50.dist-info}/RECORD +316 -127
  75. {meta_edc-0.3.15.dist-info → meta_edc-0.3.50.dist-info}/WHEEL +1 -1
  76. {meta_edc-0.3.15.dist-info → meta_edc-0.3.50.dist-info}/top_level.txt +1 -0
  77. meta_pharmacy/admin/__init__.py +2 -0
  78. meta_pharmacy/admin/rx_admin.py +75 -0
  79. meta_pharmacy/admin/substitutions_admin.py +67 -0
  80. meta_pharmacy/admin_site.py +9 -0
  81. meta_pharmacy/apps.py +5 -0
  82. meta_pharmacy/constants.py +10 -0
  83. meta_pharmacy/forms/__init__.py +2 -0
  84. meta_pharmacy/forms/rx_form.py +16 -0
  85. meta_pharmacy/forms/substitutions_form.py +54 -0
  86. meta_pharmacy/label_configs.py +30 -0
  87. meta_pharmacy/labels/__init__.py +5 -0
  88. meta_pharmacy/labels/draw_label_for_subject_with_barcode.py +62 -0
  89. meta_pharmacy/labels/draw_label_for_subject_with_code128.py +14 -0
  90. meta_pharmacy/labels/draw_label_with_test_data.py +26 -0
  91. meta_pharmacy/labels/label_data.py +14 -0
  92. meta_pharmacy/labels/print_sheets.py +97 -0
  93. meta_pharmacy/list_data.py +8 -0
  94. meta_pharmacy/management/__init__.py +0 -0
  95. meta_pharmacy/management/commands/__init__.py +0 -0
  96. meta_pharmacy/management/commands/update_initial_pharmacy_data.py +10 -0
  97. meta_pharmacy/migrations/0002_initial.py +695 -0
  98. meta_pharmacy/migrations/0003_auto_20240909_2335.py +64 -0
  99. meta_pharmacy/migrations/0004_alter_historicalsubstitutions_report_datetime_and_more.py +23 -0
  100. meta_pharmacy/migrations/0005_auto_20240911_0352.py +17 -0
  101. meta_pharmacy/migrations/0006_lotnumber_label.py +289 -0
  102. meta_pharmacy/migrations/0007_lotnumber_medication.py +24 -0
  103. meta_pharmacy/migrations/0008_remove_lotnumber_medication_and_more.py +390 -0
  104. meta_pharmacy/migrations/0009_remove_historicalrx_slug.py +17 -0
  105. meta_pharmacy/models/__init__.py +3 -0
  106. meta_pharmacy/models/label_data.py +38 -0
  107. meta_pharmacy/models/rx.py +18 -0
  108. meta_pharmacy/models/rx_label.py +39 -0
  109. meta_pharmacy/models/substitutions.py +88 -0
  110. meta_pharmacy/urls.py +8 -0
  111. meta_pharmacy/utils/__init__.py +1 -0
  112. meta_pharmacy/utils/update_initial_pharmacy_data.py +146 -0
  113. meta_prn/action_items.py +9 -1
  114. meta_prn/admin/pregnancy_notification_admin.py +6 -2
  115. meta_prn/migrations/0034_auto_20220630_1110.py +3 -3
  116. meta_prn/migrations/0035_auto_20220630_1140.py +59 -56
  117. meta_prn/tests/tests/test_dm_referral.py +3 -6
  118. meta_reports/__init__.py +1 -0
  119. meta_reports/admin/__init__.py +15 -0
  120. meta_reports/admin/dbviews/__init__.py +14 -0
  121. meta_reports/admin/dbviews/glucose_summary_admin.py +116 -0
  122. meta_reports/admin/dbviews/imp_substitutions_admin.py +101 -0
  123. meta_reports/admin/dbviews/missing_screening_ogtt_admin/__init__.py +2 -0
  124. meta_reports/admin/dbviews/missing_screening_ogtt_admin/note_model_admin.py +53 -0
  125. meta_reports/admin/dbviews/missing_screening_ogtt_admin/unmanaged_model_admin.py +84 -0
  126. meta_reports/admin/dbviews/on_study_missing_lab_values_admin/__init__.py +1 -0
  127. meta_reports/admin/dbviews/on_study_missing_lab_values_admin/unmanaged_model_admin.py +13 -0
  128. meta_reports/admin/dbviews/on_study_missing_values_admin/__init__.py +1 -0
  129. meta_reports/admin/dbviews/on_study_missing_values_admin/unmanaged_model_admin.py +13 -0
  130. meta_reports/admin/dbviews/patient_history_missing_baseline_cd4_admin.py +58 -0
  131. meta_reports/admin/dbviews/unattended_three_in_row2_admin.py +47 -0
  132. meta_reports/admin/dbviews/unattended_three_in_row_admin.py +35 -0
  133. meta_reports/admin/dbviews/unattended_two_in_row_admin.py +34 -0
  134. meta_reports/admin/endpoints_admin.py +14 -0
  135. meta_reports/admin/endpoints_all_admin.py +13 -0
  136. meta_reports/admin/last_imp_refill_admin.py +181 -0
  137. meta_reports/admin/list_filters.py +30 -0
  138. meta_reports/admin/modeladmin_mixins.py +112 -0
  139. meta_reports/admin_site.py +5 -0
  140. meta_reports/apps.py +1 -16
  141. meta_reports/forms/__init__.py +1 -0
  142. meta_reports/forms/missing_ogtt_note_form.py +33 -0
  143. meta_reports/management/__init__.py +0 -0
  144. meta_reports/management/commands/__init__.py +0 -0
  145. meta_reports/management/commands/generate_endpoints.py +13 -0
  146. meta_reports/migrations/0001_initial.py +87 -0
  147. meta_reports/migrations/0002_patienthistorymissingbaselinecd4_and_more.py +64 -0
  148. meta_reports/migrations/0003_auto_20240618_0505.py +12 -0
  149. meta_reports/migrations/0004_alter_patienthistorymissingbaselinecd4_table.py +17 -0
  150. meta_reports/migrations/0005_endpoints.py +47 -0
  151. meta_reports/migrations/0006_endpoints_baseline_datetime.py +18 -0
  152. meta_reports/migrations/0007_alter_endpoints_endpoint_label_and_more.py +43 -0
  153. meta_reports/migrations/0008_alter_endpoints_endpoint_label.py +18 -0
  154. meta_reports/migrations/0009_alter_endpoints_options.py +21 -0
  155. meta_reports/migrations/0010_alter_patienthistorymissingbaselinecd4_options_and_more.py +49 -0
  156. meta_reports/migrations/0011_auto_20240813_0156.py +54 -0
  157. meta_reports/migrations/0012_auto_20240813_1516.py +48 -0
  158. meta_reports/migrations/0013_auto_20240813_1516.py +48 -0
  159. meta_reports/migrations/0014_auto_20240813_1517.py +48 -0
  160. meta_reports/migrations/0015_alter_endpoints_site.py +22 -0
  161. meta_reports/migrations/0016_missingscreeningogtt.py +47 -0
  162. meta_reports/migrations/0017_auto_20240819_1711.py +166 -0
  163. meta_reports/migrations/0018_auto_20240819_1713.py +54 -0
  164. meta_reports/migrations/0019_auto_20240819_1721.py +54 -0
  165. meta_reports/migrations/0020_auto_20240819_1811.py +54 -0
  166. meta_reports/migrations/0021_auto_20240819_1817.py +54 -0
  167. meta_reports/migrations/0022_auto_20240819_1832.py +54 -0
  168. meta_reports/migrations/0023_endpoints_meta_report_subject_a56b22_idx.py +20 -0
  169. meta_reports/migrations/0024_glucosesummary.py +38 -0
  170. meta_reports/migrations/0025_auto_20240822_0115.py +87 -0
  171. meta_reports/migrations/0026_auto_20240822_0120.py +54 -0
  172. meta_reports/migrations/0027_auto_20240822_0140.py +54 -0
  173. meta_reports/migrations/0028_alter_glucosesummary_options.py +22 -0
  174. meta_reports/migrations/0029_auto_20240822_0149.py +54 -0
  175. meta_reports/migrations/0030_auto_20240822_1637.py +54 -0
  176. meta_reports/migrations/0031_endpointsproxy.py +25 -0
  177. meta_reports/migrations/0032_alter_endpointsproxy_options.py +21 -0
  178. meta_reports/migrations/0033_auto_20240823_0012.py +54 -0
  179. meta_reports/migrations/0034_auto_20240823_1642.py +54 -0
  180. meta_reports/migrations/0035_historicalmissingogttnote_missingogttnote.py +457 -0
  181. meta_reports/migrations/0036_historicalmissingogttnote_fasting_and_more.py +86 -0
  182. meta_reports/migrations/0037_historicalmissingogttnote_result_status_and_more.py +51 -0
  183. meta_reports/migrations/0038_alter_historicalmissingogttnote_fasting_and_more.py +33 -0
  184. meta_reports/migrations/0039_onstudymissingvalues.py +44 -0
  185. meta_reports/migrations/0040_auto_20240824_0412.py +282 -0
  186. meta_reports/migrations/0041_auto_20240828_2229.py +14 -0
  187. meta_reports/migrations/0042_onstudymissinglabvalues.py +43 -0
  188. meta_reports/migrations/0043_auto_20240828_2309.py +88 -0
  189. meta_reports/migrations/0044_auto_20240828_2323.py +93 -0
  190. meta_reports/migrations/0045_auto_20240829_0248.py +54 -0
  191. meta_reports/migrations/0046_auto_20240829_0250.py +54 -0
  192. meta_reports/migrations/0047_impsubstitutions.py +56 -0
  193. meta_reports/migrations/0048_auto_20240909_2338.py +48 -0
  194. meta_reports/migrations/0049_auto_20240911_0327.py +54 -0
  195. meta_reports/migrations/0050_alter_endpoints_created.py +19 -0
  196. meta_reports/migrations/0051_remove_endpoints_baseline_datetime_and_more.py +40 -0
  197. meta_reports/migrations/0052_lastimpvisit.py +57 -0
  198. meta_reports/migrations/0053_rename_lastimpvisit_lastimprefill_and_more.py +31 -0
  199. meta_reports/models/__init__.py +16 -0
  200. meta_reports/models/dbviews/README +14 -0
  201. meta_reports/models/dbviews/__init__.py +9 -0
  202. meta_reports/models/dbviews/glucose_summary/__init__.py +2 -0
  203. meta_reports/models/dbviews/glucose_summary/unmanaged_model.py +35 -0
  204. meta_reports/models/dbviews/glucose_summary/view_definition.py +28 -0
  205. meta_reports/models/dbviews/imp_substitutions/__init__.py +1 -0
  206. meta_reports/models/dbviews/imp_substitutions/unmanaged_model.py +41 -0
  207. meta_reports/models/dbviews/imp_substitutions/view_definition.py +21 -0
  208. meta_reports/models/dbviews/missing_screening_ogtt/__init__.py +2 -0
  209. meta_reports/models/dbviews/missing_screening_ogtt/note_model.py +57 -0
  210. meta_reports/models/dbviews/missing_screening_ogtt/unmanaged_model.py +41 -0
  211. meta_reports/models/dbviews/missing_screening_ogtt/view_definition.py +20 -0
  212. meta_reports/models/dbviews/on_study_missing_lab_values/__init__.py +1 -0
  213. meta_reports/models/dbviews/on_study_missing_lab_values/qa_cases.py +53 -0
  214. meta_reports/models/dbviews/on_study_missing_lab_values/unmanged_model.py +20 -0
  215. meta_reports/models/dbviews/on_study_missing_lab_values/view_definition.py +17 -0
  216. meta_reports/models/dbviews/on_study_missing_values/__init__.py +1 -0
  217. meta_reports/models/dbviews/on_study_missing_values/qa_cases.py +54 -0
  218. meta_reports/models/dbviews/on_study_missing_values/unmanged_model.py +20 -0
  219. meta_reports/models/dbviews/on_study_missing_values/view_definition.py +17 -0
  220. meta_reports/models/dbviews/patient_history_missing_baseline_cd4/__init__.py +1 -0
  221. meta_reports/models/dbviews/patient_history_missing_baseline_cd4/unmanaged_model.py +31 -0
  222. meta_reports/models/dbviews/patient_history_missing_baseline_cd4/view_definition.py +21 -0
  223. meta_reports/models/dbviews/unattended_three_in_row/__init__.py +1 -0
  224. meta_reports/models/dbviews/unattended_three_in_row/unmanaged_model.py +29 -0
  225. meta_reports/models/dbviews/unattended_three_in_row/view_definition.py +31 -0
  226. meta_reports/models/dbviews/unattended_three_in_row2/__init__.py +1 -0
  227. meta_reports/models/dbviews/unattended_three_in_row2/unmanaged_model.py +29 -0
  228. meta_reports/models/dbviews/unattended_three_in_row2/view_definition.py +50 -0
  229. meta_reports/models/dbviews/unattended_two_in_row/__init__.py +1 -0
  230. meta_reports/models/dbviews/unattended_two_in_row/unmanaged_model.py +27 -0
  231. meta_reports/models/dbviews/unattended_two_in_row/view_definition.py +30 -0
  232. meta_reports/models/endpoints.py +31 -0
  233. meta_reports/models/endpoints_proxy.py +11 -0
  234. meta_reports/models/last_imp_refill.py +34 -0
  235. meta_reports/tasks.py +12 -0
  236. meta_reports/templates/meta_reports/columns/subject_identifier_column.html +1 -0
  237. meta_reports/templates/meta_reports/endpoints_all_change_list_note.html +12 -0
  238. meta_reports/templates/meta_reports/endpoints_change_list_note.html +12 -0
  239. meta_reports/tests/test_sql_gen.py +5 -0
  240. meta_reports/urls.py +8 -0
  241. meta_reports/utils.py +0 -0
  242. meta_screening/admin/subject_screening_admin.py +1 -0
  243. meta_screening/migrations/0067_alter_historicalscreeningpartone_report_datetime_and_more.py +84 -0
  244. meta_screening/tests/holidays.csv +1 -1
  245. meta_screening/tests/meta_test_case_mixin.py +15 -0
  246. meta_sites/tests/test_sites.py +1 -1
  247. meta_subject/action_items.py +2 -2
  248. meta_subject/admin/__init__.py +2 -1
  249. meta_subject/admin/birth_outcome_admin.py +2 -0
  250. meta_subject/admin/blood_results/__init__.py +1 -1
  251. meta_subject/admin/blood_results/{blood_results_lipid_admin.py → blood_results_lipids_admin.py} +7 -7
  252. meta_subject/admin/diabetes/__init__.py +1 -1
  253. meta_subject/admin/diabetes/dm_endpoint_admin.py +35 -0
  254. meta_subject/admin/glucose_fbg_admin.py +4 -0
  255. meta_subject/admin/other_arv_regimens_admin.py +2 -0
  256. meta_subject/admin/study_medication_admin.py +10 -0
  257. meta_subject/form_validators/__init__.py +1 -1
  258. meta_subject/form_validators/dm_endpoint_form_validator.py +35 -0
  259. meta_subject/forms/__init__.py +2 -2
  260. meta_subject/forms/blood_results/__init__.py +1 -1
  261. meta_subject/forms/blood_results/{blood_results_lipid_form.py → blood_results_lipids_form.py} +5 -5
  262. meta_subject/forms/diabetes/__init__.py +1 -2
  263. meta_subject/forms/diabetes/dm_endpoint_form.py +13 -0
  264. meta_subject/forms/study_medication_form.py +35 -0
  265. meta_subject/locale/lg/LC_MESSAGES/django.po +470 -0
  266. meta_subject/locale/sw/LC_MESSAGES/django.po +191 -89
  267. meta_subject/metadata_rules/metadata_rules.py +7 -0
  268. meta_subject/metadata_rules/predicates.py +45 -8
  269. meta_subject/migrations/0107_auto_20220415_0043.py +28 -22
  270. meta_subject/migrations/0126_auto_20220719_2142.py +4 -4
  271. meta_subject/migrations/0131_auto_20220722_0411.py +28 -23
  272. meta_subject/migrations/0132_auto_20220722_1825.py +10 -6
  273. meta_subject/migrations/0135_auto_20220722_2212.py +39 -35
  274. meta_subject/migrations/0150_auto_20220914_0039.py +15 -11
  275. meta_subject/migrations/0207_alter_historicalphysicalexam_waist_circumference_and_more.py +46 -0
  276. meta_subject/migrations/0208_birthoutcomes_crf_status_and_more.py +62 -0
  277. meta_subject/migrations/0209_remove_historicaldmdxresult_dm_diagnosis_and_more.py +37 -0
  278. meta_subject/migrations/0210_remove_dmdxresult_dm_diagnosis_and_more.py +123 -0
  279. meta_subject/migrations/0211_dmendpoint_endpoint_reached_and_more.py +45 -0
  280. meta_subject/migrations/0212_auto_20240827_2222.py +23 -0
  281. meta_subject/migrations/0213_rename_bloodresultslipid_bloodresultslipids_and_more.py +35 -0
  282. meta_subject/migrations/0214_historicalstudymedication_stock_codes_and_more.py +44 -0
  283. meta_subject/migrations/0215_alter_historicalstudymedication_stock_codes_and_more.py +46 -0
  284. meta_subject/model_mixins/arv_history_model_mixin.py +3 -3
  285. meta_subject/models/__init__.py +3 -2
  286. meta_subject/models/birth_outcomes.py +6 -1
  287. meta_subject/models/blood_results/__init__.py +1 -1
  288. meta_subject/models/blood_results/{blood_results_lipid.py → blood_results_lipids.py} +3 -3
  289. meta_subject/models/diabetes/__init__.py +1 -2
  290. meta_subject/models/diabetes/dm_endpoint.py +61 -0
  291. meta_subject/models/glucose.py +4 -1
  292. meta_subject/models/physical_exam.py +1 -0
  293. meta_subject/models/signals.py +19 -0
  294. meta_subject/models/todo.txt +1 -1
  295. meta_subject/static/meta_subject/slider.css +1 -1
  296. meta_subject/templates/meta_subject/endpoint_review_instructions.html +1 -1
  297. meta_subject/templates/meta_subject/widgets/slider.html +0 -1
  298. meta_subject/tests/holidays.csv +1 -1
  299. meta_subject/tests/tests/test_medication_adherence.py +5 -1
  300. meta_subject/tests/tests/test_metadata_rules.py +2 -2
  301. meta_subject/tests/tests/test_mnsi.py +212 -121
  302. meta_subject/tests/tests/test_sf12.py +0 -12
  303. meta_visit_schedule/constants.py +4 -0
  304. meta_visit_schedule/tests/tests/test_schedule.py +4 -0
  305. meta_visit_schedule/visit_schedules/phase_three/crfs.py +75 -13
  306. meta_visit_schedule/visit_schedules/phase_three/requisitions.py +12 -0
  307. meta_visit_schedule/visit_schedules/phase_three/schedule.py +65 -2
  308. meta_visit_schedule/visit_schedules/phase_three/schedule_dm_referral.py +1 -1
  309. tests/etc/randomization_list.csv +1 -1
  310. {meta_edc/tests → tests}/etc/randomization_list_phase_three.csv +4 -4
  311. tests/holidays.csv +1 -1
  312. {meta_edc/tests → tests}/test_settings.py +16 -6
  313. meta_edc/tests/etc/user-aes-local.key +0 -1
  314. meta_edc/tests/etc/user-aes-restricted.key +0 -0
  315. meta_edc/tests/etc/user-rsa-local-private.pem +0 -27
  316. meta_edc/tests/etc/user-rsa-local-public.pem +0 -9
  317. meta_edc/tests/etc/user-rsa-restricted-private.pem +0 -27
  318. meta_edc/tests/etc/user-rsa-restricted-public.pem +0 -9
  319. meta_edc/tests/etc/user-salt-local.key +0 -0
  320. meta_edc/tests/etc/user-salt-restricted.key +0 -0
  321. meta_edc-0.3.15.dist-info/METADATA +0 -88
  322. meta_reports/tests/holidays.csv +0 -15
  323. meta_subject/admin/diabetes/dm_diagnosis_admin.py +0 -89
  324. meta_subject/form_validators/dm_diagnosis_form_validator.py +0 -38
  325. meta_subject/form_validators/dm_dx_result_form_validator.py +0 -7
  326. meta_subject/forms/diabetes/dm_diagnosis_form.py +0 -13
  327. meta_subject/forms/diabetes/dm_dx_result_form.py +0 -11
  328. meta_subject/models/diabetes/dm_diagnosis.py +0 -50
  329. meta_subject/models/diabetes/dm_dx_result.py +0 -70
  330. /meta_edc-0.3.15.dist-info/AUTHORS → /meta_analytics/__init__.py +0 -0
  331. /meta_pharmacy/models.py → /meta_analytics/constants.py +0 -0
  332. /meta_reports/models.py → /meta_analytics/notebooks/cleaning/__init__.py +0 -0
  333. {meta_edc-0.3.15.dist-info → meta_edc-0.3.50.dist-info}/LICENSE +0 -0
@@ -0,0 +1,163 @@
1
+ import numpy as np
2
+ import pandas as pd
3
+ from django_pandas.io import read_frame
4
+
5
+ from meta_screening.models import SubjectScreening
6
+ from meta_subject.models import PhysicalExam, SubjectVisit
7
+
8
+
9
+ def get_screening_df(df: pd.DataFrame | None = None) -> pd.DataFrame:
10
+ df = pd.DataFrame() if not hasattr(df, "empty") else df
11
+ if df.empty:
12
+ cols = [
13
+ f.name
14
+ for f in SubjectScreening._meta.get_fields()
15
+ if f.name
16
+ not in [
17
+ "contact_number",
18
+ "initials",
19
+ "hospital_identifier",
20
+ "modified",
21
+ "user_created",
22
+ "user_modified",
23
+ "hostname_created",
24
+ "hostname_modified",
25
+ "device_created",
26
+ "device_modified",
27
+ "locale_created",
28
+ "locale_modified",
29
+ "slug",
30
+ ]
31
+ ]
32
+ qs_screening = SubjectScreening.objects.values(*cols).all()
33
+ df = read_frame(qs_screening, verbose=False)
34
+ df = df.drop(df[df["hiv_pos"] == "No"].index) # removes 2 rows
35
+ df = df.reset_index(drop=True)
36
+
37
+ # convert all to float
38
+ num_cols = [
39
+ "age_in_years",
40
+ "calculated_bmi_value",
41
+ "converted_fbg2_value",
42
+ "converted_fbg_value",
43
+ "converted_ogtt2_value",
44
+ "converted_ogtt_value",
45
+ "dia_blood_pressure_avg",
46
+ "fbg2_value",
47
+ "fbg_value",
48
+ "hba1c_value",
49
+ "ogtt2_value",
50
+ "ogtt_value",
51
+ "sys_blood_pressure_avg",
52
+ "waist_circumference",
53
+ ]
54
+ df[num_cols] = df[num_cols].apply(pd.to_numeric)
55
+
56
+ df["reasons_ineligible_part_one"] = df["reasons_ineligible_part_one"].apply(
57
+ lambda x: None if x == "" else x
58
+ )
59
+ df["reasons_ineligible_part_two"] = df["reasons_ineligible_part_two"].apply(
60
+ lambda x: None if x == "" else x
61
+ )
62
+ df["reasons_ineligible_part_two"] = df["reasons_ineligible_part_two"].str.replace(
63
+ "Has Dm", "Diabetes"
64
+ )
65
+ df["reasons_ineligible_part_two"] = df["reasons_ineligible_part_two"].str.replace(
66
+ "On Dm Medication", "taking anti-diabetic medications"
67
+ )
68
+ df["reasons_ineligible_part_three"] = df["reasons_ineligible_part_three"].apply(
69
+ lambda x: None if x == "" else x
70
+ )
71
+
72
+ # condition to include any glucose test
73
+
74
+ # has_dm fillna with unk
75
+ df["has_dm"] = df["has_dm"].apply(lambda x: "unk" if not x else x)
76
+
77
+ na = "Not applicable, subject is not eligible based on the criteria above"
78
+ df["already_fasted"] = df["already_fasted"].apply(lambda x: "N/A" if x == na else x)
79
+
80
+ # create a column that summarizes lives_nearby and staying_nearby_12
81
+ df["in_catchment"] = (df["lives_nearby"] == "Yes") & (df["staying_nearby_12"] == "Yes")
82
+
83
+ # create ogtt column
84
+ df["ogtt"] = df["converted_ogtt_value"]
85
+ df.loc[df["ogtt"].notna() & df["converted_ogtt2_value"].notna(), "ogtt"] = df[
86
+ "converted_ogtt2_value"
87
+ ]
88
+
89
+ # create fbg column
90
+ df["fbg"] = df["converted_fbg_value"]
91
+ df.loc[df["fbg"].notna() & df["converted_fbg2_value"].notna(), "fbg"] = df[
92
+ "converted_fbg2_value"
93
+ ]
94
+
95
+ # fasting columns
96
+ df["fasting_fbg_hrs"] = np.nan
97
+ df["fasting_fbg_hrs"] = df["fasting_duration_delta"].apply(
98
+ lambda x: x.total_seconds() / 3600
99
+ )
100
+ df.loc[df["fbg"].notna() & df["converted_fbg2_value"].notna(), "fasting_fbg_hrs"] = df[
101
+ "repeat_fasting_duration_delta"
102
+ ].apply(lambda x: x.total_seconds() / 3600)
103
+ df["fasting_ogtt_hrs"] = np.nan
104
+ df["fasting_ogtt_hrs"] = df["fasting_duration_delta"].apply(
105
+ lambda x: x.total_seconds() / 3600
106
+ )
107
+ df.loc[df["ogtt"].notna() & df["converted_ogtt2_value"].notna(), "fasting_ogtt_hrs"] = df[
108
+ "repeat_fasting_duration_delta"
109
+ ].apply(lambda x: x.total_seconds() / 3600)
110
+
111
+ # bmi
112
+ # subject SR9E8B4D has eligible part two == No but subject has a glucose value
113
+ df.loc[(df["screening_identifier"] == "SR9E8B4D"), "eligible_part_two"] = "Yes"
114
+
115
+ # merge with physical exam to get waist circumference if taken at baseline
116
+ subject_identifiers = list(df["subject_identifier"])
117
+ qs_subject_visit = SubjectVisit.objects.filter(subject_identifier__in=subject_identifiers)
118
+ df_subject_visit = read_frame(qs_subject_visit)
119
+ df_subject_visit.rename(columns={"id": "subject_visit"}, inplace=True)
120
+ qs_physical_exam = PhysicalExam.objects.filter(
121
+ subject_visit__subject_identifier__in=subject_identifiers
122
+ )
123
+ df_physical_exam = read_frame(qs_physical_exam)
124
+ # merge w/ subject visit to get subject_identifier
125
+ df_physical_exam = pd.merge(
126
+ df_physical_exam,
127
+ df_subject_visit[
128
+ ["subject_visit", "subject_identifier", "visit_code", "visit_code_sequence"]
129
+ ],
130
+ on="subject_visit",
131
+ how="left",
132
+ )
133
+ df_physical_exam = df_physical_exam[
134
+ ["subject_identifier", "visit_code", "visit_code_sequence", "waist_circumference"]
135
+ ]
136
+ df_physical_exam[["waist_circumference"]] = df_physical_exam[
137
+ ["waist_circumference"]
138
+ ].apply(pd.to_numeric)
139
+ # rename column to waist_circumference_baseline
140
+ df_physical_exam["waist_circumference_baseline"] = df_physical_exam["waist_circumference"]
141
+ df_physical_exam.drop(columns=["waist_circumference"])
142
+ df_physical_exam[["waist_circumference_baseline"]] = df_physical_exam[
143
+ ["waist_circumference_baseline"]
144
+ ].apply(pd.to_numeric)
145
+ # merge on subject_identifier with main DF
146
+ df = pd.merge(
147
+ df,
148
+ df_physical_exam[["subject_identifier", "waist_circumference_baseline"]],
149
+ on="subject_identifier",
150
+ how="left",
151
+ )
152
+ df.reset_index(drop=True, inplace=True)
153
+ # set waist_circumference=waist_circumference_baseline
154
+ # if `waist_circumference` is none and `waist_circumference_baseline` is not
155
+ df.loc[
156
+ (df["waist_circumference"].isna()) & (df["waist_circumference_baseline"].notna()),
157
+ "waist_circumference",
158
+ ] = df["waist_circumference_baseline"]
159
+
160
+ # drop waist_circumference_baseline
161
+ df.drop(columns=["waist_circumference_baseline"], inplace=True)
162
+
163
+ return df
@@ -0,0 +1,65 @@
1
+ import pandas as pd
2
+
3
+ from .constants import endpoint_columns
4
+
5
+
6
+ def get_test_string(s):
7
+ if pd.notna(s["fbg_value"]) and pd.notna(s["ogtt_value"]):
8
+ return "fbg_ogtt"
9
+ if pd.notna(s["fbg_value"]) and pd.isna(s["ogtt_value"]):
10
+ return "fbg_only"
11
+ if pd.isna(s["fbg_value"]) and pd.notna(s["ogtt_value"]):
12
+ return "ogtt_only"
13
+ if pd.isna(s["fbg_value"]) and pd.isna(s["ogtt_value"]):
14
+ return "not_tested"
15
+ return "???"
16
+
17
+
18
+ def get_empty_endpoint_df() -> pd.DataFrame:
19
+ endpoint_df = pd.DataFrame(columns=endpoint_columns)
20
+ endpoint_df[
21
+ [
22
+ "visit_code",
23
+ "interval_in_days",
24
+ "fbg_value",
25
+ "ogtt_value",
26
+ "endpoint",
27
+ "endpoint_type",
28
+ ]
29
+ ] = endpoint_df[
30
+ [
31
+ "visit_code",
32
+ "interval_in_days",
33
+ "fbg_value",
34
+ "ogtt_value",
35
+ "endpoint",
36
+ "endpoint_type",
37
+ ]
38
+ ].apply(
39
+ pd.to_numeric
40
+ )
41
+ endpoint_df[
42
+ ["baseline_datetime", "visit_datetime", "fbg_datetime", "offstudy_datetime"]
43
+ ] = endpoint_df[
44
+ ["baseline_datetime", "visit_datetime", "fbg_datetime", "offstudy_datetime"]
45
+ ].apply(
46
+ pd.to_datetime
47
+ )
48
+ endpoint_df["visit_code"] = endpoint_df["visit_code"].astype(float)
49
+ return endpoint_df
50
+
51
+
52
+ def get_unique_visit_codes(df: pd.DataFrame) -> pd.DataFrame:
53
+ stats_df = df[df["visit_code"] % 1 == 0]["visit_code"].value_counts().to_frame()
54
+ stats_df = stats_df.reset_index()
55
+ stats_df["visit_code"] = stats_df["visit_code"].astype(float)
56
+ stats_df = stats_df.sort_values(["visit_code"])
57
+ stats_df = stats_df.reset_index(drop=True)
58
+ return stats_df
59
+
60
+
61
+ def get_unique_subject_identifiers(df: pd.DataFrame) -> pd.DataFrame:
62
+ values_df = pd.DataFrame(df["subject_identifier"].unique(), columns=["subject_identifier"])
63
+ values_df = values_df.sort_values(["subject_identifier"])
64
+ values_df = values_df.reset_index()
65
+ return values_df
@@ -0,0 +1,81 @@
1
+ import pandas as pd
2
+ from edc_analytics.custom_tables import (
3
+ AgeTable,
4
+ ArtTable,
5
+ BmiTable,
6
+ BpTable,
7
+ FastingTable,
8
+ FbgOgttTable,
9
+ FbgTable,
10
+ GenderTable,
11
+ HbA1cTable,
12
+ OgttTable,
13
+ WaistCircumferenceTable,
14
+ )
15
+ from edc_analytics.data import Data
16
+
17
+ from .dataframes import get_glucose_tested_only_df, get_screening_df
18
+ from .tables import EligibleP12Table, HasDmTable
19
+
20
+
21
+ def get_tables() -> dict[str, Data]:
22
+ """
23
+ results = get_table()
24
+ results.get("fbg").to_csv(folder="/Users/erikvw/Documents/")
25
+ """
26
+ df_screening = get_screening_df()
27
+ df_has_dm = df_screening[(df_screening["has_dm"] == "Yes")]
28
+ df_no_dm = df_screening[(df_screening["has_dm"] == "No")]
29
+ df_fbg = get_glucose_tested_only_df(df_screening)
30
+
31
+ df_not_tested = df_no_dm.copy()
32
+ df_not_eligible_p1p2 = df_not_tested[
33
+ ~(
34
+ (df_not_tested["eligible_part_one"] == "Yes")
35
+ & (df_not_tested["eligible_part_two"] == "Yes")
36
+ )
37
+ ]
38
+ df_not_tested.drop(df_not_eligible_p1p2.index, inplace=True)
39
+ df_not_tested.drop(df_fbg.index, inplace=True)
40
+
41
+ df_stats = pd.DataFrame(
42
+ {
43
+ "df": ["df_screening", "df_has_dm", "df_no_dm", "df_not_tested", "df_fbg"],
44
+ "count": [
45
+ len(df_screening),
46
+ len(df_has_dm),
47
+ len(df_no_dm),
48
+ len(df_not_tested),
49
+ len(df_fbg),
50
+ ],
51
+ }
52
+ )
53
+
54
+ results = {"stats": df_stats}
55
+ for key, df in {
56
+ "screening": df_screening,
57
+ "has_dm": df_has_dm,
58
+ "no_dm": df_no_dm,
59
+ "not_tested": df_not_tested,
60
+ "fbg": df_fbg,
61
+ }.items():
62
+ dfs = []
63
+ for tbl_cls in [
64
+ GenderTable,
65
+ AgeTable,
66
+ WaistCircumferenceTable,
67
+ BmiTable,
68
+ BpTable,
69
+ ArtTable,
70
+ FastingTable,
71
+ FbgTable,
72
+ OgttTable,
73
+ FbgOgttTable,
74
+ HbA1cTable,
75
+ EligibleP12Table,
76
+ HasDmTable,
77
+ ]:
78
+ tbl = tbl_cls(main_df=df)
79
+ dfs.append(tbl.table_df)
80
+ results.update({key: Data(key, pd.concat(list(dfs)), df, "meta3")})
81
+ return results
@@ -0,0 +1,2 @@
1
+ from .eligible import EligibleP12Table
2
+ from .has_dm import HasDmTable
@@ -0,0 +1,106 @@
1
+ import pandas as pd
2
+ from edc_analytics.constants import N_ONLY, N_WITH_COL_PROP, N_WITH_ROW_PROP
3
+ from edc_analytics.row import RowDefinition, RowDefinitions
4
+ from edc_analytics.table import Table
5
+
6
+
7
+ class EligibleP12Table(Table):
8
+ def __init__(self, main_df: pd.DataFrame = None):
9
+ super().__init__(colname="", main_df=main_df, title="Eligible by Part 1/2")
10
+
11
+ @property
12
+ def row_definitions(self) -> RowDefinitions:
13
+ df_tmp = self.main_df.copy()
14
+ row_defs = RowDefinitions(reverse_rows=False)
15
+ row0 = RowDefinition(
16
+ title=self.title,
17
+ label=self.default_sublabel,
18
+ condition=(df_tmp["gender"].notna()),
19
+ columns={
20
+ "F": (N_ONLY, 2),
21
+ "M": (N_ONLY, 2),
22
+ "All": (N_ONLY, 2),
23
+ },
24
+ drop=False,
25
+ )
26
+ row_defs.add(row0)
27
+ columns = {
28
+ "F": (N_WITH_COL_PROP, 2),
29
+ "M": (N_WITH_COL_PROP, 2),
30
+ "All": (N_WITH_ROW_PROP, 2),
31
+ }
32
+ row_defs.add(
33
+ RowDefinition(
34
+ label="Eligible P1",
35
+ condition=(df_tmp["eligible_part_one"] == "Yes"),
36
+ columns=columns,
37
+ drop=False,
38
+ )
39
+ )
40
+ row_defs.add(
41
+ RowDefinition(
42
+ label="Eligible P2",
43
+ condition=(df_tmp["eligible_part_two"] == "Yes"),
44
+ columns=columns,
45
+ drop=False,
46
+ )
47
+ )
48
+
49
+ row_defs.add(
50
+ RowDefinition(
51
+ label="Eligible P1 & P2",
52
+ condition=(df_tmp["eligible_part_one"] == "Yes")
53
+ & (df_tmp["eligible_part_two"] == "Yes"),
54
+ columns=columns,
55
+ drop=False,
56
+ )
57
+ )
58
+ # note already_fasted accepts Y/N/NA
59
+ row_defs.add(
60
+ RowDefinition(
61
+ label="Glucose tested (fasted on day)",
62
+ condition=(
63
+ (df_tmp["already_fasted"] == "Yes")
64
+ & ((df_tmp["fbg"].notna()) | (df_tmp["ogtt"].notna()))
65
+ ),
66
+ columns=columns,
67
+ drop=True,
68
+ )
69
+ )
70
+
71
+ row_defs.add(
72
+ RowDefinition(
73
+ label="Glucose tested (returned fasted)",
74
+ condition=(
75
+ (df_tmp["already_fasted"] == "No")
76
+ & ((df_tmp["fbg"].notna()) | (df_tmp["ogtt"].notna()))
77
+ ),
78
+ columns=columns,
79
+ drop=True,
80
+ )
81
+ )
82
+
83
+ row_defs.add(
84
+ RowDefinition(
85
+ label="Glucose tested (N/A)",
86
+ condition=(df_tmp["already_fasted"] == "N/A")
87
+ & ((df_tmp["fbg"].notna()) | (df_tmp["ogtt"].notna())),
88
+ columns=columns,
89
+ drop=True,
90
+ )
91
+ )
92
+
93
+ row_defs.add(
94
+ RowDefinition(
95
+ label="No glucose test (not fasted on day and did not return)",
96
+ condition=(
97
+ (df_tmp["eligible_part_one"] == "Yes")
98
+ & (df_tmp["eligible_part_two"] == "Yes")
99
+ & (df_tmp["fbg"].isna())
100
+ & (df_tmp["ogtt"].isna())
101
+ ),
102
+ columns=columns,
103
+ drop=False,
104
+ )
105
+ )
106
+ return row_defs
File without changes
@@ -0,0 +1,28 @@
1
+ import pandas as pd
2
+ from edc_analytics.custom_tables import AgeTable, GenderTable
3
+ from edc_analytics.table import Table
4
+
5
+
6
+ class GlucoseTable(Table):
7
+ """
8
+ gender
9
+ age
10
+ fasting
11
+ fbg mean
12
+ ogtt mean
13
+ fbg + ogtt count
14
+ """
15
+
16
+ def __init__(self, main_df: pd.DataFrame = None):
17
+ super().__init__(colname="", main_df=main_df, title="Glucose (enrolled)")
18
+
19
+ def build_table_df(self) -> None:
20
+ super().build_table_df()
21
+ df = self.main_df
22
+ s = df.groupby("subject_identifier")[["age_in_years", "gender"]].value_counts()
23
+ df_tmp = s.to_frame()
24
+ df_tmp = df_tmp.reset_index()
25
+ gender_tbl = GenderTable(main_df=df_tmp).table_df
26
+ age_tbl = AgeTable(main_df=df_tmp).table_df
27
+ self.table_df = pd.concat([self.table_df, gender_tbl, age_tbl])
28
+ self.table_df.reset_index(drop=True, inplace=True)
@@ -0,0 +1,61 @@
1
+ import pandas as pd
2
+ from edc_analytics.constants import N_ONLY, N_WITH_COL_PROP, N_WITH_ROW_PROP
3
+ from edc_analytics.row import RowDefinition, RowDefinitions
4
+ from edc_analytics.table import Table
5
+
6
+
7
+ class HasDmTable(Table):
8
+ def __init__(self, main_df: pd.DataFrame = None):
9
+ super().__init__(
10
+ colname="", main_df=main_df, title="Subjects reporting having Diabetes"
11
+ )
12
+
13
+ @property
14
+ def row_definitions(self) -> RowDefinitions:
15
+ df_tmp = self.main_df.copy()
16
+ row_defs = RowDefinitions(reverse_rows=False)
17
+ row0 = RowDefinition(
18
+ title=self.title,
19
+ label=self.default_sublabel,
20
+ condition=(df_tmp["gender"].notna()),
21
+ columns={
22
+ "F": (N_ONLY, 2),
23
+ "M": (N_ONLY, 2),
24
+ "All": (N_ONLY, 2),
25
+ },
26
+ drop=False,
27
+ )
28
+ row_defs.add(row0)
29
+ columns = {
30
+ "F": (N_WITH_COL_PROP, 2),
31
+ "M": (N_WITH_COL_PROP, 2),
32
+ "All": (N_WITH_ROW_PROP, 2),
33
+ }
34
+ row_defs.add(
35
+ RowDefinition(
36
+ label="Yes",
37
+ condition=(df_tmp["has_dm"] == "Yes"),
38
+ columns=columns,
39
+ drop=True,
40
+ )
41
+ )
42
+
43
+ row_defs.add(
44
+ RowDefinition(
45
+ label="No",
46
+ condition=(df_tmp["has_dm"] == "No"),
47
+ columns=columns,
48
+ drop=True,
49
+ )
50
+ )
51
+
52
+ row_defs.add(
53
+ RowDefinition(
54
+ label="Not evaluated",
55
+ condition=(df_tmp["has_dm"] == "unk"),
56
+ columns=columns,
57
+ drop=True,
58
+ )
59
+ )
60
+
61
+ return row_defs
File without changes
@@ -0,0 +1,94 @@
1
+ from datetime import datetime
2
+
3
+ import numpy as np
4
+ import pandas as pd
5
+ from dateutil.relativedelta import relativedelta
6
+ from django.test import TestCase
7
+ from edc_constants.constants import YES
8
+
9
+ from meta_analytics.dataframes import EndpointByDate
10
+
11
+
12
+ class TestEndpointsByDate(TestCase):
13
+ def test_case_one(self):
14
+ def d(m: int, w: int | None = None):
15
+ if w:
16
+ return datetime.now() - relativedelta(months=m, weeks=w)
17
+ return datetime.now() - relativedelta(months=m)
18
+
19
+ def append_to(subject_df, endpoint_df):
20
+ if endpoint_df.empty:
21
+ endpoint_df = subject_df.copy()
22
+ elif subject_df.empty:
23
+ pass
24
+ else:
25
+ endpoint_df = pd.concat([endpoint_df, subject_df])
26
+ endpoint_df = self.endpoint_df.sort_values(
27
+ by=["subject_identifier", "visit_code"]
28
+ )
29
+ endpoint_df.reset_index(drop=True, inplace=True)
30
+
31
+ subject_identifier = "101-1"
32
+ data = {
33
+ "subject_identifier": [subject_identifier] * 10,
34
+ "visit_code": [
35
+ 1000.0,
36
+ 1005.0,
37
+ 1010.0,
38
+ 1030.0,
39
+ 1060.0,
40
+ 1090.0,
41
+ 1120.0,
42
+ 1115.0,
43
+ 1118.0,
44
+ 1210.0,
45
+ ],
46
+ "fasting": [YES] * 10,
47
+ "fbg_datetime": [
48
+ d(0),
49
+ d(0, 2),
50
+ d(1),
51
+ d(3),
52
+ d(6),
53
+ d(9),
54
+ d(12),
55
+ d(15),
56
+ d(18),
57
+ d(21),
58
+ ],
59
+ "fbg_value": [np.nan, 6.9, 6.9, 7.1, 7.1, 6.4, 7.0, np.nan, 8.1, np.nan],
60
+ "ogtt_value": [
61
+ np.nan,
62
+ np.nan,
63
+ np.nan,
64
+ np.nan,
65
+ np.nan,
66
+ np.nan,
67
+ np.nan,
68
+ np.nan,
69
+ 7.9,
70
+ np.nan,
71
+ ],
72
+ }
73
+
74
+ fbgs = [np.nan, 6.9, 6.9, 7.1, 7.1, 6.4, 7.0, np.nan, 8.1, np.nan]
75
+ ogtts = [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, 7.9, np.nan]
76
+
77
+ fbgs = [np.nan, 6.9, 6.9, 7.1, 7.1, 6.4, 7.0, 8.1, np.nan, np.nan]
78
+ ogtts = [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, 7.9, np.nan, np.nan]
79
+
80
+ data.update(fbg_values=fbgs, ogtt_values=ogtts)
81
+ subject_df = pd.DataFrame(data)
82
+ subject_df["fasting"] = subject_df.apply(
83
+ lambda r: np.nan if pd.isna(r.fbg_value) else r.fbg_value, axis=1
84
+ )
85
+ subject_df["fbg_datetime"] = subject_df.apply(
86
+ lambda r: np.nan if pd.isna(r.fbg_value) else r.fbg_datetime, axis=1
87
+ )
88
+
89
+ endpoint_df = pd.DataFrame()
90
+ for index, row in subject_df.iterrows():
91
+ cls = EndpointByDate(index, row, fbg_threshhold=7.0, ogtt_threshhold=11.1)
92
+ append_to(cls.subject_df, endpoint_df)
93
+
94
+ endpoint_df
meta_auth/auth_objects.py CHANGED
@@ -1,10 +1,32 @@
1
1
  from django.conf import settings
2
2
  from edc_auth.get_app_codenames import get_app_codenames
3
3
 
4
+ META_REPORTS = "META_REPORTS"
5
+ META_REPORTS_AUDIT = "META_REPORTS_AUDIT"
6
+ META_PHARMACIST = "META_PHARMACIST"
7
+
8
+
4
9
  clinic_codenames = get_app_codenames(
5
10
  "meta_prn", "meta_subject", "meta_consent", list_app="meta_lists"
6
11
  )
7
12
 
13
+ reports_codenames = get_app_codenames("meta_reports")
14
+ reports_codenames.remove("meta_reports.view_impsubstitutions")
15
+
16
+ meta_pharmacy_codenames = get_app_codenames("meta_pharmacy")
17
+ meta_pharmacy_codenames.extend(get_app_codenames("django_pylabels"))
18
+ meta_pharmacy_codenames.append("meta_reports.view_impsubstitutions")
19
+ meta_pharmacy_codenames.append("meta_reports.viewallsites_impsubstitutions")
20
+ excluded_meta_pharmacy_codenames = [
21
+ "meta_pharmacy.add_rx",
22
+ "meta_pharmacy.change_rx",
23
+ "meta_pharmacy.delete_rx",
24
+ ]
25
+
26
+ meta_pharmacy_codenames = [
27
+ c for c in meta_pharmacy_codenames if c not in excluded_meta_pharmacy_codenames
28
+ ]
29
+
8
30
  add_perms = []
9
31
  if not settings.LIVE_SYSTEM:
10
32
  add_perms = [
meta_auth/auths.py CHANGED
@@ -20,13 +20,26 @@ from edc_pharmacy.auth_objects import (
20
20
  PHARMACY_PRESCRIBER,
21
21
  SITE_PHARMACIST_ROLE,
22
22
  )
23
+ from edc_qareports.auth_objects import QA_REPORTS_AUDIT_ROLE, QA_REPORTS_ROLE
23
24
  from edc_qol.auth_objects import QOL, QOL_SUPER, QOL_VIEW
24
25
  from edc_randomization.auth_objects import RANDO_BLINDED, RANDO_UNBLINDED
25
26
  from edc_screening.auth_objects import SCREENING, SCREENING_SUPER, SCREENING_VIEW
26
27
  from edc_subject_dashboard.auths import SUBJECT_VIEW
27
28
  from edc_unblinding.auth_objects import UNBLINDING_REQUESTORS
28
29
 
29
- from .auth_objects import clinic_codenames, screening_codenames
30
+ from .auth_objects import (
31
+ META_PHARMACIST,
32
+ META_REPORTS,
33
+ META_REPORTS_AUDIT,
34
+ clinic_codenames,
35
+ meta_pharmacy_codenames,
36
+ reports_codenames,
37
+ screening_codenames,
38
+ )
39
+
40
+ site_auths.add_group(*reports_codenames, name=META_REPORTS)
41
+ site_auths.add_group(*reports_codenames, name=META_REPORTS_AUDIT, view_only=True)
42
+ site_auths.add_group(*meta_pharmacy_codenames, name=META_PHARMACIST)
30
43
 
31
44
  # update edc_auth default groups
32
45
  site_auths.update_group(*clinic_codenames, name=AUDITOR, view_only=True)
@@ -59,9 +72,11 @@ site_auths.update_role(
59
72
  DATA_MANAGER_EXPORT,
60
73
  name=DATA_EXPORTER_ROLE,
61
74
  )
62
- site_auths.update_role(RANDO_UNBLINDED, PII, name=PHARMACIST_ROLE)
63
- site_auths.update_role(RANDO_BLINDED, PII, name=SITE_PHARMACIST_ROLE)
75
+ site_auths.update_role(RANDO_UNBLINDED, PII, META_PHARMACIST, name=PHARMACIST_ROLE)
76
+ site_auths.update_role(RANDO_BLINDED, PII, META_PHARMACIST, name=SITE_PHARMACIST_ROLE)
64
77
  site_auths.update_role(SUBJECT_VIEW, SCREENING_VIEW, name=DATA_MANAGER_ROLE)
65
78
  site_auths.update_role(
66
79
  SUBJECT_VIEW, SCREENING_VIEW, ACTION_ITEM, UNBLINDING_REQUESTORS, name=TMG_ROLE
67
80
  )
81
+ site_auths.update_role(META_REPORTS, name=QA_REPORTS_ROLE)
82
+ site_auths.update_role(META_REPORTS_AUDIT, name=QA_REPORTS_AUDIT_ROLE)