liger-kernel-nightly 0.5.5.dev20250402185702__py3-none-any.whl → 0.6.4.dev20260112233432__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of liger-kernel-nightly might be problematic. Click here for more details.
- liger_kernel/chunked_loss/__init__.py +1 -0
- liger_kernel/chunked_loss/cosine_similarity_loss.py +142 -0
- liger_kernel/chunked_loss/dpo_loss.py +61 -3
- liger_kernel/chunked_loss/functional.py +2 -0
- liger_kernel/chunked_loss/fused_linear_distillation.py +23 -5
- liger_kernel/chunked_loss/fused_linear_ppo.py +36 -0
- liger_kernel/chunked_loss/fused_linear_preference.py +0 -1
- liger_kernel/chunked_loss/grpo_loss.py +76 -5
- liger_kernel/chunked_loss/jsd_loss.py +46 -15
- liger_kernel/ops/__init__.py +141 -0
- liger_kernel/ops/backends/README.md +151 -0
- liger_kernel/ops/backends/__init__.py +13 -0
- liger_kernel/ops/backends/_ascend/__init__.py +5 -0
- liger_kernel/ops/backends/_ascend/ascend-ub-manager-design.md +485 -0
- liger_kernel/ops/backends/_ascend/ops/__init__.py +49 -0
- liger_kernel/ops/backends/_ascend/ops/geglu.py +266 -0
- liger_kernel/ops/backends/_ascend/ops/qwen2vl_mrope.py +285 -0
- liger_kernel/ops/backends/_ascend/ops/rope.py +290 -0
- liger_kernel/ops/backends/_ascend/ops/swiglu.py +142 -0
- liger_kernel/ops/backends/_ascend/ops/tvd.py +221 -0
- liger_kernel/ops/backends/_ascend/ub_manager.py +349 -0
- liger_kernel/ops/backends/registry.py +61 -0
- liger_kernel/ops/cross_entropy.py +134 -65
- liger_kernel/ops/dyt.py +115 -180
- liger_kernel/ops/fused_add_rms_norm.py +416 -0
- liger_kernel/ops/fused_linear_cross_entropy.py +117 -23
- liger_kernel/ops/fused_neighborhood_attention.py +1022 -0
- liger_kernel/ops/geglu.py +6 -4
- liger_kernel/ops/group_norm.py +7 -7
- liger_kernel/ops/grpo_loss.py +312 -0
- liger_kernel/ops/jsd.py +2 -1
- liger_kernel/ops/kl_div.py +9 -5
- liger_kernel/ops/layer_norm.py +146 -78
- liger_kernel/ops/llama4_rope.py +225 -0
- liger_kernel/ops/multi_token_attention.py +207 -0
- liger_kernel/ops/poly_norm.py +390 -0
- liger_kernel/ops/rms_norm.py +398 -99
- liger_kernel/ops/rope.py +1 -1
- liger_kernel/ops/softmax.py +201 -0
- liger_kernel/ops/sparsemax.py +179 -0
- liger_kernel/ops/swiglu.py +1 -1
- liger_kernel/ops/tiled_mlp.py +136 -0
- liger_kernel/ops/utils.py +14 -0
- liger_kernel/transformers/__init__.py +208 -17
- liger_kernel/transformers/auto_model.py +21 -0
- liger_kernel/transformers/cross_entropy.py +9 -4
- liger_kernel/transformers/dyt.py +6 -4
- liger_kernel/transformers/experimental/__init__.py +5 -0
- liger_kernel/transformers/experimental/embedding.py +1 -1
- liger_kernel/transformers/fsdp.py +55 -0
- liger_kernel/transformers/functional.py +122 -20
- liger_kernel/transformers/fused_add_rms_norm.py +39 -0
- liger_kernel/transformers/fused_linear_cross_entropy.py +16 -5
- liger_kernel/transformers/fused_linear_jsd.py +1 -1
- liger_kernel/transformers/fused_neighborhood_attention.py +234 -0
- liger_kernel/transformers/geglu.py +1 -1
- liger_kernel/transformers/group_norm.py +1 -1
- liger_kernel/transformers/grpo_loss.py +153 -0
- liger_kernel/transformers/jsd.py +1 -1
- liger_kernel/transformers/kl_div.py +1 -1
- liger_kernel/transformers/layer_norm.py +1 -1
- liger_kernel/transformers/llama4_rope.py +93 -0
- liger_kernel/transformers/model/exaone4.py +136 -0
- liger_kernel/transformers/model/falcon_h1.py +122 -0
- liger_kernel/transformers/model/gemma.py +57 -27
- liger_kernel/transformers/model/gemma2.py +65 -28
- liger_kernel/transformers/model/gemma3.py +331 -0
- liger_kernel/transformers/model/glm4.py +141 -0
- liger_kernel/transformers/model/glm4v.py +163 -0
- liger_kernel/transformers/model/glm4v_moe.py +172 -0
- liger_kernel/transformers/model/gpt_oss.py +211 -0
- liger_kernel/transformers/model/hunyuan_v1.py +134 -0
- liger_kernel/transformers/model/internvl.py +157 -0
- liger_kernel/transformers/model/llama.py +109 -27
- liger_kernel/transformers/model/llama4.py +121 -0
- liger_kernel/transformers/model/llava.py +111 -136
- liger_kernel/transformers/model/loss_utils.py +50 -12
- liger_kernel/transformers/model/mistral.py +51 -34
- liger_kernel/transformers/model/mixtral.py +50 -29
- liger_kernel/transformers/model/mllama.py +46 -24
- liger_kernel/transformers/model/olmo2.py +47 -22
- liger_kernel/transformers/model/olmo3.py +142 -0
- liger_kernel/transformers/model/output_classes.py +147 -0
- liger_kernel/transformers/model/paligemma.py +50 -14
- liger_kernel/transformers/model/phi3.py +47 -172
- liger_kernel/transformers/model/qwen2.py +55 -23
- liger_kernel/transformers/model/qwen2_5_vl.py +62 -103
- liger_kernel/transformers/model/qwen2_vl.py +59 -108
- liger_kernel/transformers/model/qwen3.py +136 -0
- liger_kernel/transformers/model/qwen3_moe.py +152 -0
- liger_kernel/transformers/model/qwen3_next.py +146 -0
- liger_kernel/transformers/model/qwen3_vl.py +150 -0
- liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
- liger_kernel/transformers/model/smollm3.py +199 -0
- liger_kernel/transformers/model/smolvlm.py +158 -0
- liger_kernel/transformers/monkey_patch.py +2018 -244
- liger_kernel/transformers/multi_token_attention.py +64 -0
- liger_kernel/transformers/poly_norm.py +42 -0
- liger_kernel/transformers/qwen2vl_mrope.py +1 -1
- liger_kernel/transformers/rms_norm.py +54 -6
- liger_kernel/transformers/rope.py +45 -1
- liger_kernel/transformers/softmax.py +12 -0
- liger_kernel/transformers/sparsemax.py +16 -0
- liger_kernel/transformers/swiglu.py +39 -1
- liger_kernel/transformers/tiled_mlp.py +125 -0
- liger_kernel/transformers/trainer/orpo_trainer.py +1 -53
- liger_kernel/transformers/tvd.py +1 -1
- liger_kernel/utils.py +63 -0
- {liger_kernel_nightly-0.5.5.dev20250402185702.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/METADATA +73 -39
- liger_kernel_nightly-0.6.4.dev20260112233432.dist-info/RECORD +132 -0
- liger_kernel_nightly-0.5.5.dev20250402185702.dist-info/RECORD +0 -80
- {liger_kernel_nightly-0.5.5.dev20250402185702.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.5.5.dev20250402185702.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/NOTICE +0 -0
- {liger_kernel_nightly-0.5.5.dev20250402185702.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/WHEEL +0 -0
- {liger_kernel_nightly-0.5.5.dev20250402185702.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/top_level.txt +0 -0
liger_kernel/ops/dyt.py
CHANGED
|
@@ -4,12 +4,13 @@ import torch
|
|
|
4
4
|
import triton
|
|
5
5
|
import triton.language as tl
|
|
6
6
|
|
|
7
|
-
from liger_kernel.ops.utils import calculate_settings
|
|
8
7
|
from liger_kernel.ops.utils import compare_version
|
|
9
8
|
from liger_kernel.ops.utils import ensure_contiguous
|
|
10
9
|
from liger_kernel.ops.utils import infer_device
|
|
10
|
+
from liger_kernel.utils import get_npu_multi_processor_count
|
|
11
|
+
from liger_kernel.utils import is_npu_available
|
|
11
12
|
|
|
12
|
-
if compare_version("triton", operator.ge, "3.0.0"):
|
|
13
|
+
if compare_version("triton", operator.ge, "3.0.0") and not is_npu_available():
|
|
13
14
|
try:
|
|
14
15
|
# typical import path with dispatch available
|
|
15
16
|
from triton.language.extra.libdevice import tanh
|
|
@@ -20,187 +21,127 @@ else:
|
|
|
20
21
|
from triton.language.math import tanh
|
|
21
22
|
|
|
22
23
|
|
|
24
|
+
# @triton.autotune([triton.Config({"BLOCK_N":bn}, num_stages=ns, num_warps=nw)
|
|
25
|
+
# for bn in [1024, 2048, 4096]
|
|
26
|
+
# for ns in [1,2,4]
|
|
27
|
+
# for nw in [4, 8, 16, 32]
|
|
28
|
+
# ],
|
|
29
|
+
# key=['N'])
|
|
23
30
|
@triton.jit
|
|
24
|
-
def _dyt_fwd_kernel(
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
):
|
|
35
|
-
"""
|
|
36
|
-
Reference:
|
|
37
|
-
https://arxiv.org/abs/2503.10622
|
|
38
|
-
|
|
39
|
-
Shapes:
|
|
40
|
-
- x: (BT, C)
|
|
41
|
-
- alpha: (1)
|
|
42
|
-
- gamma: (C)
|
|
43
|
-
- beta: (C)
|
|
44
|
-
"""
|
|
45
|
-
row_idx = tl.program_id(0)
|
|
46
|
-
offsets = tl.arange(0, BLOCK_SIZE)
|
|
47
|
-
mask = offsets < n_cols
|
|
48
|
-
|
|
49
|
-
x_ptr += row_idx * x_row_stride
|
|
50
|
-
y_ptr += row_idx * y_row_stride
|
|
51
|
-
|
|
52
|
-
alpha = tl.load(alpha_ptr)
|
|
53
|
-
gamma = tl.load(gamma_ptr + offsets, mask=mask)
|
|
54
|
-
beta = tl.load(beta_ptr + offsets, mask=mask)
|
|
55
|
-
x = tl.load(x_ptr + offsets, mask=mask)
|
|
56
|
-
y = gamma * tanh((alpha * x).cast(tl.float32)) + beta
|
|
57
|
-
tl.store(y_ptr + offsets, y, mask=mask)
|
|
31
|
+
def _dyt_fwd_kernel(X, Y, Alpha, Gamma, Beta, HAVE_BETA: tl.constexpr, N: tl.constexpr, BLOCK_N: tl.constexpr = 1024):
|
|
32
|
+
col = tl.cast(tl.program_id(0), tl.int64) * BLOCK_N + tl.arange(0, BLOCK_N)
|
|
33
|
+
mask = col < N
|
|
34
|
+
row_id = tl.cast(tl.program_id(1), tl.int64)
|
|
35
|
+
|
|
36
|
+
X += row_id * N
|
|
37
|
+
Y += row_id * N
|
|
38
|
+
alpha = tl.load(Alpha).to(tl.float32)
|
|
39
|
+
|
|
40
|
+
gamma = tl.load(Gamma + col, mask=mask, other=0.0).to(tl.float32)
|
|
58
41
|
|
|
42
|
+
x = tl.load(X + col, mask=mask, other=0.0).to(tl.float32)
|
|
59
43
|
|
|
44
|
+
tanh_x = tanh(alpha * x)
|
|
45
|
+
y = tanh_x * gamma
|
|
46
|
+
if HAVE_BETA:
|
|
47
|
+
beta = tl.load(Beta + col, mask=mask, other=0.0).to(tl.float32)
|
|
48
|
+
y += beta
|
|
49
|
+
tl.store(Y + col, y, mask=mask)
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
# @triton.autotune([triton.Config({"BLOCK_N":bn}, num_stages=ns, num_warps=nw)
|
|
53
|
+
# for bn in [1024, 2048, 4096]
|
|
54
|
+
# for ns in [1,2,4]
|
|
55
|
+
# for nw in [4, 8, 16]
|
|
56
|
+
# ],
|
|
57
|
+
# key=['N'])
|
|
60
58
|
@triton.jit
|
|
61
59
|
def _dyt_bwd_kernel(
|
|
62
|
-
|
|
63
|
-
x_row_stride,
|
|
64
|
-
dy_ptr,
|
|
65
|
-
dy_row_stride,
|
|
66
|
-
dx_ptr,
|
|
67
|
-
dx_row_stride,
|
|
68
|
-
alpha_ptr,
|
|
69
|
-
dalpha_ptr,
|
|
70
|
-
gamma_ptr,
|
|
71
|
-
dgamma_ptr,
|
|
72
|
-
dgamma_row_stride,
|
|
73
|
-
n_cols,
|
|
74
|
-
n_rows,
|
|
75
|
-
ROWS_PER_PROGRAM: tl.constexpr,
|
|
76
|
-
BLOCK_SIZE: tl.constexpr,
|
|
60
|
+
DY, DX, DA, DG, DB, X, Alpha, Gamma, HAVE_BETA: tl.constexpr, M, N: tl.constexpr, BLOCK_N: tl.constexpr = 1024
|
|
77
61
|
):
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
dalpha = 0.0
|
|
106
|
-
dgamma = tl.zeros((BLOCK_SIZE,), dtype=tl.float32)
|
|
107
|
-
|
|
108
|
-
x_ptr += row_start * x_row_stride
|
|
109
|
-
dx_ptr += row_start * dx_row_stride
|
|
110
|
-
dy_ptr += row_start * dy_row_stride
|
|
111
|
-
alpha = tl.load(alpha_ptr)
|
|
112
|
-
gamma = tl.load(gamma_ptr + offsets, mask=mask, other=0.0)
|
|
113
|
-
|
|
114
|
-
for _ in tl.range(row_start, row_end):
|
|
115
|
-
dy = tl.load(dy_ptr + offsets, mask=mask, other=0.0)
|
|
116
|
-
x = tl.load(x_ptr + offsets, mask=mask, other=0.0)
|
|
117
|
-
tanh_ax = tanh((alpha * x).cast(tl.float32))
|
|
118
|
-
sech2_ax = 1 - tanh_ax * tanh_ax
|
|
119
|
-
|
|
120
|
-
dx = dy * gamma * sech2_ax * alpha
|
|
121
|
-
dalpha += tl.sum(dy * gamma * sech2_ax * x)
|
|
122
|
-
dgamma += dy * tanh_ax
|
|
123
|
-
tl.store(dx_ptr + offsets, dx, mask=mask)
|
|
124
|
-
|
|
125
|
-
dy_ptr += dy_row_stride
|
|
126
|
-
x_ptr += x_row_stride
|
|
127
|
-
dx_ptr += dx_row_stride
|
|
128
|
-
|
|
129
|
-
tl.store(dgamma_ptr + pid * dgamma_row_stride + offsets, dgamma, mask=mask)
|
|
130
|
-
tl.store(dalpha_ptr + pid, dalpha)
|
|
131
|
-
|
|
132
|
-
pass
|
|
62
|
+
col = tl.cast(tl.program_id(0), tl.int64) * BLOCK_N + tl.arange(0, BLOCK_N)
|
|
63
|
+
mask = col < N
|
|
64
|
+
start_row_id = tl.cast(tl.program_id(1), tl.int64)
|
|
65
|
+
|
|
66
|
+
alpha = tl.load(Alpha).to(tl.float32)
|
|
67
|
+
da = 0.0
|
|
68
|
+
gamma = tl.load(Gamma + col, mask=mask, other=0.0).to(tl.float32)
|
|
69
|
+
dg = tl.zeros((BLOCK_N,), dtype=tl.float32)
|
|
70
|
+
if HAVE_BETA:
|
|
71
|
+
db = tl.zeros((BLOCK_N,), dtype=tl.float32)
|
|
72
|
+
for row_id in range(start_row_id, M, tl.num_programs(1)):
|
|
73
|
+
x = tl.load(X + row_id * N + col, mask=mask, other=0.0).to(tl.float32)
|
|
74
|
+
dy = tl.load(DY + row_id * N + col, mask=mask, other=0.0).to(tl.float32)
|
|
75
|
+
tanh_x = tanh(alpha * x)
|
|
76
|
+
if HAVE_BETA:
|
|
77
|
+
db += dy
|
|
78
|
+
dg += dy * tanh_x
|
|
79
|
+
tmp = (1 - tanh_x * tanh_x) * dy * gamma
|
|
80
|
+
da += tl.sum(x * tmp, 0)
|
|
81
|
+
dx = alpha * tmp
|
|
82
|
+
tl.store(DX + row_id * N + col, dx, mask=mask)
|
|
83
|
+
|
|
84
|
+
tl.store(DG + start_row_id * N + col, dg, mask=mask)
|
|
85
|
+
if HAVE_BETA:
|
|
86
|
+
tl.store(DB + start_row_id * N + col, db, mask=mask)
|
|
87
|
+
tl.store(DA + start_row_id * tl.cdiv(N, 512) + tl.program_id(0), da)
|
|
133
88
|
|
|
134
89
|
|
|
135
90
|
def liger_dyt_fwd(x, alpha, gamma, beta):
|
|
136
|
-
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
|
|
91
|
+
assert x.is_contiguous()
|
|
92
|
+
HAVE_BETA = True if beta is not None else False
|
|
93
|
+
input_shape = x.shape
|
|
94
|
+
x = x.view(-1, input_shape[-1])
|
|
95
|
+
M, N = x.shape
|
|
96
|
+
|
|
140
97
|
y = torch.empty_like(x)
|
|
141
|
-
|
|
142
|
-
|
|
143
|
-
|
|
144
|
-
|
|
145
|
-
|
|
146
|
-
|
|
147
|
-
|
|
148
|
-
|
|
149
|
-
|
|
150
|
-
|
|
151
|
-
|
|
152
|
-
|
|
98
|
+
|
|
99
|
+
if N >= 4096:
|
|
100
|
+
kwargs = {"BLOCK_N": min(triton.next_power_of_2(N), 2048), "num_warps": 4, "num_stages": 1}
|
|
101
|
+
else:
|
|
102
|
+
kwargs = {"BLOCK_N": min(triton.next_power_of_2(N), 1024), "num_warps": 4, "num_stages": 1}
|
|
103
|
+
|
|
104
|
+
grid = lambda meta: (triton.cdiv(N, meta["BLOCK_N"]), M)
|
|
105
|
+
_dyt_fwd_kernel[(grid)](
|
|
106
|
+
x,
|
|
107
|
+
y,
|
|
108
|
+
alpha,
|
|
109
|
+
gamma,
|
|
110
|
+
beta,
|
|
111
|
+
HAVE_BETA,
|
|
112
|
+
N,
|
|
113
|
+
**kwargs,
|
|
153
114
|
)
|
|
154
|
-
return y.view(
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
def liger_dyt_bwd(dy, x, alpha, gamma):
|
|
158
|
-
|
|
159
|
-
|
|
160
|
-
|
|
161
|
-
|
|
162
|
-
|
|
163
|
-
|
|
164
|
-
BLOCK_SIZE, num_warps = calculate_settings(n_cols)
|
|
165
|
-
sm_count = 1
|
|
115
|
+
return y.view(input_shape)
|
|
116
|
+
|
|
117
|
+
|
|
118
|
+
def liger_dyt_bwd(dy, x, alpha, gamma, beta):
|
|
119
|
+
assert dy.is_contiguous()
|
|
120
|
+
input_shape = x.shape
|
|
121
|
+
x = x.view(-1, input_shape[-1])
|
|
122
|
+
M, N = x.shape
|
|
123
|
+
HAVE_BETA = True if beta is not None else False
|
|
124
|
+
|
|
166
125
|
device = infer_device()
|
|
167
126
|
if device == "cuda":
|
|
168
|
-
|
|
127
|
+
NUM_SMS = torch.cuda.get_device_properties(x.device).multi_processor_count
|
|
169
128
|
elif device == "xpu":
|
|
170
|
-
|
|
171
|
-
|
|
172
|
-
|
|
173
|
-
|
|
174
|
-
|
|
175
|
-
|
|
176
|
-
dx = torch.empty_like(
|
|
177
|
-
|
|
178
|
-
|
|
179
|
-
|
|
180
|
-
grid
|
|
181
|
-
|
|
182
|
-
|
|
183
|
-
|
|
184
|
-
|
|
185
|
-
|
|
186
|
-
dy_row_stride=dy.stride(0),
|
|
187
|
-
dx_ptr=dx,
|
|
188
|
-
dx_row_stride=dx.stride(0),
|
|
189
|
-
alpha_ptr=alpha,
|
|
190
|
-
dalpha_ptr=_dalpha,
|
|
191
|
-
gamma_ptr=gamma,
|
|
192
|
-
dgamma_ptr=_dgamma,
|
|
193
|
-
dgamma_row_stride=_dgamma.stride(0),
|
|
194
|
-
n_cols=n_cols,
|
|
195
|
-
n_rows=n_rows,
|
|
196
|
-
ROWS_PER_PROGRAM=rows_per_program,
|
|
197
|
-
BLOCK_SIZE=BLOCK_SIZE,
|
|
198
|
-
num_warps=num_warps,
|
|
199
|
-
)
|
|
200
|
-
dalpha = _dalpha.sum(dim=0, keepdim=True).to(dtype)
|
|
201
|
-
dgamma = _dgamma.sum(dim=0).to(dtype)
|
|
202
|
-
dbeta = dy.sum(dim=0).to(dtype)
|
|
203
|
-
return dx.view(*shape), dalpha, dgamma, dbeta
|
|
129
|
+
NUM_SMS = torch.xpu.get_device_properties(x.device).gpu_subslice_count
|
|
130
|
+
elif device == "npu":
|
|
131
|
+
NUM_SMS = get_npu_multi_processor_count()
|
|
132
|
+
da = torch.zeros(NUM_SMS, triton.cdiv(N, 512), dtype=torch.float32, device=x.device)
|
|
133
|
+
dg = torch.empty(NUM_SMS, N, dtype=torch.float32, device=x.device)
|
|
134
|
+
db = torch.empty(NUM_SMS, N, dtype=torch.float32, device=x.device) if HAVE_BETA else None
|
|
135
|
+
dx = torch.empty_like(dy)
|
|
136
|
+
|
|
137
|
+
kwargs = {"BLOCK_N": min(triton.next_power_of_2(N), 1024), "num_warps": 8, "num_stages": 2}
|
|
138
|
+
grid = lambda meta: (triton.cdiv(N, meta["BLOCK_N"]), NUM_SMS)
|
|
139
|
+
_dyt_bwd_kernel[grid](dy, dx, da, dg, db, x, alpha, gamma, HAVE_BETA, M, N, **kwargs)
|
|
140
|
+
if HAVE_BETA:
|
|
141
|
+
db = db.sum(0).to(x.dtype)
|
|
142
|
+
dg = dg.sum(0).to(gamma.dtype)
|
|
143
|
+
da = da.sum().to(x.dtype).unsqueeze(0)
|
|
144
|
+
return dx.view(input_shape), da, dg, db
|
|
204
145
|
|
|
205
146
|
|
|
206
147
|
class LigerDyTFunction(torch.autograd.Function):
|
|
@@ -208,18 +149,12 @@ class LigerDyTFunction(torch.autograd.Function):
|
|
|
208
149
|
@ensure_contiguous
|
|
209
150
|
def forward(ctx, x, alpha, gamma, beta):
|
|
210
151
|
y = liger_dyt_fwd(x, alpha, gamma, beta)
|
|
211
|
-
ctx.save_for_backward(x, alpha, gamma)
|
|
152
|
+
ctx.save_for_backward(x, alpha, gamma, beta)
|
|
212
153
|
return y
|
|
213
154
|
|
|
214
155
|
@staticmethod
|
|
215
156
|
@ensure_contiguous
|
|
216
|
-
def backward(ctx,
|
|
217
|
-
x, alpha, gamma = ctx.saved_tensors
|
|
218
|
-
dx, dalpha, dgamma, dbeta = liger_dyt_bwd(
|
|
219
|
-
|
|
220
|
-
x,
|
|
221
|
-
alpha,
|
|
222
|
-
gamma,
|
|
223
|
-
)
|
|
224
|
-
|
|
225
|
-
return (dx, dalpha, dgamma, dbeta)
|
|
157
|
+
def backward(ctx, dy):
|
|
158
|
+
x, alpha, gamma, beta = ctx.saved_tensors
|
|
159
|
+
dx, dalpha, dgamma, dbeta = liger_dyt_bwd(dy, x, alpha, gamma, beta)
|
|
160
|
+
return dx, dalpha, dgamma, dbeta
|