liger-kernel-nightly 0.5.5.dev20250402185702__py3-none-any.whl → 0.6.4.dev20260112233432__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of liger-kernel-nightly might be problematic. Click here for more details.
- liger_kernel/chunked_loss/__init__.py +1 -0
- liger_kernel/chunked_loss/cosine_similarity_loss.py +142 -0
- liger_kernel/chunked_loss/dpo_loss.py +61 -3
- liger_kernel/chunked_loss/functional.py +2 -0
- liger_kernel/chunked_loss/fused_linear_distillation.py +23 -5
- liger_kernel/chunked_loss/fused_linear_ppo.py +36 -0
- liger_kernel/chunked_loss/fused_linear_preference.py +0 -1
- liger_kernel/chunked_loss/grpo_loss.py +76 -5
- liger_kernel/chunked_loss/jsd_loss.py +46 -15
- liger_kernel/ops/__init__.py +141 -0
- liger_kernel/ops/backends/README.md +151 -0
- liger_kernel/ops/backends/__init__.py +13 -0
- liger_kernel/ops/backends/_ascend/__init__.py +5 -0
- liger_kernel/ops/backends/_ascend/ascend-ub-manager-design.md +485 -0
- liger_kernel/ops/backends/_ascend/ops/__init__.py +49 -0
- liger_kernel/ops/backends/_ascend/ops/geglu.py +266 -0
- liger_kernel/ops/backends/_ascend/ops/qwen2vl_mrope.py +285 -0
- liger_kernel/ops/backends/_ascend/ops/rope.py +290 -0
- liger_kernel/ops/backends/_ascend/ops/swiglu.py +142 -0
- liger_kernel/ops/backends/_ascend/ops/tvd.py +221 -0
- liger_kernel/ops/backends/_ascend/ub_manager.py +349 -0
- liger_kernel/ops/backends/registry.py +61 -0
- liger_kernel/ops/cross_entropy.py +134 -65
- liger_kernel/ops/dyt.py +115 -180
- liger_kernel/ops/fused_add_rms_norm.py +416 -0
- liger_kernel/ops/fused_linear_cross_entropy.py +117 -23
- liger_kernel/ops/fused_neighborhood_attention.py +1022 -0
- liger_kernel/ops/geglu.py +6 -4
- liger_kernel/ops/group_norm.py +7 -7
- liger_kernel/ops/grpo_loss.py +312 -0
- liger_kernel/ops/jsd.py +2 -1
- liger_kernel/ops/kl_div.py +9 -5
- liger_kernel/ops/layer_norm.py +146 -78
- liger_kernel/ops/llama4_rope.py +225 -0
- liger_kernel/ops/multi_token_attention.py +207 -0
- liger_kernel/ops/poly_norm.py +390 -0
- liger_kernel/ops/rms_norm.py +398 -99
- liger_kernel/ops/rope.py +1 -1
- liger_kernel/ops/softmax.py +201 -0
- liger_kernel/ops/sparsemax.py +179 -0
- liger_kernel/ops/swiglu.py +1 -1
- liger_kernel/ops/tiled_mlp.py +136 -0
- liger_kernel/ops/utils.py +14 -0
- liger_kernel/transformers/__init__.py +208 -17
- liger_kernel/transformers/auto_model.py +21 -0
- liger_kernel/transformers/cross_entropy.py +9 -4
- liger_kernel/transformers/dyt.py +6 -4
- liger_kernel/transformers/experimental/__init__.py +5 -0
- liger_kernel/transformers/experimental/embedding.py +1 -1
- liger_kernel/transformers/fsdp.py +55 -0
- liger_kernel/transformers/functional.py +122 -20
- liger_kernel/transformers/fused_add_rms_norm.py +39 -0
- liger_kernel/transformers/fused_linear_cross_entropy.py +16 -5
- liger_kernel/transformers/fused_linear_jsd.py +1 -1
- liger_kernel/transformers/fused_neighborhood_attention.py +234 -0
- liger_kernel/transformers/geglu.py +1 -1
- liger_kernel/transformers/group_norm.py +1 -1
- liger_kernel/transformers/grpo_loss.py +153 -0
- liger_kernel/transformers/jsd.py +1 -1
- liger_kernel/transformers/kl_div.py +1 -1
- liger_kernel/transformers/layer_norm.py +1 -1
- liger_kernel/transformers/llama4_rope.py +93 -0
- liger_kernel/transformers/model/exaone4.py +136 -0
- liger_kernel/transformers/model/falcon_h1.py +122 -0
- liger_kernel/transformers/model/gemma.py +57 -27
- liger_kernel/transformers/model/gemma2.py +65 -28
- liger_kernel/transformers/model/gemma3.py +331 -0
- liger_kernel/transformers/model/glm4.py +141 -0
- liger_kernel/transformers/model/glm4v.py +163 -0
- liger_kernel/transformers/model/glm4v_moe.py +172 -0
- liger_kernel/transformers/model/gpt_oss.py +211 -0
- liger_kernel/transformers/model/hunyuan_v1.py +134 -0
- liger_kernel/transformers/model/internvl.py +157 -0
- liger_kernel/transformers/model/llama.py +109 -27
- liger_kernel/transformers/model/llama4.py +121 -0
- liger_kernel/transformers/model/llava.py +111 -136
- liger_kernel/transformers/model/loss_utils.py +50 -12
- liger_kernel/transformers/model/mistral.py +51 -34
- liger_kernel/transformers/model/mixtral.py +50 -29
- liger_kernel/transformers/model/mllama.py +46 -24
- liger_kernel/transformers/model/olmo2.py +47 -22
- liger_kernel/transformers/model/olmo3.py +142 -0
- liger_kernel/transformers/model/output_classes.py +147 -0
- liger_kernel/transformers/model/paligemma.py +50 -14
- liger_kernel/transformers/model/phi3.py +47 -172
- liger_kernel/transformers/model/qwen2.py +55 -23
- liger_kernel/transformers/model/qwen2_5_vl.py +62 -103
- liger_kernel/transformers/model/qwen2_vl.py +59 -108
- liger_kernel/transformers/model/qwen3.py +136 -0
- liger_kernel/transformers/model/qwen3_moe.py +152 -0
- liger_kernel/transformers/model/qwen3_next.py +146 -0
- liger_kernel/transformers/model/qwen3_vl.py +150 -0
- liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
- liger_kernel/transformers/model/smollm3.py +199 -0
- liger_kernel/transformers/model/smolvlm.py +158 -0
- liger_kernel/transformers/monkey_patch.py +2018 -244
- liger_kernel/transformers/multi_token_attention.py +64 -0
- liger_kernel/transformers/poly_norm.py +42 -0
- liger_kernel/transformers/qwen2vl_mrope.py +1 -1
- liger_kernel/transformers/rms_norm.py +54 -6
- liger_kernel/transformers/rope.py +45 -1
- liger_kernel/transformers/softmax.py +12 -0
- liger_kernel/transformers/sparsemax.py +16 -0
- liger_kernel/transformers/swiglu.py +39 -1
- liger_kernel/transformers/tiled_mlp.py +125 -0
- liger_kernel/transformers/trainer/orpo_trainer.py +1 -53
- liger_kernel/transformers/tvd.py +1 -1
- liger_kernel/utils.py +63 -0
- {liger_kernel_nightly-0.5.5.dev20250402185702.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/METADATA +73 -39
- liger_kernel_nightly-0.6.4.dev20260112233432.dist-info/RECORD +132 -0
- liger_kernel_nightly-0.5.5.dev20250402185702.dist-info/RECORD +0 -80
- {liger_kernel_nightly-0.5.5.dev20250402185702.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.5.5.dev20250402185702.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/NOTICE +0 -0
- {liger_kernel_nightly-0.5.5.dev20250402185702.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/WHEEL +0 -0
- {liger_kernel_nightly-0.5.5.dev20250402185702.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,147 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Custom output classes for Liger-Kernel that extend transformers' ModelOutput classes
|
|
3
|
+
with optional token accuracy field.
|
|
4
|
+
"""
|
|
5
|
+
|
|
6
|
+
from dataclasses import dataclass
|
|
7
|
+
from typing import Optional
|
|
8
|
+
|
|
9
|
+
import torch
|
|
10
|
+
|
|
11
|
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
12
|
+
from transformers.modeling_outputs import MoeCausalLMOutputWithPast
|
|
13
|
+
|
|
14
|
+
# The following model-specific outputs are optional and depend on the installed
|
|
15
|
+
# transformers version. Guard their imports so our module remains importable
|
|
16
|
+
# even when those models are not available in the environment.
|
|
17
|
+
try:
|
|
18
|
+
from transformers.models.gemma3.modeling_gemma3 import Gemma3CausalLMOutputWithPast as _Gemma3CausalLMOutputWithPast
|
|
19
|
+
except Exception:
|
|
20
|
+
_Gemma3CausalLMOutputWithPast = None
|
|
21
|
+
|
|
22
|
+
try:
|
|
23
|
+
from transformers.models.glm4v_moe.modeling_glm4v_moe import (
|
|
24
|
+
Glm4vMoeCausalLMOutputWithPast as _Glm4vMoeCausalLMOutputWithPast,
|
|
25
|
+
)
|
|
26
|
+
except Exception:
|
|
27
|
+
_Glm4vMoeCausalLMOutputWithPast = None
|
|
28
|
+
|
|
29
|
+
try:
|
|
30
|
+
from transformers.models.internvl.modeling_internvl import (
|
|
31
|
+
InternVLCausalLMOutputWithPast as _InternVLCausalLMOutputWithPast,
|
|
32
|
+
)
|
|
33
|
+
except Exception:
|
|
34
|
+
_InternVLCausalLMOutputWithPast = None
|
|
35
|
+
|
|
36
|
+
try:
|
|
37
|
+
from transformers.models.llava.modeling_llava import LlavaCausalLMOutputWithPast as _LlavaCausalLMOutputWithPast
|
|
38
|
+
except Exception:
|
|
39
|
+
_LlavaCausalLMOutputWithPast = None
|
|
40
|
+
|
|
41
|
+
try:
|
|
42
|
+
from transformers.models.paligemma.modeling_paligemma import (
|
|
43
|
+
PaliGemmaCausalLMOutputWithPast as _PaliGemmaCausalLMOutputWithPast,
|
|
44
|
+
)
|
|
45
|
+
except Exception:
|
|
46
|
+
_PaliGemmaCausalLMOutputWithPast = None
|
|
47
|
+
|
|
48
|
+
try:
|
|
49
|
+
from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import (
|
|
50
|
+
Qwen2_5_VLCausalLMOutputWithPast as _Qwen2_5_VLCausalLMOutputWithPast,
|
|
51
|
+
)
|
|
52
|
+
except Exception:
|
|
53
|
+
_Qwen2_5_VLCausalLMOutputWithPast = None
|
|
54
|
+
|
|
55
|
+
try:
|
|
56
|
+
from transformers.models.qwen2_vl.modeling_qwen2_vl import (
|
|
57
|
+
Qwen2VLCausalLMOutputWithPast as _Qwen2VLCausalLMOutputWithPast,
|
|
58
|
+
)
|
|
59
|
+
except Exception:
|
|
60
|
+
_Qwen2VLCausalLMOutputWithPast = None
|
|
61
|
+
|
|
62
|
+
try:
|
|
63
|
+
from transformers.models.qwen3_vl.modeling_qwen3_vl import (
|
|
64
|
+
Qwen3VLCausalLMOutputWithPast as _Qwen3VLCausalLMOutputWithPast,
|
|
65
|
+
)
|
|
66
|
+
except Exception:
|
|
67
|
+
_Qwen3VLCausalLMOutputWithPast = None
|
|
68
|
+
|
|
69
|
+
try:
|
|
70
|
+
from transformers.models.qwen3_vl_moe.modeling_qwen3_vl_moe import (
|
|
71
|
+
Qwen3VLMoeCausalLMOutputWithPast as _Qwen3VLMoeCausalLMOutputWithPast,
|
|
72
|
+
)
|
|
73
|
+
except Exception:
|
|
74
|
+
_Qwen3VLMoeCausalLMOutputWithPast = None
|
|
75
|
+
|
|
76
|
+
|
|
77
|
+
@dataclass
|
|
78
|
+
class LigerCausalLMOutputWithPast(CausalLMOutputWithPast):
|
|
79
|
+
token_accuracy: Optional[torch.FloatTensor] = None
|
|
80
|
+
|
|
81
|
+
|
|
82
|
+
@dataclass
|
|
83
|
+
class LigerMoeCausalLMOutputWithPast(MoeCausalLMOutputWithPast):
|
|
84
|
+
token_accuracy: Optional[torch.FloatTensor] = None
|
|
85
|
+
|
|
86
|
+
|
|
87
|
+
if _Gemma3CausalLMOutputWithPast is not None:
|
|
88
|
+
|
|
89
|
+
@dataclass
|
|
90
|
+
class LigerGemma3CausalLMOutputWithPast(_Gemma3CausalLMOutputWithPast):
|
|
91
|
+
token_accuracy: Optional[torch.FloatTensor] = None
|
|
92
|
+
|
|
93
|
+
|
|
94
|
+
if _Glm4vMoeCausalLMOutputWithPast is not None:
|
|
95
|
+
|
|
96
|
+
@dataclass
|
|
97
|
+
class LigerGlm4vMoeCausalLMOutputWithPast(_Glm4vMoeCausalLMOutputWithPast):
|
|
98
|
+
token_accuracy: Optional[torch.FloatTensor] = None
|
|
99
|
+
|
|
100
|
+
|
|
101
|
+
if _LlavaCausalLMOutputWithPast is not None:
|
|
102
|
+
|
|
103
|
+
@dataclass
|
|
104
|
+
class LigerLlavaCausalLMOutputWithPast(_LlavaCausalLMOutputWithPast):
|
|
105
|
+
token_accuracy: Optional[torch.FloatTensor] = None
|
|
106
|
+
|
|
107
|
+
|
|
108
|
+
if _InternVLCausalLMOutputWithPast is not None:
|
|
109
|
+
|
|
110
|
+
@dataclass
|
|
111
|
+
class LigerInternVLCausalLMOutputWithPast(_InternVLCausalLMOutputWithPast):
|
|
112
|
+
token_accuracy: Optional[torch.FloatTensor] = None
|
|
113
|
+
|
|
114
|
+
|
|
115
|
+
if _PaliGemmaCausalLMOutputWithPast is not None:
|
|
116
|
+
|
|
117
|
+
@dataclass
|
|
118
|
+
class LigerPaliGemmaCausalLMOutputWithPast(_PaliGemmaCausalLMOutputWithPast):
|
|
119
|
+
token_accuracy: Optional[torch.FloatTensor] = None
|
|
120
|
+
|
|
121
|
+
|
|
122
|
+
if _Qwen2_5_VLCausalLMOutputWithPast is not None:
|
|
123
|
+
|
|
124
|
+
@dataclass
|
|
125
|
+
class LigerQwen2_5_VLCausalLMOutputWithPast(_Qwen2_5_VLCausalLMOutputWithPast):
|
|
126
|
+
token_accuracy: Optional[torch.FloatTensor] = None
|
|
127
|
+
|
|
128
|
+
|
|
129
|
+
if _Qwen2VLCausalLMOutputWithPast is not None:
|
|
130
|
+
|
|
131
|
+
@dataclass
|
|
132
|
+
class LigerQwen2VLCausalLMOutputWithPast(_Qwen2VLCausalLMOutputWithPast):
|
|
133
|
+
token_accuracy: Optional[torch.FloatTensor] = None
|
|
134
|
+
|
|
135
|
+
|
|
136
|
+
if _Qwen3VLCausalLMOutputWithPast is not None:
|
|
137
|
+
|
|
138
|
+
@dataclass
|
|
139
|
+
class LigerQwen3VLCausalLMOutputWithPast(_Qwen3VLCausalLMOutputWithPast):
|
|
140
|
+
token_accuracy: Optional[torch.FloatTensor] = None
|
|
141
|
+
|
|
142
|
+
|
|
143
|
+
if _Qwen3VLMoeCausalLMOutputWithPast is not None:
|
|
144
|
+
|
|
145
|
+
@dataclass
|
|
146
|
+
class LigerQwen3VLMoeCausalLMOutputWithPast(_Qwen3VLMoeCausalLMOutputWithPast):
|
|
147
|
+
token_accuracy: Optional[torch.FloatTensor] = None
|
|
@@ -7,22 +7,19 @@ import torch
|
|
|
7
7
|
|
|
8
8
|
from torch.nn import CrossEntropyLoss
|
|
9
9
|
from transformers.cache_utils import Cache
|
|
10
|
-
from transformers.models.paligemma.modeling_paligemma import _CONFIG_FOR_DOC
|
|
11
|
-
from transformers.models.paligemma.modeling_paligemma import PALIGEMMA_INPUTS_DOCSTRING
|
|
12
10
|
from transformers.models.paligemma.modeling_paligemma import PaliGemmaCausalLMOutputWithPast
|
|
13
|
-
from transformers.utils import add_start_docstrings_to_model_forward
|
|
14
11
|
from transformers.utils import is_torchdynamo_compiling
|
|
15
12
|
from transformers.utils import logging
|
|
16
|
-
from transformers.utils import replace_return_docstrings
|
|
17
13
|
from transformers.utils.deprecation import deprecate_kwarg
|
|
18
14
|
|
|
19
15
|
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
|
|
16
|
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
17
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
18
|
+
from liger_kernel.transformers.model.output_classes import LigerPaliGemmaCausalLMOutputWithPast
|
|
20
19
|
|
|
21
20
|
logger = logging.get_logger(__name__)
|
|
22
21
|
|
|
23
22
|
|
|
24
|
-
@add_start_docstrings_to_model_forward(PALIGEMMA_INPUTS_DOCSTRING)
|
|
25
|
-
@replace_return_docstrings(output_type=PaliGemmaCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
|
26
23
|
def lce_forward_deprecated(
|
|
27
24
|
self,
|
|
28
25
|
input_ids: torch.LongTensor = None,
|
|
@@ -206,8 +203,6 @@ def lce_forward_deprecated(
|
|
|
206
203
|
|
|
207
204
|
|
|
208
205
|
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
|
209
|
-
@add_start_docstrings_to_model_forward(PALIGEMMA_INPUTS_DOCSTRING)
|
|
210
|
-
@replace_return_docstrings(output_type=PaliGemmaCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
|
211
206
|
def lce_forward(
|
|
212
207
|
self,
|
|
213
208
|
input_ids: torch.LongTensor = None,
|
|
@@ -224,8 +219,9 @@ def lce_forward(
|
|
|
224
219
|
output_hidden_states: Optional[bool] = None,
|
|
225
220
|
return_dict: Optional[bool] = None,
|
|
226
221
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
222
|
+
skip_logits: Optional[bool] = None,
|
|
227
223
|
**lm_kwargs,
|
|
228
|
-
) -> Union[Tuple,
|
|
224
|
+
) -> Union[Tuple, LigerPaliGemmaCausalLMOutputWithPast]:
|
|
229
225
|
r"""
|
|
230
226
|
Args:
|
|
231
227
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
@@ -334,12 +330,20 @@ def lce_forward(
|
|
|
334
330
|
**lm_kwargs,
|
|
335
331
|
)
|
|
336
332
|
|
|
333
|
+
shift_labels = lm_kwargs.pop("shift_labels", None)
|
|
337
334
|
hidden_states = outputs[0]
|
|
338
335
|
|
|
339
336
|
loss = None
|
|
340
337
|
logits = None
|
|
338
|
+
token_accuracy = None
|
|
341
339
|
|
|
342
|
-
if
|
|
340
|
+
if skip_logits and labels is None:
|
|
341
|
+
raise ValueError("skip_logits is True, but labels is None")
|
|
342
|
+
|
|
343
|
+
if skip_logits is None:
|
|
344
|
+
skip_logits = self.training and (labels is not None)
|
|
345
|
+
|
|
346
|
+
if skip_logits:
|
|
343
347
|
shift_hidden_states = hidden_states[..., :-1, :]
|
|
344
348
|
shift_labels = labels[..., 1:]
|
|
345
349
|
|
|
@@ -359,8 +363,16 @@ def lce_forward(
|
|
|
359
363
|
shift_hidden_states = shift_hidden_states.view(-1, self.config.text_config.hidden_size)
|
|
360
364
|
shift_labels = shift_labels.view(-1).to(hidden_device)
|
|
361
365
|
|
|
362
|
-
|
|
363
|
-
|
|
366
|
+
# Use LigerForCausalLMLoss with accuracy support and pass already shifted labels
|
|
367
|
+
result = LigerForCausalLMLoss(
|
|
368
|
+
hidden_states=shift_hidden_states,
|
|
369
|
+
lm_head_weight=self.language_model.lm_head.weight,
|
|
370
|
+
labels=None,
|
|
371
|
+
shift_labels=shift_labels,
|
|
372
|
+
hidden_size=self.config.text_config.hidden_size,
|
|
373
|
+
**lm_kwargs,
|
|
374
|
+
)
|
|
375
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
364
376
|
else:
|
|
365
377
|
logits = self.language_model.lm_head(hidden_states)
|
|
366
378
|
if labels is not None:
|
|
@@ -383,15 +395,39 @@ def lce_forward(
|
|
|
383
395
|
flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
|
|
384
396
|
flat_labels = shift_labels.view(-1).to(shift_logits.device)
|
|
385
397
|
loss = loss_fct(flat_logits, flat_labels)
|
|
398
|
+
elif shift_labels is not None:
|
|
399
|
+
# Upcast to float if we need to compute the loss to avoid potential precision issues
|
|
400
|
+
logits = logits.float()
|
|
401
|
+
shift_logits = logits[..., :-1, :]
|
|
402
|
+
if attention_mask is not None:
|
|
403
|
+
# we use the input attention mask to shift the logits and labels, because it is 2D.
|
|
404
|
+
# we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
|
|
405
|
+
shift_attention_mask = attention_mask[:, -shift_logits.shape[1] :].to(logits.device)
|
|
406
|
+
shift_logits = shift_logits[shift_attention_mask.to(logits.device) != 0].contiguous()
|
|
407
|
+
shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous()
|
|
408
|
+
else:
|
|
409
|
+
shift_logits = shift_logits.contiguous()
|
|
410
|
+
shift_labels = shift_labels.contiguous()
|
|
411
|
+
# Flatten the tokens
|
|
412
|
+
loss_fct = CrossEntropyLoss()
|
|
413
|
+
|
|
414
|
+
flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
|
|
415
|
+
flat_labels = shift_labels.view(-1).to(shift_logits.device)
|
|
416
|
+
loss = loss_fct(flat_logits, flat_labels)
|
|
417
|
+
|
|
386
418
|
if not return_dict:
|
|
387
419
|
output = (logits,) + outputs[1:]
|
|
388
|
-
|
|
420
|
+
output = (loss,) + output if loss is not None else output
|
|
421
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
422
|
+
return output
|
|
389
423
|
|
|
390
|
-
|
|
424
|
+
# Return PaliGemma output with token_accuracy field
|
|
425
|
+
return LigerPaliGemmaCausalLMOutputWithPast(
|
|
391
426
|
loss=loss,
|
|
392
427
|
logits=logits,
|
|
393
428
|
past_key_values=outputs.past_key_values,
|
|
394
429
|
hidden_states=outputs.hidden_states,
|
|
395
430
|
attentions=outputs.attentions,
|
|
396
431
|
image_hidden_states=image_features if pixel_values is not None else None,
|
|
432
|
+
token_accuracy=token_accuracy,
|
|
397
433
|
)
|
|
@@ -5,20 +5,14 @@ from typing import Union
|
|
|
5
5
|
|
|
6
6
|
import torch
|
|
7
7
|
|
|
8
|
-
from
|
|
9
|
-
|
|
10
|
-
from transformers.models.phi3.modeling_phi3 import _CONFIG_FOR_DOC
|
|
11
|
-
from transformers.models.phi3.modeling_phi3 import PHI3_INPUTS_DOCSTRING
|
|
12
|
-
from transformers.utils import add_start_docstrings_to_model_forward
|
|
13
|
-
from transformers.utils import replace_return_docstrings
|
|
14
|
-
|
|
15
|
-
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
|
|
8
|
+
from transformers.modeling_outputs import BaseModelOutputWithPast
|
|
9
|
+
|
|
16
10
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
11
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
12
|
+
from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
|
|
17
13
|
|
|
18
14
|
|
|
19
|
-
|
|
20
|
-
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
|
21
|
-
def lce_forward_deprecated(
|
|
15
|
+
def lce_forward(
|
|
22
16
|
self,
|
|
23
17
|
input_ids: torch.LongTensor = None,
|
|
24
18
|
attention_mask: Optional[torch.Tensor] = None,
|
|
@@ -31,34 +25,26 @@ def lce_forward_deprecated(
|
|
|
31
25
|
output_hidden_states: Optional[bool] = None,
|
|
32
26
|
return_dict: Optional[bool] = None,
|
|
33
27
|
cache_position: Optional[torch.LongTensor] = None,
|
|
34
|
-
|
|
28
|
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
29
|
+
skip_logits: Optional[bool] = None,
|
|
30
|
+
**kwargs,
|
|
31
|
+
) -> Union[Tuple, LigerCausalLMOutputWithPast]:
|
|
35
32
|
r"""
|
|
36
|
-
Copy paste phi3 forward from transfomers v4.44.2 but replace torch cross entropy with liger fused linear cross entropy
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
Args:
|
|
40
|
-
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
41
|
-
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
42
|
-
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
43
|
-
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
44
|
-
|
|
45
|
-
Returns:
|
|
46
|
-
|
|
47
33
|
Example:
|
|
48
34
|
|
|
49
35
|
```python
|
|
50
36
|
>>> from transformers import AutoTokenizer, Phi3ForCausalLM
|
|
51
37
|
|
|
52
|
-
>>> model = Phi3ForCausalLM.from_pretrained("
|
|
53
|
-
>>> tokenizer = AutoTokenizer.from_pretrained("
|
|
38
|
+
>>> model = Phi3ForCausalLM.from_pretrained("meta-phi3/Phi3-2-7b-hf")
|
|
39
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("meta-phi3/Phi3-2-7b-hf")
|
|
54
40
|
|
|
55
|
-
>>> prompt = "
|
|
41
|
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
56
42
|
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
57
43
|
|
|
58
44
|
>>> # Generate
|
|
59
45
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
60
46
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
61
|
-
|
|
47
|
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
62
48
|
```"""
|
|
63
49
|
|
|
64
50
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
@@ -67,179 +53,68 @@ def lce_forward_deprecated(
|
|
|
67
53
|
)
|
|
68
54
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
69
55
|
|
|
70
|
-
|
|
71
|
-
outputs = self.model(
|
|
56
|
+
outputs: BaseModelOutputWithPast = self.model(
|
|
72
57
|
input_ids=input_ids,
|
|
73
58
|
attention_mask=attention_mask,
|
|
74
59
|
position_ids=position_ids,
|
|
75
60
|
past_key_values=past_key_values,
|
|
76
61
|
inputs_embeds=inputs_embeds,
|
|
77
62
|
use_cache=use_cache,
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
return_dict=return_dict,
|
|
63
|
+
cache_position=cache_position,
|
|
64
|
+
**kwargs,
|
|
81
65
|
)
|
|
82
66
|
|
|
83
|
-
hidden_states = outputs
|
|
67
|
+
hidden_states = outputs.last_hidden_state
|
|
68
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
|
69
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
70
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
|
84
71
|
|
|
85
|
-
|
|
72
|
+
shift_labels = kwargs.pop("shift_labels", None)
|
|
86
73
|
logits = None
|
|
74
|
+
loss = None
|
|
75
|
+
token_accuracy = None
|
|
87
76
|
|
|
88
|
-
if
|
|
89
|
-
|
|
90
|
-
shift_labels = labels[..., 1:].contiguous()
|
|
91
|
-
|
|
92
|
-
# flatten tokens
|
|
93
|
-
shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
|
|
94
|
-
shift_labels = shift_labels.view(-1)
|
|
95
|
-
|
|
96
|
-
lce = LigerFusedLinearCrossEntropyLoss()
|
|
97
|
-
loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
|
|
98
|
-
else:
|
|
99
|
-
logits = self.lm_head(hidden_states)
|
|
100
|
-
|
|
101
|
-
loss = None
|
|
102
|
-
if labels is not None:
|
|
103
|
-
# Upcast to float if we need to compute the loss to avoid potential precision issues
|
|
104
|
-
logits = logits.float()
|
|
105
|
-
# Shift so that tokens < n predict n
|
|
106
|
-
shift_logits = logits[..., :-1, :].contiguous()
|
|
107
|
-
shift_labels = labels[..., 1:].contiguous()
|
|
108
|
-
# Flatten the tokens
|
|
109
|
-
loss_fct = CrossEntropyLoss()
|
|
110
|
-
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
|
111
|
-
shift_labels = shift_labels.view(-1)
|
|
112
|
-
# Enable model parallelism
|
|
113
|
-
shift_labels = shift_labels.to(shift_logits.device)
|
|
114
|
-
loss = loss_fct(shift_logits, shift_labels)
|
|
115
|
-
|
|
116
|
-
if not return_dict:
|
|
117
|
-
output = (logits,) + outputs[1:]
|
|
118
|
-
return (loss,) + output if loss is not None else output
|
|
119
|
-
|
|
120
|
-
return CausalLMOutputWithPast(
|
|
121
|
-
loss=loss,
|
|
122
|
-
logits=logits,
|
|
123
|
-
past_key_values=outputs.past_key_values,
|
|
124
|
-
hidden_states=outputs.hidden_states,
|
|
125
|
-
attentions=outputs.attentions,
|
|
126
|
-
)
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
@add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
|
|
130
|
-
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
|
131
|
-
def lce_forward(
|
|
132
|
-
self,
|
|
133
|
-
input_ids: torch.LongTensor = None,
|
|
134
|
-
attention_mask: Optional[torch.Tensor] = None,
|
|
135
|
-
position_ids: Optional[torch.LongTensor] = None,
|
|
136
|
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
137
|
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
138
|
-
labels: Optional[torch.LongTensor] = None,
|
|
139
|
-
use_cache: Optional[bool] = None,
|
|
140
|
-
output_attentions: Optional[bool] = None,
|
|
141
|
-
output_hidden_states: Optional[bool] = None,
|
|
142
|
-
return_dict: Optional[bool] = None,
|
|
143
|
-
cache_position: Optional[torch.LongTensor] = None,
|
|
144
|
-
num_logits_to_keep: int = 0,
|
|
145
|
-
**loss_kwargs,
|
|
146
|
-
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
147
|
-
r"""
|
|
148
|
-
Args:
|
|
149
|
-
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
150
|
-
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
151
|
-
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
152
|
-
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
153
|
-
|
|
154
|
-
num_logits_to_keep (`int`, *optional*):
|
|
155
|
-
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
|
|
156
|
-
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
|
157
|
-
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
|
158
|
-
|
|
159
|
-
Returns:
|
|
160
|
-
|
|
161
|
-
Example:
|
|
162
|
-
|
|
163
|
-
```python
|
|
164
|
-
>>> from transformers import AutoTokenizer, Phi3ForCausalLM
|
|
165
|
-
|
|
166
|
-
>>> model = Phi3ForCausalLM.from_pretrained("microsoft/phi-3-mini-4k-instruct")
|
|
167
|
-
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-3-mini-4k-instruct")
|
|
168
|
-
|
|
169
|
-
>>> prompt = "This is an example script ."
|
|
170
|
-
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
171
|
-
|
|
172
|
-
>>> # Generate
|
|
173
|
-
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
174
|
-
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
175
|
-
'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum'
|
|
176
|
-
```"""
|
|
177
|
-
|
|
178
|
-
from transformers.models.phi3.modeling_phi3 import logging
|
|
179
|
-
|
|
180
|
-
logger = logging.get_logger(__name__)
|
|
181
|
-
|
|
182
|
-
if (
|
|
183
|
-
use_cache
|
|
184
|
-
and self.config.rope_scaling
|
|
185
|
-
and cache_position is not None
|
|
186
|
-
and cache_position[0] == self.config.original_max_position_embeddings
|
|
187
|
-
):
|
|
188
|
-
logger.warning(
|
|
189
|
-
f"If you are not using the generate method, you may encounter nonsensical outputs after the {self.config.original_max_position_embeddings}th token, as the KV cache needs to be recomputed."
|
|
190
|
-
)
|
|
191
|
-
|
|
192
|
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
193
|
-
output_hidden_states = (
|
|
194
|
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
195
|
-
)
|
|
196
|
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
197
|
-
|
|
198
|
-
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
199
|
-
outputs = self.model(
|
|
200
|
-
input_ids=input_ids,
|
|
201
|
-
attention_mask=attention_mask,
|
|
202
|
-
position_ids=position_ids,
|
|
203
|
-
past_key_values=past_key_values,
|
|
204
|
-
inputs_embeds=inputs_embeds,
|
|
205
|
-
use_cache=use_cache,
|
|
206
|
-
output_attentions=output_attentions,
|
|
207
|
-
output_hidden_states=output_hidden_states,
|
|
208
|
-
return_dict=return_dict,
|
|
209
|
-
)
|
|
77
|
+
if skip_logits and labels is None and shift_labels is None:
|
|
78
|
+
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
210
79
|
|
|
211
|
-
|
|
80
|
+
if skip_logits is None:
|
|
81
|
+
# By default, if in training mode, don't materialize logits
|
|
82
|
+
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
212
83
|
|
|
213
|
-
|
|
214
|
-
|
|
215
|
-
|
|
216
|
-
|
|
217
|
-
loss = LigerForCausalLMLoss(
|
|
218
|
-
hidden_states=hidden_states,
|
|
84
|
+
# Compute loss
|
|
85
|
+
if skip_logits:
|
|
86
|
+
result = LigerForCausalLMLoss(
|
|
87
|
+
hidden_states=kept_hidden_states,
|
|
219
88
|
lm_head_weight=self.lm_head.weight,
|
|
220
89
|
labels=labels,
|
|
90
|
+
shift_labels=shift_labels,
|
|
221
91
|
hidden_size=self.config.hidden_size,
|
|
222
|
-
**
|
|
92
|
+
**kwargs,
|
|
223
93
|
)
|
|
224
|
-
|
|
225
|
-
else:
|
|
226
|
-
logits = self.lm_head(
|
|
227
|
-
if labels is not None:
|
|
94
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
95
|
+
else:
|
|
96
|
+
logits = self.lm_head(kept_hidden_states)
|
|
97
|
+
if labels is not None or shift_labels is not None:
|
|
228
98
|
loss = self.loss_function(
|
|
229
99
|
logits=logits,
|
|
230
100
|
labels=labels,
|
|
101
|
+
shift_labels=shift_labels,
|
|
231
102
|
vocab_size=self.config.vocab_size,
|
|
232
|
-
**
|
|
103
|
+
**kwargs,
|
|
233
104
|
)
|
|
234
105
|
|
|
235
106
|
if not return_dict:
|
|
236
|
-
|
|
237
|
-
|
|
107
|
+
output_tuple = (logits,) + outputs[1:]
|
|
108
|
+
output = (loss,) + output_tuple if loss is not None else output_tuple
|
|
109
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
110
|
+
return output
|
|
238
111
|
|
|
239
|
-
|
|
112
|
+
# Return custom output class with token_accuracy field
|
|
113
|
+
return LigerCausalLMOutputWithPast(
|
|
240
114
|
loss=loss,
|
|
241
115
|
logits=logits,
|
|
242
116
|
past_key_values=outputs.past_key_values,
|
|
243
117
|
hidden_states=outputs.hidden_states,
|
|
244
118
|
attentions=outputs.attentions,
|
|
119
|
+
token_accuracy=token_accuracy,
|
|
245
120
|
)
|