liger-kernel-nightly 0.5.5.dev20250402185702__py3-none-any.whl → 0.6.4.dev20260112233432__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of liger-kernel-nightly might be problematic. Click here for more details.
- liger_kernel/chunked_loss/__init__.py +1 -0
- liger_kernel/chunked_loss/cosine_similarity_loss.py +142 -0
- liger_kernel/chunked_loss/dpo_loss.py +61 -3
- liger_kernel/chunked_loss/functional.py +2 -0
- liger_kernel/chunked_loss/fused_linear_distillation.py +23 -5
- liger_kernel/chunked_loss/fused_linear_ppo.py +36 -0
- liger_kernel/chunked_loss/fused_linear_preference.py +0 -1
- liger_kernel/chunked_loss/grpo_loss.py +76 -5
- liger_kernel/chunked_loss/jsd_loss.py +46 -15
- liger_kernel/ops/__init__.py +141 -0
- liger_kernel/ops/backends/README.md +151 -0
- liger_kernel/ops/backends/__init__.py +13 -0
- liger_kernel/ops/backends/_ascend/__init__.py +5 -0
- liger_kernel/ops/backends/_ascend/ascend-ub-manager-design.md +485 -0
- liger_kernel/ops/backends/_ascend/ops/__init__.py +49 -0
- liger_kernel/ops/backends/_ascend/ops/geglu.py +266 -0
- liger_kernel/ops/backends/_ascend/ops/qwen2vl_mrope.py +285 -0
- liger_kernel/ops/backends/_ascend/ops/rope.py +290 -0
- liger_kernel/ops/backends/_ascend/ops/swiglu.py +142 -0
- liger_kernel/ops/backends/_ascend/ops/tvd.py +221 -0
- liger_kernel/ops/backends/_ascend/ub_manager.py +349 -0
- liger_kernel/ops/backends/registry.py +61 -0
- liger_kernel/ops/cross_entropy.py +134 -65
- liger_kernel/ops/dyt.py +115 -180
- liger_kernel/ops/fused_add_rms_norm.py +416 -0
- liger_kernel/ops/fused_linear_cross_entropy.py +117 -23
- liger_kernel/ops/fused_neighborhood_attention.py +1022 -0
- liger_kernel/ops/geglu.py +6 -4
- liger_kernel/ops/group_norm.py +7 -7
- liger_kernel/ops/grpo_loss.py +312 -0
- liger_kernel/ops/jsd.py +2 -1
- liger_kernel/ops/kl_div.py +9 -5
- liger_kernel/ops/layer_norm.py +146 -78
- liger_kernel/ops/llama4_rope.py +225 -0
- liger_kernel/ops/multi_token_attention.py +207 -0
- liger_kernel/ops/poly_norm.py +390 -0
- liger_kernel/ops/rms_norm.py +398 -99
- liger_kernel/ops/rope.py +1 -1
- liger_kernel/ops/softmax.py +201 -0
- liger_kernel/ops/sparsemax.py +179 -0
- liger_kernel/ops/swiglu.py +1 -1
- liger_kernel/ops/tiled_mlp.py +136 -0
- liger_kernel/ops/utils.py +14 -0
- liger_kernel/transformers/__init__.py +208 -17
- liger_kernel/transformers/auto_model.py +21 -0
- liger_kernel/transformers/cross_entropy.py +9 -4
- liger_kernel/transformers/dyt.py +6 -4
- liger_kernel/transformers/experimental/__init__.py +5 -0
- liger_kernel/transformers/experimental/embedding.py +1 -1
- liger_kernel/transformers/fsdp.py +55 -0
- liger_kernel/transformers/functional.py +122 -20
- liger_kernel/transformers/fused_add_rms_norm.py +39 -0
- liger_kernel/transformers/fused_linear_cross_entropy.py +16 -5
- liger_kernel/transformers/fused_linear_jsd.py +1 -1
- liger_kernel/transformers/fused_neighborhood_attention.py +234 -0
- liger_kernel/transformers/geglu.py +1 -1
- liger_kernel/transformers/group_norm.py +1 -1
- liger_kernel/transformers/grpo_loss.py +153 -0
- liger_kernel/transformers/jsd.py +1 -1
- liger_kernel/transformers/kl_div.py +1 -1
- liger_kernel/transformers/layer_norm.py +1 -1
- liger_kernel/transformers/llama4_rope.py +93 -0
- liger_kernel/transformers/model/exaone4.py +136 -0
- liger_kernel/transformers/model/falcon_h1.py +122 -0
- liger_kernel/transformers/model/gemma.py +57 -27
- liger_kernel/transformers/model/gemma2.py +65 -28
- liger_kernel/transformers/model/gemma3.py +331 -0
- liger_kernel/transformers/model/glm4.py +141 -0
- liger_kernel/transformers/model/glm4v.py +163 -0
- liger_kernel/transformers/model/glm4v_moe.py +172 -0
- liger_kernel/transformers/model/gpt_oss.py +211 -0
- liger_kernel/transformers/model/hunyuan_v1.py +134 -0
- liger_kernel/transformers/model/internvl.py +157 -0
- liger_kernel/transformers/model/llama.py +109 -27
- liger_kernel/transformers/model/llama4.py +121 -0
- liger_kernel/transformers/model/llava.py +111 -136
- liger_kernel/transformers/model/loss_utils.py +50 -12
- liger_kernel/transformers/model/mistral.py +51 -34
- liger_kernel/transformers/model/mixtral.py +50 -29
- liger_kernel/transformers/model/mllama.py +46 -24
- liger_kernel/transformers/model/olmo2.py +47 -22
- liger_kernel/transformers/model/olmo3.py +142 -0
- liger_kernel/transformers/model/output_classes.py +147 -0
- liger_kernel/transformers/model/paligemma.py +50 -14
- liger_kernel/transformers/model/phi3.py +47 -172
- liger_kernel/transformers/model/qwen2.py +55 -23
- liger_kernel/transformers/model/qwen2_5_vl.py +62 -103
- liger_kernel/transformers/model/qwen2_vl.py +59 -108
- liger_kernel/transformers/model/qwen3.py +136 -0
- liger_kernel/transformers/model/qwen3_moe.py +152 -0
- liger_kernel/transformers/model/qwen3_next.py +146 -0
- liger_kernel/transformers/model/qwen3_vl.py +150 -0
- liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
- liger_kernel/transformers/model/smollm3.py +199 -0
- liger_kernel/transformers/model/smolvlm.py +158 -0
- liger_kernel/transformers/monkey_patch.py +2018 -244
- liger_kernel/transformers/multi_token_attention.py +64 -0
- liger_kernel/transformers/poly_norm.py +42 -0
- liger_kernel/transformers/qwen2vl_mrope.py +1 -1
- liger_kernel/transformers/rms_norm.py +54 -6
- liger_kernel/transformers/rope.py +45 -1
- liger_kernel/transformers/softmax.py +12 -0
- liger_kernel/transformers/sparsemax.py +16 -0
- liger_kernel/transformers/swiglu.py +39 -1
- liger_kernel/transformers/tiled_mlp.py +125 -0
- liger_kernel/transformers/trainer/orpo_trainer.py +1 -53
- liger_kernel/transformers/tvd.py +1 -1
- liger_kernel/utils.py +63 -0
- {liger_kernel_nightly-0.5.5.dev20250402185702.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/METADATA +73 -39
- liger_kernel_nightly-0.6.4.dev20260112233432.dist-info/RECORD +132 -0
- liger_kernel_nightly-0.5.5.dev20250402185702.dist-info/RECORD +0 -80
- {liger_kernel_nightly-0.5.5.dev20250402185702.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.5.5.dev20250402185702.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/NOTICE +0 -0
- {liger_kernel_nightly-0.5.5.dev20250402185702.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/WHEEL +0 -0
- {liger_kernel_nightly-0.5.5.dev20250402185702.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/top_level.txt +0 -0
|
@@ -1,30 +1,221 @@
|
|
|
1
|
-
|
|
1
|
+
import importlib
|
|
2
|
+
|
|
3
|
+
from typing import TYPE_CHECKING
|
|
4
|
+
|
|
5
|
+
# Always-safe imports (independent of 'transformers')
|
|
2
6
|
from liger_kernel.transformers.cross_entropy import LigerCrossEntropyLoss # noqa: F401
|
|
3
7
|
from liger_kernel.transformers.dyt import LigerDyT # noqa: F401
|
|
8
|
+
from liger_kernel.transformers.fused_add_rms_norm import LigerFusedAddRMSNorm # noqa: F401
|
|
4
9
|
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss # noqa: F401
|
|
5
10
|
from liger_kernel.transformers.fused_linear_jsd import LigerFusedLinearJSD # noqa: F401
|
|
6
11
|
from liger_kernel.transformers.geglu import LigerGEGLUMLP # noqa: F401
|
|
7
12
|
from liger_kernel.transformers.jsd import LigerJSD # noqa: F401
|
|
13
|
+
from liger_kernel.transformers.kl_div import LigerKLDIVLoss # noqa: F401
|
|
8
14
|
from liger_kernel.transformers.layer_norm import LigerLayerNorm # noqa: F401
|
|
9
|
-
from liger_kernel.transformers.
|
|
10
|
-
from liger_kernel.transformers.
|
|
11
|
-
from liger_kernel.transformers.
|
|
12
|
-
from liger_kernel.transformers.
|
|
13
|
-
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_granite # noqa: F401
|
|
14
|
-
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama # noqa: F401
|
|
15
|
-
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llava # noqa: F401
|
|
16
|
-
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mistral # noqa: F401
|
|
17
|
-
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mixtral # noqa: F401
|
|
18
|
-
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mllama # noqa: F401
|
|
19
|
-
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_olmo2 # noqa: F401
|
|
20
|
-
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_paligemma # noqa: F401
|
|
21
|
-
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_phi3 # noqa: F401
|
|
22
|
-
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2 # noqa: F401
|
|
23
|
-
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2_5_vl # noqa: F401
|
|
24
|
-
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2_vl # noqa: F401
|
|
15
|
+
from liger_kernel.transformers.llama4_rope import liger_llama4_text_rotary_pos_emb # noqa: F401
|
|
16
|
+
from liger_kernel.transformers.llama4_rope import liger_llama4_vision_rotary_pos_emb # noqa: F401
|
|
17
|
+
from liger_kernel.transformers.multi_token_attention import LigerMultiTokenAttention # noqa: F401
|
|
18
|
+
from liger_kernel.transformers.poly_norm import LigerPolyNorm # noqa: F401
|
|
25
19
|
from liger_kernel.transformers.rms_norm import LigerRMSNorm # noqa: F401
|
|
26
20
|
from liger_kernel.transformers.rope import liger_rotary_pos_emb # noqa: F401
|
|
21
|
+
from liger_kernel.transformers.softmax import LigerSoftmax # noqa: F401
|
|
22
|
+
from liger_kernel.transformers.sparsemax import LigerSparsemax # noqa: F401
|
|
27
23
|
from liger_kernel.transformers.swiglu import LigerBlockSparseTop2MLP # noqa: F401
|
|
28
24
|
from liger_kernel.transformers.swiglu import LigerPhi3SwiGLUMLP # noqa: F401
|
|
25
|
+
from liger_kernel.transformers.swiglu import LigerQwen3MoeSwiGLUMLP # noqa: F401
|
|
29
26
|
from liger_kernel.transformers.swiglu import LigerSwiGLUMLP # noqa: F401
|
|
27
|
+
from liger_kernel.transformers.tiled_mlp import LigerTiledGEGLUMLP # noqa: F401
|
|
28
|
+
from liger_kernel.transformers.tiled_mlp import LigerTiledSwiGLUMLP # noqa: F401
|
|
30
29
|
from liger_kernel.transformers.tvd import LigerTVDLoss # noqa: F401
|
|
30
|
+
|
|
31
|
+
# Static-only imports for IDEs and type checkers
|
|
32
|
+
if TYPE_CHECKING:
|
|
33
|
+
from liger_kernel.transformers.auto_model import AutoLigerKernelForCausalLM # noqa: F401
|
|
34
|
+
from liger_kernel.transformers.monkey_patch import _apply_liger_kernel # noqa: F401
|
|
35
|
+
from liger_kernel.transformers.monkey_patch import _apply_liger_kernel_to_instance # noqa: F401
|
|
36
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_exaone4 # noqa: F401
|
|
37
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_falcon_h1 # noqa: F401
|
|
38
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma # noqa: F401
|
|
39
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma2 # noqa: F401
|
|
40
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma3 # noqa: F401
|
|
41
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma3_text # noqa: F401
|
|
42
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4 # noqa: F401
|
|
43
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4v # noqa: F401
|
|
44
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4v_moe # noqa: F401
|
|
45
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gpt_oss # noqa: F401
|
|
46
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_granite # noqa: F401
|
|
47
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_hunyuan_v1_dense # noqa: F401
|
|
48
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_hunyuan_v1_moe # noqa: F401
|
|
49
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_internvl # noqa: F401
|
|
50
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama # noqa: F401
|
|
51
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama4 # noqa: F401
|
|
52
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llava # noqa: F401
|
|
53
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mistral # noqa: F401
|
|
54
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mixtral # noqa: F401
|
|
55
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mllama # noqa: F401
|
|
56
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_olmo2 # noqa: F401
|
|
57
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_olmo3 # noqa: F401
|
|
58
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_paligemma # noqa: F401
|
|
59
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_phi3 # noqa: F401
|
|
60
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2 # noqa: F401
|
|
61
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2_5_vl # noqa: F401
|
|
62
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2_vl # noqa: F401
|
|
63
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3 # noqa: F401
|
|
64
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_moe # noqa: F401
|
|
65
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_next # noqa: F401
|
|
66
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_vl # noqa: F401
|
|
67
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_vl_moe # noqa: F401
|
|
68
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_smollm3 # noqa: F401
|
|
69
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_smolvlm # noqa: F401
|
|
70
|
+
|
|
71
|
+
|
|
72
|
+
# Check if 'transformers' is installed
|
|
73
|
+
try:
|
|
74
|
+
import transformers # noqa: F401
|
|
75
|
+
|
|
76
|
+
_TRANSFORMERS_AVAILABLE = True
|
|
77
|
+
except ImportError:
|
|
78
|
+
_TRANSFORMERS_AVAILABLE = False
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
def is_transformers_available() -> bool:
|
|
82
|
+
"""
|
|
83
|
+
Returns True if the 'transformers' package is available.
|
|
84
|
+
Useful for conditional logic in downstream code.
|
|
85
|
+
"""
|
|
86
|
+
return _TRANSFORMERS_AVAILABLE
|
|
87
|
+
|
|
88
|
+
|
|
89
|
+
def __getattr__(name: str):
|
|
90
|
+
"""
|
|
91
|
+
Handles lazy access to transformer-dependent attributes.
|
|
92
|
+
If 'transformers' is not installed, raises a user-friendly ImportError.
|
|
93
|
+
"""
|
|
94
|
+
if not _TRANSFORMERS_AVAILABLE:
|
|
95
|
+
raise ImportError(
|
|
96
|
+
f"The attribute '{name}' requires the 'transformers' library, which is not installed.\n"
|
|
97
|
+
f"Please install it with `pip install transformers` to use this functionality."
|
|
98
|
+
)
|
|
99
|
+
|
|
100
|
+
if name == "AutoLigerKernelForCausalLM":
|
|
101
|
+
module = importlib.import_module("liger_kernel.transformers.auto_model")
|
|
102
|
+
return getattr(module, name)
|
|
103
|
+
|
|
104
|
+
monkey_patch_symbols = {
|
|
105
|
+
"_apply_liger_kernel",
|
|
106
|
+
"_apply_liger_kernel_to_instance",
|
|
107
|
+
"apply_liger_kernel_to_falcon_h1",
|
|
108
|
+
"apply_liger_kernel_to_gemma",
|
|
109
|
+
"apply_liger_kernel_to_gemma2",
|
|
110
|
+
"apply_liger_kernel_to_gemma3",
|
|
111
|
+
"apply_liger_kernel_to_gemma3_text",
|
|
112
|
+
"apply_liger_kernel_to_glm4",
|
|
113
|
+
"apply_liger_kernel_to_glm4v",
|
|
114
|
+
"apply_liger_kernel_to_glm4v_moe",
|
|
115
|
+
"apply_liger_kernel_to_gpt_oss",
|
|
116
|
+
"apply_liger_kernel_to_granite",
|
|
117
|
+
"apply_liger_kernel_to_internvl",
|
|
118
|
+
"apply_liger_kernel_to_llama",
|
|
119
|
+
"apply_liger_kernel_to_llava",
|
|
120
|
+
"apply_liger_kernel_to_llama4",
|
|
121
|
+
"apply_liger_kernel_to_mistral",
|
|
122
|
+
"apply_liger_kernel_to_mixtral",
|
|
123
|
+
"apply_liger_kernel_to_mllama",
|
|
124
|
+
"apply_liger_kernel_to_olmo2",
|
|
125
|
+
"apply_liger_kernel_to_olmo3",
|
|
126
|
+
"apply_liger_kernel_to_paligemma",
|
|
127
|
+
"apply_liger_kernel_to_phi3",
|
|
128
|
+
"apply_liger_kernel_to_qwen2",
|
|
129
|
+
"apply_liger_kernel_to_qwen2_5_vl",
|
|
130
|
+
"apply_liger_kernel_to_qwen2_vl",
|
|
131
|
+
"apply_liger_kernel_to_qwen3",
|
|
132
|
+
"apply_liger_kernel_to_qwen3_moe",
|
|
133
|
+
"apply_liger_kernel_to_qwen3_next",
|
|
134
|
+
"apply_liger_kernel_to_qwen3_vl",
|
|
135
|
+
"apply_liger_kernel_to_qwen3_vl_moe",
|
|
136
|
+
"apply_liger_kernel_to_smollm3",
|
|
137
|
+
"apply_liger_kernel_to_smolvlm",
|
|
138
|
+
"apply_liger_kernel_to_hunyuan_v1_dense",
|
|
139
|
+
"apply_liger_kernel_to_hunyuan_v1_moe",
|
|
140
|
+
"apply_liger_kernel_to_exaone4",
|
|
141
|
+
}
|
|
142
|
+
|
|
143
|
+
if name in monkey_patch_symbols:
|
|
144
|
+
module = importlib.import_module("liger_kernel.transformers.monkey_patch")
|
|
145
|
+
return getattr(module, name)
|
|
146
|
+
|
|
147
|
+
raise AttributeError(f"module {__name__} has no attribute {name}")
|
|
148
|
+
|
|
149
|
+
|
|
150
|
+
# Shared symbols in all environments
|
|
151
|
+
__all__ = [
|
|
152
|
+
"is_transformers_available",
|
|
153
|
+
"LigerCrossEntropyLoss",
|
|
154
|
+
"LigerDyT",
|
|
155
|
+
"LigerFusedLinearCrossEntropyLoss",
|
|
156
|
+
"LigerFusedLinearJSD",
|
|
157
|
+
"LigerGEGLUMLP",
|
|
158
|
+
"LigerJSD",
|
|
159
|
+
"LigerLayerNorm",
|
|
160
|
+
"LigerFusedAddRMSNorm",
|
|
161
|
+
"LigerPolyNorm",
|
|
162
|
+
"LigerRMSNorm",
|
|
163
|
+
"liger_rotary_pos_emb",
|
|
164
|
+
"liger_llama4_text_rotary_pos_emb",
|
|
165
|
+
"liger_llama4_vision_rotary_pos_emb",
|
|
166
|
+
"LigerBlockSparseTop2MLP",
|
|
167
|
+
"LigerPhi3SwiGLUMLP",
|
|
168
|
+
"LigerQwen3MoeSwiGLUMLP",
|
|
169
|
+
"LigerSwiGLUMLP",
|
|
170
|
+
"LigerTiledGEGLUMLP",
|
|
171
|
+
"LigerTiledSwiGLUMLP",
|
|
172
|
+
"LigerTVDLoss",
|
|
173
|
+
"LigerKLDIVLoss",
|
|
174
|
+
"LigerMultiTokenAttention",
|
|
175
|
+
"LigerSoftmax",
|
|
176
|
+
"LigerSparsemax",
|
|
177
|
+
]
|
|
178
|
+
|
|
179
|
+
# Add transformer-dependent symbols only if available
|
|
180
|
+
if _TRANSFORMERS_AVAILABLE:
|
|
181
|
+
__all__.extend(
|
|
182
|
+
[
|
|
183
|
+
"AutoLigerKernelForCausalLM",
|
|
184
|
+
"_apply_liger_kernel",
|
|
185
|
+
"_apply_liger_kernel_to_instance",
|
|
186
|
+
"apply_liger_kernel_to_falcon_h1",
|
|
187
|
+
"apply_liger_kernel_to_gemma",
|
|
188
|
+
"apply_liger_kernel_to_gemma2",
|
|
189
|
+
"apply_liger_kernel_to_gemma3",
|
|
190
|
+
"apply_liger_kernel_to_gemma3_text",
|
|
191
|
+
"apply_liger_kernel_to_glm4",
|
|
192
|
+
"apply_liger_kernel_to_glm4v",
|
|
193
|
+
"apply_liger_kernel_to_glm4v_moe",
|
|
194
|
+
"apply_liger_kernel_to_gpt_oss",
|
|
195
|
+
"apply_liger_kernel_to_granite",
|
|
196
|
+
"apply_liger_kernel_to_internvl",
|
|
197
|
+
"apply_liger_kernel_to_llama",
|
|
198
|
+
"apply_liger_kernel_to_llava",
|
|
199
|
+
"apply_liger_kernel_to_llama4",
|
|
200
|
+
"apply_liger_kernel_to_mistral",
|
|
201
|
+
"apply_liger_kernel_to_mixtral",
|
|
202
|
+
"apply_liger_kernel_to_mllama",
|
|
203
|
+
"apply_liger_kernel_to_olmo2",
|
|
204
|
+
"apply_liger_kernel_to_olmo3",
|
|
205
|
+
"apply_liger_kernel_to_paligemma",
|
|
206
|
+
"apply_liger_kernel_to_phi3",
|
|
207
|
+
"apply_liger_kernel_to_qwen2",
|
|
208
|
+
"apply_liger_kernel_to_qwen2_5_vl",
|
|
209
|
+
"apply_liger_kernel_to_qwen2_vl",
|
|
210
|
+
"apply_liger_kernel_to_qwen3",
|
|
211
|
+
"apply_liger_kernel_to_qwen3_moe",
|
|
212
|
+
"apply_liger_kernel_to_qwen3_next",
|
|
213
|
+
"apply_liger_kernel_to_qwen3_vl",
|
|
214
|
+
"apply_liger_kernel_to_qwen3_vl_moe",
|
|
215
|
+
"apply_liger_kernel_to_smollm3",
|
|
216
|
+
"apply_liger_kernel_to_smolvlm",
|
|
217
|
+
"apply_liger_kernel_to_hunyuan_v1_dense",
|
|
218
|
+
"apply_liger_kernel_to_hunyuan_v1_moe",
|
|
219
|
+
"apply_liger_kernel_to_exaone4",
|
|
220
|
+
]
|
|
221
|
+
)
|
|
@@ -1,4 +1,5 @@
|
|
|
1
1
|
import inspect
|
|
2
|
+
import logging
|
|
2
3
|
|
|
3
4
|
from transformers import AutoConfig
|
|
4
5
|
from transformers import AutoModelForCausalLM
|
|
@@ -6,6 +7,8 @@ from transformers import AutoModelForCausalLM
|
|
|
6
7
|
from liger_kernel.transformers.monkey_patch import MODEL_TYPE_TO_APPLY_LIGER_FN
|
|
7
8
|
from liger_kernel.transformers.monkey_patch import _apply_liger_kernel
|
|
8
9
|
|
|
10
|
+
logger = logging.getLogger(__name__)
|
|
11
|
+
|
|
9
12
|
|
|
10
13
|
def _get_model_config(model_dir, **model_init_kwargs):
|
|
11
14
|
config = AutoConfig.from_pretrained(model_dir, **model_init_kwargs)
|
|
@@ -36,3 +39,21 @@ class AutoLigerKernelForCausalLM(AutoModelForCausalLM):
|
|
|
36
39
|
applicable_kwargs = {key: value for key, value in kwargs.items() if key not in apply_fn_signature.parameters}
|
|
37
40
|
|
|
38
41
|
return super().from_pretrained(pretrained_model_name_or_path, *model_args, **applicable_kwargs)
|
|
42
|
+
|
|
43
|
+
@classmethod
|
|
44
|
+
def from_config(cls, config, **kwargs):
|
|
45
|
+
model_type = getattr(config, "model_type", None)
|
|
46
|
+
if not model_type:
|
|
47
|
+
logger.info("Model type could not be determined from model config. No Liger kernels will be applied.")
|
|
48
|
+
return
|
|
49
|
+
model_type = config.model_type
|
|
50
|
+
|
|
51
|
+
_apply_liger_kernel(model_type, **kwargs)
|
|
52
|
+
|
|
53
|
+
# Filter out kwargs that were passed to the apply_liger_* function, which will cause
|
|
54
|
+
# model initialization errors otherwise
|
|
55
|
+
apply_fn = MODEL_TYPE_TO_APPLY_LIGER_FN[model_type]
|
|
56
|
+
apply_fn_signature = inspect.signature(apply_fn)
|
|
57
|
+
applicable_kwargs = {key: value for key, value in kwargs.items() if key not in apply_fn_signature.parameters}
|
|
58
|
+
|
|
59
|
+
return super().from_config(config, **applicable_kwargs)
|
|
@@ -2,7 +2,8 @@ from typing import Optional
|
|
|
2
2
|
|
|
3
3
|
import torch
|
|
4
4
|
|
|
5
|
-
from liger_kernel.ops
|
|
5
|
+
from liger_kernel.ops import LigerCrossEntropyFunction
|
|
6
|
+
from liger_kernel.transformers.functional import CrossEntropyOutput
|
|
6
7
|
|
|
7
8
|
|
|
8
9
|
class LigerCrossEntropyLoss(torch.nn.Module):
|
|
@@ -15,6 +16,7 @@ class LigerCrossEntropyLoss(torch.nn.Module):
|
|
|
15
16
|
reduction: str = "mean",
|
|
16
17
|
softcap: Optional[float] = None,
|
|
17
18
|
return_z_loss: bool = False,
|
|
19
|
+
return_token_accuracy: bool = False,
|
|
18
20
|
):
|
|
19
21
|
super().__init__()
|
|
20
22
|
assert (label_smoothing >= 0) and (label_smoothing <= 1), (
|
|
@@ -33,9 +35,10 @@ class LigerCrossEntropyLoss(torch.nn.Module):
|
|
|
33
35
|
self.reduction = reduction
|
|
34
36
|
self.softcap = softcap
|
|
35
37
|
self.return_z_loss = return_z_loss
|
|
38
|
+
self.return_token_accuracy = return_token_accuracy
|
|
36
39
|
|
|
37
40
|
def forward(self, _input: torch.Tensor, target: torch.Tensor):
|
|
38
|
-
loss, z_loss = LigerCrossEntropyFunction.apply(
|
|
41
|
+
loss, z_loss, token_accuracy = LigerCrossEntropyFunction.apply(
|
|
39
42
|
_input,
|
|
40
43
|
target,
|
|
41
44
|
self.weight,
|
|
@@ -45,7 +48,9 @@ class LigerCrossEntropyLoss(torch.nn.Module):
|
|
|
45
48
|
self.reduction,
|
|
46
49
|
self.softcap,
|
|
47
50
|
self.return_z_loss,
|
|
51
|
+
self.return_token_accuracy,
|
|
48
52
|
)
|
|
49
|
-
if not self.return_z_loss:
|
|
53
|
+
if not self.return_z_loss and not self.return_token_accuracy:
|
|
50
54
|
return loss
|
|
51
|
-
|
|
55
|
+
|
|
56
|
+
return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
|
liger_kernel/transformers/dyt.py
CHANGED
|
@@ -1,20 +1,22 @@
|
|
|
1
1
|
import torch
|
|
2
2
|
import torch.nn as nn
|
|
3
3
|
|
|
4
|
-
from liger_kernel.ops
|
|
4
|
+
from liger_kernel.ops import LigerDyTFunction
|
|
5
5
|
|
|
6
6
|
|
|
7
7
|
class LigerDyT(nn.Module):
|
|
8
|
-
def __init__(self, hidden_size, init_alpha=0.5):
|
|
8
|
+
def __init__(self, hidden_size, beta=True, init_alpha=0.5):
|
|
9
9
|
super().__init__()
|
|
10
10
|
self.hidden_size = hidden_size
|
|
11
11
|
self.init_alpha = init_alpha
|
|
12
12
|
self.alpha = nn.Parameter(torch.ones(1) * init_alpha)
|
|
13
13
|
self.gamma = nn.Parameter(torch.ones(hidden_size))
|
|
14
|
-
self.beta =
|
|
14
|
+
self.beta = None
|
|
15
|
+
if beta:
|
|
16
|
+
self.beta = nn.Parameter(torch.zeros(hidden_size))
|
|
15
17
|
|
|
16
18
|
def forward(self, x):
|
|
17
19
|
return LigerDyTFunction.apply(x, self.alpha, self.gamma, self.beta)
|
|
18
20
|
|
|
19
21
|
def extra_repr(self):
|
|
20
|
-
return f"{self.hidden_size}, init_alpha={self.init_alpha}"
|
|
22
|
+
return f"{self.hidden_size}, init_alpha={self.init_alpha}, beta={self.beta}"
|
|
@@ -0,0 +1,55 @@
|
|
|
1
|
+
from typing import Any
|
|
2
|
+
from typing import Callable
|
|
3
|
+
|
|
4
|
+
from torch.distributed.fsdp import FullyShardedDataParallel
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
class _FSDPForwardRedirection:
|
|
8
|
+
"""
|
|
9
|
+
Modified based on
|
|
10
|
+
https://github.com/Lightning-AI/pytorch-lightning/blob/d3f9c83d6efa4f1def36aa6c199600946cdb9117/src/lightning/pytorch/strategies/strategy.py#L601-L648
|
|
11
|
+
Redirect a method call through FullyShardedDataParallel.forward so that the FSDP module's root pre-forward and
|
|
12
|
+
post-forward can be properly executed around the method call.
|
|
13
|
+
This is needed in cases where we call a submodule of a FSDP module. For instance, when we want to call only
|
|
14
|
+
the `LlamaModel` part out of a FSDP-wrapped `LlamaForCausalLM` to get the hidden states without involving
|
|
15
|
+
GPU-memory-heavy `lm_head` and cross entropy computation, doing this directly (i.e. `model.model.forward()`)
|
|
16
|
+
will not work because the first `nn.Embedding` layer is not independently wrapped as a FSDP module (because of
|
|
17
|
+
the transformer-based wrapping policy), and not calling it through FSDP root module forward will not all-gather
|
|
18
|
+
its parameter, thus resulting in "RuntimeError: 'weight' must be 2-D" error. Similarly, if we want to call just
|
|
19
|
+
the `lm_head` part of a model, we need this trick too to properly get its params all-gathered.
|
|
20
|
+
"""
|
|
21
|
+
|
|
22
|
+
def __call__(
|
|
23
|
+
self,
|
|
24
|
+
wrapper_module: FullyShardedDataParallel,
|
|
25
|
+
method: Callable,
|
|
26
|
+
*args: Any,
|
|
27
|
+
**kwargs: Any,
|
|
28
|
+
):
|
|
29
|
+
"""Reroutes a method call through the `wrapper_module`'s `forward` method.
|
|
30
|
+
Args:
|
|
31
|
+
wrapper_module: The module that has `original_module` wrapped.
|
|
32
|
+
original_module: The module that was wrapped inside `wrapper_module`.
|
|
33
|
+
method_name: The name of the method that should be called on the `original_module` after inputs get
|
|
34
|
+
redirected through the `wrapper_module`'s `forward` method.
|
|
35
|
+
*args: The positional arguments to the method `method_name`. They will get passed to a patched
|
|
36
|
+
`forward` method instead.
|
|
37
|
+
**kwargs: The keyword arguments to the method `method_name`. They will get passed to a patched
|
|
38
|
+
`forward` method instead.
|
|
39
|
+
"""
|
|
40
|
+
assert isinstance(wrapper_module, FullyShardedDataParallel)
|
|
41
|
+
original_module = wrapper_module._fsdp_wrapped_module
|
|
42
|
+
original_forward = original_module.forward
|
|
43
|
+
|
|
44
|
+
def wrapped_forward(*_args: Any, **_kwargs: Any) -> Any:
|
|
45
|
+
# Unpatch ourselves immediately before calling the method `method_name`
|
|
46
|
+
# because itself may want to call the real `forward`
|
|
47
|
+
original_module.forward = original_forward # type: ignore[method-assign]
|
|
48
|
+
# Call the actual method e.g. `.training_step(...)`
|
|
49
|
+
out = method(*_args, **_kwargs)
|
|
50
|
+
return out
|
|
51
|
+
|
|
52
|
+
# Patch the original_module's forward so we can redirect the arguments back to the real method
|
|
53
|
+
original_module.forward = wrapped_forward # type: ignore[method-assign]
|
|
54
|
+
wrapper_output = wrapper_module(*args, **kwargs)
|
|
55
|
+
return wrapper_output
|
|
@@ -1,19 +1,35 @@
|
|
|
1
|
+
from dataclasses import dataclass
|
|
1
2
|
from typing import Optional
|
|
2
3
|
|
|
3
|
-
|
|
4
|
-
|
|
5
|
-
from liger_kernel.ops
|
|
6
|
-
from liger_kernel.ops
|
|
7
|
-
from liger_kernel.ops
|
|
8
|
-
from liger_kernel.ops
|
|
9
|
-
from liger_kernel.ops
|
|
10
|
-
from liger_kernel.ops
|
|
11
|
-
from liger_kernel.ops
|
|
12
|
-
from liger_kernel.ops
|
|
13
|
-
from liger_kernel.ops
|
|
14
|
-
from liger_kernel.ops
|
|
15
|
-
from liger_kernel.ops
|
|
16
|
-
from liger_kernel.ops
|
|
4
|
+
import torch
|
|
5
|
+
|
|
6
|
+
from liger_kernel.ops import LigerCrossEntropyFunction
|
|
7
|
+
from liger_kernel.ops import LigerDyTFunction
|
|
8
|
+
from liger_kernel.ops import LigerFusedAddRMSNormFunction
|
|
9
|
+
from liger_kernel.ops import LigerFusedLinearCrossEntropyFunction
|
|
10
|
+
from liger_kernel.ops import LigerFusedLinearJSDFunction
|
|
11
|
+
from liger_kernel.ops import LigerFusedNeighborhoodAttentionFunction
|
|
12
|
+
from liger_kernel.ops import LigerGELUMulFunction
|
|
13
|
+
from liger_kernel.ops import LigerGroupNormFunction
|
|
14
|
+
from liger_kernel.ops import LigerJSDFunction
|
|
15
|
+
from liger_kernel.ops import LigerKLDivLossFunction
|
|
16
|
+
from liger_kernel.ops import LigerLayerNormFunction
|
|
17
|
+
from liger_kernel.ops import LigerMultiTokenAttentionFunction
|
|
18
|
+
from liger_kernel.ops import LigerPolyNormFunction
|
|
19
|
+
from liger_kernel.ops import LigerQwen2VLMRopeFunction
|
|
20
|
+
from liger_kernel.ops import LigerRMSNormFunction
|
|
21
|
+
from liger_kernel.ops import LigerRopeFunction
|
|
22
|
+
from liger_kernel.ops import LigerSiLUMulFunction
|
|
23
|
+
from liger_kernel.ops import LigerSoftmaxFunction
|
|
24
|
+
from liger_kernel.ops import LigerSparsemaxFunction
|
|
25
|
+
from liger_kernel.ops import LigerTVDLossFunction
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
@dataclass
|
|
29
|
+
class CrossEntropyOutput:
|
|
30
|
+
loss: torch.Tensor
|
|
31
|
+
z_loss: Optional[torch.Tensor] = None
|
|
32
|
+
token_accuracy: Optional[torch.Tensor] = None
|
|
17
33
|
|
|
18
34
|
|
|
19
35
|
# conform to the function signature in https://pytorch.org/docs/stable/generated/torch.nn.functional.cross_entropy.html
|
|
@@ -30,8 +46,9 @@ def liger_cross_entropy(
|
|
|
30
46
|
lse_square_scale: float = 0.0,
|
|
31
47
|
softcap: Optional[float] = None,
|
|
32
48
|
return_z_loss: bool = False,
|
|
49
|
+
return_token_accuracy: bool = False,
|
|
33
50
|
):
|
|
34
|
-
loss, z_loss = LigerCrossEntropyFunction.apply(
|
|
51
|
+
loss, z_loss, token_accuracy = LigerCrossEntropyFunction.apply(
|
|
35
52
|
input,
|
|
36
53
|
target,
|
|
37
54
|
weight,
|
|
@@ -41,10 +58,13 @@ def liger_cross_entropy(
|
|
|
41
58
|
reduction,
|
|
42
59
|
softcap,
|
|
43
60
|
return_z_loss,
|
|
61
|
+
return_token_accuracy,
|
|
44
62
|
)
|
|
45
|
-
|
|
63
|
+
|
|
64
|
+
if not return_z_loss and not return_token_accuracy:
|
|
46
65
|
return loss
|
|
47
|
-
|
|
66
|
+
|
|
67
|
+
return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
|
|
48
68
|
|
|
49
69
|
|
|
50
70
|
def liger_fused_linear_cross_entropy(
|
|
@@ -59,8 +79,11 @@ def liger_fused_linear_cross_entropy(
|
|
|
59
79
|
reduction: str = "mean",
|
|
60
80
|
softcap: Optional[float] = None,
|
|
61
81
|
return_z_loss: bool = False,
|
|
82
|
+
accum_dtype=None,
|
|
83
|
+
use_token_scaling: bool = False,
|
|
84
|
+
return_token_accuracy: bool = False,
|
|
62
85
|
):
|
|
63
|
-
loss, z_loss = LigerFusedLinearCrossEntropyFunction.apply(
|
|
86
|
+
loss, z_loss, token_accuracy = LigerFusedLinearCrossEntropyFunction.apply(
|
|
64
87
|
input,
|
|
65
88
|
weight,
|
|
66
89
|
target,
|
|
@@ -72,10 +95,15 @@ def liger_fused_linear_cross_entropy(
|
|
|
72
95
|
reduction,
|
|
73
96
|
softcap,
|
|
74
97
|
return_z_loss,
|
|
98
|
+
accum_dtype,
|
|
99
|
+
use_token_scaling,
|
|
100
|
+
return_token_accuracy,
|
|
75
101
|
)
|
|
76
|
-
|
|
102
|
+
|
|
103
|
+
if not return_z_loss and not return_token_accuracy:
|
|
77
104
|
return loss
|
|
78
|
-
|
|
105
|
+
|
|
106
|
+
return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
|
|
79
107
|
|
|
80
108
|
|
|
81
109
|
def liger_fused_linear_jsd(
|
|
@@ -159,6 +187,68 @@ def liger_kl_div(
|
|
|
159
187
|
)
|
|
160
188
|
|
|
161
189
|
|
|
190
|
+
def liger_sparsemax(
|
|
191
|
+
input,
|
|
192
|
+
dim: int = -1,
|
|
193
|
+
):
|
|
194
|
+
return LigerSparsemaxFunction.apply(input, dim)
|
|
195
|
+
|
|
196
|
+
|
|
197
|
+
def liger_multi_token_attention(
|
|
198
|
+
scores,
|
|
199
|
+
weight,
|
|
200
|
+
bias=None,
|
|
201
|
+
stride: int = 1,
|
|
202
|
+
padding: int = 0,
|
|
203
|
+
dilation: int = 1,
|
|
204
|
+
groups: int = 1,
|
|
205
|
+
sparse: bool = False,
|
|
206
|
+
):
|
|
207
|
+
"""
|
|
208
|
+
Functional interface for multi-token attention.
|
|
209
|
+
|
|
210
|
+
Args:
|
|
211
|
+
scores: Input tensor of shape (B, C_in, L, L)
|
|
212
|
+
weight: Convolution weight tensor of shape (C_out, C_in // groups, K, K)
|
|
213
|
+
bias: Optional bias tensor of shape (C_out,)
|
|
214
|
+
stride: Stride for the convolution (default: 1)
|
|
215
|
+
padding: Padding for the convolution (default: 0)
|
|
216
|
+
dilation: Dilation factor for the convolution (default: 1)
|
|
217
|
+
groups: Number of groups for the convolution (default: 1)
|
|
218
|
+
sparse: Specifies if input tensors are expected to be sparse (default: False)
|
|
219
|
+
Returns:
|
|
220
|
+
Output tensor after applying multi-token attention.
|
|
221
|
+
"""
|
|
222
|
+
return LigerMultiTokenAttentionFunction.apply(scores, weight, bias, stride, padding, dilation, groups, sparse)
|
|
223
|
+
|
|
224
|
+
|
|
225
|
+
def liger_fused_neighborhood_attention(
|
|
226
|
+
query,
|
|
227
|
+
key,
|
|
228
|
+
value,
|
|
229
|
+
kernel_size: int = 7,
|
|
230
|
+
dilation: int = 1,
|
|
231
|
+
scale: float = None,
|
|
232
|
+
):
|
|
233
|
+
"""
|
|
234
|
+
Liger fused neighborhood attention.
|
|
235
|
+
|
|
236
|
+
paper: https://arxiv.org/pdf/2504.16922
|
|
237
|
+
|
|
238
|
+
Args:
|
|
239
|
+
query: Query tensor of shape [batch_size, num_heads, seq_len, head_dim]
|
|
240
|
+
key: Key tensor of shape [batch_size, num_heads, seq_len, head_dim]
|
|
241
|
+
value: Value tensor of shape [batch_size, num_heads, seq_len, head_dim]
|
|
242
|
+
kernel_size: Size of the neighborhood window (default: 7)
|
|
243
|
+
dilation: Dilation factor for the neighborhood (default: 1)
|
|
244
|
+
scale: Scaling factor for attention scores (default: rsqrt(head_dim))
|
|
245
|
+
|
|
246
|
+
Returns:
|
|
247
|
+
Output tensor of shape [batch_size, num_heads, seq_len, head_dim]
|
|
248
|
+
"""
|
|
249
|
+
return LigerFusedNeighborhoodAttentionFunction.apply(query, key, value, kernel_size, dilation, scale)
|
|
250
|
+
|
|
251
|
+
|
|
162
252
|
def liger_tvd(
|
|
163
253
|
input,
|
|
164
254
|
target,
|
|
@@ -187,6 +277,14 @@ def liger_rms_norm(X, W, eps, offset: float = 0.0, casting_mode: str = "llama",
|
|
|
187
277
|
return LigerRMSNormFunction.apply(X, W, eps, offset, casting_mode, in_place)
|
|
188
278
|
|
|
189
279
|
|
|
280
|
+
def liger_poly_norm(X, W, B, eps=1e-6, in_place=True):
|
|
281
|
+
return LigerPolyNormFunction.apply(X, W, B, eps, in_place)
|
|
282
|
+
|
|
283
|
+
|
|
284
|
+
def liger_fused_add_rms_norm(X, R, W, eps, offset: float = 0.0, casting_mode: str = "llama", in_place: bool = True):
|
|
285
|
+
return LigerFusedAddRMSNormFunction.apply(X, R, W, eps, offset, casting_mode, in_place)
|
|
286
|
+
|
|
287
|
+
|
|
190
288
|
def liger_rope(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
|
191
289
|
return LigerRopeFunction.apply(q, k, cos, sin, position_ids, unsqueeze_dim)
|
|
192
290
|
|
|
@@ -195,5 +293,9 @@ def liger_swiglu(a, b):
|
|
|
195
293
|
return LigerSiLUMulFunction.apply(a, b)
|
|
196
294
|
|
|
197
295
|
|
|
296
|
+
def liger_softmax(x):
|
|
297
|
+
return LigerSoftmaxFunction.apply(x)
|
|
298
|
+
|
|
299
|
+
|
|
198
300
|
def liger_dyt(x, alpha, gamma, beta):
|
|
199
301
|
return LigerDyTFunction.apply(x, alpha, gamma, beta)
|
|
@@ -0,0 +1,39 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
import torch.nn as nn
|
|
3
|
+
|
|
4
|
+
from liger_kernel.ops import LigerFusedAddRMSNormFunction
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
class LigerFusedAddRMSNorm(nn.Module):
|
|
8
|
+
def __init__(
|
|
9
|
+
self,
|
|
10
|
+
hidden_size,
|
|
11
|
+
eps=1e-6,
|
|
12
|
+
offset=0.0,
|
|
13
|
+
casting_mode="llama",
|
|
14
|
+
init_fn="ones",
|
|
15
|
+
in_place=False,
|
|
16
|
+
):
|
|
17
|
+
super().__init__()
|
|
18
|
+
assert init_fn in [
|
|
19
|
+
"ones",
|
|
20
|
+
"zeros",
|
|
21
|
+
], f"init_fn must be either 'ones' or 'zeros', got {init_fn}"
|
|
22
|
+
self.weight = nn.Parameter(torch.ones(hidden_size) if init_fn == "ones" else torch.zeros(hidden_size))
|
|
23
|
+
self.variance_epsilon, self.offset, self.casting_mode, self.in_place = (eps, offset, casting_mode, in_place)
|
|
24
|
+
|
|
25
|
+
def forward(self, hidden_states, residual):
|
|
26
|
+
return LigerFusedAddRMSNormFunction.apply(
|
|
27
|
+
hidden_states,
|
|
28
|
+
residual,
|
|
29
|
+
self.weight,
|
|
30
|
+
self.variance_epsilon,
|
|
31
|
+
self.offset,
|
|
32
|
+
self.casting_mode,
|
|
33
|
+
self.in_place,
|
|
34
|
+
)
|
|
35
|
+
|
|
36
|
+
def extra_repr(self):
|
|
37
|
+
return (
|
|
38
|
+
f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}, offset={self.offset}, in_place={self.in_place}"
|
|
39
|
+
)
|