liger-kernel-nightly 0.5.5.dev20250402185702__py3-none-any.whl → 0.6.4.dev20260112233432__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of liger-kernel-nightly might be problematic. Click here for more details.

Files changed (115) hide show
  1. liger_kernel/chunked_loss/__init__.py +1 -0
  2. liger_kernel/chunked_loss/cosine_similarity_loss.py +142 -0
  3. liger_kernel/chunked_loss/dpo_loss.py +61 -3
  4. liger_kernel/chunked_loss/functional.py +2 -0
  5. liger_kernel/chunked_loss/fused_linear_distillation.py +23 -5
  6. liger_kernel/chunked_loss/fused_linear_ppo.py +36 -0
  7. liger_kernel/chunked_loss/fused_linear_preference.py +0 -1
  8. liger_kernel/chunked_loss/grpo_loss.py +76 -5
  9. liger_kernel/chunked_loss/jsd_loss.py +46 -15
  10. liger_kernel/ops/__init__.py +141 -0
  11. liger_kernel/ops/backends/README.md +151 -0
  12. liger_kernel/ops/backends/__init__.py +13 -0
  13. liger_kernel/ops/backends/_ascend/__init__.py +5 -0
  14. liger_kernel/ops/backends/_ascend/ascend-ub-manager-design.md +485 -0
  15. liger_kernel/ops/backends/_ascend/ops/__init__.py +49 -0
  16. liger_kernel/ops/backends/_ascend/ops/geglu.py +266 -0
  17. liger_kernel/ops/backends/_ascend/ops/qwen2vl_mrope.py +285 -0
  18. liger_kernel/ops/backends/_ascend/ops/rope.py +290 -0
  19. liger_kernel/ops/backends/_ascend/ops/swiglu.py +142 -0
  20. liger_kernel/ops/backends/_ascend/ops/tvd.py +221 -0
  21. liger_kernel/ops/backends/_ascend/ub_manager.py +349 -0
  22. liger_kernel/ops/backends/registry.py +61 -0
  23. liger_kernel/ops/cross_entropy.py +134 -65
  24. liger_kernel/ops/dyt.py +115 -180
  25. liger_kernel/ops/fused_add_rms_norm.py +416 -0
  26. liger_kernel/ops/fused_linear_cross_entropy.py +117 -23
  27. liger_kernel/ops/fused_neighborhood_attention.py +1022 -0
  28. liger_kernel/ops/geglu.py +6 -4
  29. liger_kernel/ops/group_norm.py +7 -7
  30. liger_kernel/ops/grpo_loss.py +312 -0
  31. liger_kernel/ops/jsd.py +2 -1
  32. liger_kernel/ops/kl_div.py +9 -5
  33. liger_kernel/ops/layer_norm.py +146 -78
  34. liger_kernel/ops/llama4_rope.py +225 -0
  35. liger_kernel/ops/multi_token_attention.py +207 -0
  36. liger_kernel/ops/poly_norm.py +390 -0
  37. liger_kernel/ops/rms_norm.py +398 -99
  38. liger_kernel/ops/rope.py +1 -1
  39. liger_kernel/ops/softmax.py +201 -0
  40. liger_kernel/ops/sparsemax.py +179 -0
  41. liger_kernel/ops/swiglu.py +1 -1
  42. liger_kernel/ops/tiled_mlp.py +136 -0
  43. liger_kernel/ops/utils.py +14 -0
  44. liger_kernel/transformers/__init__.py +208 -17
  45. liger_kernel/transformers/auto_model.py +21 -0
  46. liger_kernel/transformers/cross_entropy.py +9 -4
  47. liger_kernel/transformers/dyt.py +6 -4
  48. liger_kernel/transformers/experimental/__init__.py +5 -0
  49. liger_kernel/transformers/experimental/embedding.py +1 -1
  50. liger_kernel/transformers/fsdp.py +55 -0
  51. liger_kernel/transformers/functional.py +122 -20
  52. liger_kernel/transformers/fused_add_rms_norm.py +39 -0
  53. liger_kernel/transformers/fused_linear_cross_entropy.py +16 -5
  54. liger_kernel/transformers/fused_linear_jsd.py +1 -1
  55. liger_kernel/transformers/fused_neighborhood_attention.py +234 -0
  56. liger_kernel/transformers/geglu.py +1 -1
  57. liger_kernel/transformers/group_norm.py +1 -1
  58. liger_kernel/transformers/grpo_loss.py +153 -0
  59. liger_kernel/transformers/jsd.py +1 -1
  60. liger_kernel/transformers/kl_div.py +1 -1
  61. liger_kernel/transformers/layer_norm.py +1 -1
  62. liger_kernel/transformers/llama4_rope.py +93 -0
  63. liger_kernel/transformers/model/exaone4.py +136 -0
  64. liger_kernel/transformers/model/falcon_h1.py +122 -0
  65. liger_kernel/transformers/model/gemma.py +57 -27
  66. liger_kernel/transformers/model/gemma2.py +65 -28
  67. liger_kernel/transformers/model/gemma3.py +331 -0
  68. liger_kernel/transformers/model/glm4.py +141 -0
  69. liger_kernel/transformers/model/glm4v.py +163 -0
  70. liger_kernel/transformers/model/glm4v_moe.py +172 -0
  71. liger_kernel/transformers/model/gpt_oss.py +211 -0
  72. liger_kernel/transformers/model/hunyuan_v1.py +134 -0
  73. liger_kernel/transformers/model/internvl.py +157 -0
  74. liger_kernel/transformers/model/llama.py +109 -27
  75. liger_kernel/transformers/model/llama4.py +121 -0
  76. liger_kernel/transformers/model/llava.py +111 -136
  77. liger_kernel/transformers/model/loss_utils.py +50 -12
  78. liger_kernel/transformers/model/mistral.py +51 -34
  79. liger_kernel/transformers/model/mixtral.py +50 -29
  80. liger_kernel/transformers/model/mllama.py +46 -24
  81. liger_kernel/transformers/model/olmo2.py +47 -22
  82. liger_kernel/transformers/model/olmo3.py +142 -0
  83. liger_kernel/transformers/model/output_classes.py +147 -0
  84. liger_kernel/transformers/model/paligemma.py +50 -14
  85. liger_kernel/transformers/model/phi3.py +47 -172
  86. liger_kernel/transformers/model/qwen2.py +55 -23
  87. liger_kernel/transformers/model/qwen2_5_vl.py +62 -103
  88. liger_kernel/transformers/model/qwen2_vl.py +59 -108
  89. liger_kernel/transformers/model/qwen3.py +136 -0
  90. liger_kernel/transformers/model/qwen3_moe.py +152 -0
  91. liger_kernel/transformers/model/qwen3_next.py +146 -0
  92. liger_kernel/transformers/model/qwen3_vl.py +150 -0
  93. liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
  94. liger_kernel/transformers/model/smollm3.py +199 -0
  95. liger_kernel/transformers/model/smolvlm.py +158 -0
  96. liger_kernel/transformers/monkey_patch.py +2018 -244
  97. liger_kernel/transformers/multi_token_attention.py +64 -0
  98. liger_kernel/transformers/poly_norm.py +42 -0
  99. liger_kernel/transformers/qwen2vl_mrope.py +1 -1
  100. liger_kernel/transformers/rms_norm.py +54 -6
  101. liger_kernel/transformers/rope.py +45 -1
  102. liger_kernel/transformers/softmax.py +12 -0
  103. liger_kernel/transformers/sparsemax.py +16 -0
  104. liger_kernel/transformers/swiglu.py +39 -1
  105. liger_kernel/transformers/tiled_mlp.py +125 -0
  106. liger_kernel/transformers/trainer/orpo_trainer.py +1 -53
  107. liger_kernel/transformers/tvd.py +1 -1
  108. liger_kernel/utils.py +63 -0
  109. {liger_kernel_nightly-0.5.5.dev20250402185702.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/METADATA +73 -39
  110. liger_kernel_nightly-0.6.4.dev20260112233432.dist-info/RECORD +132 -0
  111. liger_kernel_nightly-0.5.5.dev20250402185702.dist-info/RECORD +0 -80
  112. {liger_kernel_nightly-0.5.5.dev20250402185702.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/LICENSE +0 -0
  113. {liger_kernel_nightly-0.5.5.dev20250402185702.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/NOTICE +0 -0
  114. {liger_kernel_nightly-0.5.5.dev20250402185702.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/WHEEL +0 -0
  115. {liger_kernel_nightly-0.5.5.dev20250402185702.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/top_level.txt +0 -0
@@ -1,30 +1,221 @@
1
- from liger_kernel.transformers.auto_model import AutoLigerKernelForCausalLM # noqa: F401
1
+ import importlib
2
+
3
+ from typing import TYPE_CHECKING
4
+
5
+ # Always-safe imports (independent of 'transformers')
2
6
  from liger_kernel.transformers.cross_entropy import LigerCrossEntropyLoss # noqa: F401
3
7
  from liger_kernel.transformers.dyt import LigerDyT # noqa: F401
8
+ from liger_kernel.transformers.fused_add_rms_norm import LigerFusedAddRMSNorm # noqa: F401
4
9
  from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss # noqa: F401
5
10
  from liger_kernel.transformers.fused_linear_jsd import LigerFusedLinearJSD # noqa: F401
6
11
  from liger_kernel.transformers.geglu import LigerGEGLUMLP # noqa: F401
7
12
  from liger_kernel.transformers.jsd import LigerJSD # noqa: F401
13
+ from liger_kernel.transformers.kl_div import LigerKLDIVLoss # noqa: F401
8
14
  from liger_kernel.transformers.layer_norm import LigerLayerNorm # noqa: F401
9
- from liger_kernel.transformers.monkey_patch import _apply_liger_kernel # noqa: F401
10
- from liger_kernel.transformers.monkey_patch import _apply_liger_kernel_to_instance # noqa: F401
11
- from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma # noqa: F401
12
- from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma2 # noqa: F401
13
- from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_granite # noqa: F401
14
- from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama # noqa: F401
15
- from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llava # noqa: F401
16
- from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mistral # noqa: F401
17
- from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mixtral # noqa: F401
18
- from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mllama # noqa: F401
19
- from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_olmo2 # noqa: F401
20
- from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_paligemma # noqa: F401
21
- from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_phi3 # noqa: F401
22
- from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2 # noqa: F401
23
- from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2_5_vl # noqa: F401
24
- from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2_vl # noqa: F401
15
+ from liger_kernel.transformers.llama4_rope import liger_llama4_text_rotary_pos_emb # noqa: F401
16
+ from liger_kernel.transformers.llama4_rope import liger_llama4_vision_rotary_pos_emb # noqa: F401
17
+ from liger_kernel.transformers.multi_token_attention import LigerMultiTokenAttention # noqa: F401
18
+ from liger_kernel.transformers.poly_norm import LigerPolyNorm # noqa: F401
25
19
  from liger_kernel.transformers.rms_norm import LigerRMSNorm # noqa: F401
26
20
  from liger_kernel.transformers.rope import liger_rotary_pos_emb # noqa: F401
21
+ from liger_kernel.transformers.softmax import LigerSoftmax # noqa: F401
22
+ from liger_kernel.transformers.sparsemax import LigerSparsemax # noqa: F401
27
23
  from liger_kernel.transformers.swiglu import LigerBlockSparseTop2MLP # noqa: F401
28
24
  from liger_kernel.transformers.swiglu import LigerPhi3SwiGLUMLP # noqa: F401
25
+ from liger_kernel.transformers.swiglu import LigerQwen3MoeSwiGLUMLP # noqa: F401
29
26
  from liger_kernel.transformers.swiglu import LigerSwiGLUMLP # noqa: F401
27
+ from liger_kernel.transformers.tiled_mlp import LigerTiledGEGLUMLP # noqa: F401
28
+ from liger_kernel.transformers.tiled_mlp import LigerTiledSwiGLUMLP # noqa: F401
30
29
  from liger_kernel.transformers.tvd import LigerTVDLoss # noqa: F401
30
+
31
+ # Static-only imports for IDEs and type checkers
32
+ if TYPE_CHECKING:
33
+ from liger_kernel.transformers.auto_model import AutoLigerKernelForCausalLM # noqa: F401
34
+ from liger_kernel.transformers.monkey_patch import _apply_liger_kernel # noqa: F401
35
+ from liger_kernel.transformers.monkey_patch import _apply_liger_kernel_to_instance # noqa: F401
36
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_exaone4 # noqa: F401
37
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_falcon_h1 # noqa: F401
38
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma # noqa: F401
39
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma2 # noqa: F401
40
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma3 # noqa: F401
41
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma3_text # noqa: F401
42
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4 # noqa: F401
43
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4v # noqa: F401
44
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4v_moe # noqa: F401
45
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gpt_oss # noqa: F401
46
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_granite # noqa: F401
47
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_hunyuan_v1_dense # noqa: F401
48
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_hunyuan_v1_moe # noqa: F401
49
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_internvl # noqa: F401
50
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama # noqa: F401
51
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama4 # noqa: F401
52
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llava # noqa: F401
53
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mistral # noqa: F401
54
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mixtral # noqa: F401
55
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mllama # noqa: F401
56
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_olmo2 # noqa: F401
57
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_olmo3 # noqa: F401
58
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_paligemma # noqa: F401
59
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_phi3 # noqa: F401
60
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2 # noqa: F401
61
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2_5_vl # noqa: F401
62
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2_vl # noqa: F401
63
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3 # noqa: F401
64
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_moe # noqa: F401
65
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_next # noqa: F401
66
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_vl # noqa: F401
67
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_vl_moe # noqa: F401
68
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_smollm3 # noqa: F401
69
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_smolvlm # noqa: F401
70
+
71
+
72
+ # Check if 'transformers' is installed
73
+ try:
74
+ import transformers # noqa: F401
75
+
76
+ _TRANSFORMERS_AVAILABLE = True
77
+ except ImportError:
78
+ _TRANSFORMERS_AVAILABLE = False
79
+
80
+
81
+ def is_transformers_available() -> bool:
82
+ """
83
+ Returns True if the 'transformers' package is available.
84
+ Useful for conditional logic in downstream code.
85
+ """
86
+ return _TRANSFORMERS_AVAILABLE
87
+
88
+
89
+ def __getattr__(name: str):
90
+ """
91
+ Handles lazy access to transformer-dependent attributes.
92
+ If 'transformers' is not installed, raises a user-friendly ImportError.
93
+ """
94
+ if not _TRANSFORMERS_AVAILABLE:
95
+ raise ImportError(
96
+ f"The attribute '{name}' requires the 'transformers' library, which is not installed.\n"
97
+ f"Please install it with `pip install transformers` to use this functionality."
98
+ )
99
+
100
+ if name == "AutoLigerKernelForCausalLM":
101
+ module = importlib.import_module("liger_kernel.transformers.auto_model")
102
+ return getattr(module, name)
103
+
104
+ monkey_patch_symbols = {
105
+ "_apply_liger_kernel",
106
+ "_apply_liger_kernel_to_instance",
107
+ "apply_liger_kernel_to_falcon_h1",
108
+ "apply_liger_kernel_to_gemma",
109
+ "apply_liger_kernel_to_gemma2",
110
+ "apply_liger_kernel_to_gemma3",
111
+ "apply_liger_kernel_to_gemma3_text",
112
+ "apply_liger_kernel_to_glm4",
113
+ "apply_liger_kernel_to_glm4v",
114
+ "apply_liger_kernel_to_glm4v_moe",
115
+ "apply_liger_kernel_to_gpt_oss",
116
+ "apply_liger_kernel_to_granite",
117
+ "apply_liger_kernel_to_internvl",
118
+ "apply_liger_kernel_to_llama",
119
+ "apply_liger_kernel_to_llava",
120
+ "apply_liger_kernel_to_llama4",
121
+ "apply_liger_kernel_to_mistral",
122
+ "apply_liger_kernel_to_mixtral",
123
+ "apply_liger_kernel_to_mllama",
124
+ "apply_liger_kernel_to_olmo2",
125
+ "apply_liger_kernel_to_olmo3",
126
+ "apply_liger_kernel_to_paligemma",
127
+ "apply_liger_kernel_to_phi3",
128
+ "apply_liger_kernel_to_qwen2",
129
+ "apply_liger_kernel_to_qwen2_5_vl",
130
+ "apply_liger_kernel_to_qwen2_vl",
131
+ "apply_liger_kernel_to_qwen3",
132
+ "apply_liger_kernel_to_qwen3_moe",
133
+ "apply_liger_kernel_to_qwen3_next",
134
+ "apply_liger_kernel_to_qwen3_vl",
135
+ "apply_liger_kernel_to_qwen3_vl_moe",
136
+ "apply_liger_kernel_to_smollm3",
137
+ "apply_liger_kernel_to_smolvlm",
138
+ "apply_liger_kernel_to_hunyuan_v1_dense",
139
+ "apply_liger_kernel_to_hunyuan_v1_moe",
140
+ "apply_liger_kernel_to_exaone4",
141
+ }
142
+
143
+ if name in monkey_patch_symbols:
144
+ module = importlib.import_module("liger_kernel.transformers.monkey_patch")
145
+ return getattr(module, name)
146
+
147
+ raise AttributeError(f"module {__name__} has no attribute {name}")
148
+
149
+
150
+ # Shared symbols in all environments
151
+ __all__ = [
152
+ "is_transformers_available",
153
+ "LigerCrossEntropyLoss",
154
+ "LigerDyT",
155
+ "LigerFusedLinearCrossEntropyLoss",
156
+ "LigerFusedLinearJSD",
157
+ "LigerGEGLUMLP",
158
+ "LigerJSD",
159
+ "LigerLayerNorm",
160
+ "LigerFusedAddRMSNorm",
161
+ "LigerPolyNorm",
162
+ "LigerRMSNorm",
163
+ "liger_rotary_pos_emb",
164
+ "liger_llama4_text_rotary_pos_emb",
165
+ "liger_llama4_vision_rotary_pos_emb",
166
+ "LigerBlockSparseTop2MLP",
167
+ "LigerPhi3SwiGLUMLP",
168
+ "LigerQwen3MoeSwiGLUMLP",
169
+ "LigerSwiGLUMLP",
170
+ "LigerTiledGEGLUMLP",
171
+ "LigerTiledSwiGLUMLP",
172
+ "LigerTVDLoss",
173
+ "LigerKLDIVLoss",
174
+ "LigerMultiTokenAttention",
175
+ "LigerSoftmax",
176
+ "LigerSparsemax",
177
+ ]
178
+
179
+ # Add transformer-dependent symbols only if available
180
+ if _TRANSFORMERS_AVAILABLE:
181
+ __all__.extend(
182
+ [
183
+ "AutoLigerKernelForCausalLM",
184
+ "_apply_liger_kernel",
185
+ "_apply_liger_kernel_to_instance",
186
+ "apply_liger_kernel_to_falcon_h1",
187
+ "apply_liger_kernel_to_gemma",
188
+ "apply_liger_kernel_to_gemma2",
189
+ "apply_liger_kernel_to_gemma3",
190
+ "apply_liger_kernel_to_gemma3_text",
191
+ "apply_liger_kernel_to_glm4",
192
+ "apply_liger_kernel_to_glm4v",
193
+ "apply_liger_kernel_to_glm4v_moe",
194
+ "apply_liger_kernel_to_gpt_oss",
195
+ "apply_liger_kernel_to_granite",
196
+ "apply_liger_kernel_to_internvl",
197
+ "apply_liger_kernel_to_llama",
198
+ "apply_liger_kernel_to_llava",
199
+ "apply_liger_kernel_to_llama4",
200
+ "apply_liger_kernel_to_mistral",
201
+ "apply_liger_kernel_to_mixtral",
202
+ "apply_liger_kernel_to_mllama",
203
+ "apply_liger_kernel_to_olmo2",
204
+ "apply_liger_kernel_to_olmo3",
205
+ "apply_liger_kernel_to_paligemma",
206
+ "apply_liger_kernel_to_phi3",
207
+ "apply_liger_kernel_to_qwen2",
208
+ "apply_liger_kernel_to_qwen2_5_vl",
209
+ "apply_liger_kernel_to_qwen2_vl",
210
+ "apply_liger_kernel_to_qwen3",
211
+ "apply_liger_kernel_to_qwen3_moe",
212
+ "apply_liger_kernel_to_qwen3_next",
213
+ "apply_liger_kernel_to_qwen3_vl",
214
+ "apply_liger_kernel_to_qwen3_vl_moe",
215
+ "apply_liger_kernel_to_smollm3",
216
+ "apply_liger_kernel_to_smolvlm",
217
+ "apply_liger_kernel_to_hunyuan_v1_dense",
218
+ "apply_liger_kernel_to_hunyuan_v1_moe",
219
+ "apply_liger_kernel_to_exaone4",
220
+ ]
221
+ )
@@ -1,4 +1,5 @@
1
1
  import inspect
2
+ import logging
2
3
 
3
4
  from transformers import AutoConfig
4
5
  from transformers import AutoModelForCausalLM
@@ -6,6 +7,8 @@ from transformers import AutoModelForCausalLM
6
7
  from liger_kernel.transformers.monkey_patch import MODEL_TYPE_TO_APPLY_LIGER_FN
7
8
  from liger_kernel.transformers.monkey_patch import _apply_liger_kernel
8
9
 
10
+ logger = logging.getLogger(__name__)
11
+
9
12
 
10
13
  def _get_model_config(model_dir, **model_init_kwargs):
11
14
  config = AutoConfig.from_pretrained(model_dir, **model_init_kwargs)
@@ -36,3 +39,21 @@ class AutoLigerKernelForCausalLM(AutoModelForCausalLM):
36
39
  applicable_kwargs = {key: value for key, value in kwargs.items() if key not in apply_fn_signature.parameters}
37
40
 
38
41
  return super().from_pretrained(pretrained_model_name_or_path, *model_args, **applicable_kwargs)
42
+
43
+ @classmethod
44
+ def from_config(cls, config, **kwargs):
45
+ model_type = getattr(config, "model_type", None)
46
+ if not model_type:
47
+ logger.info("Model type could not be determined from model config. No Liger kernels will be applied.")
48
+ return
49
+ model_type = config.model_type
50
+
51
+ _apply_liger_kernel(model_type, **kwargs)
52
+
53
+ # Filter out kwargs that were passed to the apply_liger_* function, which will cause
54
+ # model initialization errors otherwise
55
+ apply_fn = MODEL_TYPE_TO_APPLY_LIGER_FN[model_type]
56
+ apply_fn_signature = inspect.signature(apply_fn)
57
+ applicable_kwargs = {key: value for key, value in kwargs.items() if key not in apply_fn_signature.parameters}
58
+
59
+ return super().from_config(config, **applicable_kwargs)
@@ -2,7 +2,8 @@ from typing import Optional
2
2
 
3
3
  import torch
4
4
 
5
- from liger_kernel.ops.cross_entropy import LigerCrossEntropyFunction
5
+ from liger_kernel.ops import LigerCrossEntropyFunction
6
+ from liger_kernel.transformers.functional import CrossEntropyOutput
6
7
 
7
8
 
8
9
  class LigerCrossEntropyLoss(torch.nn.Module):
@@ -15,6 +16,7 @@ class LigerCrossEntropyLoss(torch.nn.Module):
15
16
  reduction: str = "mean",
16
17
  softcap: Optional[float] = None,
17
18
  return_z_loss: bool = False,
19
+ return_token_accuracy: bool = False,
18
20
  ):
19
21
  super().__init__()
20
22
  assert (label_smoothing >= 0) and (label_smoothing <= 1), (
@@ -33,9 +35,10 @@ class LigerCrossEntropyLoss(torch.nn.Module):
33
35
  self.reduction = reduction
34
36
  self.softcap = softcap
35
37
  self.return_z_loss = return_z_loss
38
+ self.return_token_accuracy = return_token_accuracy
36
39
 
37
40
  def forward(self, _input: torch.Tensor, target: torch.Tensor):
38
- loss, z_loss = LigerCrossEntropyFunction.apply(
41
+ loss, z_loss, token_accuracy = LigerCrossEntropyFunction.apply(
39
42
  _input,
40
43
  target,
41
44
  self.weight,
@@ -45,7 +48,9 @@ class LigerCrossEntropyLoss(torch.nn.Module):
45
48
  self.reduction,
46
49
  self.softcap,
47
50
  self.return_z_loss,
51
+ self.return_token_accuracy,
48
52
  )
49
- if not self.return_z_loss:
53
+ if not self.return_z_loss and not self.return_token_accuracy:
50
54
  return loss
51
- return loss, z_loss
55
+
56
+ return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
@@ -1,20 +1,22 @@
1
1
  import torch
2
2
  import torch.nn as nn
3
3
 
4
- from liger_kernel.ops.dyt import LigerDyTFunction
4
+ from liger_kernel.ops import LigerDyTFunction
5
5
 
6
6
 
7
7
  class LigerDyT(nn.Module):
8
- def __init__(self, hidden_size, init_alpha=0.5):
8
+ def __init__(self, hidden_size, beta=True, init_alpha=0.5):
9
9
  super().__init__()
10
10
  self.hidden_size = hidden_size
11
11
  self.init_alpha = init_alpha
12
12
  self.alpha = nn.Parameter(torch.ones(1) * init_alpha)
13
13
  self.gamma = nn.Parameter(torch.ones(hidden_size))
14
- self.beta = nn.Parameter(torch.zeros(hidden_size))
14
+ self.beta = None
15
+ if beta:
16
+ self.beta = nn.Parameter(torch.zeros(hidden_size))
15
17
 
16
18
  def forward(self, x):
17
19
  return LigerDyTFunction.apply(x, self.alpha, self.gamma, self.beta)
18
20
 
19
21
  def extra_repr(self):
20
- return f"{self.hidden_size}, init_alpha={self.init_alpha}"
22
+ return f"{self.hidden_size}, init_alpha={self.init_alpha}, beta={self.beta}"
@@ -0,0 +1,5 @@
1
+ from liger_kernel.transformers.experimental.embedding import LigerEmbedding # noqa: F401
2
+
3
+ __all__ = [
4
+ "LigerEmbedding",
5
+ ]
@@ -3,7 +3,7 @@ from typing import Optional
3
3
  import torch
4
4
  import torch.nn as nn
5
5
 
6
- from liger_kernel.ops.experimental.embedding import LigerEmbeddingFunction
6
+ from liger_kernel.ops import LigerEmbeddingFunction
7
7
 
8
8
 
9
9
  class LigerEmbedding(nn.Module):
@@ -0,0 +1,55 @@
1
+ from typing import Any
2
+ from typing import Callable
3
+
4
+ from torch.distributed.fsdp import FullyShardedDataParallel
5
+
6
+
7
+ class _FSDPForwardRedirection:
8
+ """
9
+ Modified based on
10
+ https://github.com/Lightning-AI/pytorch-lightning/blob/d3f9c83d6efa4f1def36aa6c199600946cdb9117/src/lightning/pytorch/strategies/strategy.py#L601-L648
11
+ Redirect a method call through FullyShardedDataParallel.forward so that the FSDP module's root pre-forward and
12
+ post-forward can be properly executed around the method call.
13
+ This is needed in cases where we call a submodule of a FSDP module. For instance, when we want to call only
14
+ the `LlamaModel` part out of a FSDP-wrapped `LlamaForCausalLM` to get the hidden states without involving
15
+ GPU-memory-heavy `lm_head` and cross entropy computation, doing this directly (i.e. `model.model.forward()`)
16
+ will not work because the first `nn.Embedding` layer is not independently wrapped as a FSDP module (because of
17
+ the transformer-based wrapping policy), and not calling it through FSDP root module forward will not all-gather
18
+ its parameter, thus resulting in "RuntimeError: 'weight' must be 2-D" error. Similarly, if we want to call just
19
+ the `lm_head` part of a model, we need this trick too to properly get its params all-gathered.
20
+ """
21
+
22
+ def __call__(
23
+ self,
24
+ wrapper_module: FullyShardedDataParallel,
25
+ method: Callable,
26
+ *args: Any,
27
+ **kwargs: Any,
28
+ ):
29
+ """Reroutes a method call through the `wrapper_module`'s `forward` method.
30
+ Args:
31
+ wrapper_module: The module that has `original_module` wrapped.
32
+ original_module: The module that was wrapped inside `wrapper_module`.
33
+ method_name: The name of the method that should be called on the `original_module` after inputs get
34
+ redirected through the `wrapper_module`'s `forward` method.
35
+ *args: The positional arguments to the method `method_name`. They will get passed to a patched
36
+ `forward` method instead.
37
+ **kwargs: The keyword arguments to the method `method_name`. They will get passed to a patched
38
+ `forward` method instead.
39
+ """
40
+ assert isinstance(wrapper_module, FullyShardedDataParallel)
41
+ original_module = wrapper_module._fsdp_wrapped_module
42
+ original_forward = original_module.forward
43
+
44
+ def wrapped_forward(*_args: Any, **_kwargs: Any) -> Any:
45
+ # Unpatch ourselves immediately before calling the method `method_name`
46
+ # because itself may want to call the real `forward`
47
+ original_module.forward = original_forward # type: ignore[method-assign]
48
+ # Call the actual method e.g. `.training_step(...)`
49
+ out = method(*_args, **_kwargs)
50
+ return out
51
+
52
+ # Patch the original_module's forward so we can redirect the arguments back to the real method
53
+ original_module.forward = wrapped_forward # type: ignore[method-assign]
54
+ wrapper_output = wrapper_module(*args, **kwargs)
55
+ return wrapper_output
@@ -1,19 +1,35 @@
1
+ from dataclasses import dataclass
1
2
  from typing import Optional
2
3
 
3
- from liger_kernel.ops.cross_entropy import LigerCrossEntropyFunction
4
- from liger_kernel.ops.dyt import LigerDyTFunction
5
- from liger_kernel.ops.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyFunction
6
- from liger_kernel.ops.fused_linear_jsd import LigerFusedLinearJSDFunction
7
- from liger_kernel.ops.geglu import LigerGELUMulFunction
8
- from liger_kernel.ops.group_norm import LigerGroupNormFunction
9
- from liger_kernel.ops.jsd import LigerJSDFunction
10
- from liger_kernel.ops.kl_div import LigerKLDivLossFunction
11
- from liger_kernel.ops.layer_norm import LigerLayerNormFunction
12
- from liger_kernel.ops.qwen2vl_mrope import LigerQwen2VLMRopeFunction
13
- from liger_kernel.ops.rms_norm import LigerRMSNormFunction
14
- from liger_kernel.ops.rope import LigerRopeFunction
15
- from liger_kernel.ops.swiglu import LigerSiLUMulFunction
16
- from liger_kernel.ops.tvd import LigerTVDLossFunction
4
+ import torch
5
+
6
+ from liger_kernel.ops import LigerCrossEntropyFunction
7
+ from liger_kernel.ops import LigerDyTFunction
8
+ from liger_kernel.ops import LigerFusedAddRMSNormFunction
9
+ from liger_kernel.ops import LigerFusedLinearCrossEntropyFunction
10
+ from liger_kernel.ops import LigerFusedLinearJSDFunction
11
+ from liger_kernel.ops import LigerFusedNeighborhoodAttentionFunction
12
+ from liger_kernel.ops import LigerGELUMulFunction
13
+ from liger_kernel.ops import LigerGroupNormFunction
14
+ from liger_kernel.ops import LigerJSDFunction
15
+ from liger_kernel.ops import LigerKLDivLossFunction
16
+ from liger_kernel.ops import LigerLayerNormFunction
17
+ from liger_kernel.ops import LigerMultiTokenAttentionFunction
18
+ from liger_kernel.ops import LigerPolyNormFunction
19
+ from liger_kernel.ops import LigerQwen2VLMRopeFunction
20
+ from liger_kernel.ops import LigerRMSNormFunction
21
+ from liger_kernel.ops import LigerRopeFunction
22
+ from liger_kernel.ops import LigerSiLUMulFunction
23
+ from liger_kernel.ops import LigerSoftmaxFunction
24
+ from liger_kernel.ops import LigerSparsemaxFunction
25
+ from liger_kernel.ops import LigerTVDLossFunction
26
+
27
+
28
+ @dataclass
29
+ class CrossEntropyOutput:
30
+ loss: torch.Tensor
31
+ z_loss: Optional[torch.Tensor] = None
32
+ token_accuracy: Optional[torch.Tensor] = None
17
33
 
18
34
 
19
35
  # conform to the function signature in https://pytorch.org/docs/stable/generated/torch.nn.functional.cross_entropy.html
@@ -30,8 +46,9 @@ def liger_cross_entropy(
30
46
  lse_square_scale: float = 0.0,
31
47
  softcap: Optional[float] = None,
32
48
  return_z_loss: bool = False,
49
+ return_token_accuracy: bool = False,
33
50
  ):
34
- loss, z_loss = LigerCrossEntropyFunction.apply(
51
+ loss, z_loss, token_accuracy = LigerCrossEntropyFunction.apply(
35
52
  input,
36
53
  target,
37
54
  weight,
@@ -41,10 +58,13 @@ def liger_cross_entropy(
41
58
  reduction,
42
59
  softcap,
43
60
  return_z_loss,
61
+ return_token_accuracy,
44
62
  )
45
- if not return_z_loss:
63
+
64
+ if not return_z_loss and not return_token_accuracy:
46
65
  return loss
47
- return loss, z_loss
66
+
67
+ return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
48
68
 
49
69
 
50
70
  def liger_fused_linear_cross_entropy(
@@ -59,8 +79,11 @@ def liger_fused_linear_cross_entropy(
59
79
  reduction: str = "mean",
60
80
  softcap: Optional[float] = None,
61
81
  return_z_loss: bool = False,
82
+ accum_dtype=None,
83
+ use_token_scaling: bool = False,
84
+ return_token_accuracy: bool = False,
62
85
  ):
63
- loss, z_loss = LigerFusedLinearCrossEntropyFunction.apply(
86
+ loss, z_loss, token_accuracy = LigerFusedLinearCrossEntropyFunction.apply(
64
87
  input,
65
88
  weight,
66
89
  target,
@@ -72,10 +95,15 @@ def liger_fused_linear_cross_entropy(
72
95
  reduction,
73
96
  softcap,
74
97
  return_z_loss,
98
+ accum_dtype,
99
+ use_token_scaling,
100
+ return_token_accuracy,
75
101
  )
76
- if not return_z_loss:
102
+
103
+ if not return_z_loss and not return_token_accuracy:
77
104
  return loss
78
- return loss, z_loss
105
+
106
+ return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
79
107
 
80
108
 
81
109
  def liger_fused_linear_jsd(
@@ -159,6 +187,68 @@ def liger_kl_div(
159
187
  )
160
188
 
161
189
 
190
+ def liger_sparsemax(
191
+ input,
192
+ dim: int = -1,
193
+ ):
194
+ return LigerSparsemaxFunction.apply(input, dim)
195
+
196
+
197
+ def liger_multi_token_attention(
198
+ scores,
199
+ weight,
200
+ bias=None,
201
+ stride: int = 1,
202
+ padding: int = 0,
203
+ dilation: int = 1,
204
+ groups: int = 1,
205
+ sparse: bool = False,
206
+ ):
207
+ """
208
+ Functional interface for multi-token attention.
209
+
210
+ Args:
211
+ scores: Input tensor of shape (B, C_in, L, L)
212
+ weight: Convolution weight tensor of shape (C_out, C_in // groups, K, K)
213
+ bias: Optional bias tensor of shape (C_out,)
214
+ stride: Stride for the convolution (default: 1)
215
+ padding: Padding for the convolution (default: 0)
216
+ dilation: Dilation factor for the convolution (default: 1)
217
+ groups: Number of groups for the convolution (default: 1)
218
+ sparse: Specifies if input tensors are expected to be sparse (default: False)
219
+ Returns:
220
+ Output tensor after applying multi-token attention.
221
+ """
222
+ return LigerMultiTokenAttentionFunction.apply(scores, weight, bias, stride, padding, dilation, groups, sparse)
223
+
224
+
225
+ def liger_fused_neighborhood_attention(
226
+ query,
227
+ key,
228
+ value,
229
+ kernel_size: int = 7,
230
+ dilation: int = 1,
231
+ scale: float = None,
232
+ ):
233
+ """
234
+ Liger fused neighborhood attention.
235
+
236
+ paper: https://arxiv.org/pdf/2504.16922
237
+
238
+ Args:
239
+ query: Query tensor of shape [batch_size, num_heads, seq_len, head_dim]
240
+ key: Key tensor of shape [batch_size, num_heads, seq_len, head_dim]
241
+ value: Value tensor of shape [batch_size, num_heads, seq_len, head_dim]
242
+ kernel_size: Size of the neighborhood window (default: 7)
243
+ dilation: Dilation factor for the neighborhood (default: 1)
244
+ scale: Scaling factor for attention scores (default: rsqrt(head_dim))
245
+
246
+ Returns:
247
+ Output tensor of shape [batch_size, num_heads, seq_len, head_dim]
248
+ """
249
+ return LigerFusedNeighborhoodAttentionFunction.apply(query, key, value, kernel_size, dilation, scale)
250
+
251
+
162
252
  def liger_tvd(
163
253
  input,
164
254
  target,
@@ -187,6 +277,14 @@ def liger_rms_norm(X, W, eps, offset: float = 0.0, casting_mode: str = "llama",
187
277
  return LigerRMSNormFunction.apply(X, W, eps, offset, casting_mode, in_place)
188
278
 
189
279
 
280
+ def liger_poly_norm(X, W, B, eps=1e-6, in_place=True):
281
+ return LigerPolyNormFunction.apply(X, W, B, eps, in_place)
282
+
283
+
284
+ def liger_fused_add_rms_norm(X, R, W, eps, offset: float = 0.0, casting_mode: str = "llama", in_place: bool = True):
285
+ return LigerFusedAddRMSNormFunction.apply(X, R, W, eps, offset, casting_mode, in_place)
286
+
287
+
190
288
  def liger_rope(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
191
289
  return LigerRopeFunction.apply(q, k, cos, sin, position_ids, unsqueeze_dim)
192
290
 
@@ -195,5 +293,9 @@ def liger_swiglu(a, b):
195
293
  return LigerSiLUMulFunction.apply(a, b)
196
294
 
197
295
 
296
+ def liger_softmax(x):
297
+ return LigerSoftmaxFunction.apply(x)
298
+
299
+
198
300
  def liger_dyt(x, alpha, gamma, beta):
199
301
  return LigerDyTFunction.apply(x, alpha, gamma, beta)
@@ -0,0 +1,39 @@
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ from liger_kernel.ops import LigerFusedAddRMSNormFunction
5
+
6
+
7
+ class LigerFusedAddRMSNorm(nn.Module):
8
+ def __init__(
9
+ self,
10
+ hidden_size,
11
+ eps=1e-6,
12
+ offset=0.0,
13
+ casting_mode="llama",
14
+ init_fn="ones",
15
+ in_place=False,
16
+ ):
17
+ super().__init__()
18
+ assert init_fn in [
19
+ "ones",
20
+ "zeros",
21
+ ], f"init_fn must be either 'ones' or 'zeros', got {init_fn}"
22
+ self.weight = nn.Parameter(torch.ones(hidden_size) if init_fn == "ones" else torch.zeros(hidden_size))
23
+ self.variance_epsilon, self.offset, self.casting_mode, self.in_place = (eps, offset, casting_mode, in_place)
24
+
25
+ def forward(self, hidden_states, residual):
26
+ return LigerFusedAddRMSNormFunction.apply(
27
+ hidden_states,
28
+ residual,
29
+ self.weight,
30
+ self.variance_epsilon,
31
+ self.offset,
32
+ self.casting_mode,
33
+ self.in_place,
34
+ )
35
+
36
+ def extra_repr(self):
37
+ return (
38
+ f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}, offset={self.offset}, in_place={self.in_place}"
39
+ )