liger-kernel-nightly 0.5.5.dev20250402185702__py3-none-any.whl → 0.6.4.dev20260112233432__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of liger-kernel-nightly might be problematic. Click here for more details.

Files changed (115) hide show
  1. liger_kernel/chunked_loss/__init__.py +1 -0
  2. liger_kernel/chunked_loss/cosine_similarity_loss.py +142 -0
  3. liger_kernel/chunked_loss/dpo_loss.py +61 -3
  4. liger_kernel/chunked_loss/functional.py +2 -0
  5. liger_kernel/chunked_loss/fused_linear_distillation.py +23 -5
  6. liger_kernel/chunked_loss/fused_linear_ppo.py +36 -0
  7. liger_kernel/chunked_loss/fused_linear_preference.py +0 -1
  8. liger_kernel/chunked_loss/grpo_loss.py +76 -5
  9. liger_kernel/chunked_loss/jsd_loss.py +46 -15
  10. liger_kernel/ops/__init__.py +141 -0
  11. liger_kernel/ops/backends/README.md +151 -0
  12. liger_kernel/ops/backends/__init__.py +13 -0
  13. liger_kernel/ops/backends/_ascend/__init__.py +5 -0
  14. liger_kernel/ops/backends/_ascend/ascend-ub-manager-design.md +485 -0
  15. liger_kernel/ops/backends/_ascend/ops/__init__.py +49 -0
  16. liger_kernel/ops/backends/_ascend/ops/geglu.py +266 -0
  17. liger_kernel/ops/backends/_ascend/ops/qwen2vl_mrope.py +285 -0
  18. liger_kernel/ops/backends/_ascend/ops/rope.py +290 -0
  19. liger_kernel/ops/backends/_ascend/ops/swiglu.py +142 -0
  20. liger_kernel/ops/backends/_ascend/ops/tvd.py +221 -0
  21. liger_kernel/ops/backends/_ascend/ub_manager.py +349 -0
  22. liger_kernel/ops/backends/registry.py +61 -0
  23. liger_kernel/ops/cross_entropy.py +134 -65
  24. liger_kernel/ops/dyt.py +115 -180
  25. liger_kernel/ops/fused_add_rms_norm.py +416 -0
  26. liger_kernel/ops/fused_linear_cross_entropy.py +117 -23
  27. liger_kernel/ops/fused_neighborhood_attention.py +1022 -0
  28. liger_kernel/ops/geglu.py +6 -4
  29. liger_kernel/ops/group_norm.py +7 -7
  30. liger_kernel/ops/grpo_loss.py +312 -0
  31. liger_kernel/ops/jsd.py +2 -1
  32. liger_kernel/ops/kl_div.py +9 -5
  33. liger_kernel/ops/layer_norm.py +146 -78
  34. liger_kernel/ops/llama4_rope.py +225 -0
  35. liger_kernel/ops/multi_token_attention.py +207 -0
  36. liger_kernel/ops/poly_norm.py +390 -0
  37. liger_kernel/ops/rms_norm.py +398 -99
  38. liger_kernel/ops/rope.py +1 -1
  39. liger_kernel/ops/softmax.py +201 -0
  40. liger_kernel/ops/sparsemax.py +179 -0
  41. liger_kernel/ops/swiglu.py +1 -1
  42. liger_kernel/ops/tiled_mlp.py +136 -0
  43. liger_kernel/ops/utils.py +14 -0
  44. liger_kernel/transformers/__init__.py +208 -17
  45. liger_kernel/transformers/auto_model.py +21 -0
  46. liger_kernel/transformers/cross_entropy.py +9 -4
  47. liger_kernel/transformers/dyt.py +6 -4
  48. liger_kernel/transformers/experimental/__init__.py +5 -0
  49. liger_kernel/transformers/experimental/embedding.py +1 -1
  50. liger_kernel/transformers/fsdp.py +55 -0
  51. liger_kernel/transformers/functional.py +122 -20
  52. liger_kernel/transformers/fused_add_rms_norm.py +39 -0
  53. liger_kernel/transformers/fused_linear_cross_entropy.py +16 -5
  54. liger_kernel/transformers/fused_linear_jsd.py +1 -1
  55. liger_kernel/transformers/fused_neighborhood_attention.py +234 -0
  56. liger_kernel/transformers/geglu.py +1 -1
  57. liger_kernel/transformers/group_norm.py +1 -1
  58. liger_kernel/transformers/grpo_loss.py +153 -0
  59. liger_kernel/transformers/jsd.py +1 -1
  60. liger_kernel/transformers/kl_div.py +1 -1
  61. liger_kernel/transformers/layer_norm.py +1 -1
  62. liger_kernel/transformers/llama4_rope.py +93 -0
  63. liger_kernel/transformers/model/exaone4.py +136 -0
  64. liger_kernel/transformers/model/falcon_h1.py +122 -0
  65. liger_kernel/transformers/model/gemma.py +57 -27
  66. liger_kernel/transformers/model/gemma2.py +65 -28
  67. liger_kernel/transformers/model/gemma3.py +331 -0
  68. liger_kernel/transformers/model/glm4.py +141 -0
  69. liger_kernel/transformers/model/glm4v.py +163 -0
  70. liger_kernel/transformers/model/glm4v_moe.py +172 -0
  71. liger_kernel/transformers/model/gpt_oss.py +211 -0
  72. liger_kernel/transformers/model/hunyuan_v1.py +134 -0
  73. liger_kernel/transformers/model/internvl.py +157 -0
  74. liger_kernel/transformers/model/llama.py +109 -27
  75. liger_kernel/transformers/model/llama4.py +121 -0
  76. liger_kernel/transformers/model/llava.py +111 -136
  77. liger_kernel/transformers/model/loss_utils.py +50 -12
  78. liger_kernel/transformers/model/mistral.py +51 -34
  79. liger_kernel/transformers/model/mixtral.py +50 -29
  80. liger_kernel/transformers/model/mllama.py +46 -24
  81. liger_kernel/transformers/model/olmo2.py +47 -22
  82. liger_kernel/transformers/model/olmo3.py +142 -0
  83. liger_kernel/transformers/model/output_classes.py +147 -0
  84. liger_kernel/transformers/model/paligemma.py +50 -14
  85. liger_kernel/transformers/model/phi3.py +47 -172
  86. liger_kernel/transformers/model/qwen2.py +55 -23
  87. liger_kernel/transformers/model/qwen2_5_vl.py +62 -103
  88. liger_kernel/transformers/model/qwen2_vl.py +59 -108
  89. liger_kernel/transformers/model/qwen3.py +136 -0
  90. liger_kernel/transformers/model/qwen3_moe.py +152 -0
  91. liger_kernel/transformers/model/qwen3_next.py +146 -0
  92. liger_kernel/transformers/model/qwen3_vl.py +150 -0
  93. liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
  94. liger_kernel/transformers/model/smollm3.py +199 -0
  95. liger_kernel/transformers/model/smolvlm.py +158 -0
  96. liger_kernel/transformers/monkey_patch.py +2018 -244
  97. liger_kernel/transformers/multi_token_attention.py +64 -0
  98. liger_kernel/transformers/poly_norm.py +42 -0
  99. liger_kernel/transformers/qwen2vl_mrope.py +1 -1
  100. liger_kernel/transformers/rms_norm.py +54 -6
  101. liger_kernel/transformers/rope.py +45 -1
  102. liger_kernel/transformers/softmax.py +12 -0
  103. liger_kernel/transformers/sparsemax.py +16 -0
  104. liger_kernel/transformers/swiglu.py +39 -1
  105. liger_kernel/transformers/tiled_mlp.py +125 -0
  106. liger_kernel/transformers/trainer/orpo_trainer.py +1 -53
  107. liger_kernel/transformers/tvd.py +1 -1
  108. liger_kernel/utils.py +63 -0
  109. {liger_kernel_nightly-0.5.5.dev20250402185702.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/METADATA +73 -39
  110. liger_kernel_nightly-0.6.4.dev20260112233432.dist-info/RECORD +132 -0
  111. liger_kernel_nightly-0.5.5.dev20250402185702.dist-info/RECORD +0 -80
  112. {liger_kernel_nightly-0.5.5.dev20250402185702.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/LICENSE +0 -0
  113. {liger_kernel_nightly-0.5.5.dev20250402185702.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/NOTICE +0 -0
  114. {liger_kernel_nightly-0.5.5.dev20250402185702.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/WHEEL +0 -0
  115. {liger_kernel_nightly-0.5.5.dev20250402185702.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,331 @@
1
+ from typing import Optional
2
+ from typing import Tuple
3
+ from typing import Union
4
+
5
+ import torch
6
+ import torch.nn as nn
7
+
8
+ from transformers.cache_utils import Cache
9
+ from transformers.utils import logging
10
+
11
+ from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
12
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
13
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
14
+ from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
15
+ from liger_kernel.transformers.model.output_classes import LigerGemma3CausalLMOutputWithPast
16
+
17
+ logger = logging.get_logger(__name__)
18
+
19
+
20
+ def causal_forward(
21
+ self,
22
+ input_ids: torch.LongTensor = None,
23
+ attention_mask: Optional[torch.Tensor] = None,
24
+ position_ids: Optional[torch.LongTensor] = None,
25
+ past_key_values: Optional[Cache] = None,
26
+ inputs_embeds: Optional[torch.FloatTensor] = None,
27
+ labels: Optional[torch.LongTensor] = None,
28
+ use_cache: Optional[bool] = None,
29
+ output_attentions: Optional[bool] = None,
30
+ output_hidden_states: Optional[bool] = None,
31
+ return_dict: Optional[bool] = None,
32
+ cache_position: Optional[torch.LongTensor] = None,
33
+ logits_to_keep: Union[int, torch.Tensor] = 0,
34
+ skip_logits: Optional[bool] = None,
35
+ **loss_kwargs,
36
+ ) -> Union[Tuple, LigerCausalLMOutputWithPast]:
37
+ r"""
38
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
39
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
40
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
41
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
42
+
43
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
44
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
45
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
46
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
47
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
48
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
49
+
50
+ Returns:
51
+
52
+ Example:
53
+
54
+ ```python
55
+ >>> from transformers import AutoTokenizer, Gemma3ForCausalLM
56
+
57
+ >>> model = Gemma3ForCausalLM.from_pretrained("google/gemma-2-9b")
58
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")
59
+
60
+ >>> prompt = "What is your favorite condiment?"
61
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
62
+
63
+ >>> # Generate
64
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
65
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
66
+ "What is your favorite condiment?"
67
+ ```"""
68
+
69
+ if self.training and self.config._attn_implementation != "eager":
70
+ logger.warning_once(
71
+ "It is strongly recommended to train Gemma3 models with the `eager` attention implementation "
72
+ f"instead of `{self.config._attn_implementation}`. Use `eager` with `AutoModelForCausalLM.from_pretrained('<path-to-checkpoint>', attn_implementation='eager')`."
73
+ )
74
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
75
+ output_hidden_states = (
76
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
77
+ )
78
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
79
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
80
+ outputs = self.model(
81
+ input_ids=input_ids,
82
+ attention_mask=attention_mask,
83
+ position_ids=position_ids,
84
+ past_key_values=past_key_values,
85
+ inputs_embeds=inputs_embeds,
86
+ use_cache=use_cache,
87
+ output_attentions=output_attentions,
88
+ output_hidden_states=output_hidden_states,
89
+ return_dict=return_dict,
90
+ cache_position=cache_position,
91
+ **loss_kwargs,
92
+ )
93
+
94
+ hidden_states = outputs[0]
95
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
96
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
97
+ kept_hidden_states = hidden_states[:, slice_indices, :]
98
+ shift_labels = loss_kwargs.pop("shift_labels", None)
99
+ loss = None
100
+ logits = None
101
+ token_accuracy = None
102
+
103
+ if skip_logits is None:
104
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
105
+
106
+ # Compute loss
107
+ if skip_logits:
108
+ result = LigerForCausalLMLoss(
109
+ hidden_states=kept_hidden_states,
110
+ lm_head_weight=self.lm_head.weight,
111
+ labels=labels,
112
+ shift_labels=shift_labels,
113
+ hidden_size=self.config.hidden_size,
114
+ final_logit_softcapping=self.config.final_logit_softcapping,
115
+ **loss_kwargs,
116
+ )
117
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
118
+ else:
119
+ logits = self.lm_head(kept_hidden_states)
120
+ if self.config.final_logit_softcapping is not None:
121
+ logits = logits / self.config.final_logit_softcapping
122
+ logits = torch.tanh(logits)
123
+ logits = logits * self.config.final_logit_softcapping
124
+ if labels is not None or shift_labels is not None:
125
+ loss = self.loss_function(
126
+ logits=logits,
127
+ labels=labels,
128
+ shift_labels=shift_labels,
129
+ vocab_size=self.vocab_size,
130
+ **loss_kwargs,
131
+ )
132
+
133
+ if not return_dict:
134
+ output_tuple = (logits,) + outputs[1:]
135
+ output_tuple = (loss,) + output_tuple if loss is not None else output_tuple
136
+ output_tuple = output_tuple + (token_accuracy,) if token_accuracy is not None else output_tuple
137
+ return output_tuple
138
+
139
+ # Return custom output class with token_accuracy field
140
+ return LigerCausalLMOutputWithPast(
141
+ loss=loss,
142
+ logits=logits,
143
+ past_key_values=outputs.past_key_values,
144
+ hidden_states=outputs.hidden_states,
145
+ attentions=outputs.attentions,
146
+ token_accuracy=token_accuracy,
147
+ )
148
+
149
+
150
+ def multimodal_forward(
151
+ self,
152
+ input_ids: torch.LongTensor = None,
153
+ pixel_values: torch.FloatTensor = None,
154
+ attention_mask: Optional[torch.Tensor] = None,
155
+ position_ids: Optional[torch.LongTensor] = None,
156
+ past_key_values: Optional[Union[list[torch.FloatTensor], Cache]] = None,
157
+ token_type_ids: Optional[torch.LongTensor] = None,
158
+ cache_position: Optional[torch.LongTensor] = None,
159
+ inputs_embeds: Optional[torch.FloatTensor] = None,
160
+ labels: Optional[torch.LongTensor] = None,
161
+ use_cache: Optional[bool] = None,
162
+ output_attentions: Optional[bool] = None,
163
+ output_hidden_states: Optional[bool] = None,
164
+ return_dict: Optional[bool] = None,
165
+ logits_to_keep: Union[int, torch.Tensor] = 0,
166
+ skip_logits: Optional[bool] = None,
167
+ **lm_kwargs,
168
+ ) -> Union[tuple, LigerGemma3CausalLMOutputWithPast]:
169
+ r"""
170
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
171
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
172
+ config.text_config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
173
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.text_config.vocab_size]`.
174
+
175
+ Example:
176
+
177
+ ```python
178
+ >>> from PIL import Image
179
+ >>> import requests
180
+ >>> from transformers import AutoProcessor, Gemma3ForConditionalGeneration
181
+
182
+ >>> model = Gemma3ForConditionalGeneration.from_pretrained("google/gemma-3-4b-it")
183
+ >>> processor = AutoProcessor.from_pretrained("google/gemma-3-4b-it")
184
+
185
+ >>> messages = [
186
+ ... {
187
+ ... "role": "system",
188
+ ... "content": [
189
+ ... {"type": "text", "text": "You are a helpful assistant."}
190
+ ... ]
191
+ ... },
192
+ ... {
193
+ ... "role": "user", "content": [
194
+ ... {"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"},
195
+ ... {"type": "text", "text": "Where is the cat standing?"},
196
+ ... ]
197
+ ... },
198
+ ... ]
199
+
200
+ >>> inputs = processor.apply_chat_template(
201
+ ... messages,
202
+ ... tokenize=True,
203
+ ... return_dict=True,
204
+ ... return_tensors="pt",
205
+ ... add_generation_prompt=True
206
+ ... )
207
+ >>> # Generate
208
+ >>> generate_ids = model.generate(**inputs)
209
+ >>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
210
+ "user\nYou are a helpful assistant.\n\n\n\n\n\nWhere is the cat standing?\nmodel\nBased on the image, the cat is standing in a snowy area, likely outdoors. It appears to"
211
+ ```
212
+ """
213
+
214
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
215
+ output_hidden_states = (
216
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
217
+ )
218
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
219
+
220
+ outputs = self.model(
221
+ input_ids=input_ids,
222
+ pixel_values=pixel_values,
223
+ token_type_ids=token_type_ids,
224
+ attention_mask=attention_mask,
225
+ position_ids=position_ids,
226
+ past_key_values=past_key_values,
227
+ inputs_embeds=inputs_embeds,
228
+ use_cache=use_cache,
229
+ labels=labels,
230
+ output_attentions=output_attentions,
231
+ output_hidden_states=output_hidden_states,
232
+ return_dict=return_dict,
233
+ cache_position=cache_position,
234
+ **lm_kwargs,
235
+ )
236
+
237
+ shift_labels = lm_kwargs.pop("shift_labels", None)
238
+ hidden_states = outputs[0]
239
+
240
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
241
+ kept_hidden_states = hidden_states[:, slice_indices, :]
242
+
243
+ loss = None
244
+ logits = None
245
+ token_accuracy = None
246
+ if skip_logits and labels is None:
247
+ raise ValueError("skip_logits is True, but labels is None")
248
+
249
+ if skip_logits is None:
250
+ skip_logits = self.training and (labels is not None)
251
+
252
+ if skip_logits:
253
+ shift_hidden_states = kept_hidden_states[..., :-1, :]
254
+ shift_labels = labels[..., 1:]
255
+
256
+ hidden_device = shift_hidden_states.device
257
+ if attention_mask is not None:
258
+ # we use the input attention mask to shift the hidden_states and labels, because it is 2D.
259
+ # we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
260
+ shift_attention_mask = attention_mask[:, -shift_hidden_states.shape[1] :].to(hidden_device)
261
+ shift_hidden_states = shift_hidden_states[shift_attention_mask.to(hidden_device) != 0].contiguous()
262
+ shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous()
263
+ else:
264
+ shift_hidden_states = shift_hidden_states.contiguous()
265
+ shift_labels = shift_labels.contiguous()
266
+
267
+ # Flatten hidden state
268
+ shift_hidden_states = shift_hidden_states.view(-1, self.config.text_config.hidden_size)
269
+ shift_labels = shift_labels.view(-1).to(hidden_device)
270
+
271
+ lce = LigerFusedLinearCrossEntropyLoss()
272
+ result = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
273
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
274
+
275
+ else:
276
+ logits = self.lm_head(kept_hidden_states)
277
+ if labels is not None:
278
+ # Upcast to float if we need to compute the loss to avoid potential precision issues
279
+ logits = logits.float()
280
+ shift_logits = logits[..., :-1, :]
281
+ shift_labels = labels[..., 1:]
282
+ if attention_mask is not None:
283
+ # we use the input attention mask to shift the logits and labels, because it is 2D.
284
+ # we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
285
+ shift_attention_mask = attention_mask[:, -shift_logits.shape[1] :].to(logits.device)
286
+ shift_logits = shift_logits[shift_attention_mask.to(logits.device) != 0].contiguous()
287
+ shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous()
288
+ else:
289
+ shift_logits = shift_logits.contiguous()
290
+ shift_labels = shift_labels.contiguous()
291
+ # Flatten the tokens
292
+ loss_fct = nn.CrossEntropyLoss()
293
+
294
+ flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
295
+ flat_labels = shift_labels.view(-1).to(shift_logits.device)
296
+ loss = loss_fct(flat_logits, flat_labels)
297
+ elif shift_labels is not None:
298
+ # Upcast to float if we need to compute the loss to avoid potential precision issues
299
+ logits = logits.float()
300
+ shift_logits = logits[..., :-1, :]
301
+ if attention_mask is not None:
302
+ # we use the input attention mask to shift the logits and labels, because it is 2D.
303
+ # we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
304
+ shift_attention_mask = attention_mask[:, -shift_logits.shape[1] :].to(logits.device)
305
+ shift_logits = shift_logits[shift_attention_mask.to(logits.device) != 0].contiguous()
306
+ shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous()
307
+ else:
308
+ shift_logits = shift_logits.contiguous()
309
+ shift_labels = shift_labels.contiguous()
310
+ # Flatten the tokens
311
+ loss_fct = nn.CrossEntropyLoss()
312
+
313
+ flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
314
+ flat_labels = shift_labels.view(-1).to(shift_logits.device)
315
+ loss = loss_fct(flat_logits, flat_labels)
316
+
317
+ if not return_dict:
318
+ output = (logits,) + outputs[1:]
319
+ output = (loss,) + output if loss is not None else output
320
+ output = output + (token_accuracy,) if token_accuracy is not None else output
321
+ return output
322
+
323
+ return LigerGemma3CausalLMOutputWithPast(
324
+ loss=loss,
325
+ logits=logits,
326
+ past_key_values=outputs.past_key_values,
327
+ hidden_states=outputs.hidden_states,
328
+ attentions=outputs.attentions,
329
+ image_hidden_states=outputs.image_hidden_states,
330
+ token_accuracy=token_accuracy,
331
+ )
@@ -0,0 +1,141 @@
1
+ from typing import List
2
+ from typing import Optional
3
+ from typing import Tuple
4
+ from typing import Union
5
+
6
+ import torch
7
+
8
+ from transformers.utils.deprecation import deprecate_kwarg
9
+
10
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
11
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
12
+ from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
13
+
14
+
15
+ @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
16
+ def lce_forward(
17
+ self,
18
+ input_ids: torch.LongTensor = None,
19
+ attention_mask: Optional[torch.Tensor] = None,
20
+ position_ids: Optional[torch.LongTensor] = None,
21
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
22
+ inputs_embeds: Optional[torch.FloatTensor] = None,
23
+ labels: Optional[torch.LongTensor] = None,
24
+ use_cache: Optional[bool] = None,
25
+ output_attentions: Optional[bool] = None,
26
+ output_hidden_states: Optional[bool] = None,
27
+ return_dict: Optional[bool] = None,
28
+ cache_position: Optional[torch.LongTensor] = None,
29
+ logits_to_keep: Union[int, torch.Tensor] = 0,
30
+ skip_logits: Optional[bool] = None,
31
+ **kwargs,
32
+ ) -> Union[Tuple, LigerCausalLMOutputWithPast]:
33
+ r"""
34
+ Args:
35
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
36
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
37
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
38
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
39
+
40
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
41
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
42
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
43
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
44
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
45
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
46
+
47
+ Returns:
48
+
49
+ Example:
50
+
51
+ ```python
52
+ >>> from transformers import AutoTokenizer, Glm4ForCausalLM
53
+
54
+ >>> model = Glm4ForCausalLM.from_pretrained("THUDM/GLM-4-9B-0414")
55
+ >>> tokenizer = AutoTokenizer.from_pretrained("THUDM/GLM-4-9B-0414")
56
+
57
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
58
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
59
+
60
+ >>> # Generate
61
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
62
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
63
+ 'Hey, are you conscious? Can you talk to me?\nI’m not sure if you’re conscious of this, but I’m'
64
+ ```
65
+ """
66
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
67
+ output_hidden_states = (
68
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
69
+ )
70
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
71
+
72
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
73
+ outputs = self.model(
74
+ input_ids=input_ids,
75
+ attention_mask=attention_mask,
76
+ position_ids=position_ids,
77
+ past_key_values=past_key_values,
78
+ inputs_embeds=inputs_embeds,
79
+ use_cache=use_cache,
80
+ output_attentions=output_attentions,
81
+ output_hidden_states=output_hidden_states,
82
+ return_dict=return_dict,
83
+ cache_position=cache_position,
84
+ **kwargs,
85
+ )
86
+
87
+ hidden_states = outputs[0]
88
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
89
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
90
+ kept_hidden_states = hidden_states[:, slice_indices, :]
91
+
92
+ shift_labels = kwargs.pop("shift_labels", None)
93
+ logits = None
94
+ loss = None
95
+ token_accuracy = None
96
+
97
+ if skip_logits and labels is None and shift_labels is None:
98
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
99
+
100
+ if skip_logits is None:
101
+ # By default, if in training mode, don't materialize logits
102
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
103
+
104
+ # Compute loss
105
+ if skip_logits:
106
+ result = LigerForCausalLMLoss(
107
+ hidden_states=kept_hidden_states,
108
+ lm_head_weight=self.lm_head.weight,
109
+ labels=labels,
110
+ shift_labels=shift_labels,
111
+ hidden_size=self.config.hidden_size,
112
+ **kwargs,
113
+ )
114
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
115
+
116
+ else:
117
+ logits = self.lm_head(kept_hidden_states)
118
+ if labels is not None or shift_labels is not None:
119
+ loss = self.loss_function(
120
+ logits=logits,
121
+ labels=labels,
122
+ shift_labels=shift_labels,
123
+ vocab_size=self.config.vocab_size,
124
+ **kwargs,
125
+ )
126
+
127
+ if not return_dict:
128
+ output = (logits,) + outputs[1:]
129
+ output = ((loss,) + output) if loss is not None else output
130
+ output = output + (token_accuracy,) if token_accuracy is not None else output
131
+ return output
132
+
133
+ # Return custom output class with token_accuracy field
134
+ return LigerCausalLMOutputWithPast(
135
+ loss=loss,
136
+ logits=logits,
137
+ past_key_values=outputs.past_key_values,
138
+ hidden_states=outputs.hidden_states,
139
+ attentions=outputs.attentions,
140
+ token_accuracy=token_accuracy,
141
+ )
@@ -0,0 +1,163 @@
1
+ from typing import List
2
+ from typing import Optional
3
+ from typing import Tuple
4
+ from typing import Union
5
+
6
+ import torch
7
+
8
+ from transformers.utils.deprecation import deprecate_kwarg
9
+
10
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
11
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
12
+ from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
13
+
14
+
15
+ @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
16
+ def lce_forward(
17
+ self,
18
+ input_ids: torch.LongTensor = None,
19
+ attention_mask: Optional[torch.Tensor] = None,
20
+ position_ids: Optional[torch.LongTensor] = None,
21
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
22
+ inputs_embeds: Optional[torch.FloatTensor] = None,
23
+ labels: Optional[torch.LongTensor] = None,
24
+ use_cache: Optional[bool] = None,
25
+ output_attentions: Optional[bool] = None,
26
+ output_hidden_states: Optional[bool] = None,
27
+ return_dict: Optional[bool] = None,
28
+ cache_position: Optional[torch.LongTensor] = None,
29
+ logits_to_keep: Union[int, torch.Tensor] = 0,
30
+ skip_logits: Optional[bool] = None,
31
+ **kwargs,
32
+ ) -> Union[Tuple, LigerCausalLMOutputWithPast]:
33
+ r"""
34
+ Args:
35
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
36
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
37
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
38
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
39
+
40
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
41
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
42
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
43
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
44
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
45
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
46
+
47
+ Returns:
48
+
49
+ Example:
50
+
51
+ ```python
52
+ >>> from PIL import Image
53
+ >>> from transformers import AutoTokenizer, Glm4vForConditionalGeneration
54
+
55
+ >>> MODEL_PATH = "THUDM/GLM-4.1V-9B-Thinking"
56
+ >>> messages = [
57
+ {
58
+ "role": "user",
59
+ "content": [
60
+ {
61
+ "type": "image",
62
+ "url": "https://upload.wikimedia.org/wikipedia/commons/f/fa/Grayscale_8bits_palette_sample_image.png"
63
+ },
64
+ {
65
+ "type": "text",
66
+ "text": "describe this image"
67
+ }
68
+ ],
69
+ }
70
+ ]
71
+ >>> processor = AutoProcessor.from_pretrained(MODEL_PATH, use_fast=True)
72
+ >>> model = Glm4vForConditionalGeneration.from_pretrained(
73
+ pretrained_model_name_or_path=MODEL_PATH,
74
+ dtype=torch.bfloat16,
75
+ device_map="auto",
76
+ )
77
+ >>> inputs = processor.apply_chat_template(
78
+ messages,
79
+ tokenize=True,
80
+ add_generation_prompt=True,
81
+ return_dict=True,
82
+ return_tensors="pt"
83
+ ).to(model.device)
84
+ >>> generated_ids = model.generate(**inputs, max_new_tokens=8192)
85
+ output_text = processor.decode(generated_ids[0][inputs["input_ids"].shape[1]:], skip_special_tokens=False)
86
+ <think>Got it, let's describe the image. First, there's a vintage car, specifically a Volkswagen Beetle
87
+ ```"""
88
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
89
+ output_hidden_states = (
90
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
91
+ )
92
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
93
+
94
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
95
+ outputs = self.model(
96
+ input_ids=input_ids,
97
+ attention_mask=attention_mask,
98
+ position_ids=position_ids,
99
+ past_key_values=past_key_values,
100
+ inputs_embeds=inputs_embeds,
101
+ use_cache=use_cache,
102
+ output_attentions=output_attentions,
103
+ output_hidden_states=output_hidden_states,
104
+ return_dict=return_dict,
105
+ cache_position=cache_position,
106
+ **kwargs,
107
+ )
108
+
109
+ hidden_states = outputs[0]
110
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
111
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
112
+ kept_hidden_states = hidden_states[:, slice_indices, :]
113
+
114
+ shift_labels = kwargs.pop("shift_labels", None)
115
+ logits = None
116
+ loss = None
117
+ token_accuracy = None
118
+
119
+ if skip_logits and labels is None and shift_labels is None:
120
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
121
+
122
+ if skip_logits is None:
123
+ # By default, if in training mode, don't materialize logits
124
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
125
+
126
+ # Compute loss
127
+ if skip_logits:
128
+ result = LigerForCausalLMLoss(
129
+ hidden_states=kept_hidden_states,
130
+ lm_head_weight=self.lm_head.weight,
131
+ labels=labels,
132
+ shift_labels=shift_labels,
133
+ hidden_size=self.config.hidden_size,
134
+ **kwargs,
135
+ )
136
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
137
+
138
+ else:
139
+ logits = self.lm_head(kept_hidden_states)
140
+ if labels is not None or shift_labels is not None:
141
+ loss = self.loss_function(
142
+ logits=logits,
143
+ labels=labels,
144
+ shift_labels=shift_labels,
145
+ vocab_size=self.config.vocab_size,
146
+ **kwargs,
147
+ )
148
+
149
+ if not return_dict:
150
+ output = (logits,) + outputs[1:]
151
+ output = ((loss,) + output) if loss is not None else output
152
+ output = output + (token_accuracy,) if token_accuracy is not None else output
153
+ return output
154
+
155
+ # Return custom output class with token_accuracy field
156
+ return LigerCausalLMOutputWithPast(
157
+ loss=loss,
158
+ logits=logits,
159
+ past_key_values=outputs.past_key_values,
160
+ hidden_states=outputs.hidden_states,
161
+ attentions=outputs.attentions,
162
+ token_accuracy=token_accuracy,
163
+ )