liger-kernel-nightly 0.5.5.dev20250402185702__py3-none-any.whl → 0.6.4.dev20260112233432__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of liger-kernel-nightly might be problematic. Click here for more details.

Files changed (115) hide show
  1. liger_kernel/chunked_loss/__init__.py +1 -0
  2. liger_kernel/chunked_loss/cosine_similarity_loss.py +142 -0
  3. liger_kernel/chunked_loss/dpo_loss.py +61 -3
  4. liger_kernel/chunked_loss/functional.py +2 -0
  5. liger_kernel/chunked_loss/fused_linear_distillation.py +23 -5
  6. liger_kernel/chunked_loss/fused_linear_ppo.py +36 -0
  7. liger_kernel/chunked_loss/fused_linear_preference.py +0 -1
  8. liger_kernel/chunked_loss/grpo_loss.py +76 -5
  9. liger_kernel/chunked_loss/jsd_loss.py +46 -15
  10. liger_kernel/ops/__init__.py +141 -0
  11. liger_kernel/ops/backends/README.md +151 -0
  12. liger_kernel/ops/backends/__init__.py +13 -0
  13. liger_kernel/ops/backends/_ascend/__init__.py +5 -0
  14. liger_kernel/ops/backends/_ascend/ascend-ub-manager-design.md +485 -0
  15. liger_kernel/ops/backends/_ascend/ops/__init__.py +49 -0
  16. liger_kernel/ops/backends/_ascend/ops/geglu.py +266 -0
  17. liger_kernel/ops/backends/_ascend/ops/qwen2vl_mrope.py +285 -0
  18. liger_kernel/ops/backends/_ascend/ops/rope.py +290 -0
  19. liger_kernel/ops/backends/_ascend/ops/swiglu.py +142 -0
  20. liger_kernel/ops/backends/_ascend/ops/tvd.py +221 -0
  21. liger_kernel/ops/backends/_ascend/ub_manager.py +349 -0
  22. liger_kernel/ops/backends/registry.py +61 -0
  23. liger_kernel/ops/cross_entropy.py +134 -65
  24. liger_kernel/ops/dyt.py +115 -180
  25. liger_kernel/ops/fused_add_rms_norm.py +416 -0
  26. liger_kernel/ops/fused_linear_cross_entropy.py +117 -23
  27. liger_kernel/ops/fused_neighborhood_attention.py +1022 -0
  28. liger_kernel/ops/geglu.py +6 -4
  29. liger_kernel/ops/group_norm.py +7 -7
  30. liger_kernel/ops/grpo_loss.py +312 -0
  31. liger_kernel/ops/jsd.py +2 -1
  32. liger_kernel/ops/kl_div.py +9 -5
  33. liger_kernel/ops/layer_norm.py +146 -78
  34. liger_kernel/ops/llama4_rope.py +225 -0
  35. liger_kernel/ops/multi_token_attention.py +207 -0
  36. liger_kernel/ops/poly_norm.py +390 -0
  37. liger_kernel/ops/rms_norm.py +398 -99
  38. liger_kernel/ops/rope.py +1 -1
  39. liger_kernel/ops/softmax.py +201 -0
  40. liger_kernel/ops/sparsemax.py +179 -0
  41. liger_kernel/ops/swiglu.py +1 -1
  42. liger_kernel/ops/tiled_mlp.py +136 -0
  43. liger_kernel/ops/utils.py +14 -0
  44. liger_kernel/transformers/__init__.py +208 -17
  45. liger_kernel/transformers/auto_model.py +21 -0
  46. liger_kernel/transformers/cross_entropy.py +9 -4
  47. liger_kernel/transformers/dyt.py +6 -4
  48. liger_kernel/transformers/experimental/__init__.py +5 -0
  49. liger_kernel/transformers/experimental/embedding.py +1 -1
  50. liger_kernel/transformers/fsdp.py +55 -0
  51. liger_kernel/transformers/functional.py +122 -20
  52. liger_kernel/transformers/fused_add_rms_norm.py +39 -0
  53. liger_kernel/transformers/fused_linear_cross_entropy.py +16 -5
  54. liger_kernel/transformers/fused_linear_jsd.py +1 -1
  55. liger_kernel/transformers/fused_neighborhood_attention.py +234 -0
  56. liger_kernel/transformers/geglu.py +1 -1
  57. liger_kernel/transformers/group_norm.py +1 -1
  58. liger_kernel/transformers/grpo_loss.py +153 -0
  59. liger_kernel/transformers/jsd.py +1 -1
  60. liger_kernel/transformers/kl_div.py +1 -1
  61. liger_kernel/transformers/layer_norm.py +1 -1
  62. liger_kernel/transformers/llama4_rope.py +93 -0
  63. liger_kernel/transformers/model/exaone4.py +136 -0
  64. liger_kernel/transformers/model/falcon_h1.py +122 -0
  65. liger_kernel/transformers/model/gemma.py +57 -27
  66. liger_kernel/transformers/model/gemma2.py +65 -28
  67. liger_kernel/transformers/model/gemma3.py +331 -0
  68. liger_kernel/transformers/model/glm4.py +141 -0
  69. liger_kernel/transformers/model/glm4v.py +163 -0
  70. liger_kernel/transformers/model/glm4v_moe.py +172 -0
  71. liger_kernel/transformers/model/gpt_oss.py +211 -0
  72. liger_kernel/transformers/model/hunyuan_v1.py +134 -0
  73. liger_kernel/transformers/model/internvl.py +157 -0
  74. liger_kernel/transformers/model/llama.py +109 -27
  75. liger_kernel/transformers/model/llama4.py +121 -0
  76. liger_kernel/transformers/model/llava.py +111 -136
  77. liger_kernel/transformers/model/loss_utils.py +50 -12
  78. liger_kernel/transformers/model/mistral.py +51 -34
  79. liger_kernel/transformers/model/mixtral.py +50 -29
  80. liger_kernel/transformers/model/mllama.py +46 -24
  81. liger_kernel/transformers/model/olmo2.py +47 -22
  82. liger_kernel/transformers/model/olmo3.py +142 -0
  83. liger_kernel/transformers/model/output_classes.py +147 -0
  84. liger_kernel/transformers/model/paligemma.py +50 -14
  85. liger_kernel/transformers/model/phi3.py +47 -172
  86. liger_kernel/transformers/model/qwen2.py +55 -23
  87. liger_kernel/transformers/model/qwen2_5_vl.py +62 -103
  88. liger_kernel/transformers/model/qwen2_vl.py +59 -108
  89. liger_kernel/transformers/model/qwen3.py +136 -0
  90. liger_kernel/transformers/model/qwen3_moe.py +152 -0
  91. liger_kernel/transformers/model/qwen3_next.py +146 -0
  92. liger_kernel/transformers/model/qwen3_vl.py +150 -0
  93. liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
  94. liger_kernel/transformers/model/smollm3.py +199 -0
  95. liger_kernel/transformers/model/smolvlm.py +158 -0
  96. liger_kernel/transformers/monkey_patch.py +2018 -244
  97. liger_kernel/transformers/multi_token_attention.py +64 -0
  98. liger_kernel/transformers/poly_norm.py +42 -0
  99. liger_kernel/transformers/qwen2vl_mrope.py +1 -1
  100. liger_kernel/transformers/rms_norm.py +54 -6
  101. liger_kernel/transformers/rope.py +45 -1
  102. liger_kernel/transformers/softmax.py +12 -0
  103. liger_kernel/transformers/sparsemax.py +16 -0
  104. liger_kernel/transformers/swiglu.py +39 -1
  105. liger_kernel/transformers/tiled_mlp.py +125 -0
  106. liger_kernel/transformers/trainer/orpo_trainer.py +1 -53
  107. liger_kernel/transformers/tvd.py +1 -1
  108. liger_kernel/utils.py +63 -0
  109. {liger_kernel_nightly-0.5.5.dev20250402185702.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/METADATA +73 -39
  110. liger_kernel_nightly-0.6.4.dev20260112233432.dist-info/RECORD +132 -0
  111. liger_kernel_nightly-0.5.5.dev20250402185702.dist-info/RECORD +0 -80
  112. {liger_kernel_nightly-0.5.5.dev20250402185702.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/LICENSE +0 -0
  113. {liger_kernel_nightly-0.5.5.dev20250402185702.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/NOTICE +0 -0
  114. {liger_kernel_nightly-0.5.5.dev20250402185702.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/WHEEL +0 -0
  115. {liger_kernel_nightly-0.5.5.dev20250402185702.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/top_level.txt +0 -0
@@ -2,7 +2,8 @@ from typing import Optional
2
2
 
3
3
  import torch
4
4
 
5
- from liger_kernel.ops.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyFunction
5
+ from liger_kernel.ops import LigerFusedLinearCrossEntropyFunction
6
+ from liger_kernel.transformers.functional import CrossEntropyOutput
6
7
 
7
8
 
8
9
  class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
@@ -15,6 +16,9 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
15
16
  reduction: str = "mean",
16
17
  softcap: Optional[float] = None,
17
18
  return_z_loss: bool = False,
19
+ accum_dtype: Optional[torch.dtype] = None,
20
+ use_token_scaling: bool = False,
21
+ return_token_accuracy: bool = False,
18
22
  ):
19
23
  super().__init__()
20
24
  assert (label_smoothing >= 0) and (label_smoothing <= 1), (
@@ -24,7 +28,7 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
24
28
  "mean",
25
29
  "sum",
26
30
  "none",
27
- }, f"reduction must be one of 'mean', 'sum', or 'none'. Got: {reduction}"
31
+ }, f"reduction must be 'mean' or 'sum' or 'none'. Got: {reduction}"
28
32
  assert softcap is None or softcap > 0, f"softcap must greater than 0.0 or None. Got: {softcap}"
29
33
  self.ce_weight = ce_weight
30
34
  self.ignore_index = ignore_index
@@ -33,9 +37,12 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
33
37
  self.reduction = reduction
34
38
  self.softcap = softcap
35
39
  self.return_z_loss = return_z_loss
40
+ self.accum_dtype = accum_dtype
41
+ self.use_token_scaling = use_token_scaling
42
+ self.return_token_accuracy = return_token_accuracy
36
43
 
37
44
  def forward(self, lin_weight, _input, target, bias=None):
38
- loss, z_loss = LigerFusedLinearCrossEntropyFunction.apply(
45
+ loss, z_loss, token_accuracy = LigerFusedLinearCrossEntropyFunction.apply(
39
46
  _input,
40
47
  lin_weight,
41
48
  target,
@@ -47,7 +54,11 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
47
54
  self.reduction,
48
55
  self.softcap,
49
56
  self.return_z_loss,
57
+ self.accum_dtype,
58
+ self.use_token_scaling,
59
+ self.return_token_accuracy,
50
60
  )
51
- if not self.return_z_loss:
61
+ if not self.return_z_loss and not self.return_token_accuracy:
52
62
  return loss
53
- return loss, z_loss
63
+
64
+ return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
@@ -2,7 +2,7 @@ from typing import Optional
2
2
 
3
3
  import torch
4
4
 
5
- from liger_kernel.ops.fused_linear_jsd import LigerFusedLinearJSDFunction
5
+ from liger_kernel.ops import LigerFusedLinearJSDFunction
6
6
 
7
7
 
8
8
  class LigerFusedLinearJSD(torch.nn.Module):
@@ -0,0 +1,234 @@
1
+ import math
2
+
3
+ from typing import Optional
4
+
5
+ import torch
6
+ import torch.nn as nn
7
+
8
+ from liger_kernel.ops import LigerFusedNeighborhoodAttentionFunction
9
+
10
+
11
+ class LigerFusedNeighborhoodAttention(nn.Module):
12
+ """
13
+ Liger Fused Neighborhood Attention Module.
14
+
15
+ Paper: https://arxiv.org/pdf/2504.16922
16
+
17
+ Fused Neighborhood attention restricts the attention mechanism to a local neighborhood
18
+ around each position, reducing computational complexity from O(n²) to O(n*k)
19
+ where k is the neighborhood size.
20
+
21
+ Args:
22
+ hidden_size (int): The hidden dimension size
23
+ num_heads (int): Number of attention heads
24
+ kernel_size (int): Size of the neighborhood window (default: 7)
25
+ dilation (int): Dilation factor for the neighborhood (default: 1)
26
+ bias (bool): Whether to use bias in linear projections (default: True)
27
+ dropout (float): Dropout probability (default: 0.0)
28
+ scale (Optional[float]): Scaling factor for attention scores.
29
+ If None, uses 1/sqrt(head_dim) (default: None)
30
+ """
31
+
32
+ def __init__(
33
+ self,
34
+ hidden_size: int,
35
+ num_heads: int,
36
+ kernel_size: int = 7,
37
+ dilation: int = 1,
38
+ bias: bool = True,
39
+ dropout: float = 0.0,
40
+ scale: Optional[float] = None,
41
+ ):
42
+ super().__init__()
43
+
44
+ if hidden_size % num_heads != 0:
45
+ raise ValueError(f"hidden_size ({hidden_size}) must be divisible by num_heads ({num_heads})")
46
+
47
+ if kernel_size <= 0:
48
+ raise ValueError(f"kernel_size ({kernel_size}) must be positive")
49
+
50
+ if kernel_size % 2 == 0:
51
+ raise ValueError(f"kernel_size ({kernel_size}) must be odd")
52
+
53
+ if dilation < 1:
54
+ raise ValueError(f"dilation ({dilation}) must be positive")
55
+
56
+ self.hidden_size = hidden_size
57
+ self.num_heads = num_heads
58
+ self.head_dim = hidden_size // num_heads
59
+ self.kernel_size = kernel_size
60
+ self.dilation = dilation
61
+ self.scale = scale if scale is not None else 1.0 / math.sqrt(self.head_dim)
62
+ self.dropout_p = dropout
63
+
64
+ self.q_proj = nn.Linear(hidden_size, hidden_size, bias=bias)
65
+ self.k_proj = nn.Linear(hidden_size, hidden_size, bias=bias)
66
+ self.v_proj = nn.Linear(hidden_size, hidden_size, bias=bias)
67
+
68
+ self.out_proj = nn.Linear(hidden_size, hidden_size, bias=bias)
69
+
70
+ if dropout > 0.0:
71
+ self.dropout = nn.Dropout(dropout)
72
+ else:
73
+ self.dropout = None
74
+
75
+ def forward(
76
+ self,
77
+ hidden_states: torch.Tensor,
78
+ attention_mask: Optional[torch.Tensor] = None,
79
+ ) -> torch.Tensor:
80
+ """
81
+ Forward pass of the fused neighborhood attention module.
82
+
83
+ Args:
84
+ hidden_states (torch.Tensor): Input tensor of shape [batch_size, seq_len, hidden_size]
85
+ attention_mask (Optional[torch.Tensor]): Attention mask (currently not supported)
86
+
87
+ Returns:
88
+ torch.Tensor: Output tensor of shape [batch_size, seq_len, hidden_size]
89
+ """
90
+ if attention_mask is not None:
91
+ raise NotImplementedError("Attention mask is not yet supported in LigerFusedNeighborhoodAttention")
92
+
93
+ batch_size, seq_len, hidden_size = hidden_states.shape
94
+
95
+ query = self.q_proj(hidden_states)
96
+ key = self.k_proj(hidden_states)
97
+ value = self.v_proj(hidden_states)
98
+
99
+ query = query.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
100
+ key = key.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
101
+ value = value.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
102
+
103
+ attn_output = LigerFusedNeighborhoodAttentionFunction.apply(
104
+ query, key, value, self.kernel_size, self.dilation, self.scale
105
+ )
106
+
107
+ attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, seq_len, hidden_size)
108
+
109
+ if self.dropout is not None:
110
+ attn_output = self.dropout(attn_output)
111
+
112
+ output = self.out_proj(attn_output)
113
+
114
+ return output
115
+
116
+ def extra_repr(self) -> str:
117
+ return (
118
+ f"hidden_size={self.hidden_size}, num_heads={self.num_heads}, "
119
+ f"head_dim={self.head_dim}, kernel_size={self.kernel_size}, "
120
+ f"dilation={self.dilation}, scale={self.scale}, dropout={self.dropout_p}"
121
+ )
122
+
123
+
124
+ class LigerFusedNeighborhoodAttentionLayer(nn.Module):
125
+ """
126
+ A complete neighborhood attention layer with layer norm and residual connection.
127
+
128
+ Args:
129
+ hidden_size (int): The hidden dimension size
130
+ num_heads (int): Number of attention heads
131
+ kernel_size (int): Size of the neighborhood window (default: 7)
132
+ dilation (int): Dilation factor for the neighborhood (default: 1)
133
+ bias (bool): Whether to use bias in linear projections (default: True)
134
+ dropout (float): Dropout probability (default: 0.0)
135
+ layer_norm_eps (float): Epsilon for layer normalization (default: 1e-5)
136
+ scale (Optional[float]): Scaling factor for attention scores (default: None)
137
+ """
138
+
139
+ def __init__(
140
+ self,
141
+ hidden_size: int,
142
+ num_heads: int,
143
+ kernel_size: int = 7,
144
+ dilation: int = 1,
145
+ bias: bool = True,
146
+ dropout: float = 0.0,
147
+ layer_norm_eps: float = 1e-5,
148
+ scale: Optional[float] = None,
149
+ ):
150
+ super().__init__()
151
+
152
+ self.attention = LigerFusedNeighborhoodAttention(
153
+ hidden_size=hidden_size,
154
+ num_heads=num_heads,
155
+ kernel_size=kernel_size,
156
+ dilation=dilation,
157
+ bias=bias,
158
+ dropout=dropout,
159
+ scale=scale,
160
+ )
161
+
162
+ self.layer_norm = nn.LayerNorm(hidden_size, eps=layer_norm_eps)
163
+
164
+ if dropout > 0.0:
165
+ self.dropout = nn.Dropout(dropout)
166
+ else:
167
+ self.dropout = None
168
+
169
+ def forward(
170
+ self,
171
+ hidden_states: torch.Tensor,
172
+ attention_mask: Optional[torch.Tensor] = None,
173
+ ) -> torch.Tensor:
174
+ """
175
+ Forward pass with residual connection and layer normalization.
176
+
177
+ Args:
178
+ hidden_states (torch.Tensor): Input tensor of shape [batch_size, seq_len, hidden_size]
179
+ attention_mask (Optional[torch.Tensor]): Attention mask (currently not supported)
180
+
181
+ Returns:
182
+ torch.Tensor: Output tensor of shape [batch_size, seq_len, hidden_size]
183
+ """
184
+ normed_hidden_states = self.layer_norm(hidden_states)
185
+
186
+ attn_output = self.attention(normed_hidden_states, attention_mask)
187
+
188
+ if self.dropout is not None:
189
+ attn_output = self.dropout(attn_output)
190
+
191
+ output = hidden_states + attn_output
192
+
193
+ return output
194
+
195
+
196
+ class LigerFusedNeighborhoodAttentionConfig:
197
+ """
198
+ Configuration class for Fused Neighborhood Attention.
199
+
200
+ This can be used to easily configure neighborhood attention parameters
201
+ for different model architectures.
202
+ """
203
+
204
+ def __init__(
205
+ self,
206
+ hidden_size: int = 768,
207
+ num_heads: int = 12,
208
+ kernel_size: int = 7,
209
+ dilation: int = 1,
210
+ bias: bool = True,
211
+ dropout: float = 0.0,
212
+ layer_norm_eps: float = 1e-5,
213
+ scale: Optional[float] = None,
214
+ ):
215
+ self.hidden_size = hidden_size
216
+ self.num_heads = num_heads
217
+ self.kernel_size = kernel_size
218
+ self.dilation = dilation
219
+ self.bias = bias
220
+ self.dropout = dropout
221
+ self.layer_norm_eps = layer_norm_eps
222
+ self.scale = scale
223
+
224
+ def to_dict(self):
225
+ return {
226
+ "hidden_size": self.hidden_size,
227
+ "num_heads": self.num_heads,
228
+ "kernel_size": self.kernel_size,
229
+ "dilation": self.dilation,
230
+ "bias": self.bias,
231
+ "dropout": self.dropout,
232
+ "layer_norm_eps": self.layer_norm_eps,
233
+ "scale": self.scale,
234
+ }
@@ -1,6 +1,6 @@
1
1
  import torch.nn as nn
2
2
 
3
- from liger_kernel.ops.geglu import LigerGELUMulFunction
3
+ from liger_kernel.ops import LigerGELUMulFunction
4
4
 
5
5
 
6
6
  class LigerGEGLUMLP(nn.Module):
@@ -1,7 +1,7 @@
1
1
  import torch
2
2
  import torch.nn as nn
3
3
 
4
- from liger_kernel.ops.group_norm import LigerGroupNormFunction
4
+ from liger_kernel.ops import LigerGroupNormFunction
5
5
 
6
6
 
7
7
  class LigerGroupNorm(nn.Module):
@@ -0,0 +1,153 @@
1
+ import torch
2
+
3
+ from liger_kernel.chunked_loss.fused_linear_ppo import LigerFusedLinearPPOBase
4
+ from liger_kernel.ops import GrpoLossFunction
5
+
6
+
7
+ def triton_grpo_loss(
8
+ logits,
9
+ old_logp,
10
+ ref_logp,
11
+ completion_ids,
12
+ advantages,
13
+ completion_mask=None,
14
+ temperature=0.9,
15
+ beta=0.04,
16
+ eps_low=0.2,
17
+ eps_high=0.4,
18
+ inplace=True,
19
+ loss_type="dapo",
20
+ max_completion_length=None,
21
+ importance_sampling_level="token",
22
+ reduce=False,
23
+ ):
24
+ assert logits is not None and completion_ids is not None and advantages is not None, (
25
+ "must provide logits、completion_ids and advantages"
26
+ )
27
+ if importance_sampling_level != "token":
28
+ raise ValueError(
29
+ f"Triton GRPO loss only supports token-level importance sampling. Got {importance_sampling_level}."
30
+ )
31
+
32
+ per_token_loss, per_token_kl, is_clipped = GrpoLossFunction.apply(
33
+ logits,
34
+ old_logp,
35
+ ref_logp,
36
+ completion_ids,
37
+ advantages,
38
+ completion_mask,
39
+ temperature,
40
+ beta,
41
+ eps_low,
42
+ eps_high,
43
+ inplace,
44
+ )
45
+ if not reduce:
46
+ return per_token_loss, per_token_kl, is_clipped
47
+
48
+ loss = _reduce_grpo_loss(
49
+ per_token_loss,
50
+ completion_mask,
51
+ loss_type=loss_type,
52
+ max_completion_length=max_completion_length,
53
+ )
54
+
55
+ metrics = []
56
+ if beta != 0.0 and per_token_kl is not None:
57
+ metrics.append(_masked_mean(per_token_kl, completion_mask))
58
+ metrics.append(_masked_mean(is_clipped.float(), completion_mask))
59
+ return loss, metrics
60
+
61
+
62
+ def _reduce_grpo_loss(per_token_loss, completion_mask, loss_type, max_completion_length):
63
+ mask = completion_mask
64
+ if mask is None:
65
+ mask = torch.ones_like(per_token_loss, dtype=per_token_loss.dtype, device=per_token_loss.device)
66
+ mask = mask.to(per_token_loss.dtype)
67
+
68
+ if loss_type == "grpo":
69
+ per_seq = (per_token_loss * mask).sum(-1) / mask.sum(-1).clamp(min=1.0)
70
+ return per_seq.mean()
71
+ if loss_type == "bnpo":
72
+ return (per_token_loss * mask).sum() / mask.sum().clamp(min=1.0)
73
+ if loss_type == "dr_grpo":
74
+ if max_completion_length is None:
75
+ raise ValueError("max_completion_length must be provided when using loss_type='dr_grpo'")
76
+ batch = per_token_loss.shape[0]
77
+ return (per_token_loss * mask).sum() / (batch * max_completion_length)
78
+ if loss_type == "dapo":
79
+ normalizer = LigerFusedLinearPPOBase._compute_dapo_normalizer(mask)
80
+ return (per_token_loss * mask).sum() / normalizer
81
+ raise ValueError(f"Unsupported loss_type '{loss_type}' for Triton GRPO loss.")
82
+
83
+
84
+ def _masked_mean(values, mask):
85
+ if mask is None:
86
+ mask = torch.ones_like(values, dtype=values.dtype, device=values.device)
87
+ mask = mask.to(values.dtype)
88
+ return (values * mask).sum() / mask.sum().clamp(min=1.0)
89
+
90
+
91
+ # This is a demo how to use grpo_loss in GRPOTrainer. The Trl version must be 0.16
92
+ """
93
+ import torch
94
+ import trl
95
+ assert trl.__version__.startswith("0.16"), "please pip install trl==0.16"
96
+ from trl.extras.profiling import profiling_decorator
97
+
98
+ @profiling_decorator
99
+ def _get_per_token_logps(self, model, input_ids, attention_mask, logits_to_keep):
100
+ # We add 1 to `logits_to_keep` because the last logits of the sequence is later excluded
101
+ logits = model(input_ids=input_ids, attention_mask=attention_mask, logits_to_keep=logits_to_keep + 1).logits
102
+ return fused_selective_log_softmax(logits, input_ids, self.temperature, mask=attention_mask)
103
+
104
+ @profiling_decorator
105
+ def compute_loss(self, model, inputs, return_outputs=False, num_items_in_batch=None):
106
+ if return_outputs:
107
+ raise ValueError("The GRPOTrainer does not support returning outputs")
108
+ # Compute the per-token log probabilities for the model
109
+
110
+ prompt_ids, prompt_mask = inputs["prompt_ids"], inputs["prompt_mask"]
111
+ completion_ids, completion_mask = inputs["completion_ids"], inputs["completion_mask"]
112
+ input_ids = torch.cat([prompt_ids, completion_ids], dim=1)
113
+ attention_mask = torch.cat([prompt_mask, completion_mask], dim=1)
114
+ logits_to_keep = completion_ids.size(1) # we only need to compute the logits for the completion tokens
115
+ logits = model(input_ids=input_ids, attention_mask=attention_mask, logits_to_keep=logits_to_keep + 1).logits
116
+
117
+ ref_per_token_logps = inputs["ref_per_token_logps"]
118
+ advantages = inputs["advantages"]
119
+ old_per_token_logps = inputs["old_per_token_logps"]
120
+
121
+
122
+ per_token_loss, per_token_kl, is_clipped = triton_grpo_loss(logits,
123
+ old_per_token_logps,
124
+ ref_per_token_logps,
125
+ completion_ids,
126
+ advantages,
127
+ completion_mask,
128
+ self.temperature,
129
+ self.beta,
130
+ self.epsilon_low,
131
+ self.epsilon_high,)
132
+ loss = (per_token_loss * completion_mask).sum() / completion_mask.sum()
133
+
134
+ # Log the metrics
135
+ mode = "eval" if self.control.should_evaluate else "train"
136
+
137
+ if self.beta != 0.0:
138
+ mean_kl = (per_token_kl * completion_mask).sum() / completion_mask.sum()
139
+ self._metrics[mode]["kl"].append(self.accelerator.gather_for_metrics(mean_kl).mean().item())
140
+
141
+ clip_ratio = (is_clipped * completion_mask).sum() / completion_mask.sum()
142
+ self._metrics[mode]["clip_ratio"].append(self.accelerator.gather_for_metrics(clip_ratio).mean().item())
143
+ return loss
144
+
145
+ trl.GRPOTrainer._get_per_token_logps = _get_per_token_logps
146
+ trl.GRPOTrainer.compute_loss = compute_loss
147
+ trigger = None
148
+ """
149
+
150
+ # add this line at the first line of grpo.py in open-r1
151
+ """
152
+ from liger_kernel.transformers.grpo_loss import trigger
153
+ """
@@ -2,7 +2,7 @@ from typing import Optional
2
2
 
3
3
  import torch
4
4
 
5
- from liger_kernel.ops.jsd import LigerJSDFunction
5
+ from liger_kernel.ops import LigerJSDFunction
6
6
 
7
7
 
8
8
  class LigerJSD(torch.nn.Module):
@@ -1,6 +1,6 @@
1
1
  import torch.nn as nn
2
2
 
3
- from liger_kernel.ops.kl_div import LigerKLDivLossFunction
3
+ from liger_kernel.ops import LigerKLDivLossFunction
4
4
 
5
5
 
6
6
  class LigerKLDIVLoss(nn.KLDivLoss):
@@ -1,7 +1,7 @@
1
1
  import torch
2
2
  import torch.nn as nn
3
3
 
4
- from liger_kernel.ops.layer_norm import LigerLayerNormFunction
4
+ from liger_kernel.ops import LigerLayerNormFunction
5
5
 
6
6
 
7
7
  class LigerLayerNorm(nn.Module):
@@ -0,0 +1,93 @@
1
+ """
2
+ Liger Kernel implementation of Llama4 Rotary Position Embedding (RoPE).
3
+ Supports both text and vision RoPE variants with fused operations for optimal performance.
4
+ """
5
+
6
+ import torch
7
+
8
+ from liger_kernel.ops import LigerLlama4RopeFunction
9
+
10
+
11
+ def liger_llama4_text_rotary_pos_emb(
12
+ xq: torch.Tensor,
13
+ xk: torch.Tensor,
14
+ freqs_cis: torch.Tensor,
15
+ ) -> tuple[torch.Tensor, torch.Tensor]:
16
+ """
17
+ Liger-optimized implementation of Llama4 text rotary position embedding.
18
+
19
+ This implementation uses a fused Triton kernel for complex multiplication,
20
+ providing significant performance improvements over the original PyTorch implementation.
21
+
22
+ Args:
23
+ xq (torch.Tensor): Query tensor of shape (batch_size, seq_len, num_heads, head_dim)
24
+ xk (torch.Tensor): Key tensor of shape (batch_size, seq_len, num_heads, head_dim)
25
+ freqs_cis (torch.Tensor): Complex frequency tensor from Llama4TextRotaryEmbedding
26
+
27
+ Returns:
28
+ Tuple[torch.Tensor, torch.Tensor]: Rotated query and key tensors
29
+ """
30
+ # Use fused Triton kernel for complex RoPE
31
+ return LigerLlama4RopeFunction.apply(xq, xk, freqs_cis)
32
+
33
+
34
+ def liger_llama4_vision_rotary_pos_emb(
35
+ query: torch.Tensor,
36
+ key: torch.Tensor,
37
+ freqs_ci: torch.Tensor,
38
+ ) -> tuple[torch.Tensor, torch.Tensor]:
39
+ """
40
+ Liger-optimized implementation of Llama4 vision rotary position embedding.
41
+
42
+ This implementation uses the same fused Triton kernel as text RoPE,
43
+ providing performance improvements for vision transformer attention.
44
+
45
+ Args:
46
+ query (torch.Tensor): Query tensor of shape (batch_size, seq_len, num_heads, head_dim)
47
+ key (torch.Tensor): Key tensor of shape (batch_size, seq_len, num_heads, head_dim)
48
+ freqs_ci (torch.Tensor): Complex frequency tensor for 2D positions
49
+
50
+ Returns:
51
+ Tuple[torch.Tensor, torch.Tensor]: Rotated query and key tensors
52
+ """
53
+ # Handle broadcasting for vision RoPE
54
+ if freqs_ci.dim() == 3:
55
+ try:
56
+ # Try the regular 3D expansion
57
+ freqs_ci = freqs_ci.unsqueeze(0).expand(query.shape[0], -1, -1)
58
+ except RuntimeError as e:
59
+ if "expand" in str(e) and "4" in str(e):
60
+ # The tensor is actually 4D internally, handle it differently
61
+ freqs_ci = freqs_ci.squeeze(1) # Remove the middle dimension
62
+ freqs_ci = freqs_ci.unsqueeze(0).expand(query.shape[0], -1, -1)
63
+ else:
64
+ raise e
65
+ elif freqs_ci.dim() == 4: # (1, seq_len, 1, head_dim//2) - already properly shaped
66
+ # Squeeze the middle dimension to get (1, seq_len, head_dim//2)
67
+ freqs_ci = freqs_ci.squeeze(2)
68
+ elif freqs_ci.dim() == 2: # (seq_len, head_dim//2) - needs expansion
69
+ freqs_ci = freqs_ci.unsqueeze(0).expand(query.shape[0], -1, -1)
70
+ else:
71
+ raise ValueError(f"Unexpected freqs_ci shape: {freqs_ci.shape}")
72
+
73
+ # Use the same fused kernel as text RoPE
74
+ return LigerLlama4RopeFunction.apply(query, key, freqs_ci)
75
+
76
+
77
+ # Note: We only patch the functions, not the classes
78
+ # The original Llama4TextRotaryEmbedding and Llama4VisionRotaryEmbedding classes remain unchanged
79
+
80
+
81
+ # Convenience functions for monkey patching
82
+ def apply_liger_llama4_rope_full(modeling_module):
83
+ """
84
+ Apply Liger optimizations to Llama4 RoPE functions.
85
+
86
+ Args:
87
+ modeling_module: The transformers modeling module to patch
88
+ """
89
+ # Replace the text RoPE function
90
+ modeling_module.apply_rotary_emb = liger_llama4_text_rotary_pos_emb
91
+
92
+ # Replace the vision RoPE function
93
+ modeling_module.vision_apply_rotary_emb = liger_llama4_vision_rotary_pos_emb