liger-kernel-nightly 0.5.5.dev20250402185702__py3-none-any.whl → 0.6.4.dev20260112233432__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of liger-kernel-nightly might be problematic. Click here for more details.

Files changed (115) hide show
  1. liger_kernel/chunked_loss/__init__.py +1 -0
  2. liger_kernel/chunked_loss/cosine_similarity_loss.py +142 -0
  3. liger_kernel/chunked_loss/dpo_loss.py +61 -3
  4. liger_kernel/chunked_loss/functional.py +2 -0
  5. liger_kernel/chunked_loss/fused_linear_distillation.py +23 -5
  6. liger_kernel/chunked_loss/fused_linear_ppo.py +36 -0
  7. liger_kernel/chunked_loss/fused_linear_preference.py +0 -1
  8. liger_kernel/chunked_loss/grpo_loss.py +76 -5
  9. liger_kernel/chunked_loss/jsd_loss.py +46 -15
  10. liger_kernel/ops/__init__.py +141 -0
  11. liger_kernel/ops/backends/README.md +151 -0
  12. liger_kernel/ops/backends/__init__.py +13 -0
  13. liger_kernel/ops/backends/_ascend/__init__.py +5 -0
  14. liger_kernel/ops/backends/_ascend/ascend-ub-manager-design.md +485 -0
  15. liger_kernel/ops/backends/_ascend/ops/__init__.py +49 -0
  16. liger_kernel/ops/backends/_ascend/ops/geglu.py +266 -0
  17. liger_kernel/ops/backends/_ascend/ops/qwen2vl_mrope.py +285 -0
  18. liger_kernel/ops/backends/_ascend/ops/rope.py +290 -0
  19. liger_kernel/ops/backends/_ascend/ops/swiglu.py +142 -0
  20. liger_kernel/ops/backends/_ascend/ops/tvd.py +221 -0
  21. liger_kernel/ops/backends/_ascend/ub_manager.py +349 -0
  22. liger_kernel/ops/backends/registry.py +61 -0
  23. liger_kernel/ops/cross_entropy.py +134 -65
  24. liger_kernel/ops/dyt.py +115 -180
  25. liger_kernel/ops/fused_add_rms_norm.py +416 -0
  26. liger_kernel/ops/fused_linear_cross_entropy.py +117 -23
  27. liger_kernel/ops/fused_neighborhood_attention.py +1022 -0
  28. liger_kernel/ops/geglu.py +6 -4
  29. liger_kernel/ops/group_norm.py +7 -7
  30. liger_kernel/ops/grpo_loss.py +312 -0
  31. liger_kernel/ops/jsd.py +2 -1
  32. liger_kernel/ops/kl_div.py +9 -5
  33. liger_kernel/ops/layer_norm.py +146 -78
  34. liger_kernel/ops/llama4_rope.py +225 -0
  35. liger_kernel/ops/multi_token_attention.py +207 -0
  36. liger_kernel/ops/poly_norm.py +390 -0
  37. liger_kernel/ops/rms_norm.py +398 -99
  38. liger_kernel/ops/rope.py +1 -1
  39. liger_kernel/ops/softmax.py +201 -0
  40. liger_kernel/ops/sparsemax.py +179 -0
  41. liger_kernel/ops/swiglu.py +1 -1
  42. liger_kernel/ops/tiled_mlp.py +136 -0
  43. liger_kernel/ops/utils.py +14 -0
  44. liger_kernel/transformers/__init__.py +208 -17
  45. liger_kernel/transformers/auto_model.py +21 -0
  46. liger_kernel/transformers/cross_entropy.py +9 -4
  47. liger_kernel/transformers/dyt.py +6 -4
  48. liger_kernel/transformers/experimental/__init__.py +5 -0
  49. liger_kernel/transformers/experimental/embedding.py +1 -1
  50. liger_kernel/transformers/fsdp.py +55 -0
  51. liger_kernel/transformers/functional.py +122 -20
  52. liger_kernel/transformers/fused_add_rms_norm.py +39 -0
  53. liger_kernel/transformers/fused_linear_cross_entropy.py +16 -5
  54. liger_kernel/transformers/fused_linear_jsd.py +1 -1
  55. liger_kernel/transformers/fused_neighborhood_attention.py +234 -0
  56. liger_kernel/transformers/geglu.py +1 -1
  57. liger_kernel/transformers/group_norm.py +1 -1
  58. liger_kernel/transformers/grpo_loss.py +153 -0
  59. liger_kernel/transformers/jsd.py +1 -1
  60. liger_kernel/transformers/kl_div.py +1 -1
  61. liger_kernel/transformers/layer_norm.py +1 -1
  62. liger_kernel/transformers/llama4_rope.py +93 -0
  63. liger_kernel/transformers/model/exaone4.py +136 -0
  64. liger_kernel/transformers/model/falcon_h1.py +122 -0
  65. liger_kernel/transformers/model/gemma.py +57 -27
  66. liger_kernel/transformers/model/gemma2.py +65 -28
  67. liger_kernel/transformers/model/gemma3.py +331 -0
  68. liger_kernel/transformers/model/glm4.py +141 -0
  69. liger_kernel/transformers/model/glm4v.py +163 -0
  70. liger_kernel/transformers/model/glm4v_moe.py +172 -0
  71. liger_kernel/transformers/model/gpt_oss.py +211 -0
  72. liger_kernel/transformers/model/hunyuan_v1.py +134 -0
  73. liger_kernel/transformers/model/internvl.py +157 -0
  74. liger_kernel/transformers/model/llama.py +109 -27
  75. liger_kernel/transformers/model/llama4.py +121 -0
  76. liger_kernel/transformers/model/llava.py +111 -136
  77. liger_kernel/transformers/model/loss_utils.py +50 -12
  78. liger_kernel/transformers/model/mistral.py +51 -34
  79. liger_kernel/transformers/model/mixtral.py +50 -29
  80. liger_kernel/transformers/model/mllama.py +46 -24
  81. liger_kernel/transformers/model/olmo2.py +47 -22
  82. liger_kernel/transformers/model/olmo3.py +142 -0
  83. liger_kernel/transformers/model/output_classes.py +147 -0
  84. liger_kernel/transformers/model/paligemma.py +50 -14
  85. liger_kernel/transformers/model/phi3.py +47 -172
  86. liger_kernel/transformers/model/qwen2.py +55 -23
  87. liger_kernel/transformers/model/qwen2_5_vl.py +62 -103
  88. liger_kernel/transformers/model/qwen2_vl.py +59 -108
  89. liger_kernel/transformers/model/qwen3.py +136 -0
  90. liger_kernel/transformers/model/qwen3_moe.py +152 -0
  91. liger_kernel/transformers/model/qwen3_next.py +146 -0
  92. liger_kernel/transformers/model/qwen3_vl.py +150 -0
  93. liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
  94. liger_kernel/transformers/model/smollm3.py +199 -0
  95. liger_kernel/transformers/model/smolvlm.py +158 -0
  96. liger_kernel/transformers/monkey_patch.py +2018 -244
  97. liger_kernel/transformers/multi_token_attention.py +64 -0
  98. liger_kernel/transformers/poly_norm.py +42 -0
  99. liger_kernel/transformers/qwen2vl_mrope.py +1 -1
  100. liger_kernel/transformers/rms_norm.py +54 -6
  101. liger_kernel/transformers/rope.py +45 -1
  102. liger_kernel/transformers/softmax.py +12 -0
  103. liger_kernel/transformers/sparsemax.py +16 -0
  104. liger_kernel/transformers/swiglu.py +39 -1
  105. liger_kernel/transformers/tiled_mlp.py +125 -0
  106. liger_kernel/transformers/trainer/orpo_trainer.py +1 -53
  107. liger_kernel/transformers/tvd.py +1 -1
  108. liger_kernel/utils.py +63 -0
  109. {liger_kernel_nightly-0.5.5.dev20250402185702.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/METADATA +73 -39
  110. liger_kernel_nightly-0.6.4.dev20260112233432.dist-info/RECORD +132 -0
  111. liger_kernel_nightly-0.5.5.dev20250402185702.dist-info/RECORD +0 -80
  112. {liger_kernel_nightly-0.5.5.dev20250402185702.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/LICENSE +0 -0
  113. {liger_kernel_nightly-0.5.5.dev20250402185702.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/NOTICE +0 -0
  114. {liger_kernel_nightly-0.5.5.dev20250402185702.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/WHEEL +0 -0
  115. {liger_kernel_nightly-0.5.5.dev20250402185702.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,136 @@
1
+ from typing import List
2
+ from typing import Optional
3
+ from typing import Union
4
+
5
+ import torch
6
+
7
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
8
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
9
+ from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
10
+
11
+
12
+ def lce_forward(
13
+ self,
14
+ input_ids: Optional[torch.LongTensor] = None,
15
+ attention_mask: Optional[torch.Tensor] = None,
16
+ position_ids: Optional[torch.LongTensor] = None,
17
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
18
+ inputs_embeds: Optional[torch.FloatTensor] = None,
19
+ labels: Optional[torch.LongTensor] = None,
20
+ use_cache: Optional[bool] = None,
21
+ output_attentions: Optional[bool] = None,
22
+ output_hidden_states: Optional[bool] = None,
23
+ cache_position: Optional[torch.LongTensor] = None,
24
+ logits_to_keep: Union[int, torch.Tensor] = 0,
25
+ skip_logits: Optional[bool] = None,
26
+ return_dict: Optional[bool] = None,
27
+ **kwargs,
28
+ ) -> LigerCausalLMOutputWithPast:
29
+ r"""
30
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
31
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
32
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
33
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
34
+
35
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
36
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
37
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
38
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
39
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
40
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
41
+
42
+ Returns:
43
+
44
+ Example:
45
+
46
+ ```python
47
+ >>> from transformers import AutoTokenizer, Qwen3ForCausalLM
48
+
49
+ >>> model = Qwen3ForCausalLM.from_pretrained("Qwen/Qwen3-8B")
50
+ >>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B")
51
+
52
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
53
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
54
+
55
+ >>> # Generate
56
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
57
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
58
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
59
+ ```"""
60
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
61
+ output_hidden_states = (
62
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
63
+ )
64
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
65
+
66
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
67
+ outputs = self.model(
68
+ input_ids=input_ids,
69
+ attention_mask=attention_mask,
70
+ position_ids=position_ids,
71
+ past_key_values=past_key_values,
72
+ inputs_embeds=inputs_embeds,
73
+ use_cache=use_cache,
74
+ output_attentions=output_attentions,
75
+ output_hidden_states=output_hidden_states,
76
+ cache_position=cache_position,
77
+ **kwargs,
78
+ )
79
+
80
+ hidden_states = outputs[0]
81
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
82
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
83
+ kept_hidden_states = hidden_states[:, slice_indices, :]
84
+
85
+ shift_labels = kwargs.pop("shift_labels", None)
86
+ # Remove output-control parameters that shouldn't be passed to loss functions
87
+ kwargs.pop("return_dict", None)
88
+ logits = None
89
+ loss = None
90
+ token_accuracy = None
91
+
92
+ if skip_logits and labels is None and shift_labels is None:
93
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
94
+
95
+ if skip_logits is None:
96
+ # By default, if in training mode, don't materialize logits
97
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
98
+
99
+ # Compute loss
100
+ if skip_logits:
101
+ result = LigerForCausalLMLoss(
102
+ hidden_states=kept_hidden_states,
103
+ lm_head_weight=self.lm_head.weight,
104
+ labels=labels,
105
+ shift_labels=shift_labels,
106
+ hidden_size=self.config.hidden_size,
107
+ **kwargs,
108
+ )
109
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
110
+
111
+ else:
112
+ logits = self.lm_head(kept_hidden_states)
113
+ if labels is not None or shift_labels is not None:
114
+ loss = self.loss_function(
115
+ logits=logits,
116
+ labels=labels,
117
+ shift_labels=shift_labels,
118
+ vocab_size=self.config.vocab_size,
119
+ **kwargs,
120
+ )
121
+
122
+ if not return_dict:
123
+ output = (logits,) + outputs[1:]
124
+ output = ((loss,) + output) if loss is not None else output
125
+ output = output + (token_accuracy,) if token_accuracy is not None else output
126
+ return output
127
+
128
+ # Return custom output class with accuracy field
129
+ return LigerCausalLMOutputWithPast(
130
+ loss=loss,
131
+ logits=logits,
132
+ past_key_values=outputs.past_key_values,
133
+ hidden_states=outputs.hidden_states,
134
+ attentions=outputs.attentions,
135
+ token_accuracy=token_accuracy,
136
+ )
@@ -0,0 +1,152 @@
1
+ from typing import List
2
+ from typing import Optional
3
+ from typing import Union
4
+
5
+ import torch
6
+
7
+ from transformers.modeling_outputs import MoeModelOutputWithPast
8
+ from transformers.models.mixtral.modeling_mixtral import load_balancing_loss_func
9
+
10
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
11
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
12
+ from liger_kernel.transformers.model.output_classes import LigerMoeCausalLMOutputWithPast
13
+
14
+
15
+ def lce_forward(
16
+ self,
17
+ input_ids: Optional[torch.LongTensor] = None,
18
+ attention_mask: Optional[torch.Tensor] = None,
19
+ position_ids: Optional[torch.LongTensor] = None,
20
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
21
+ inputs_embeds: Optional[torch.FloatTensor] = None,
22
+ labels: Optional[torch.LongTensor] = None,
23
+ use_cache: Optional[bool] = None,
24
+ output_attentions: Optional[bool] = None,
25
+ output_hidden_states: Optional[bool] = None,
26
+ output_router_logits: Optional[bool] = None,
27
+ cache_position: Optional[torch.LongTensor] = None,
28
+ logits_to_keep: Union[int, torch.Tensor] = 0,
29
+ skip_logits: Optional[bool] = None,
30
+ return_dict: Optional[bool] = None,
31
+ **kwargs,
32
+ ) -> LigerMoeCausalLMOutputWithPast:
33
+ r"""
34
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
35
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
36
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
37
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
38
+
39
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
40
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
41
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
42
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
43
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
44
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
45
+
46
+ Returns:
47
+
48
+ Example:
49
+
50
+ ```python
51
+ >>> from transformers import AutoTokenizer, Qwen3MoeForCausalLM
52
+
53
+ >>> model = Qwen3MoeForCausalLM.from_pretrained("Qwen/Qwen3-MoE-15B-A2B")
54
+ >>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-MoE-15B-A2B")
55
+
56
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
57
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
58
+
59
+ >>> # Generate
60
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
61
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
62
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
63
+ ```"""
64
+
65
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
66
+ output_router_logits = (
67
+ output_router_logits if output_router_logits is not None else self.config.output_router_logits
68
+ )
69
+ output_hidden_states = (
70
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
71
+ )
72
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
73
+
74
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
75
+ outputs: MoeModelOutputWithPast = self.model(
76
+ input_ids=input_ids,
77
+ attention_mask=attention_mask,
78
+ position_ids=position_ids,
79
+ past_key_values=past_key_values,
80
+ inputs_embeds=inputs_embeds,
81
+ use_cache=use_cache,
82
+ output_attentions=output_attentions,
83
+ output_hidden_states=output_hidden_states,
84
+ output_router_logits=output_router_logits,
85
+ cache_position=cache_position,
86
+ **kwargs,
87
+ )
88
+
89
+ hidden_states = outputs.last_hidden_state
90
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
91
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
92
+ kept_hidden_states = hidden_states[:, slice_indices, :]
93
+
94
+ shift_labels = kwargs.pop("shift_labels", None)
95
+ logits = None
96
+ loss = None
97
+ token_accuracy = None
98
+
99
+ if skip_logits is None:
100
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
101
+
102
+ # Compute loss
103
+ if skip_logits:
104
+ result = LigerForCausalLMLoss(
105
+ hidden_states=kept_hidden_states,
106
+ lm_head_weight=self.lm_head.weight,
107
+ labels=labels,
108
+ shift_labels=shift_labels,
109
+ hidden_size=self.config.hidden_size,
110
+ **kwargs,
111
+ )
112
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
113
+ else: # if in inference model materialize logits
114
+ logits = self.lm_head(kept_hidden_states)
115
+ if labels is not None or shift_labels is not None:
116
+ loss = self.loss_function(
117
+ logits=logits,
118
+ labels=labels,
119
+ shift_labels=shift_labels,
120
+ vocab_size=self.vocab_size,
121
+ **kwargs,
122
+ )
123
+
124
+ aux_loss = None
125
+ if output_router_logits:
126
+ aux_loss = load_balancing_loss_func(
127
+ outputs.router_logits,
128
+ self.num_experts,
129
+ self.num_experts_per_tok,
130
+ attention_mask,
131
+ )
132
+ if labels is not None:
133
+ loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
134
+
135
+ if not return_dict:
136
+ output = (logits,) + outputs[1:]
137
+ output = ((aux_loss,) + output) if aux_loss is not None else output
138
+ output = ((loss,) + output) if loss is not None else output
139
+ output = output + (token_accuracy,) if token_accuracy is not None else output
140
+ return output
141
+
142
+ # Return custom output class with accuracy field
143
+ return LigerMoeCausalLMOutputWithPast(
144
+ loss=loss,
145
+ aux_loss=aux_loss,
146
+ logits=logits,
147
+ past_key_values=outputs.past_key_values,
148
+ hidden_states=outputs.hidden_states,
149
+ attentions=outputs.attentions,
150
+ router_logits=outputs.router_logits,
151
+ token_accuracy=token_accuracy,
152
+ )
@@ -0,0 +1,146 @@
1
+ from typing import TYPE_CHECKING
2
+ from typing import List
3
+ from typing import Optional
4
+ from typing import Union
5
+
6
+ import torch
7
+
8
+ from transformers.modeling_outputs import MoeModelOutputWithPast
9
+
10
+ if TYPE_CHECKING:
11
+ from transformers.models.qwen3_next.modeling_qwen3_next import load_balancing_loss_func
12
+
13
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
14
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
15
+ from liger_kernel.transformers.model.output_classes import LigerMoeCausalLMOutputWithPast
16
+
17
+
18
+ def lce_forward(
19
+ self,
20
+ input_ids: Optional[torch.LongTensor] = None,
21
+ attention_mask: Optional[torch.Tensor] = None,
22
+ position_ids: Optional[torch.LongTensor] = None,
23
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
24
+ inputs_embeds: Optional[torch.FloatTensor] = None,
25
+ labels: Optional[torch.LongTensor] = None,
26
+ use_cache: Optional[bool] = None,
27
+ output_attentions: Optional[bool] = None,
28
+ output_hidden_states: Optional[bool] = None,
29
+ output_router_logits: Optional[bool] = None,
30
+ cache_position: Optional[torch.LongTensor] = None,
31
+ logits_to_keep: Union[int, torch.Tensor] = 0,
32
+ skip_logits: Optional[bool] = None,
33
+ return_dict: Optional[bool] = None,
34
+ **kwargs,
35
+ ) -> LigerMoeCausalLMOutputWithPast:
36
+ r"""
37
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
38
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
39
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
40
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
41
+
42
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
43
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
44
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
45
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
46
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
47
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
48
+
49
+ Returns:
50
+
51
+ Example:
52
+
53
+ ```python
54
+ >>> from transformers import AutoModelForCausalLM, AutoTokenizer
55
+
56
+ >>> model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Next-80B-A3B-Instruct")
57
+ >>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Next-80B-A3B-Instruct")
58
+
59
+ >>> prompt = "Give me a short introduction to large language model."
60
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
61
+
62
+ >>> # Generate
63
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
64
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
65
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
66
+ ```"""
67
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
68
+ output_router_logits = (
69
+ output_router_logits if output_router_logits is not None else self.config.output_router_logits
70
+ )
71
+ output_hidden_states = (
72
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
73
+ )
74
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
75
+
76
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
77
+ outputs: MoeModelOutputWithPast = self.model(
78
+ input_ids=input_ids,
79
+ attention_mask=attention_mask,
80
+ position_ids=position_ids,
81
+ past_key_values=past_key_values,
82
+ inputs_embeds=inputs_embeds,
83
+ use_cache=use_cache,
84
+ output_attentions=output_attentions,
85
+ output_hidden_states=output_hidden_states,
86
+ output_router_logits=output_router_logits,
87
+ cache_position=cache_position,
88
+ **kwargs,
89
+ )
90
+
91
+ hidden_states = outputs.last_hidden_state
92
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
93
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
94
+ kept_hidden_states = hidden_states[:, slice_indices, :]
95
+
96
+ shift_labels = kwargs.pop("shift_labels", None)
97
+ logits = None
98
+ loss = None
99
+ token_accuracy = None
100
+
101
+ if skip_logits is None:
102
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
103
+
104
+ if skip_logits:
105
+ result = LigerForCausalLMLoss(
106
+ hidden_states=kept_hidden_states,
107
+ lm_head_weight=self.lm_head.weight,
108
+ labels=labels,
109
+ shift_labels=shift_labels,
110
+ hidden_size=self.config.hidden_size,
111
+ **kwargs,
112
+ )
113
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
114
+ else: # if in inference model materialize logits
115
+ logits = self.lm_head(kept_hidden_states)
116
+ if labels is not None or shift_labels is not None:
117
+ loss = self.loss_function(logits, labels, self.vocab_size, **kwargs)
118
+
119
+ aux_loss = None
120
+ if output_router_logits:
121
+ aux_loss = load_balancing_loss_func(
122
+ outputs.router_logits,
123
+ self.num_experts,
124
+ self.num_experts_per_tok,
125
+ attention_mask,
126
+ )
127
+ if labels is not None:
128
+ loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
129
+
130
+ if not return_dict:
131
+ output = (logits,) + outputs[1:]
132
+ output = ((aux_loss,) + output) if aux_loss is not None else output
133
+ output = ((loss,) + output) if loss is not None else output
134
+ output = output + (token_accuracy,) if token_accuracy is not None else output
135
+ return output
136
+
137
+ return LigerMoeCausalLMOutputWithPast(
138
+ loss=loss,
139
+ aux_loss=aux_loss,
140
+ logits=logits,
141
+ past_key_values=outputs.past_key_values,
142
+ hidden_states=outputs.hidden_states,
143
+ attentions=outputs.attentions,
144
+ router_logits=outputs.router_logits,
145
+ token_accuracy=token_accuracy,
146
+ )
@@ -0,0 +1,150 @@
1
+ from typing import List
2
+ from typing import Optional
3
+ from typing import Tuple
4
+ from typing import Union
5
+
6
+ import torch
7
+
8
+ from transformers.utils import can_return_tuple
9
+
10
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
11
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
12
+ from liger_kernel.transformers.model.output_classes import LigerQwen3VLCausalLMOutputWithPast
13
+
14
+
15
+ @can_return_tuple
16
+ def lce_forward(
17
+ self,
18
+ input_ids: torch.LongTensor = None,
19
+ attention_mask: Optional[torch.Tensor] = None,
20
+ position_ids: Optional[torch.LongTensor] = None,
21
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
22
+ inputs_embeds: Optional[torch.FloatTensor] = None,
23
+ labels: Optional[torch.LongTensor] = None,
24
+ use_cache: Optional[bool] = None,
25
+ output_attentions: Optional[bool] = None,
26
+ output_hidden_states: Optional[bool] = None,
27
+ return_dict: Optional[bool] = None,
28
+ pixel_values: Optional[torch.Tensor] = None,
29
+ pixel_values_videos: Optional[torch.FloatTensor] = None,
30
+ image_grid_thw: Optional[torch.LongTensor] = None,
31
+ video_grid_thw: Optional[torch.LongTensor] = None,
32
+ rope_deltas: Optional[torch.LongTensor] = None,
33
+ cache_position: Optional[torch.LongTensor] = None,
34
+ second_per_grid_ts: Optional[torch.Tensor] = None,
35
+ skip_logits: Optional[bool] = None,
36
+ **kwargs,
37
+ ) -> Union[Tuple, LigerQwen3VLCausalLMOutputWithPast]:
38
+ """
39
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
40
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
41
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
42
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
43
+ pixel_values_videos (`torch.FloatTensor` of shape `(seq_length, num_channels * temporal_size * image_size * image_size)):
44
+ The tensors corresponding to the input videos. Pixel values can be obtained using
45
+ [`AutoImageProcessor`]. See [`Qwen2_5_VLImageProcessor.__call__`] for details. [`Qwen2_5_VLProcessor`] uses
46
+ [`Qwen2_5_VLImageProcessor`] for processing videos.
47
+ image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
48
+ The temporal, height and width of feature shape of each image in LLM.
49
+ video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
50
+ The temporal, height and width of feature shape of each video in LLM.
51
+ rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
52
+ The rope index difference between sequence length and multimodal rope.
53
+ second_per_grid_ts (`torch.Tensor` of shape `(num_videos)`, *optional*):
54
+ The time interval (in seconds) for each grid along the temporal dimension in the 3D position IDs.
55
+ Example:
56
+ ```python
57
+ >>> from PIL import Image
58
+ >>> import requests
59
+ >>> from transformers import AutoProcessor, Qwen3VLForConditionalGeneration
60
+ >>> model = Qwen3VLForConditionalGeneration.from_pretrained("Qwen/Qwen3-VL")
61
+ >>> processor = AutoProcessor.from_pretrained("Qwen/Qwen3-VL")
62
+ >>> messages = [
63
+ {
64
+ "role": "user",
65
+ "content": [
66
+ {"type": "image"},
67
+ {"type": "text", "text": "What is shown in this image?"},
68
+ ],
69
+ },
70
+ ]
71
+ >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
72
+ >>> image = Image.open(requests.get(url, stream=True).raw)
73
+ >>> text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
74
+ >>> inputs = processor(text=[text], images=[image], vision_infos=[vision_infos])
75
+ >>> # Generate
76
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
77
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
78
+ "The image shows a street scene with a red stop sign in the foreground. In the background, there is a large red gate with Chinese characters ..."
79
+ ```"""
80
+
81
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
82
+ output_hidden_states = (
83
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
84
+ )
85
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
86
+
87
+ outputs = self.model(
88
+ input_ids=input_ids,
89
+ pixel_values=pixel_values,
90
+ pixel_values_videos=pixel_values_videos,
91
+ image_grid_thw=image_grid_thw,
92
+ video_grid_thw=video_grid_thw,
93
+ second_per_grid_ts=second_per_grid_ts,
94
+ position_ids=position_ids,
95
+ attention_mask=attention_mask,
96
+ past_key_values=past_key_values,
97
+ inputs_embeds=inputs_embeds,
98
+ use_cache=use_cache,
99
+ output_attentions=output_attentions,
100
+ output_hidden_states=output_hidden_states,
101
+ return_dict=return_dict,
102
+ cache_position=cache_position,
103
+ **kwargs,
104
+ )
105
+
106
+ hidden_states = outputs[0]
107
+
108
+ shift_labels = kwargs.pop("shift_labels", None)
109
+ loss = None
110
+ logits = None
111
+ token_accuracy = None
112
+
113
+ if skip_logits and labels is None and shift_labels is None:
114
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
115
+
116
+ if skip_logits is None:
117
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
118
+
119
+ if skip_logits:
120
+ result = LigerForCausalLMLoss(
121
+ hidden_states=hidden_states,
122
+ lm_head_weight=self.lm_head.weight,
123
+ labels=labels,
124
+ shift_labels=shift_labels,
125
+ hidden_size=self.config.text_config.hidden_size,
126
+ **kwargs,
127
+ )
128
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
129
+ else:
130
+ logits = self.lm_head(hidden_states)
131
+
132
+ loss = None
133
+ if labels is not None:
134
+ loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size)
135
+
136
+ if not return_dict:
137
+ output = (logits,) + outputs[1:]
138
+ output = (loss,) + output if loss is not None else output
139
+ output = output + (token_accuracy,) if token_accuracy is not None else output
140
+ return output
141
+
142
+ return LigerQwen3VLCausalLMOutputWithPast(
143
+ loss=loss,
144
+ logits=logits,
145
+ past_key_values=outputs.past_key_values,
146
+ hidden_states=outputs.hidden_states,
147
+ attentions=outputs.attentions,
148
+ rope_deltas=outputs.rope_deltas,
149
+ token_accuracy=token_accuracy,
150
+ )