liger-kernel-nightly 0.5.5.dev20250402185702__py3-none-any.whl → 0.6.4.dev20260112233432__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of liger-kernel-nightly might be problematic. Click here for more details.

Files changed (115) hide show
  1. liger_kernel/chunked_loss/__init__.py +1 -0
  2. liger_kernel/chunked_loss/cosine_similarity_loss.py +142 -0
  3. liger_kernel/chunked_loss/dpo_loss.py +61 -3
  4. liger_kernel/chunked_loss/functional.py +2 -0
  5. liger_kernel/chunked_loss/fused_linear_distillation.py +23 -5
  6. liger_kernel/chunked_loss/fused_linear_ppo.py +36 -0
  7. liger_kernel/chunked_loss/fused_linear_preference.py +0 -1
  8. liger_kernel/chunked_loss/grpo_loss.py +76 -5
  9. liger_kernel/chunked_loss/jsd_loss.py +46 -15
  10. liger_kernel/ops/__init__.py +141 -0
  11. liger_kernel/ops/backends/README.md +151 -0
  12. liger_kernel/ops/backends/__init__.py +13 -0
  13. liger_kernel/ops/backends/_ascend/__init__.py +5 -0
  14. liger_kernel/ops/backends/_ascend/ascend-ub-manager-design.md +485 -0
  15. liger_kernel/ops/backends/_ascend/ops/__init__.py +49 -0
  16. liger_kernel/ops/backends/_ascend/ops/geglu.py +266 -0
  17. liger_kernel/ops/backends/_ascend/ops/qwen2vl_mrope.py +285 -0
  18. liger_kernel/ops/backends/_ascend/ops/rope.py +290 -0
  19. liger_kernel/ops/backends/_ascend/ops/swiglu.py +142 -0
  20. liger_kernel/ops/backends/_ascend/ops/tvd.py +221 -0
  21. liger_kernel/ops/backends/_ascend/ub_manager.py +349 -0
  22. liger_kernel/ops/backends/registry.py +61 -0
  23. liger_kernel/ops/cross_entropy.py +134 -65
  24. liger_kernel/ops/dyt.py +115 -180
  25. liger_kernel/ops/fused_add_rms_norm.py +416 -0
  26. liger_kernel/ops/fused_linear_cross_entropy.py +117 -23
  27. liger_kernel/ops/fused_neighborhood_attention.py +1022 -0
  28. liger_kernel/ops/geglu.py +6 -4
  29. liger_kernel/ops/group_norm.py +7 -7
  30. liger_kernel/ops/grpo_loss.py +312 -0
  31. liger_kernel/ops/jsd.py +2 -1
  32. liger_kernel/ops/kl_div.py +9 -5
  33. liger_kernel/ops/layer_norm.py +146 -78
  34. liger_kernel/ops/llama4_rope.py +225 -0
  35. liger_kernel/ops/multi_token_attention.py +207 -0
  36. liger_kernel/ops/poly_norm.py +390 -0
  37. liger_kernel/ops/rms_norm.py +398 -99
  38. liger_kernel/ops/rope.py +1 -1
  39. liger_kernel/ops/softmax.py +201 -0
  40. liger_kernel/ops/sparsemax.py +179 -0
  41. liger_kernel/ops/swiglu.py +1 -1
  42. liger_kernel/ops/tiled_mlp.py +136 -0
  43. liger_kernel/ops/utils.py +14 -0
  44. liger_kernel/transformers/__init__.py +208 -17
  45. liger_kernel/transformers/auto_model.py +21 -0
  46. liger_kernel/transformers/cross_entropy.py +9 -4
  47. liger_kernel/transformers/dyt.py +6 -4
  48. liger_kernel/transformers/experimental/__init__.py +5 -0
  49. liger_kernel/transformers/experimental/embedding.py +1 -1
  50. liger_kernel/transformers/fsdp.py +55 -0
  51. liger_kernel/transformers/functional.py +122 -20
  52. liger_kernel/transformers/fused_add_rms_norm.py +39 -0
  53. liger_kernel/transformers/fused_linear_cross_entropy.py +16 -5
  54. liger_kernel/transformers/fused_linear_jsd.py +1 -1
  55. liger_kernel/transformers/fused_neighborhood_attention.py +234 -0
  56. liger_kernel/transformers/geglu.py +1 -1
  57. liger_kernel/transformers/group_norm.py +1 -1
  58. liger_kernel/transformers/grpo_loss.py +153 -0
  59. liger_kernel/transformers/jsd.py +1 -1
  60. liger_kernel/transformers/kl_div.py +1 -1
  61. liger_kernel/transformers/layer_norm.py +1 -1
  62. liger_kernel/transformers/llama4_rope.py +93 -0
  63. liger_kernel/transformers/model/exaone4.py +136 -0
  64. liger_kernel/transformers/model/falcon_h1.py +122 -0
  65. liger_kernel/transformers/model/gemma.py +57 -27
  66. liger_kernel/transformers/model/gemma2.py +65 -28
  67. liger_kernel/transformers/model/gemma3.py +331 -0
  68. liger_kernel/transformers/model/glm4.py +141 -0
  69. liger_kernel/transformers/model/glm4v.py +163 -0
  70. liger_kernel/transformers/model/glm4v_moe.py +172 -0
  71. liger_kernel/transformers/model/gpt_oss.py +211 -0
  72. liger_kernel/transformers/model/hunyuan_v1.py +134 -0
  73. liger_kernel/transformers/model/internvl.py +157 -0
  74. liger_kernel/transformers/model/llama.py +109 -27
  75. liger_kernel/transformers/model/llama4.py +121 -0
  76. liger_kernel/transformers/model/llava.py +111 -136
  77. liger_kernel/transformers/model/loss_utils.py +50 -12
  78. liger_kernel/transformers/model/mistral.py +51 -34
  79. liger_kernel/transformers/model/mixtral.py +50 -29
  80. liger_kernel/transformers/model/mllama.py +46 -24
  81. liger_kernel/transformers/model/olmo2.py +47 -22
  82. liger_kernel/transformers/model/olmo3.py +142 -0
  83. liger_kernel/transformers/model/output_classes.py +147 -0
  84. liger_kernel/transformers/model/paligemma.py +50 -14
  85. liger_kernel/transformers/model/phi3.py +47 -172
  86. liger_kernel/transformers/model/qwen2.py +55 -23
  87. liger_kernel/transformers/model/qwen2_5_vl.py +62 -103
  88. liger_kernel/transformers/model/qwen2_vl.py +59 -108
  89. liger_kernel/transformers/model/qwen3.py +136 -0
  90. liger_kernel/transformers/model/qwen3_moe.py +152 -0
  91. liger_kernel/transformers/model/qwen3_next.py +146 -0
  92. liger_kernel/transformers/model/qwen3_vl.py +150 -0
  93. liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
  94. liger_kernel/transformers/model/smollm3.py +199 -0
  95. liger_kernel/transformers/model/smolvlm.py +158 -0
  96. liger_kernel/transformers/monkey_patch.py +2018 -244
  97. liger_kernel/transformers/multi_token_attention.py +64 -0
  98. liger_kernel/transformers/poly_norm.py +42 -0
  99. liger_kernel/transformers/qwen2vl_mrope.py +1 -1
  100. liger_kernel/transformers/rms_norm.py +54 -6
  101. liger_kernel/transformers/rope.py +45 -1
  102. liger_kernel/transformers/softmax.py +12 -0
  103. liger_kernel/transformers/sparsemax.py +16 -0
  104. liger_kernel/transformers/swiglu.py +39 -1
  105. liger_kernel/transformers/tiled_mlp.py +125 -0
  106. liger_kernel/transformers/trainer/orpo_trainer.py +1 -53
  107. liger_kernel/transformers/tvd.py +1 -1
  108. liger_kernel/utils.py +63 -0
  109. {liger_kernel_nightly-0.5.5.dev20250402185702.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/METADATA +73 -39
  110. liger_kernel_nightly-0.6.4.dev20260112233432.dist-info/RECORD +132 -0
  111. liger_kernel_nightly-0.5.5.dev20250402185702.dist-info/RECORD +0 -80
  112. {liger_kernel_nightly-0.5.5.dev20250402185702.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/LICENSE +0 -0
  113. {liger_kernel_nightly-0.5.5.dev20250402185702.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/NOTICE +0 -0
  114. {liger_kernel_nightly-0.5.5.dev20250402185702.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/WHEEL +0 -0
  115. {liger_kernel_nightly-0.5.5.dev20250402185702.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/top_level.txt +0 -0
@@ -7,22 +7,25 @@ from typing import Union
7
7
  import torch
8
8
  import torch.nn.functional as F
9
9
 
10
+ from torch.distributed.fsdp import FullyShardedDataParallel
10
11
  from torch.nn import CrossEntropyLoss
11
12
  from transformers.modeling_outputs import CausalLMOutputWithPast
12
- from transformers.models.llama.modeling_llama import _CONFIG_FOR_DOC
13
- from transformers.models.llama.modeling_llama import LLAMA_INPUTS_DOCSTRING
14
- from transformers.utils import add_start_docstrings_to_model_forward
15
- from transformers.utils import replace_return_docstrings
13
+ from transformers.utils.deprecation import deprecate_kwarg
16
14
 
15
+ from liger_kernel.transformers.fsdp import _FSDPForwardRedirection
17
16
  from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
18
17
  from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
18
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
19
+ from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
20
+ from liger_kernel.utils import PEFT_AVAILABLE
19
21
 
20
22
  if TYPE_CHECKING:
21
23
  from transformers.cache_utils import Cache
22
24
 
25
+ if PEFT_AVAILABLE:
26
+ from peft.utils.other import ModulesToSaveWrapper
27
+
23
28
 
24
- @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
25
- @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
26
29
  def lce_forward_deprecated(
27
30
  self,
28
31
  input_ids: torch.LongTensor = None,
@@ -36,6 +39,7 @@ def lce_forward_deprecated(
36
39
  output_hidden_states: Optional[bool] = None,
37
40
  return_dict: Optional[bool] = None,
38
41
  cache_position: Optional[torch.LongTensor] = None,
42
+ skip_logits: Optional[bool] = None,
39
43
  ) -> Union[Tuple, CausalLMOutputWithPast]:
40
44
  r"""
41
45
  Copy paste llama forward but replace torch cross entropy with liger fused linear cross entropy
@@ -90,7 +94,15 @@ def lce_forward_deprecated(
90
94
  loss = None
91
95
  logits = None
92
96
 
93
- if self.training and (labels is not None):
97
+ # if in training mode, don't materialize logits
98
+ if skip_logits and labels is None:
99
+ raise ValueError("skip_logits is True, but labels is None")
100
+
101
+ if skip_logits is None:
102
+ # By default, if in training mode, don't materialize logits
103
+ skip_logits = self.training and labels is not None
104
+
105
+ if skip_logits:
94
106
  shift_hidden_states = hidden_states[..., :-1, :].contiguous()
95
107
  shift_labels = labels[..., 1:].contiguous()
96
108
 
@@ -135,8 +147,7 @@ def lce_forward_deprecated(
135
147
  )
136
148
 
137
149
 
138
- @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
139
- @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
150
+ @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
140
151
  def lce_forward(
141
152
  self,
142
153
  input_ids: torch.LongTensor = None,
@@ -150,9 +161,10 @@ def lce_forward(
150
161
  output_hidden_states: Optional[bool] = None,
151
162
  return_dict: Optional[bool] = None,
152
163
  cache_position: Optional[torch.LongTensor] = None,
153
- num_logits_to_keep: int = 0,
154
- **loss_kwargs,
155
- ) -> Union[Tuple, CausalLMOutputWithPast]:
164
+ logits_to_keep: Union[int, torch.Tensor] = 0,
165
+ skip_logits: Optional[bool] = None,
166
+ **kwargs,
167
+ ) -> Union[Tuple, LigerCausalLMOutputWithPast]:
156
168
  r"""
157
169
  Args:
158
170
  labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
@@ -160,10 +172,12 @@ def lce_forward(
160
172
  config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
161
173
  (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
162
174
 
163
- num_logits_to_keep (`int`, *optional*):
164
- Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
175
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
176
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
165
177
  `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
166
178
  token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
179
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
180
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
167
181
 
168
182
  Returns:
169
183
 
@@ -202,43 +216,111 @@ def lce_forward(
202
216
  output_hidden_states=output_hidden_states,
203
217
  return_dict=return_dict,
204
218
  cache_position=cache_position,
219
+ **kwargs,
205
220
  )
206
221
 
207
222
  hidden_states = outputs[0]
223
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
224
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
225
+ kept_hidden_states = hidden_states[:, slice_indices, :]
208
226
 
209
227
  if self.config.pretraining_tp > 1:
210
228
  raise Exception("Liger Kernel does not support pretraining_tp!!")
211
229
 
230
+ shift_labels = kwargs.pop("shift_labels", None)
212
231
  logits = None
213
232
  loss = None
233
+ token_accuracy = None
234
+
214
235
  # if in training mode, don't materialize logits
215
- if self.training and (labels is not None):
216
- loss = LigerForCausalLMLoss(
217
- hidden_states=hidden_states,
218
- lm_head_weight=self.lm_head.weight,
219
- labels=labels,
236
+ if skip_logits and labels is None and shift_labels is None:
237
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
238
+
239
+ if skip_logits is None:
240
+ # By default, if in training mode, don't materialize logits
241
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
242
+
243
+ # Compute loss
244
+ if skip_logits:
245
+ result = lce_maybe_trainable_lm_head(
246
+ self,
247
+ hidden_states=kept_hidden_states,
220
248
  hidden_size=self.config.hidden_size,
221
- **loss_kwargs,
249
+ labels=labels,
250
+ shift_labels=shift_labels,
251
+ **kwargs,
222
252
  )
223
-
224
- else: # if in inference mode materialize logits
225
- logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
226
- if labels is not None:
253
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
254
+ else:
255
+ logits = self.lm_head(kept_hidden_states)
256
+ if labels is not None or shift_labels is not None:
227
257
  loss = self.loss_function(
228
258
  logits=logits,
229
259
  labels=labels,
260
+ shift_labels=shift_labels,
230
261
  vocab_size=self.config.vocab_size,
231
- **loss_kwargs,
262
+ **kwargs,
232
263
  )
233
264
 
234
265
  if not return_dict:
235
266
  output = (logits,) + outputs[1:]
236
- return (loss,) + output if loss is not None else output
267
+ output = ((loss,) + output) if loss is not None else output
268
+ output = output + (token_accuracy,) if token_accuracy is not None else output
269
+ return output
237
270
 
238
- return CausalLMOutputWithPast(
271
+ # Return custom output class with token_accuracy field
272
+ return LigerCausalLMOutputWithPast(
239
273
  loss=loss,
240
274
  logits=logits,
241
275
  past_key_values=outputs.past_key_values,
242
276
  hidden_states=outputs.hidden_states,
243
277
  attentions=outputs.attentions,
278
+ token_accuracy=token_accuracy,
279
+ )
280
+
281
+
282
+ def lce_maybe_trainable_lm_head(self, hidden_states, hidden_size, labels, shift_labels, **loss_kwargs):
283
+ lm_head = self.lm_head
284
+
285
+ # Unwrap the module if lm_head has been added as trainable module in PEFT LoRA configuration,
286
+ # i.e. listed in the modules_to_save field of LoraConfig, so the lm_head weights are read
287
+ # from the unwrapped module.
288
+ # See https://huggingface.co/docs/peft/package_reference/lora for reference.
289
+ if PEFT_AVAILABLE and isinstance(lm_head, ModulesToSaveWrapper):
290
+ lm_head = lm_head.modules_to_save.default
291
+
292
+ # If FSDP is used and lm_head is trainable, e.g., during full fine-tuning or with LoRA,
293
+ # reading the lm_head module weights and calling the kernel must be done within FSDP forward pass
294
+ # so the module entire parameters are summoned and kept in memory during the kernel execution.
295
+ if isinstance(lm_head, FullyShardedDataParallel):
296
+ return _FSDPForwardRedirection()(
297
+ lm_head,
298
+ _liger_for_causal_lm_loss,
299
+ lm_head.module,
300
+ hidden_states,
301
+ hidden_size,
302
+ labels,
303
+ shift_labels,
304
+ **loss_kwargs,
305
+ )
306
+
307
+ # FSDP is not used so we can read the lm_head weights and call the kernel directly
308
+ return _liger_for_causal_lm_loss(
309
+ lm_head=self.lm_head,
310
+ hidden_states=hidden_states,
311
+ hidden_size=hidden_size,
312
+ labels=labels,
313
+ shift_labels=shift_labels,
314
+ **loss_kwargs,
315
+ )
316
+
317
+
318
+ def _liger_for_causal_lm_loss(lm_head, hidden_states, hidden_size, labels, shift_labels, **loss_kwargs):
319
+ return LigerForCausalLMLoss(
320
+ hidden_states=hidden_states,
321
+ lm_head_weight=lm_head.weight,
322
+ labels=labels,
323
+ hidden_size=hidden_size,
324
+ shift_labels=shift_labels,
325
+ **loss_kwargs,
244
326
  )
@@ -0,0 +1,121 @@
1
+ from typing import List
2
+ from typing import Optional
3
+ from typing import Tuple
4
+ from typing import Union
5
+
6
+ import torch
7
+
8
+ from transformers.cache_utils import Cache
9
+
10
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
11
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
12
+ from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
13
+
14
+
15
+ def lce_forward(
16
+ self,
17
+ input_ids: torch.LongTensor = None,
18
+ attention_mask: Optional[torch.Tensor] = None,
19
+ position_ids: Optional[torch.LongTensor] = None,
20
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
21
+ inputs_embeds: Optional[torch.FloatTensor] = None,
22
+ labels: Optional[torch.LongTensor] = None,
23
+ use_cache: Optional[bool] = None,
24
+ output_attentions: Optional[bool] = None,
25
+ output_hidden_states: Optional[bool] = None,
26
+ return_dict: Optional[bool] = None,
27
+ cache_position: Optional[torch.LongTensor] = None,
28
+ logits_to_keep: Union[int, torch.Tensor] = 0,
29
+ **kwargs,
30
+ ) -> Union[Tuple, LigerCausalLMOutputWithPast]:
31
+ r"""
32
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
33
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
34
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
35
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
36
+
37
+ Example:
38
+
39
+ ```python
40
+ >>> from transformers import AutoTokenizer, Llama4ForCausalLM
41
+
42
+ >>> model = Llama4ForCausalLM.from_pretrained("meta-llama4/Llama4-2-7b-hf")
43
+ >>> tokenizer = AutoTokenizer.from_pretrained("meta-llama4/Llama4-2-7b-hf")
44
+
45
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
46
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
47
+
48
+ >>> # Generate
49
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
50
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
51
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
52
+ ```"""
53
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
54
+ output_hidden_states = (
55
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
56
+ )
57
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
58
+
59
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
60
+ outputs = self.model(
61
+ input_ids=input_ids,
62
+ attention_mask=attention_mask,
63
+ position_ids=position_ids,
64
+ past_key_values=past_key_values,
65
+ inputs_embeds=inputs_embeds,
66
+ use_cache=use_cache,
67
+ output_attentions=output_attentions,
68
+ output_hidden_states=output_hidden_states,
69
+ return_dict=True,
70
+ cache_position=cache_position,
71
+ **kwargs,
72
+ )
73
+
74
+ hidden_states = outputs[0]
75
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
76
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
77
+ kept_hidden_states = hidden_states[:, slice_indices, :]
78
+
79
+ shift_labels = kwargs.pop("shift_labels", None)
80
+ logits = None
81
+ loss = None
82
+ token_accuracy = None
83
+
84
+ # Compute loss
85
+ if self.training and (labels is not None or shift_labels is not None):
86
+ result = LigerForCausalLMLoss(
87
+ hidden_states=kept_hidden_states,
88
+ lm_head_weight=self.lm_head.weight,
89
+ labels=labels,
90
+ shift_labels=shift_labels,
91
+ hidden_size=self.config.hidden_size,
92
+ **kwargs,
93
+ )
94
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
95
+
96
+ else: # if in inference mode materialize logits
97
+ logits = self.lm_head(kept_hidden_states)
98
+ if labels is not None or shift_labels is not None:
99
+ loss = self.loss_function(
100
+ logits=logits,
101
+ labels=labels,
102
+ shift_labels=shift_labels,
103
+ vocab_size=self.config.vocab_size,
104
+ **kwargs,
105
+ )
106
+
107
+ if not return_dict:
108
+ output = (logits,) + outputs[1:]
109
+ output = ((loss,) + output) if loss is not None else output
110
+ output = output + (token_accuracy,) if token_accuracy is not None else output
111
+ return output
112
+
113
+ # Return custom output class with token_accuracy field
114
+ return LigerCausalLMOutputWithPast(
115
+ loss=loss,
116
+ logits=logits,
117
+ past_key_values=outputs.past_key_values,
118
+ hidden_states=outputs.hidden_states,
119
+ attentions=outputs.attentions,
120
+ token_accuracy=token_accuracy,
121
+ )