fonttools 4.60.2__cp311-cp311-win32.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- fontTools/__init__.py +8 -0
- fontTools/__main__.py +35 -0
- fontTools/afmLib.py +439 -0
- fontTools/agl.py +5233 -0
- fontTools/annotations.py +30 -0
- fontTools/cffLib/CFF2ToCFF.py +258 -0
- fontTools/cffLib/CFFToCFF2.py +305 -0
- fontTools/cffLib/__init__.py +3694 -0
- fontTools/cffLib/specializer.py +927 -0
- fontTools/cffLib/transforms.py +495 -0
- fontTools/cffLib/width.py +210 -0
- fontTools/colorLib/__init__.py +0 -0
- fontTools/colorLib/builder.py +664 -0
- fontTools/colorLib/errors.py +2 -0
- fontTools/colorLib/geometry.py +143 -0
- fontTools/colorLib/table_builder.py +223 -0
- fontTools/colorLib/unbuilder.py +81 -0
- fontTools/config/__init__.py +90 -0
- fontTools/cu2qu/__init__.py +15 -0
- fontTools/cu2qu/__main__.py +6 -0
- fontTools/cu2qu/benchmark.py +54 -0
- fontTools/cu2qu/cli.py +198 -0
- fontTools/cu2qu/cu2qu.c +15817 -0
- fontTools/cu2qu/cu2qu.cp311-win32.pyd +0 -0
- fontTools/cu2qu/cu2qu.py +563 -0
- fontTools/cu2qu/errors.py +77 -0
- fontTools/cu2qu/ufo.py +363 -0
- fontTools/designspaceLib/__init__.py +3343 -0
- fontTools/designspaceLib/__main__.py +6 -0
- fontTools/designspaceLib/split.py +475 -0
- fontTools/designspaceLib/statNames.py +260 -0
- fontTools/designspaceLib/types.py +147 -0
- fontTools/encodings/MacRoman.py +258 -0
- fontTools/encodings/StandardEncoding.py +258 -0
- fontTools/encodings/__init__.py +1 -0
- fontTools/encodings/codecs.py +135 -0
- fontTools/feaLib/__init__.py +4 -0
- fontTools/feaLib/__main__.py +78 -0
- fontTools/feaLib/ast.py +2143 -0
- fontTools/feaLib/builder.py +1814 -0
- fontTools/feaLib/error.py +22 -0
- fontTools/feaLib/lexer.c +17029 -0
- fontTools/feaLib/lexer.cp311-win32.pyd +0 -0
- fontTools/feaLib/lexer.py +287 -0
- fontTools/feaLib/location.py +12 -0
- fontTools/feaLib/lookupDebugInfo.py +12 -0
- fontTools/feaLib/parser.py +2394 -0
- fontTools/feaLib/variableScalar.py +118 -0
- fontTools/fontBuilder.py +1014 -0
- fontTools/help.py +36 -0
- fontTools/merge/__init__.py +248 -0
- fontTools/merge/__main__.py +6 -0
- fontTools/merge/base.py +81 -0
- fontTools/merge/cmap.py +173 -0
- fontTools/merge/layout.py +526 -0
- fontTools/merge/options.py +85 -0
- fontTools/merge/tables.py +352 -0
- fontTools/merge/unicode.py +78 -0
- fontTools/merge/util.py +143 -0
- fontTools/misc/__init__.py +1 -0
- fontTools/misc/arrayTools.py +424 -0
- fontTools/misc/bezierTools.c +39731 -0
- fontTools/misc/bezierTools.cp311-win32.pyd +0 -0
- fontTools/misc/bezierTools.py +1500 -0
- fontTools/misc/classifyTools.py +170 -0
- fontTools/misc/cliTools.py +53 -0
- fontTools/misc/configTools.py +349 -0
- fontTools/misc/cython.py +27 -0
- fontTools/misc/dictTools.py +83 -0
- fontTools/misc/eexec.py +119 -0
- fontTools/misc/encodingTools.py +72 -0
- fontTools/misc/enumTools.py +23 -0
- fontTools/misc/etree.py +456 -0
- fontTools/misc/filenames.py +245 -0
- fontTools/misc/filesystem/__init__.py +68 -0
- fontTools/misc/filesystem/_base.py +134 -0
- fontTools/misc/filesystem/_copy.py +45 -0
- fontTools/misc/filesystem/_errors.py +54 -0
- fontTools/misc/filesystem/_info.py +75 -0
- fontTools/misc/filesystem/_osfs.py +164 -0
- fontTools/misc/filesystem/_path.py +67 -0
- fontTools/misc/filesystem/_subfs.py +92 -0
- fontTools/misc/filesystem/_tempfs.py +34 -0
- fontTools/misc/filesystem/_tools.py +34 -0
- fontTools/misc/filesystem/_walk.py +55 -0
- fontTools/misc/filesystem/_zipfs.py +204 -0
- fontTools/misc/fixedTools.py +253 -0
- fontTools/misc/intTools.py +25 -0
- fontTools/misc/iterTools.py +12 -0
- fontTools/misc/lazyTools.py +42 -0
- fontTools/misc/loggingTools.py +543 -0
- fontTools/misc/macCreatorType.py +56 -0
- fontTools/misc/macRes.py +261 -0
- fontTools/misc/plistlib/__init__.py +681 -0
- fontTools/misc/plistlib/py.typed +0 -0
- fontTools/misc/psCharStrings.py +1511 -0
- fontTools/misc/psLib.py +398 -0
- fontTools/misc/psOperators.py +572 -0
- fontTools/misc/py23.py +96 -0
- fontTools/misc/roundTools.py +110 -0
- fontTools/misc/sstruct.py +227 -0
- fontTools/misc/symfont.py +242 -0
- fontTools/misc/testTools.py +233 -0
- fontTools/misc/textTools.py +156 -0
- fontTools/misc/timeTools.py +88 -0
- fontTools/misc/transform.py +516 -0
- fontTools/misc/treeTools.py +45 -0
- fontTools/misc/vector.py +147 -0
- fontTools/misc/visitor.py +158 -0
- fontTools/misc/xmlReader.py +188 -0
- fontTools/misc/xmlWriter.py +231 -0
- fontTools/mtiLib/__init__.py +1400 -0
- fontTools/mtiLib/__main__.py +5 -0
- fontTools/otlLib/__init__.py +1 -0
- fontTools/otlLib/builder.py +3465 -0
- fontTools/otlLib/error.py +11 -0
- fontTools/otlLib/maxContextCalc.py +96 -0
- fontTools/otlLib/optimize/__init__.py +53 -0
- fontTools/otlLib/optimize/__main__.py +6 -0
- fontTools/otlLib/optimize/gpos.py +439 -0
- fontTools/pens/__init__.py +1 -0
- fontTools/pens/areaPen.py +52 -0
- fontTools/pens/basePen.py +475 -0
- fontTools/pens/boundsPen.py +98 -0
- fontTools/pens/cairoPen.py +26 -0
- fontTools/pens/cocoaPen.py +26 -0
- fontTools/pens/cu2quPen.py +325 -0
- fontTools/pens/explicitClosingLinePen.py +101 -0
- fontTools/pens/filterPen.py +433 -0
- fontTools/pens/freetypePen.py +462 -0
- fontTools/pens/hashPointPen.py +89 -0
- fontTools/pens/momentsPen.c +13378 -0
- fontTools/pens/momentsPen.cp311-win32.pyd +0 -0
- fontTools/pens/momentsPen.py +879 -0
- fontTools/pens/perimeterPen.py +69 -0
- fontTools/pens/pointInsidePen.py +192 -0
- fontTools/pens/pointPen.py +643 -0
- fontTools/pens/qtPen.py +29 -0
- fontTools/pens/qu2cuPen.py +105 -0
- fontTools/pens/quartzPen.py +43 -0
- fontTools/pens/recordingPen.py +335 -0
- fontTools/pens/reportLabPen.py +79 -0
- fontTools/pens/reverseContourPen.py +96 -0
- fontTools/pens/roundingPen.py +130 -0
- fontTools/pens/statisticsPen.py +312 -0
- fontTools/pens/svgPathPen.py +310 -0
- fontTools/pens/t2CharStringPen.py +88 -0
- fontTools/pens/teePen.py +55 -0
- fontTools/pens/transformPen.py +115 -0
- fontTools/pens/ttGlyphPen.py +335 -0
- fontTools/pens/wxPen.py +29 -0
- fontTools/qu2cu/__init__.py +15 -0
- fontTools/qu2cu/__main__.py +7 -0
- fontTools/qu2cu/benchmark.py +56 -0
- fontTools/qu2cu/cli.py +125 -0
- fontTools/qu2cu/qu2cu.c +16682 -0
- fontTools/qu2cu/qu2cu.cp311-win32.pyd +0 -0
- fontTools/qu2cu/qu2cu.py +405 -0
- fontTools/subset/__init__.py +4096 -0
- fontTools/subset/__main__.py +6 -0
- fontTools/subset/cff.py +184 -0
- fontTools/subset/svg.py +253 -0
- fontTools/subset/util.py +25 -0
- fontTools/svgLib/__init__.py +3 -0
- fontTools/svgLib/path/__init__.py +65 -0
- fontTools/svgLib/path/arc.py +154 -0
- fontTools/svgLib/path/parser.py +322 -0
- fontTools/svgLib/path/shapes.py +183 -0
- fontTools/t1Lib/__init__.py +648 -0
- fontTools/tfmLib.py +460 -0
- fontTools/ttLib/__init__.py +30 -0
- fontTools/ttLib/__main__.py +148 -0
- fontTools/ttLib/macUtils.py +54 -0
- fontTools/ttLib/removeOverlaps.py +395 -0
- fontTools/ttLib/reorderGlyphs.py +285 -0
- fontTools/ttLib/scaleUpem.py +436 -0
- fontTools/ttLib/sfnt.py +661 -0
- fontTools/ttLib/standardGlyphOrder.py +271 -0
- fontTools/ttLib/tables/B_A_S_E_.py +14 -0
- fontTools/ttLib/tables/BitmapGlyphMetrics.py +64 -0
- fontTools/ttLib/tables/C_B_D_T_.py +113 -0
- fontTools/ttLib/tables/C_B_L_C_.py +19 -0
- fontTools/ttLib/tables/C_F_F_.py +61 -0
- fontTools/ttLib/tables/C_F_F__2.py +26 -0
- fontTools/ttLib/tables/C_O_L_R_.py +165 -0
- fontTools/ttLib/tables/C_P_A_L_.py +305 -0
- fontTools/ttLib/tables/D_S_I_G_.py +158 -0
- fontTools/ttLib/tables/D__e_b_g.py +35 -0
- fontTools/ttLib/tables/DefaultTable.py +49 -0
- fontTools/ttLib/tables/E_B_D_T_.py +835 -0
- fontTools/ttLib/tables/E_B_L_C_.py +718 -0
- fontTools/ttLib/tables/F_F_T_M_.py +52 -0
- fontTools/ttLib/tables/F__e_a_t.py +149 -0
- fontTools/ttLib/tables/G_D_E_F_.py +13 -0
- fontTools/ttLib/tables/G_M_A_P_.py +148 -0
- fontTools/ttLib/tables/G_P_K_G_.py +133 -0
- fontTools/ttLib/tables/G_P_O_S_.py +14 -0
- fontTools/ttLib/tables/G_S_U_B_.py +13 -0
- fontTools/ttLib/tables/G_V_A_R_.py +5 -0
- fontTools/ttLib/tables/G__l_a_t.py +235 -0
- fontTools/ttLib/tables/G__l_o_c.py +85 -0
- fontTools/ttLib/tables/H_V_A_R_.py +13 -0
- fontTools/ttLib/tables/J_S_T_F_.py +13 -0
- fontTools/ttLib/tables/L_T_S_H_.py +58 -0
- fontTools/ttLib/tables/M_A_T_H_.py +13 -0
- fontTools/ttLib/tables/M_E_T_A_.py +352 -0
- fontTools/ttLib/tables/M_V_A_R_.py +13 -0
- fontTools/ttLib/tables/O_S_2f_2.py +752 -0
- fontTools/ttLib/tables/S_I_N_G_.py +99 -0
- fontTools/ttLib/tables/S_T_A_T_.py +15 -0
- fontTools/ttLib/tables/S_V_G_.py +223 -0
- fontTools/ttLib/tables/S__i_l_f.py +1040 -0
- fontTools/ttLib/tables/S__i_l_l.py +92 -0
- fontTools/ttLib/tables/T_S_I_B_.py +13 -0
- fontTools/ttLib/tables/T_S_I_C_.py +14 -0
- fontTools/ttLib/tables/T_S_I_D_.py +13 -0
- fontTools/ttLib/tables/T_S_I_J_.py +13 -0
- fontTools/ttLib/tables/T_S_I_P_.py +13 -0
- fontTools/ttLib/tables/T_S_I_S_.py +13 -0
- fontTools/ttLib/tables/T_S_I_V_.py +26 -0
- fontTools/ttLib/tables/T_S_I__0.py +70 -0
- fontTools/ttLib/tables/T_S_I__1.py +163 -0
- fontTools/ttLib/tables/T_S_I__2.py +17 -0
- fontTools/ttLib/tables/T_S_I__3.py +22 -0
- fontTools/ttLib/tables/T_S_I__5.py +60 -0
- fontTools/ttLib/tables/T_T_F_A_.py +14 -0
- fontTools/ttLib/tables/TupleVariation.py +884 -0
- fontTools/ttLib/tables/V_A_R_C_.py +12 -0
- fontTools/ttLib/tables/V_D_M_X_.py +249 -0
- fontTools/ttLib/tables/V_O_R_G_.py +165 -0
- fontTools/ttLib/tables/V_V_A_R_.py +13 -0
- fontTools/ttLib/tables/__init__.py +98 -0
- fontTools/ttLib/tables/_a_n_k_r.py +15 -0
- fontTools/ttLib/tables/_a_v_a_r.py +193 -0
- fontTools/ttLib/tables/_b_s_l_n.py +15 -0
- fontTools/ttLib/tables/_c_i_d_g.py +24 -0
- fontTools/ttLib/tables/_c_m_a_p.py +1591 -0
- fontTools/ttLib/tables/_c_v_a_r.py +94 -0
- fontTools/ttLib/tables/_c_v_t.py +56 -0
- fontTools/ttLib/tables/_f_e_a_t.py +15 -0
- fontTools/ttLib/tables/_f_p_g_m.py +62 -0
- fontTools/ttLib/tables/_f_v_a_r.py +261 -0
- fontTools/ttLib/tables/_g_a_s_p.py +63 -0
- fontTools/ttLib/tables/_g_c_i_d.py +13 -0
- fontTools/ttLib/tables/_g_l_y_f.py +2311 -0
- fontTools/ttLib/tables/_g_v_a_r.py +340 -0
- fontTools/ttLib/tables/_h_d_m_x.py +127 -0
- fontTools/ttLib/tables/_h_e_a_d.py +130 -0
- fontTools/ttLib/tables/_h_h_e_a.py +147 -0
- fontTools/ttLib/tables/_h_m_t_x.py +164 -0
- fontTools/ttLib/tables/_k_e_r_n.py +289 -0
- fontTools/ttLib/tables/_l_c_a_r.py +13 -0
- fontTools/ttLib/tables/_l_o_c_a.py +70 -0
- fontTools/ttLib/tables/_l_t_a_g.py +72 -0
- fontTools/ttLib/tables/_m_a_x_p.py +147 -0
- fontTools/ttLib/tables/_m_e_t_a.py +112 -0
- fontTools/ttLib/tables/_m_o_r_t.py +14 -0
- fontTools/ttLib/tables/_m_o_r_x.py +15 -0
- fontTools/ttLib/tables/_n_a_m_e.py +1242 -0
- fontTools/ttLib/tables/_o_p_b_d.py +14 -0
- fontTools/ttLib/tables/_p_o_s_t.py +319 -0
- fontTools/ttLib/tables/_p_r_e_p.py +16 -0
- fontTools/ttLib/tables/_p_r_o_p.py +12 -0
- fontTools/ttLib/tables/_s_b_i_x.py +129 -0
- fontTools/ttLib/tables/_t_r_a_k.py +332 -0
- fontTools/ttLib/tables/_v_h_e_a.py +139 -0
- fontTools/ttLib/tables/_v_m_t_x.py +19 -0
- fontTools/ttLib/tables/asciiTable.py +20 -0
- fontTools/ttLib/tables/grUtils.py +92 -0
- fontTools/ttLib/tables/otBase.py +1458 -0
- fontTools/ttLib/tables/otConverters.py +2068 -0
- fontTools/ttLib/tables/otData.py +6400 -0
- fontTools/ttLib/tables/otTables.py +2703 -0
- fontTools/ttLib/tables/otTraverse.py +163 -0
- fontTools/ttLib/tables/sbixGlyph.py +149 -0
- fontTools/ttLib/tables/sbixStrike.py +177 -0
- fontTools/ttLib/tables/table_API_readme.txt +91 -0
- fontTools/ttLib/tables/ttProgram.py +594 -0
- fontTools/ttLib/ttCollection.py +125 -0
- fontTools/ttLib/ttFont.py +1148 -0
- fontTools/ttLib/ttGlyphSet.py +490 -0
- fontTools/ttLib/ttVisitor.py +32 -0
- fontTools/ttLib/woff2.py +1680 -0
- fontTools/ttx.py +479 -0
- fontTools/ufoLib/__init__.py +2575 -0
- fontTools/ufoLib/converters.py +407 -0
- fontTools/ufoLib/errors.py +30 -0
- fontTools/ufoLib/etree.py +6 -0
- fontTools/ufoLib/filenames.py +356 -0
- fontTools/ufoLib/glifLib.py +2120 -0
- fontTools/ufoLib/kerning.py +141 -0
- fontTools/ufoLib/plistlib.py +47 -0
- fontTools/ufoLib/pointPen.py +6 -0
- fontTools/ufoLib/utils.py +107 -0
- fontTools/ufoLib/validators.py +1208 -0
- fontTools/unicode.py +50 -0
- fontTools/unicodedata/Blocks.py +817 -0
- fontTools/unicodedata/Mirrored.py +446 -0
- fontTools/unicodedata/OTTags.py +50 -0
- fontTools/unicodedata/ScriptExtensions.py +832 -0
- fontTools/unicodedata/Scripts.py +3639 -0
- fontTools/unicodedata/__init__.py +306 -0
- fontTools/varLib/__init__.py +1600 -0
- fontTools/varLib/__main__.py +6 -0
- fontTools/varLib/avar/__init__.py +0 -0
- fontTools/varLib/avar/__main__.py +72 -0
- fontTools/varLib/avar/build.py +79 -0
- fontTools/varLib/avar/map.py +108 -0
- fontTools/varLib/avar/plan.py +1004 -0
- fontTools/varLib/avar/unbuild.py +271 -0
- fontTools/varLib/avarPlanner.py +8 -0
- fontTools/varLib/builder.py +215 -0
- fontTools/varLib/cff.py +631 -0
- fontTools/varLib/errors.py +219 -0
- fontTools/varLib/featureVars.py +703 -0
- fontTools/varLib/hvar.py +113 -0
- fontTools/varLib/instancer/__init__.py +2052 -0
- fontTools/varLib/instancer/__main__.py +5 -0
- fontTools/varLib/instancer/featureVars.py +190 -0
- fontTools/varLib/instancer/names.py +388 -0
- fontTools/varLib/instancer/solver.py +309 -0
- fontTools/varLib/interpolatable.py +1209 -0
- fontTools/varLib/interpolatableHelpers.py +399 -0
- fontTools/varLib/interpolatablePlot.py +1269 -0
- fontTools/varLib/interpolatableTestContourOrder.py +82 -0
- fontTools/varLib/interpolatableTestStartingPoint.py +107 -0
- fontTools/varLib/interpolate_layout.py +124 -0
- fontTools/varLib/iup.c +19815 -0
- fontTools/varLib/iup.cp311-win32.pyd +0 -0
- fontTools/varLib/iup.py +490 -0
- fontTools/varLib/merger.py +1717 -0
- fontTools/varLib/models.py +642 -0
- fontTools/varLib/multiVarStore.py +253 -0
- fontTools/varLib/mutator.py +529 -0
- fontTools/varLib/mvar.py +40 -0
- fontTools/varLib/plot.py +238 -0
- fontTools/varLib/stat.py +149 -0
- fontTools/varLib/varStore.py +739 -0
- fontTools/voltLib/__init__.py +5 -0
- fontTools/voltLib/__main__.py +206 -0
- fontTools/voltLib/ast.py +452 -0
- fontTools/voltLib/error.py +12 -0
- fontTools/voltLib/lexer.py +99 -0
- fontTools/voltLib/parser.py +664 -0
- fontTools/voltLib/voltToFea.py +911 -0
- fonttools-4.60.2.data/data/share/man/man1/ttx.1 +225 -0
- fonttools-4.60.2.dist-info/METADATA +2250 -0
- fonttools-4.60.2.dist-info/RECORD +353 -0
- fonttools-4.60.2.dist-info/WHEEL +5 -0
- fonttools-4.60.2.dist-info/entry_points.txt +5 -0
- fonttools-4.60.2.dist-info/licenses/LICENSE +21 -0
- fonttools-4.60.2.dist-info/licenses/LICENSE.external +388 -0
- fonttools-4.60.2.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,1500 @@
|
|
|
1
|
+
# -*- coding: utf-8 -*-
|
|
2
|
+
"""fontTools.misc.bezierTools.py -- tools for working with Bezier path segments.
|
|
3
|
+
"""
|
|
4
|
+
|
|
5
|
+
from fontTools.misc.arrayTools import calcBounds, sectRect, rectArea
|
|
6
|
+
from fontTools.misc.transform import Identity
|
|
7
|
+
import math
|
|
8
|
+
from collections import namedtuple
|
|
9
|
+
|
|
10
|
+
try:
|
|
11
|
+
import cython
|
|
12
|
+
except (AttributeError, ImportError):
|
|
13
|
+
# if cython not installed, use mock module with no-op decorators and types
|
|
14
|
+
from fontTools.misc import cython
|
|
15
|
+
COMPILED = cython.compiled
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
EPSILON = 1e-9
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
Intersection = namedtuple("Intersection", ["pt", "t1", "t2"])
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
__all__ = [
|
|
25
|
+
"approximateCubicArcLength",
|
|
26
|
+
"approximateCubicArcLengthC",
|
|
27
|
+
"approximateQuadraticArcLength",
|
|
28
|
+
"approximateQuadraticArcLengthC",
|
|
29
|
+
"calcCubicArcLength",
|
|
30
|
+
"calcCubicArcLengthC",
|
|
31
|
+
"calcQuadraticArcLength",
|
|
32
|
+
"calcQuadraticArcLengthC",
|
|
33
|
+
"calcCubicBounds",
|
|
34
|
+
"calcQuadraticBounds",
|
|
35
|
+
"splitLine",
|
|
36
|
+
"splitQuadratic",
|
|
37
|
+
"splitCubic",
|
|
38
|
+
"splitQuadraticAtT",
|
|
39
|
+
"splitCubicAtT",
|
|
40
|
+
"splitCubicAtTC",
|
|
41
|
+
"splitCubicIntoTwoAtTC",
|
|
42
|
+
"solveQuadratic",
|
|
43
|
+
"solveCubic",
|
|
44
|
+
"quadraticPointAtT",
|
|
45
|
+
"cubicPointAtT",
|
|
46
|
+
"cubicPointAtTC",
|
|
47
|
+
"linePointAtT",
|
|
48
|
+
"segmentPointAtT",
|
|
49
|
+
"lineLineIntersections",
|
|
50
|
+
"curveLineIntersections",
|
|
51
|
+
"curveCurveIntersections",
|
|
52
|
+
"segmentSegmentIntersections",
|
|
53
|
+
]
|
|
54
|
+
|
|
55
|
+
|
|
56
|
+
def calcCubicArcLength(pt1, pt2, pt3, pt4, tolerance=0.005):
|
|
57
|
+
"""Calculates the arc length for a cubic Bezier segment.
|
|
58
|
+
|
|
59
|
+
Whereas :func:`approximateCubicArcLength` approximates the length, this
|
|
60
|
+
function calculates it by "measuring", recursively dividing the curve
|
|
61
|
+
until the divided segments are shorter than ``tolerance``.
|
|
62
|
+
|
|
63
|
+
Args:
|
|
64
|
+
pt1,pt2,pt3,pt4: Control points of the Bezier as 2D tuples.
|
|
65
|
+
tolerance: Controls the precision of the calcuation.
|
|
66
|
+
|
|
67
|
+
Returns:
|
|
68
|
+
Arc length value.
|
|
69
|
+
"""
|
|
70
|
+
return calcCubicArcLengthC(
|
|
71
|
+
complex(*pt1), complex(*pt2), complex(*pt3), complex(*pt4), tolerance
|
|
72
|
+
)
|
|
73
|
+
|
|
74
|
+
|
|
75
|
+
def _split_cubic_into_two(p0, p1, p2, p3):
|
|
76
|
+
mid = (p0 + 3 * (p1 + p2) + p3) * 0.125
|
|
77
|
+
deriv3 = (p3 + p2 - p1 - p0) * 0.125
|
|
78
|
+
return (
|
|
79
|
+
(p0, (p0 + p1) * 0.5, mid - deriv3, mid),
|
|
80
|
+
(mid, mid + deriv3, (p2 + p3) * 0.5, p3),
|
|
81
|
+
)
|
|
82
|
+
|
|
83
|
+
|
|
84
|
+
@cython.returns(cython.double)
|
|
85
|
+
@cython.locals(
|
|
86
|
+
p0=cython.complex,
|
|
87
|
+
p1=cython.complex,
|
|
88
|
+
p2=cython.complex,
|
|
89
|
+
p3=cython.complex,
|
|
90
|
+
)
|
|
91
|
+
@cython.locals(mult=cython.double, arch=cython.double, box=cython.double)
|
|
92
|
+
def _calcCubicArcLengthCRecurse(mult, p0, p1, p2, p3):
|
|
93
|
+
arch = abs(p0 - p3)
|
|
94
|
+
box = abs(p0 - p1) + abs(p1 - p2) + abs(p2 - p3)
|
|
95
|
+
if arch * mult + EPSILON >= box:
|
|
96
|
+
return (arch + box) * 0.5
|
|
97
|
+
else:
|
|
98
|
+
one, two = _split_cubic_into_two(p0, p1, p2, p3)
|
|
99
|
+
return _calcCubicArcLengthCRecurse(mult, *one) + _calcCubicArcLengthCRecurse(
|
|
100
|
+
mult, *two
|
|
101
|
+
)
|
|
102
|
+
|
|
103
|
+
|
|
104
|
+
@cython.returns(cython.double)
|
|
105
|
+
@cython.locals(
|
|
106
|
+
pt1=cython.complex,
|
|
107
|
+
pt2=cython.complex,
|
|
108
|
+
pt3=cython.complex,
|
|
109
|
+
pt4=cython.complex,
|
|
110
|
+
)
|
|
111
|
+
@cython.locals(
|
|
112
|
+
tolerance=cython.double,
|
|
113
|
+
mult=cython.double,
|
|
114
|
+
)
|
|
115
|
+
def calcCubicArcLengthC(pt1, pt2, pt3, pt4, tolerance=0.005):
|
|
116
|
+
"""Calculates the arc length for a cubic Bezier segment.
|
|
117
|
+
|
|
118
|
+
Args:
|
|
119
|
+
pt1,pt2,pt3,pt4: Control points of the Bezier as complex numbers.
|
|
120
|
+
tolerance: Controls the precision of the calcuation.
|
|
121
|
+
|
|
122
|
+
Returns:
|
|
123
|
+
Arc length value.
|
|
124
|
+
"""
|
|
125
|
+
mult = 1.0 + 1.5 * tolerance # The 1.5 is a empirical hack; no math
|
|
126
|
+
return _calcCubicArcLengthCRecurse(mult, pt1, pt2, pt3, pt4)
|
|
127
|
+
|
|
128
|
+
|
|
129
|
+
epsilonDigits = 6
|
|
130
|
+
epsilon = 1e-10
|
|
131
|
+
|
|
132
|
+
|
|
133
|
+
@cython.cfunc
|
|
134
|
+
@cython.inline
|
|
135
|
+
@cython.returns(cython.double)
|
|
136
|
+
@cython.locals(v1=cython.complex, v2=cython.complex)
|
|
137
|
+
def _dot(v1, v2):
|
|
138
|
+
return (v1 * v2.conjugate()).real
|
|
139
|
+
|
|
140
|
+
|
|
141
|
+
@cython.cfunc
|
|
142
|
+
@cython.inline
|
|
143
|
+
@cython.returns(cython.double)
|
|
144
|
+
@cython.locals(x=cython.double)
|
|
145
|
+
def _intSecAtan(x):
|
|
146
|
+
# In : sympy.integrate(sp.sec(sp.atan(x)))
|
|
147
|
+
# Out: x*sqrt(x**2 + 1)/2 + asinh(x)/2
|
|
148
|
+
return x * math.sqrt(x**2 + 1) / 2 + math.asinh(x) / 2
|
|
149
|
+
|
|
150
|
+
|
|
151
|
+
def calcQuadraticArcLength(pt1, pt2, pt3):
|
|
152
|
+
"""Calculates the arc length for a quadratic Bezier segment.
|
|
153
|
+
|
|
154
|
+
Args:
|
|
155
|
+
pt1: Start point of the Bezier as 2D tuple.
|
|
156
|
+
pt2: Handle point of the Bezier as 2D tuple.
|
|
157
|
+
pt3: End point of the Bezier as 2D tuple.
|
|
158
|
+
|
|
159
|
+
Returns:
|
|
160
|
+
Arc length value.
|
|
161
|
+
|
|
162
|
+
Example::
|
|
163
|
+
|
|
164
|
+
>>> calcQuadraticArcLength((0, 0), (0, 0), (0, 0)) # empty segment
|
|
165
|
+
0.0
|
|
166
|
+
>>> calcQuadraticArcLength((0, 0), (50, 0), (80, 0)) # collinear points
|
|
167
|
+
80.0
|
|
168
|
+
>>> calcQuadraticArcLength((0, 0), (0, 50), (0, 80)) # collinear points vertical
|
|
169
|
+
80.0
|
|
170
|
+
>>> calcQuadraticArcLength((0, 0), (50, 20), (100, 40)) # collinear points
|
|
171
|
+
107.70329614269008
|
|
172
|
+
>>> calcQuadraticArcLength((0, 0), (0, 100), (100, 0))
|
|
173
|
+
154.02976155645263
|
|
174
|
+
>>> calcQuadraticArcLength((0, 0), (0, 50), (100, 0))
|
|
175
|
+
120.21581243984076
|
|
176
|
+
>>> calcQuadraticArcLength((0, 0), (50, -10), (80, 50))
|
|
177
|
+
102.53273816445825
|
|
178
|
+
>>> calcQuadraticArcLength((0, 0), (40, 0), (-40, 0)) # collinear points, control point outside
|
|
179
|
+
66.66666666666667
|
|
180
|
+
>>> calcQuadraticArcLength((0, 0), (40, 0), (0, 0)) # collinear points, looping back
|
|
181
|
+
40.0
|
|
182
|
+
"""
|
|
183
|
+
return calcQuadraticArcLengthC(complex(*pt1), complex(*pt2), complex(*pt3))
|
|
184
|
+
|
|
185
|
+
|
|
186
|
+
@cython.returns(cython.double)
|
|
187
|
+
@cython.locals(
|
|
188
|
+
pt1=cython.complex,
|
|
189
|
+
pt2=cython.complex,
|
|
190
|
+
pt3=cython.complex,
|
|
191
|
+
d0=cython.complex,
|
|
192
|
+
d1=cython.complex,
|
|
193
|
+
d=cython.complex,
|
|
194
|
+
n=cython.complex,
|
|
195
|
+
)
|
|
196
|
+
@cython.locals(
|
|
197
|
+
scale=cython.double,
|
|
198
|
+
origDist=cython.double,
|
|
199
|
+
a=cython.double,
|
|
200
|
+
b=cython.double,
|
|
201
|
+
x0=cython.double,
|
|
202
|
+
x1=cython.double,
|
|
203
|
+
Len=cython.double,
|
|
204
|
+
)
|
|
205
|
+
def calcQuadraticArcLengthC(pt1, pt2, pt3):
|
|
206
|
+
"""Calculates the arc length for a quadratic Bezier segment.
|
|
207
|
+
|
|
208
|
+
Args:
|
|
209
|
+
pt1: Start point of the Bezier as a complex number.
|
|
210
|
+
pt2: Handle point of the Bezier as a complex number.
|
|
211
|
+
pt3: End point of the Bezier as a complex number.
|
|
212
|
+
|
|
213
|
+
Returns:
|
|
214
|
+
Arc length value.
|
|
215
|
+
"""
|
|
216
|
+
# Analytical solution to the length of a quadratic bezier.
|
|
217
|
+
# Documentation: https://github.com/fonttools/fonttools/issues/3055
|
|
218
|
+
d0 = pt2 - pt1
|
|
219
|
+
d1 = pt3 - pt2
|
|
220
|
+
d = d1 - d0
|
|
221
|
+
n = d * 1j
|
|
222
|
+
scale = abs(n)
|
|
223
|
+
if scale == 0.0:
|
|
224
|
+
return abs(pt3 - pt1)
|
|
225
|
+
origDist = _dot(n, d0)
|
|
226
|
+
if abs(origDist) < epsilon:
|
|
227
|
+
if _dot(d0, d1) >= 0:
|
|
228
|
+
return abs(pt3 - pt1)
|
|
229
|
+
a, b = abs(d0), abs(d1)
|
|
230
|
+
return (a * a + b * b) / (a + b)
|
|
231
|
+
x0 = _dot(d, d0) / origDist
|
|
232
|
+
x1 = _dot(d, d1) / origDist
|
|
233
|
+
Len = abs(2 * (_intSecAtan(x1) - _intSecAtan(x0)) * origDist / (scale * (x1 - x0)))
|
|
234
|
+
return Len
|
|
235
|
+
|
|
236
|
+
|
|
237
|
+
def approximateQuadraticArcLength(pt1, pt2, pt3):
|
|
238
|
+
"""Calculates the arc length for a quadratic Bezier segment.
|
|
239
|
+
|
|
240
|
+
Uses Gauss-Legendre quadrature for a branch-free approximation.
|
|
241
|
+
See :func:`calcQuadraticArcLength` for a slower but more accurate result.
|
|
242
|
+
|
|
243
|
+
Args:
|
|
244
|
+
pt1: Start point of the Bezier as 2D tuple.
|
|
245
|
+
pt2: Handle point of the Bezier as 2D tuple.
|
|
246
|
+
pt3: End point of the Bezier as 2D tuple.
|
|
247
|
+
|
|
248
|
+
Returns:
|
|
249
|
+
Approximate arc length value.
|
|
250
|
+
"""
|
|
251
|
+
return approximateQuadraticArcLengthC(complex(*pt1), complex(*pt2), complex(*pt3))
|
|
252
|
+
|
|
253
|
+
|
|
254
|
+
@cython.returns(cython.double)
|
|
255
|
+
@cython.locals(
|
|
256
|
+
pt1=cython.complex,
|
|
257
|
+
pt2=cython.complex,
|
|
258
|
+
pt3=cython.complex,
|
|
259
|
+
)
|
|
260
|
+
@cython.locals(
|
|
261
|
+
v0=cython.double,
|
|
262
|
+
v1=cython.double,
|
|
263
|
+
v2=cython.double,
|
|
264
|
+
)
|
|
265
|
+
def approximateQuadraticArcLengthC(pt1, pt2, pt3):
|
|
266
|
+
"""Calculates the arc length for a quadratic Bezier segment.
|
|
267
|
+
|
|
268
|
+
Uses Gauss-Legendre quadrature for a branch-free approximation.
|
|
269
|
+
See :func:`calcQuadraticArcLength` for a slower but more accurate result.
|
|
270
|
+
|
|
271
|
+
Args:
|
|
272
|
+
pt1: Start point of the Bezier as a complex number.
|
|
273
|
+
pt2: Handle point of the Bezier as a complex number.
|
|
274
|
+
pt3: End point of the Bezier as a complex number.
|
|
275
|
+
|
|
276
|
+
Returns:
|
|
277
|
+
Approximate arc length value.
|
|
278
|
+
"""
|
|
279
|
+
# This, essentially, approximates the length-of-derivative function
|
|
280
|
+
# to be integrated with the best-matching fifth-degree polynomial
|
|
281
|
+
# approximation of it.
|
|
282
|
+
#
|
|
283
|
+
# https://en.wikipedia.org/wiki/Gaussian_quadrature#Gauss.E2.80.93Legendre_quadrature
|
|
284
|
+
|
|
285
|
+
# abs(BezierCurveC[2].diff(t).subs({t:T})) for T in sorted(.5, .5±sqrt(3/5)/2),
|
|
286
|
+
# weighted 5/18, 8/18, 5/18 respectively.
|
|
287
|
+
v0 = abs(
|
|
288
|
+
-0.492943519233745 * pt1 + 0.430331482911935 * pt2 + 0.0626120363218102 * pt3
|
|
289
|
+
)
|
|
290
|
+
v1 = abs(pt3 - pt1) * 0.4444444444444444
|
|
291
|
+
v2 = abs(
|
|
292
|
+
-0.0626120363218102 * pt1 - 0.430331482911935 * pt2 + 0.492943519233745 * pt3
|
|
293
|
+
)
|
|
294
|
+
|
|
295
|
+
return v0 + v1 + v2
|
|
296
|
+
|
|
297
|
+
|
|
298
|
+
def calcQuadraticBounds(pt1, pt2, pt3):
|
|
299
|
+
"""Calculates the bounding rectangle for a quadratic Bezier segment.
|
|
300
|
+
|
|
301
|
+
Args:
|
|
302
|
+
pt1: Start point of the Bezier as a 2D tuple.
|
|
303
|
+
pt2: Handle point of the Bezier as a 2D tuple.
|
|
304
|
+
pt3: End point of the Bezier as a 2D tuple.
|
|
305
|
+
|
|
306
|
+
Returns:
|
|
307
|
+
A four-item tuple representing the bounding rectangle ``(xMin, yMin, xMax, yMax)``.
|
|
308
|
+
|
|
309
|
+
Example::
|
|
310
|
+
|
|
311
|
+
>>> calcQuadraticBounds((0, 0), (50, 100), (100, 0))
|
|
312
|
+
(0, 0, 100, 50.0)
|
|
313
|
+
>>> calcQuadraticBounds((0, 0), (100, 0), (100, 100))
|
|
314
|
+
(0.0, 0.0, 100, 100)
|
|
315
|
+
"""
|
|
316
|
+
(ax, ay), (bx, by), (cx, cy) = calcQuadraticParameters(pt1, pt2, pt3)
|
|
317
|
+
ax2 = ax * 2.0
|
|
318
|
+
ay2 = ay * 2.0
|
|
319
|
+
roots = []
|
|
320
|
+
if ax2 != 0:
|
|
321
|
+
roots.append(-bx / ax2)
|
|
322
|
+
if ay2 != 0:
|
|
323
|
+
roots.append(-by / ay2)
|
|
324
|
+
points = [
|
|
325
|
+
(ax * t * t + bx * t + cx, ay * t * t + by * t + cy)
|
|
326
|
+
for t in roots
|
|
327
|
+
if 0 <= t < 1
|
|
328
|
+
] + [pt1, pt3]
|
|
329
|
+
return calcBounds(points)
|
|
330
|
+
|
|
331
|
+
|
|
332
|
+
def approximateCubicArcLength(pt1, pt2, pt3, pt4):
|
|
333
|
+
"""Approximates the arc length for a cubic Bezier segment.
|
|
334
|
+
|
|
335
|
+
Uses Gauss-Lobatto quadrature with n=5 points to approximate arc length.
|
|
336
|
+
See :func:`calcCubicArcLength` for a slower but more accurate result.
|
|
337
|
+
|
|
338
|
+
Args:
|
|
339
|
+
pt1,pt2,pt3,pt4: Control points of the Bezier as 2D tuples.
|
|
340
|
+
|
|
341
|
+
Returns:
|
|
342
|
+
Arc length value.
|
|
343
|
+
|
|
344
|
+
Example::
|
|
345
|
+
|
|
346
|
+
>>> approximateCubicArcLength((0, 0), (25, 100), (75, 100), (100, 0))
|
|
347
|
+
190.04332968932817
|
|
348
|
+
>>> approximateCubicArcLength((0, 0), (50, 0), (100, 50), (100, 100))
|
|
349
|
+
154.8852074945903
|
|
350
|
+
>>> approximateCubicArcLength((0, 0), (50, 0), (100, 0), (150, 0)) # line; exact result should be 150.
|
|
351
|
+
149.99999999999991
|
|
352
|
+
>>> approximateCubicArcLength((0, 0), (50, 0), (100, 0), (-50, 0)) # cusp; exact result should be 150.
|
|
353
|
+
136.9267662156362
|
|
354
|
+
>>> approximateCubicArcLength((0, 0), (50, 0), (100, -50), (-50, 0)) # cusp
|
|
355
|
+
154.80848416537057
|
|
356
|
+
"""
|
|
357
|
+
return approximateCubicArcLengthC(
|
|
358
|
+
complex(*pt1), complex(*pt2), complex(*pt3), complex(*pt4)
|
|
359
|
+
)
|
|
360
|
+
|
|
361
|
+
|
|
362
|
+
@cython.returns(cython.double)
|
|
363
|
+
@cython.locals(
|
|
364
|
+
pt1=cython.complex,
|
|
365
|
+
pt2=cython.complex,
|
|
366
|
+
pt3=cython.complex,
|
|
367
|
+
pt4=cython.complex,
|
|
368
|
+
)
|
|
369
|
+
@cython.locals(
|
|
370
|
+
v0=cython.double,
|
|
371
|
+
v1=cython.double,
|
|
372
|
+
v2=cython.double,
|
|
373
|
+
v3=cython.double,
|
|
374
|
+
v4=cython.double,
|
|
375
|
+
)
|
|
376
|
+
def approximateCubicArcLengthC(pt1, pt2, pt3, pt4):
|
|
377
|
+
"""Approximates the arc length for a cubic Bezier segment.
|
|
378
|
+
|
|
379
|
+
Args:
|
|
380
|
+
pt1,pt2,pt3,pt4: Control points of the Bezier as complex numbers.
|
|
381
|
+
|
|
382
|
+
Returns:
|
|
383
|
+
Arc length value.
|
|
384
|
+
"""
|
|
385
|
+
# This, essentially, approximates the length-of-derivative function
|
|
386
|
+
# to be integrated with the best-matching seventh-degree polynomial
|
|
387
|
+
# approximation of it.
|
|
388
|
+
#
|
|
389
|
+
# https://en.wikipedia.org/wiki/Gaussian_quadrature#Gauss.E2.80.93Lobatto_rules
|
|
390
|
+
|
|
391
|
+
# abs(BezierCurveC[3].diff(t).subs({t:T})) for T in sorted(0, .5±(3/7)**.5/2, .5, 1),
|
|
392
|
+
# weighted 1/20, 49/180, 32/90, 49/180, 1/20 respectively.
|
|
393
|
+
v0 = abs(pt2 - pt1) * 0.15
|
|
394
|
+
v1 = abs(
|
|
395
|
+
-0.558983582205757 * pt1
|
|
396
|
+
+ 0.325650248872424 * pt2
|
|
397
|
+
+ 0.208983582205757 * pt3
|
|
398
|
+
+ 0.024349751127576 * pt4
|
|
399
|
+
)
|
|
400
|
+
v2 = abs(pt4 - pt1 + pt3 - pt2) * 0.26666666666666666
|
|
401
|
+
v3 = abs(
|
|
402
|
+
-0.024349751127576 * pt1
|
|
403
|
+
- 0.208983582205757 * pt2
|
|
404
|
+
- 0.325650248872424 * pt3
|
|
405
|
+
+ 0.558983582205757 * pt4
|
|
406
|
+
)
|
|
407
|
+
v4 = abs(pt4 - pt3) * 0.15
|
|
408
|
+
|
|
409
|
+
return v0 + v1 + v2 + v3 + v4
|
|
410
|
+
|
|
411
|
+
|
|
412
|
+
def calcCubicBounds(pt1, pt2, pt3, pt4):
|
|
413
|
+
"""Calculates the bounding rectangle for a quadratic Bezier segment.
|
|
414
|
+
|
|
415
|
+
Args:
|
|
416
|
+
pt1,pt2,pt3,pt4: Control points of the Bezier as 2D tuples.
|
|
417
|
+
|
|
418
|
+
Returns:
|
|
419
|
+
A four-item tuple representing the bounding rectangle ``(xMin, yMin, xMax, yMax)``.
|
|
420
|
+
|
|
421
|
+
Example::
|
|
422
|
+
|
|
423
|
+
>>> calcCubicBounds((0, 0), (25, 100), (75, 100), (100, 0))
|
|
424
|
+
(0, 0, 100, 75.0)
|
|
425
|
+
>>> calcCubicBounds((0, 0), (50, 0), (100, 50), (100, 100))
|
|
426
|
+
(0.0, 0.0, 100, 100)
|
|
427
|
+
>>> print("%f %f %f %f" % calcCubicBounds((50, 0), (0, 100), (100, 100), (50, 0)))
|
|
428
|
+
35.566243 0.000000 64.433757 75.000000
|
|
429
|
+
"""
|
|
430
|
+
(ax, ay), (bx, by), (cx, cy), (dx, dy) = calcCubicParameters(pt1, pt2, pt3, pt4)
|
|
431
|
+
# calc first derivative
|
|
432
|
+
ax3 = ax * 3.0
|
|
433
|
+
ay3 = ay * 3.0
|
|
434
|
+
bx2 = bx * 2.0
|
|
435
|
+
by2 = by * 2.0
|
|
436
|
+
xRoots = [t for t in solveQuadratic(ax3, bx2, cx) if 0 <= t < 1]
|
|
437
|
+
yRoots = [t for t in solveQuadratic(ay3, by2, cy) if 0 <= t < 1]
|
|
438
|
+
roots = xRoots + yRoots
|
|
439
|
+
|
|
440
|
+
points = [
|
|
441
|
+
(
|
|
442
|
+
ax * t * t * t + bx * t * t + cx * t + dx,
|
|
443
|
+
ay * t * t * t + by * t * t + cy * t + dy,
|
|
444
|
+
)
|
|
445
|
+
for t in roots
|
|
446
|
+
] + [pt1, pt4]
|
|
447
|
+
return calcBounds(points)
|
|
448
|
+
|
|
449
|
+
|
|
450
|
+
def splitLine(pt1, pt2, where, isHorizontal):
|
|
451
|
+
"""Split a line at a given coordinate.
|
|
452
|
+
|
|
453
|
+
Args:
|
|
454
|
+
pt1: Start point of line as 2D tuple.
|
|
455
|
+
pt2: End point of line as 2D tuple.
|
|
456
|
+
where: Position at which to split the line.
|
|
457
|
+
isHorizontal: Direction of the ray splitting the line. If true,
|
|
458
|
+
``where`` is interpreted as a Y coordinate; if false, then
|
|
459
|
+
``where`` is interpreted as an X coordinate.
|
|
460
|
+
|
|
461
|
+
Returns:
|
|
462
|
+
A list of two line segments (each line segment being two 2D tuples)
|
|
463
|
+
if the line was successfully split, or a list containing the original
|
|
464
|
+
line.
|
|
465
|
+
|
|
466
|
+
Example::
|
|
467
|
+
|
|
468
|
+
>>> printSegments(splitLine((0, 0), (100, 100), 50, True))
|
|
469
|
+
((0, 0), (50, 50))
|
|
470
|
+
((50, 50), (100, 100))
|
|
471
|
+
>>> printSegments(splitLine((0, 0), (100, 100), 100, True))
|
|
472
|
+
((0, 0), (100, 100))
|
|
473
|
+
>>> printSegments(splitLine((0, 0), (100, 100), 0, True))
|
|
474
|
+
((0, 0), (0, 0))
|
|
475
|
+
((0, 0), (100, 100))
|
|
476
|
+
>>> printSegments(splitLine((0, 0), (100, 100), 0, False))
|
|
477
|
+
((0, 0), (0, 0))
|
|
478
|
+
((0, 0), (100, 100))
|
|
479
|
+
>>> printSegments(splitLine((100, 0), (0, 0), 50, False))
|
|
480
|
+
((100, 0), (50, 0))
|
|
481
|
+
((50, 0), (0, 0))
|
|
482
|
+
>>> printSegments(splitLine((0, 100), (0, 0), 50, True))
|
|
483
|
+
((0, 100), (0, 50))
|
|
484
|
+
((0, 50), (0, 0))
|
|
485
|
+
"""
|
|
486
|
+
pt1x, pt1y = pt1
|
|
487
|
+
pt2x, pt2y = pt2
|
|
488
|
+
|
|
489
|
+
ax = pt2x - pt1x
|
|
490
|
+
ay = pt2y - pt1y
|
|
491
|
+
|
|
492
|
+
bx = pt1x
|
|
493
|
+
by = pt1y
|
|
494
|
+
|
|
495
|
+
a = (ax, ay)[isHorizontal]
|
|
496
|
+
|
|
497
|
+
if a == 0:
|
|
498
|
+
return [(pt1, pt2)]
|
|
499
|
+
t = (where - (bx, by)[isHorizontal]) / a
|
|
500
|
+
if 0 <= t < 1:
|
|
501
|
+
midPt = ax * t + bx, ay * t + by
|
|
502
|
+
return [(pt1, midPt), (midPt, pt2)]
|
|
503
|
+
else:
|
|
504
|
+
return [(pt1, pt2)]
|
|
505
|
+
|
|
506
|
+
|
|
507
|
+
def splitQuadratic(pt1, pt2, pt3, where, isHorizontal):
|
|
508
|
+
"""Split a quadratic Bezier curve at a given coordinate.
|
|
509
|
+
|
|
510
|
+
Args:
|
|
511
|
+
pt1,pt2,pt3: Control points of the Bezier as 2D tuples.
|
|
512
|
+
where: Position at which to split the curve.
|
|
513
|
+
isHorizontal: Direction of the ray splitting the curve. If true,
|
|
514
|
+
``where`` is interpreted as a Y coordinate; if false, then
|
|
515
|
+
``where`` is interpreted as an X coordinate.
|
|
516
|
+
|
|
517
|
+
Returns:
|
|
518
|
+
A list of two curve segments (each curve segment being three 2D tuples)
|
|
519
|
+
if the curve was successfully split, or a list containing the original
|
|
520
|
+
curve.
|
|
521
|
+
|
|
522
|
+
Example::
|
|
523
|
+
|
|
524
|
+
>>> printSegments(splitQuadratic((0, 0), (50, 100), (100, 0), 150, False))
|
|
525
|
+
((0, 0), (50, 100), (100, 0))
|
|
526
|
+
>>> printSegments(splitQuadratic((0, 0), (50, 100), (100, 0), 50, False))
|
|
527
|
+
((0, 0), (25, 50), (50, 50))
|
|
528
|
+
((50, 50), (75, 50), (100, 0))
|
|
529
|
+
>>> printSegments(splitQuadratic((0, 0), (50, 100), (100, 0), 25, False))
|
|
530
|
+
((0, 0), (12.5, 25), (25, 37.5))
|
|
531
|
+
((25, 37.5), (62.5, 75), (100, 0))
|
|
532
|
+
>>> printSegments(splitQuadratic((0, 0), (50, 100), (100, 0), 25, True))
|
|
533
|
+
((0, 0), (7.32233, 14.6447), (14.6447, 25))
|
|
534
|
+
((14.6447, 25), (50, 75), (85.3553, 25))
|
|
535
|
+
((85.3553, 25), (92.6777, 14.6447), (100, -7.10543e-15))
|
|
536
|
+
>>> # XXX I'm not at all sure if the following behavior is desirable:
|
|
537
|
+
>>> printSegments(splitQuadratic((0, 0), (50, 100), (100, 0), 50, True))
|
|
538
|
+
((0, 0), (25, 50), (50, 50))
|
|
539
|
+
((50, 50), (50, 50), (50, 50))
|
|
540
|
+
((50, 50), (75, 50), (100, 0))
|
|
541
|
+
"""
|
|
542
|
+
a, b, c = calcQuadraticParameters(pt1, pt2, pt3)
|
|
543
|
+
solutions = solveQuadratic(
|
|
544
|
+
a[isHorizontal], b[isHorizontal], c[isHorizontal] - where
|
|
545
|
+
)
|
|
546
|
+
solutions = sorted(t for t in solutions if 0 <= t < 1)
|
|
547
|
+
if not solutions:
|
|
548
|
+
return [(pt1, pt2, pt3)]
|
|
549
|
+
return _splitQuadraticAtT(a, b, c, *solutions)
|
|
550
|
+
|
|
551
|
+
|
|
552
|
+
def splitCubic(pt1, pt2, pt3, pt4, where, isHorizontal):
|
|
553
|
+
"""Split a cubic Bezier curve at a given coordinate.
|
|
554
|
+
|
|
555
|
+
Args:
|
|
556
|
+
pt1,pt2,pt3,pt4: Control points of the Bezier as 2D tuples.
|
|
557
|
+
where: Position at which to split the curve.
|
|
558
|
+
isHorizontal: Direction of the ray splitting the curve. If true,
|
|
559
|
+
``where`` is interpreted as a Y coordinate; if false, then
|
|
560
|
+
``where`` is interpreted as an X coordinate.
|
|
561
|
+
|
|
562
|
+
Returns:
|
|
563
|
+
A list of two curve segments (each curve segment being four 2D tuples)
|
|
564
|
+
if the curve was successfully split, or a list containing the original
|
|
565
|
+
curve.
|
|
566
|
+
|
|
567
|
+
Example::
|
|
568
|
+
|
|
569
|
+
>>> printSegments(splitCubic((0, 0), (25, 100), (75, 100), (100, 0), 150, False))
|
|
570
|
+
((0, 0), (25, 100), (75, 100), (100, 0))
|
|
571
|
+
>>> printSegments(splitCubic((0, 0), (25, 100), (75, 100), (100, 0), 50, False))
|
|
572
|
+
((0, 0), (12.5, 50), (31.25, 75), (50, 75))
|
|
573
|
+
((50, 75), (68.75, 75), (87.5, 50), (100, 0))
|
|
574
|
+
>>> printSegments(splitCubic((0, 0), (25, 100), (75, 100), (100, 0), 25, True))
|
|
575
|
+
((0, 0), (2.29379, 9.17517), (4.79804, 17.5085), (7.47414, 25))
|
|
576
|
+
((7.47414, 25), (31.2886, 91.6667), (68.7114, 91.6667), (92.5259, 25))
|
|
577
|
+
((92.5259, 25), (95.202, 17.5085), (97.7062, 9.17517), (100, 1.77636e-15))
|
|
578
|
+
"""
|
|
579
|
+
a, b, c, d = calcCubicParameters(pt1, pt2, pt3, pt4)
|
|
580
|
+
solutions = solveCubic(
|
|
581
|
+
a[isHorizontal], b[isHorizontal], c[isHorizontal], d[isHorizontal] - where
|
|
582
|
+
)
|
|
583
|
+
solutions = sorted(t for t in solutions if 0 <= t < 1)
|
|
584
|
+
if not solutions:
|
|
585
|
+
return [(pt1, pt2, pt3, pt4)]
|
|
586
|
+
return _splitCubicAtT(a, b, c, d, *solutions)
|
|
587
|
+
|
|
588
|
+
|
|
589
|
+
def splitQuadraticAtT(pt1, pt2, pt3, *ts):
|
|
590
|
+
"""Split a quadratic Bezier curve at one or more values of t.
|
|
591
|
+
|
|
592
|
+
Args:
|
|
593
|
+
pt1,pt2,pt3: Control points of the Bezier as 2D tuples.
|
|
594
|
+
*ts: Positions at which to split the curve.
|
|
595
|
+
|
|
596
|
+
Returns:
|
|
597
|
+
A list of curve segments (each curve segment being three 2D tuples).
|
|
598
|
+
|
|
599
|
+
Examples::
|
|
600
|
+
|
|
601
|
+
>>> printSegments(splitQuadraticAtT((0, 0), (50, 100), (100, 0), 0.5))
|
|
602
|
+
((0, 0), (25, 50), (50, 50))
|
|
603
|
+
((50, 50), (75, 50), (100, 0))
|
|
604
|
+
>>> printSegments(splitQuadraticAtT((0, 0), (50, 100), (100, 0), 0.5, 0.75))
|
|
605
|
+
((0, 0), (25, 50), (50, 50))
|
|
606
|
+
((50, 50), (62.5, 50), (75, 37.5))
|
|
607
|
+
((75, 37.5), (87.5, 25), (100, 0))
|
|
608
|
+
"""
|
|
609
|
+
a, b, c = calcQuadraticParameters(pt1, pt2, pt3)
|
|
610
|
+
return _splitQuadraticAtT(a, b, c, *ts)
|
|
611
|
+
|
|
612
|
+
|
|
613
|
+
def splitCubicAtT(pt1, pt2, pt3, pt4, *ts):
|
|
614
|
+
"""Split a cubic Bezier curve at one or more values of t.
|
|
615
|
+
|
|
616
|
+
Args:
|
|
617
|
+
pt1,pt2,pt3,pt4: Control points of the Bezier as 2D tuples.
|
|
618
|
+
*ts: Positions at which to split the curve.
|
|
619
|
+
|
|
620
|
+
Returns:
|
|
621
|
+
A list of curve segments (each curve segment being four 2D tuples).
|
|
622
|
+
|
|
623
|
+
Examples::
|
|
624
|
+
|
|
625
|
+
>>> printSegments(splitCubicAtT((0, 0), (25, 100), (75, 100), (100, 0), 0.5))
|
|
626
|
+
((0, 0), (12.5, 50), (31.25, 75), (50, 75))
|
|
627
|
+
((50, 75), (68.75, 75), (87.5, 50), (100, 0))
|
|
628
|
+
>>> printSegments(splitCubicAtT((0, 0), (25, 100), (75, 100), (100, 0), 0.5, 0.75))
|
|
629
|
+
((0, 0), (12.5, 50), (31.25, 75), (50, 75))
|
|
630
|
+
((50, 75), (59.375, 75), (68.75, 68.75), (77.3438, 56.25))
|
|
631
|
+
((77.3438, 56.25), (85.9375, 43.75), (93.75, 25), (100, 0))
|
|
632
|
+
"""
|
|
633
|
+
a, b, c, d = calcCubicParameters(pt1, pt2, pt3, pt4)
|
|
634
|
+
split = _splitCubicAtT(a, b, c, d, *ts)
|
|
635
|
+
|
|
636
|
+
# the split impl can introduce floating point errors; we know the first
|
|
637
|
+
# segment should always start at pt1 and the last segment should end at pt4,
|
|
638
|
+
# so we set those values directly before returning.
|
|
639
|
+
split[0] = (pt1, *split[0][1:])
|
|
640
|
+
split[-1] = (*split[-1][:-1], pt4)
|
|
641
|
+
return split
|
|
642
|
+
|
|
643
|
+
|
|
644
|
+
@cython.locals(
|
|
645
|
+
pt1=cython.complex,
|
|
646
|
+
pt2=cython.complex,
|
|
647
|
+
pt3=cython.complex,
|
|
648
|
+
pt4=cython.complex,
|
|
649
|
+
a=cython.complex,
|
|
650
|
+
b=cython.complex,
|
|
651
|
+
c=cython.complex,
|
|
652
|
+
d=cython.complex,
|
|
653
|
+
)
|
|
654
|
+
def splitCubicAtTC(pt1, pt2, pt3, pt4, *ts):
|
|
655
|
+
"""Split a cubic Bezier curve at one or more values of t.
|
|
656
|
+
|
|
657
|
+
Args:
|
|
658
|
+
pt1,pt2,pt3,pt4: Control points of the Bezier as complex numbers..
|
|
659
|
+
*ts: Positions at which to split the curve.
|
|
660
|
+
|
|
661
|
+
Yields:
|
|
662
|
+
Curve segments (each curve segment being four complex numbers).
|
|
663
|
+
"""
|
|
664
|
+
a, b, c, d = calcCubicParametersC(pt1, pt2, pt3, pt4)
|
|
665
|
+
yield from _splitCubicAtTC(a, b, c, d, *ts)
|
|
666
|
+
|
|
667
|
+
|
|
668
|
+
@cython.returns(cython.complex)
|
|
669
|
+
@cython.locals(
|
|
670
|
+
t=cython.double,
|
|
671
|
+
pt1=cython.complex,
|
|
672
|
+
pt2=cython.complex,
|
|
673
|
+
pt3=cython.complex,
|
|
674
|
+
pt4=cython.complex,
|
|
675
|
+
pointAtT=cython.complex,
|
|
676
|
+
off1=cython.complex,
|
|
677
|
+
off2=cython.complex,
|
|
678
|
+
)
|
|
679
|
+
@cython.locals(
|
|
680
|
+
t2=cython.double, _1_t=cython.double, _1_t_2=cython.double, _2_t_1_t=cython.double
|
|
681
|
+
)
|
|
682
|
+
def splitCubicIntoTwoAtTC(pt1, pt2, pt3, pt4, t):
|
|
683
|
+
"""Split a cubic Bezier curve at t.
|
|
684
|
+
|
|
685
|
+
Args:
|
|
686
|
+
pt1,pt2,pt3,pt4: Control points of the Bezier as complex numbers.
|
|
687
|
+
t: Position at which to split the curve.
|
|
688
|
+
|
|
689
|
+
Returns:
|
|
690
|
+
A tuple of two curve segments (each curve segment being four complex numbers).
|
|
691
|
+
"""
|
|
692
|
+
t2 = t * t
|
|
693
|
+
_1_t = 1 - t
|
|
694
|
+
_1_t_2 = _1_t * _1_t
|
|
695
|
+
_2_t_1_t = 2 * t * _1_t
|
|
696
|
+
pointAtT = (
|
|
697
|
+
_1_t_2 * _1_t * pt1 + 3 * (_1_t_2 * t * pt2 + _1_t * t2 * pt3) + t2 * t * pt4
|
|
698
|
+
)
|
|
699
|
+
off1 = _1_t_2 * pt1 + _2_t_1_t * pt2 + t2 * pt3
|
|
700
|
+
off2 = _1_t_2 * pt2 + _2_t_1_t * pt3 + t2 * pt4
|
|
701
|
+
|
|
702
|
+
pt2 = pt1 + (pt2 - pt1) * t
|
|
703
|
+
pt3 = pt4 + (pt3 - pt4) * _1_t
|
|
704
|
+
|
|
705
|
+
return ((pt1, pt2, off1, pointAtT), (pointAtT, off2, pt3, pt4))
|
|
706
|
+
|
|
707
|
+
|
|
708
|
+
def _splitQuadraticAtT(a, b, c, *ts):
|
|
709
|
+
ts = list(ts)
|
|
710
|
+
segments = []
|
|
711
|
+
ts.insert(0, 0.0)
|
|
712
|
+
ts.append(1.0)
|
|
713
|
+
ax, ay = a
|
|
714
|
+
bx, by = b
|
|
715
|
+
cx, cy = c
|
|
716
|
+
for i in range(len(ts) - 1):
|
|
717
|
+
t1 = ts[i]
|
|
718
|
+
t2 = ts[i + 1]
|
|
719
|
+
delta = t2 - t1
|
|
720
|
+
# calc new a, b and c
|
|
721
|
+
delta_2 = delta * delta
|
|
722
|
+
a1x = ax * delta_2
|
|
723
|
+
a1y = ay * delta_2
|
|
724
|
+
b1x = (2 * ax * t1 + bx) * delta
|
|
725
|
+
b1y = (2 * ay * t1 + by) * delta
|
|
726
|
+
t1_2 = t1 * t1
|
|
727
|
+
c1x = ax * t1_2 + bx * t1 + cx
|
|
728
|
+
c1y = ay * t1_2 + by * t1 + cy
|
|
729
|
+
|
|
730
|
+
pt1, pt2, pt3 = calcQuadraticPoints((a1x, a1y), (b1x, b1y), (c1x, c1y))
|
|
731
|
+
segments.append((pt1, pt2, pt3))
|
|
732
|
+
return segments
|
|
733
|
+
|
|
734
|
+
|
|
735
|
+
def _splitCubicAtT(a, b, c, d, *ts):
|
|
736
|
+
ts = list(ts)
|
|
737
|
+
ts.insert(0, 0.0)
|
|
738
|
+
ts.append(1.0)
|
|
739
|
+
segments = []
|
|
740
|
+
ax, ay = a
|
|
741
|
+
bx, by = b
|
|
742
|
+
cx, cy = c
|
|
743
|
+
dx, dy = d
|
|
744
|
+
for i in range(len(ts) - 1):
|
|
745
|
+
t1 = ts[i]
|
|
746
|
+
t2 = ts[i + 1]
|
|
747
|
+
delta = t2 - t1
|
|
748
|
+
|
|
749
|
+
delta_2 = delta * delta
|
|
750
|
+
delta_3 = delta * delta_2
|
|
751
|
+
t1_2 = t1 * t1
|
|
752
|
+
t1_3 = t1 * t1_2
|
|
753
|
+
|
|
754
|
+
# calc new a, b, c and d
|
|
755
|
+
a1x = ax * delta_3
|
|
756
|
+
a1y = ay * delta_3
|
|
757
|
+
b1x = (3 * ax * t1 + bx) * delta_2
|
|
758
|
+
b1y = (3 * ay * t1 + by) * delta_2
|
|
759
|
+
c1x = (2 * bx * t1 + cx + 3 * ax * t1_2) * delta
|
|
760
|
+
c1y = (2 * by * t1 + cy + 3 * ay * t1_2) * delta
|
|
761
|
+
d1x = ax * t1_3 + bx * t1_2 + cx * t1 + dx
|
|
762
|
+
d1y = ay * t1_3 + by * t1_2 + cy * t1 + dy
|
|
763
|
+
pt1, pt2, pt3, pt4 = calcCubicPoints(
|
|
764
|
+
(a1x, a1y), (b1x, b1y), (c1x, c1y), (d1x, d1y)
|
|
765
|
+
)
|
|
766
|
+
segments.append((pt1, pt2, pt3, pt4))
|
|
767
|
+
return segments
|
|
768
|
+
|
|
769
|
+
|
|
770
|
+
@cython.locals(
|
|
771
|
+
a=cython.complex,
|
|
772
|
+
b=cython.complex,
|
|
773
|
+
c=cython.complex,
|
|
774
|
+
d=cython.complex,
|
|
775
|
+
t1=cython.double,
|
|
776
|
+
t2=cython.double,
|
|
777
|
+
delta=cython.double,
|
|
778
|
+
delta_2=cython.double,
|
|
779
|
+
delta_3=cython.double,
|
|
780
|
+
a1=cython.complex,
|
|
781
|
+
b1=cython.complex,
|
|
782
|
+
c1=cython.complex,
|
|
783
|
+
d1=cython.complex,
|
|
784
|
+
)
|
|
785
|
+
def _splitCubicAtTC(a, b, c, d, *ts):
|
|
786
|
+
ts = list(ts)
|
|
787
|
+
ts.insert(0, 0.0)
|
|
788
|
+
ts.append(1.0)
|
|
789
|
+
for i in range(len(ts) - 1):
|
|
790
|
+
t1 = ts[i]
|
|
791
|
+
t2 = ts[i + 1]
|
|
792
|
+
delta = t2 - t1
|
|
793
|
+
|
|
794
|
+
delta_2 = delta * delta
|
|
795
|
+
delta_3 = delta * delta_2
|
|
796
|
+
t1_2 = t1 * t1
|
|
797
|
+
t1_3 = t1 * t1_2
|
|
798
|
+
|
|
799
|
+
# calc new a, b, c and d
|
|
800
|
+
a1 = a * delta_3
|
|
801
|
+
b1 = (3 * a * t1 + b) * delta_2
|
|
802
|
+
c1 = (2 * b * t1 + c + 3 * a * t1_2) * delta
|
|
803
|
+
d1 = a * t1_3 + b * t1_2 + c * t1 + d
|
|
804
|
+
pt1, pt2, pt3, pt4 = calcCubicPointsC(a1, b1, c1, d1)
|
|
805
|
+
yield (pt1, pt2, pt3, pt4)
|
|
806
|
+
|
|
807
|
+
|
|
808
|
+
#
|
|
809
|
+
# Equation solvers.
|
|
810
|
+
#
|
|
811
|
+
|
|
812
|
+
from math import sqrt, acos, cos, pi
|
|
813
|
+
|
|
814
|
+
|
|
815
|
+
def solveQuadratic(a, b, c, sqrt=sqrt):
|
|
816
|
+
"""Solve a quadratic equation.
|
|
817
|
+
|
|
818
|
+
Solves *a*x*x + b*x + c = 0* where a, b and c are real.
|
|
819
|
+
|
|
820
|
+
Args:
|
|
821
|
+
a: coefficient of *x²*
|
|
822
|
+
b: coefficient of *x*
|
|
823
|
+
c: constant term
|
|
824
|
+
|
|
825
|
+
Returns:
|
|
826
|
+
A list of roots. Note that the returned list is neither guaranteed to
|
|
827
|
+
be sorted nor to contain unique values!
|
|
828
|
+
"""
|
|
829
|
+
if abs(a) < epsilon:
|
|
830
|
+
if abs(b) < epsilon:
|
|
831
|
+
# We have a non-equation; therefore, we have no valid solution
|
|
832
|
+
roots = []
|
|
833
|
+
else:
|
|
834
|
+
# We have a linear equation with 1 root.
|
|
835
|
+
roots = [-c / b]
|
|
836
|
+
else:
|
|
837
|
+
# We have a true quadratic equation. Apply the quadratic formula to find two roots.
|
|
838
|
+
DD = b * b - 4.0 * a * c
|
|
839
|
+
if DD >= 0.0:
|
|
840
|
+
rDD = sqrt(DD)
|
|
841
|
+
roots = [(-b + rDD) / 2.0 / a, (-b - rDD) / 2.0 / a]
|
|
842
|
+
else:
|
|
843
|
+
# complex roots, ignore
|
|
844
|
+
roots = []
|
|
845
|
+
return roots
|
|
846
|
+
|
|
847
|
+
|
|
848
|
+
def solveCubic(a, b, c, d):
|
|
849
|
+
"""Solve a cubic equation.
|
|
850
|
+
|
|
851
|
+
Solves *a*x*x*x + b*x*x + c*x + d = 0* where a, b, c and d are real.
|
|
852
|
+
|
|
853
|
+
Args:
|
|
854
|
+
a: coefficient of *x³*
|
|
855
|
+
b: coefficient of *x²*
|
|
856
|
+
c: coefficient of *x*
|
|
857
|
+
d: constant term
|
|
858
|
+
|
|
859
|
+
Returns:
|
|
860
|
+
A list of roots. Note that the returned list is neither guaranteed to
|
|
861
|
+
be sorted nor to contain unique values!
|
|
862
|
+
|
|
863
|
+
Examples::
|
|
864
|
+
|
|
865
|
+
>>> solveCubic(1, 1, -6, 0)
|
|
866
|
+
[-3.0, -0.0, 2.0]
|
|
867
|
+
>>> solveCubic(-10.0, -9.0, 48.0, -29.0)
|
|
868
|
+
[-2.9, 1.0, 1.0]
|
|
869
|
+
>>> solveCubic(-9.875, -9.0, 47.625, -28.75)
|
|
870
|
+
[-2.911392, 1.0, 1.0]
|
|
871
|
+
>>> solveCubic(1.0, -4.5, 6.75, -3.375)
|
|
872
|
+
[1.5, 1.5, 1.5]
|
|
873
|
+
>>> solveCubic(-12.0, 18.0, -9.0, 1.50023651123)
|
|
874
|
+
[0.5, 0.5, 0.5]
|
|
875
|
+
>>> solveCubic(
|
|
876
|
+
... 9.0, 0.0, 0.0, -7.62939453125e-05
|
|
877
|
+
... ) == [-0.0, -0.0, -0.0]
|
|
878
|
+
True
|
|
879
|
+
"""
|
|
880
|
+
#
|
|
881
|
+
# adapted from:
|
|
882
|
+
# CUBIC.C - Solve a cubic polynomial
|
|
883
|
+
# public domain by Ross Cottrell
|
|
884
|
+
# found at: http://www.strangecreations.com/library/snippets/Cubic.C
|
|
885
|
+
#
|
|
886
|
+
if abs(a) < epsilon:
|
|
887
|
+
# don't just test for zero; for very small values of 'a' solveCubic()
|
|
888
|
+
# returns unreliable results, so we fall back to quad.
|
|
889
|
+
return solveQuadratic(b, c, d)
|
|
890
|
+
a = float(a)
|
|
891
|
+
a1 = b / a
|
|
892
|
+
a2 = c / a
|
|
893
|
+
a3 = d / a
|
|
894
|
+
|
|
895
|
+
Q = (a1 * a1 - 3.0 * a2) / 9.0
|
|
896
|
+
R = (2.0 * a1 * a1 * a1 - 9.0 * a1 * a2 + 27.0 * a3) / 54.0
|
|
897
|
+
|
|
898
|
+
R2 = R * R
|
|
899
|
+
Q3 = Q * Q * Q
|
|
900
|
+
R2 = 0 if R2 < epsilon else R2
|
|
901
|
+
Q3 = 0 if abs(Q3) < epsilon else Q3
|
|
902
|
+
|
|
903
|
+
R2_Q3 = R2 - Q3
|
|
904
|
+
|
|
905
|
+
if R2 == 0.0 and Q3 == 0.0:
|
|
906
|
+
x = round(-a1 / 3.0, epsilonDigits)
|
|
907
|
+
return [x, x, x]
|
|
908
|
+
elif R2_Q3 <= epsilon * 0.5:
|
|
909
|
+
# The epsilon * .5 above ensures that Q3 is not zero.
|
|
910
|
+
theta = acos(max(min(R / sqrt(Q3), 1.0), -1.0))
|
|
911
|
+
rQ2 = -2.0 * sqrt(Q)
|
|
912
|
+
a1_3 = a1 / 3.0
|
|
913
|
+
x0 = rQ2 * cos(theta / 3.0) - a1_3
|
|
914
|
+
x1 = rQ2 * cos((theta + 2.0 * pi) / 3.0) - a1_3
|
|
915
|
+
x2 = rQ2 * cos((theta + 4.0 * pi) / 3.0) - a1_3
|
|
916
|
+
x0, x1, x2 = sorted([x0, x1, x2])
|
|
917
|
+
# Merge roots that are close-enough
|
|
918
|
+
if x1 - x0 < epsilon and x2 - x1 < epsilon:
|
|
919
|
+
x0 = x1 = x2 = round((x0 + x1 + x2) / 3.0, epsilonDigits)
|
|
920
|
+
elif x1 - x0 < epsilon:
|
|
921
|
+
x0 = x1 = round((x0 + x1) / 2.0, epsilonDigits)
|
|
922
|
+
x2 = round(x2, epsilonDigits)
|
|
923
|
+
elif x2 - x1 < epsilon:
|
|
924
|
+
x0 = round(x0, epsilonDigits)
|
|
925
|
+
x1 = x2 = round((x1 + x2) / 2.0, epsilonDigits)
|
|
926
|
+
else:
|
|
927
|
+
x0 = round(x0, epsilonDigits)
|
|
928
|
+
x1 = round(x1, epsilonDigits)
|
|
929
|
+
x2 = round(x2, epsilonDigits)
|
|
930
|
+
return [x0, x1, x2]
|
|
931
|
+
else:
|
|
932
|
+
x = pow(sqrt(R2_Q3) + abs(R), 1 / 3.0)
|
|
933
|
+
x = x + Q / x
|
|
934
|
+
if R >= 0.0:
|
|
935
|
+
x = -x
|
|
936
|
+
x = round(x - a1 / 3.0, epsilonDigits)
|
|
937
|
+
return [x]
|
|
938
|
+
|
|
939
|
+
|
|
940
|
+
#
|
|
941
|
+
# Conversion routines for points to parameters and vice versa
|
|
942
|
+
#
|
|
943
|
+
|
|
944
|
+
|
|
945
|
+
def calcQuadraticParameters(pt1, pt2, pt3):
|
|
946
|
+
x2, y2 = pt2
|
|
947
|
+
x3, y3 = pt3
|
|
948
|
+
cx, cy = pt1
|
|
949
|
+
bx = (x2 - cx) * 2.0
|
|
950
|
+
by = (y2 - cy) * 2.0
|
|
951
|
+
ax = x3 - cx - bx
|
|
952
|
+
ay = y3 - cy - by
|
|
953
|
+
return (ax, ay), (bx, by), (cx, cy)
|
|
954
|
+
|
|
955
|
+
|
|
956
|
+
def calcCubicParameters(pt1, pt2, pt3, pt4):
|
|
957
|
+
x2, y2 = pt2
|
|
958
|
+
x3, y3 = pt3
|
|
959
|
+
x4, y4 = pt4
|
|
960
|
+
dx, dy = pt1
|
|
961
|
+
cx = (x2 - dx) * 3.0
|
|
962
|
+
cy = (y2 - dy) * 3.0
|
|
963
|
+
bx = (x3 - x2) * 3.0 - cx
|
|
964
|
+
by = (y3 - y2) * 3.0 - cy
|
|
965
|
+
ax = x4 - dx - cx - bx
|
|
966
|
+
ay = y4 - dy - cy - by
|
|
967
|
+
return (ax, ay), (bx, by), (cx, cy), (dx, dy)
|
|
968
|
+
|
|
969
|
+
|
|
970
|
+
@cython.cfunc
|
|
971
|
+
@cython.inline
|
|
972
|
+
@cython.locals(
|
|
973
|
+
pt1=cython.complex,
|
|
974
|
+
pt2=cython.complex,
|
|
975
|
+
pt3=cython.complex,
|
|
976
|
+
pt4=cython.complex,
|
|
977
|
+
a=cython.complex,
|
|
978
|
+
b=cython.complex,
|
|
979
|
+
c=cython.complex,
|
|
980
|
+
)
|
|
981
|
+
def calcCubicParametersC(pt1, pt2, pt3, pt4):
|
|
982
|
+
c = (pt2 - pt1) * 3.0
|
|
983
|
+
b = (pt3 - pt2) * 3.0 - c
|
|
984
|
+
a = pt4 - pt1 - c - b
|
|
985
|
+
return (a, b, c, pt1)
|
|
986
|
+
|
|
987
|
+
|
|
988
|
+
def calcQuadraticPoints(a, b, c):
|
|
989
|
+
ax, ay = a
|
|
990
|
+
bx, by = b
|
|
991
|
+
cx, cy = c
|
|
992
|
+
x1 = cx
|
|
993
|
+
y1 = cy
|
|
994
|
+
x2 = (bx * 0.5) + cx
|
|
995
|
+
y2 = (by * 0.5) + cy
|
|
996
|
+
x3 = ax + bx + cx
|
|
997
|
+
y3 = ay + by + cy
|
|
998
|
+
return (x1, y1), (x2, y2), (x3, y3)
|
|
999
|
+
|
|
1000
|
+
|
|
1001
|
+
def calcCubicPoints(a, b, c, d):
|
|
1002
|
+
ax, ay = a
|
|
1003
|
+
bx, by = b
|
|
1004
|
+
cx, cy = c
|
|
1005
|
+
dx, dy = d
|
|
1006
|
+
x1 = dx
|
|
1007
|
+
y1 = dy
|
|
1008
|
+
x2 = (cx / 3.0) + dx
|
|
1009
|
+
y2 = (cy / 3.0) + dy
|
|
1010
|
+
x3 = (bx + cx) / 3.0 + x2
|
|
1011
|
+
y3 = (by + cy) / 3.0 + y2
|
|
1012
|
+
x4 = ax + dx + cx + bx
|
|
1013
|
+
y4 = ay + dy + cy + by
|
|
1014
|
+
return (x1, y1), (x2, y2), (x3, y3), (x4, y4)
|
|
1015
|
+
|
|
1016
|
+
|
|
1017
|
+
@cython.cfunc
|
|
1018
|
+
@cython.inline
|
|
1019
|
+
@cython.locals(
|
|
1020
|
+
a=cython.complex,
|
|
1021
|
+
b=cython.complex,
|
|
1022
|
+
c=cython.complex,
|
|
1023
|
+
d=cython.complex,
|
|
1024
|
+
p2=cython.complex,
|
|
1025
|
+
p3=cython.complex,
|
|
1026
|
+
p4=cython.complex,
|
|
1027
|
+
)
|
|
1028
|
+
def calcCubicPointsC(a, b, c, d):
|
|
1029
|
+
p2 = c * (1 / 3) + d
|
|
1030
|
+
p3 = (b + c) * (1 / 3) + p2
|
|
1031
|
+
p4 = a + b + c + d
|
|
1032
|
+
return (d, p2, p3, p4)
|
|
1033
|
+
|
|
1034
|
+
|
|
1035
|
+
#
|
|
1036
|
+
# Point at time
|
|
1037
|
+
#
|
|
1038
|
+
|
|
1039
|
+
|
|
1040
|
+
def linePointAtT(pt1, pt2, t):
|
|
1041
|
+
"""Finds the point at time `t` on a line.
|
|
1042
|
+
|
|
1043
|
+
Args:
|
|
1044
|
+
pt1, pt2: Coordinates of the line as 2D tuples.
|
|
1045
|
+
t: The time along the line.
|
|
1046
|
+
|
|
1047
|
+
Returns:
|
|
1048
|
+
A 2D tuple with the coordinates of the point.
|
|
1049
|
+
"""
|
|
1050
|
+
return ((pt1[0] * (1 - t) + pt2[0] * t), (pt1[1] * (1 - t) + pt2[1] * t))
|
|
1051
|
+
|
|
1052
|
+
|
|
1053
|
+
def quadraticPointAtT(pt1, pt2, pt3, t):
|
|
1054
|
+
"""Finds the point at time `t` on a quadratic curve.
|
|
1055
|
+
|
|
1056
|
+
Args:
|
|
1057
|
+
pt1, pt2, pt3: Coordinates of the curve as 2D tuples.
|
|
1058
|
+
t: The time along the curve.
|
|
1059
|
+
|
|
1060
|
+
Returns:
|
|
1061
|
+
A 2D tuple with the coordinates of the point.
|
|
1062
|
+
"""
|
|
1063
|
+
x = (1 - t) * (1 - t) * pt1[0] + 2 * (1 - t) * t * pt2[0] + t * t * pt3[0]
|
|
1064
|
+
y = (1 - t) * (1 - t) * pt1[1] + 2 * (1 - t) * t * pt2[1] + t * t * pt3[1]
|
|
1065
|
+
return (x, y)
|
|
1066
|
+
|
|
1067
|
+
|
|
1068
|
+
def cubicPointAtT(pt1, pt2, pt3, pt4, t):
|
|
1069
|
+
"""Finds the point at time `t` on a cubic curve.
|
|
1070
|
+
|
|
1071
|
+
Args:
|
|
1072
|
+
pt1, pt2, pt3, pt4: Coordinates of the curve as 2D tuples.
|
|
1073
|
+
t: The time along the curve.
|
|
1074
|
+
|
|
1075
|
+
Returns:
|
|
1076
|
+
A 2D tuple with the coordinates of the point.
|
|
1077
|
+
"""
|
|
1078
|
+
t2 = t * t
|
|
1079
|
+
_1_t = 1 - t
|
|
1080
|
+
_1_t_2 = _1_t * _1_t
|
|
1081
|
+
x = (
|
|
1082
|
+
_1_t_2 * _1_t * pt1[0]
|
|
1083
|
+
+ 3 * (_1_t_2 * t * pt2[0] + _1_t * t2 * pt3[0])
|
|
1084
|
+
+ t2 * t * pt4[0]
|
|
1085
|
+
)
|
|
1086
|
+
y = (
|
|
1087
|
+
_1_t_2 * _1_t * pt1[1]
|
|
1088
|
+
+ 3 * (_1_t_2 * t * pt2[1] + _1_t * t2 * pt3[1])
|
|
1089
|
+
+ t2 * t * pt4[1]
|
|
1090
|
+
)
|
|
1091
|
+
return (x, y)
|
|
1092
|
+
|
|
1093
|
+
|
|
1094
|
+
@cython.returns(cython.complex)
|
|
1095
|
+
@cython.locals(
|
|
1096
|
+
t=cython.double,
|
|
1097
|
+
pt1=cython.complex,
|
|
1098
|
+
pt2=cython.complex,
|
|
1099
|
+
pt3=cython.complex,
|
|
1100
|
+
pt4=cython.complex,
|
|
1101
|
+
)
|
|
1102
|
+
@cython.locals(t2=cython.double, _1_t=cython.double, _1_t_2=cython.double)
|
|
1103
|
+
def cubicPointAtTC(pt1, pt2, pt3, pt4, t):
|
|
1104
|
+
"""Finds the point at time `t` on a cubic curve.
|
|
1105
|
+
|
|
1106
|
+
Args:
|
|
1107
|
+
pt1, pt2, pt3, pt4: Coordinates of the curve as complex numbers.
|
|
1108
|
+
t: The time along the curve.
|
|
1109
|
+
|
|
1110
|
+
Returns:
|
|
1111
|
+
A complex number with the coordinates of the point.
|
|
1112
|
+
"""
|
|
1113
|
+
t2 = t * t
|
|
1114
|
+
_1_t = 1 - t
|
|
1115
|
+
_1_t_2 = _1_t * _1_t
|
|
1116
|
+
return _1_t_2 * _1_t * pt1 + 3 * (_1_t_2 * t * pt2 + _1_t * t2 * pt3) + t2 * t * pt4
|
|
1117
|
+
|
|
1118
|
+
|
|
1119
|
+
def segmentPointAtT(seg, t):
|
|
1120
|
+
if len(seg) == 2:
|
|
1121
|
+
return linePointAtT(*seg, t)
|
|
1122
|
+
elif len(seg) == 3:
|
|
1123
|
+
return quadraticPointAtT(*seg, t)
|
|
1124
|
+
elif len(seg) == 4:
|
|
1125
|
+
return cubicPointAtT(*seg, t)
|
|
1126
|
+
raise ValueError("Unknown curve degree")
|
|
1127
|
+
|
|
1128
|
+
|
|
1129
|
+
#
|
|
1130
|
+
# Intersection finders
|
|
1131
|
+
#
|
|
1132
|
+
|
|
1133
|
+
|
|
1134
|
+
def _line_t_of_pt(s, e, pt):
|
|
1135
|
+
sx, sy = s
|
|
1136
|
+
ex, ey = e
|
|
1137
|
+
px, py = pt
|
|
1138
|
+
if abs(sx - ex) < epsilon and abs(sy - ey) < epsilon:
|
|
1139
|
+
# Line is a point!
|
|
1140
|
+
return -1
|
|
1141
|
+
# Use the largest
|
|
1142
|
+
if abs(sx - ex) > abs(sy - ey):
|
|
1143
|
+
return (px - sx) / (ex - sx)
|
|
1144
|
+
else:
|
|
1145
|
+
return (py - sy) / (ey - sy)
|
|
1146
|
+
|
|
1147
|
+
|
|
1148
|
+
def _both_points_are_on_same_side_of_origin(a, b, origin):
|
|
1149
|
+
xDiff = (a[0] - origin[0]) * (b[0] - origin[0])
|
|
1150
|
+
yDiff = (a[1] - origin[1]) * (b[1] - origin[1])
|
|
1151
|
+
return not (xDiff <= 0.0 and yDiff <= 0.0)
|
|
1152
|
+
|
|
1153
|
+
|
|
1154
|
+
def lineLineIntersections(s1, e1, s2, e2):
|
|
1155
|
+
"""Finds intersections between two line segments.
|
|
1156
|
+
|
|
1157
|
+
Args:
|
|
1158
|
+
s1, e1: Coordinates of the first line as 2D tuples.
|
|
1159
|
+
s2, e2: Coordinates of the second line as 2D tuples.
|
|
1160
|
+
|
|
1161
|
+
Returns:
|
|
1162
|
+
A list of ``Intersection`` objects, each object having ``pt``, ``t1``
|
|
1163
|
+
and ``t2`` attributes containing the intersection point, time on first
|
|
1164
|
+
segment and time on second segment respectively.
|
|
1165
|
+
|
|
1166
|
+
Examples::
|
|
1167
|
+
|
|
1168
|
+
>>> a = lineLineIntersections( (310,389), (453, 222), (289, 251), (447, 367))
|
|
1169
|
+
>>> len(a)
|
|
1170
|
+
1
|
|
1171
|
+
>>> intersection = a[0]
|
|
1172
|
+
>>> intersection.pt
|
|
1173
|
+
(374.44882952482897, 313.73458370177315)
|
|
1174
|
+
>>> (intersection.t1, intersection.t2)
|
|
1175
|
+
(0.45069111555824465, 0.5408153767394238)
|
|
1176
|
+
"""
|
|
1177
|
+
s1x, s1y = s1
|
|
1178
|
+
e1x, e1y = e1
|
|
1179
|
+
s2x, s2y = s2
|
|
1180
|
+
e2x, e2y = e2
|
|
1181
|
+
if (
|
|
1182
|
+
math.isclose(s2x, e2x) and math.isclose(s1x, e1x) and not math.isclose(s1x, s2x)
|
|
1183
|
+
): # Parallel vertical
|
|
1184
|
+
return []
|
|
1185
|
+
if (
|
|
1186
|
+
math.isclose(s2y, e2y) and math.isclose(s1y, e1y) and not math.isclose(s1y, s2y)
|
|
1187
|
+
): # Parallel horizontal
|
|
1188
|
+
return []
|
|
1189
|
+
if math.isclose(s2x, e2x) and math.isclose(s2y, e2y): # Line segment is tiny
|
|
1190
|
+
return []
|
|
1191
|
+
if math.isclose(s1x, e1x) and math.isclose(s1y, e1y): # Line segment is tiny
|
|
1192
|
+
return []
|
|
1193
|
+
if math.isclose(e1x, s1x):
|
|
1194
|
+
x = s1x
|
|
1195
|
+
slope34 = (e2y - s2y) / (e2x - s2x)
|
|
1196
|
+
y = slope34 * (x - s2x) + s2y
|
|
1197
|
+
pt = (x, y)
|
|
1198
|
+
return [
|
|
1199
|
+
Intersection(
|
|
1200
|
+
pt=pt, t1=_line_t_of_pt(s1, e1, pt), t2=_line_t_of_pt(s2, e2, pt)
|
|
1201
|
+
)
|
|
1202
|
+
]
|
|
1203
|
+
if math.isclose(s2x, e2x):
|
|
1204
|
+
x = s2x
|
|
1205
|
+
slope12 = (e1y - s1y) / (e1x - s1x)
|
|
1206
|
+
y = slope12 * (x - s1x) + s1y
|
|
1207
|
+
pt = (x, y)
|
|
1208
|
+
return [
|
|
1209
|
+
Intersection(
|
|
1210
|
+
pt=pt, t1=_line_t_of_pt(s1, e1, pt), t2=_line_t_of_pt(s2, e2, pt)
|
|
1211
|
+
)
|
|
1212
|
+
]
|
|
1213
|
+
|
|
1214
|
+
slope12 = (e1y - s1y) / (e1x - s1x)
|
|
1215
|
+
slope34 = (e2y - s2y) / (e2x - s2x)
|
|
1216
|
+
if math.isclose(slope12, slope34):
|
|
1217
|
+
return []
|
|
1218
|
+
x = (slope12 * s1x - s1y - slope34 * s2x + s2y) / (slope12 - slope34)
|
|
1219
|
+
y = slope12 * (x - s1x) + s1y
|
|
1220
|
+
pt = (x, y)
|
|
1221
|
+
if _both_points_are_on_same_side_of_origin(
|
|
1222
|
+
pt, e1, s1
|
|
1223
|
+
) and _both_points_are_on_same_side_of_origin(pt, s2, e2):
|
|
1224
|
+
return [
|
|
1225
|
+
Intersection(
|
|
1226
|
+
pt=pt, t1=_line_t_of_pt(s1, e1, pt), t2=_line_t_of_pt(s2, e2, pt)
|
|
1227
|
+
)
|
|
1228
|
+
]
|
|
1229
|
+
return []
|
|
1230
|
+
|
|
1231
|
+
|
|
1232
|
+
def _alignment_transformation(segment):
|
|
1233
|
+
# Returns a transformation which aligns a segment horizontally at the
|
|
1234
|
+
# origin. Apply this transformation to curves and root-find to find
|
|
1235
|
+
# intersections with the segment.
|
|
1236
|
+
start = segment[0]
|
|
1237
|
+
end = segment[-1]
|
|
1238
|
+
angle = math.atan2(end[1] - start[1], end[0] - start[0])
|
|
1239
|
+
return Identity.rotate(-angle).translate(-start[0], -start[1])
|
|
1240
|
+
|
|
1241
|
+
|
|
1242
|
+
def _curve_line_intersections_t(curve, line):
|
|
1243
|
+
aligned_curve = _alignment_transformation(line).transformPoints(curve)
|
|
1244
|
+
if len(curve) == 3:
|
|
1245
|
+
a, b, c = calcQuadraticParameters(*aligned_curve)
|
|
1246
|
+
intersections = solveQuadratic(a[1], b[1], c[1])
|
|
1247
|
+
elif len(curve) == 4:
|
|
1248
|
+
a, b, c, d = calcCubicParameters(*aligned_curve)
|
|
1249
|
+
intersections = solveCubic(a[1], b[1], c[1], d[1])
|
|
1250
|
+
else:
|
|
1251
|
+
raise ValueError("Unknown curve degree")
|
|
1252
|
+
return sorted(i for i in intersections if 0.0 <= i <= 1)
|
|
1253
|
+
|
|
1254
|
+
|
|
1255
|
+
def curveLineIntersections(curve, line):
|
|
1256
|
+
"""Finds intersections between a curve and a line.
|
|
1257
|
+
|
|
1258
|
+
Args:
|
|
1259
|
+
curve: List of coordinates of the curve segment as 2D tuples.
|
|
1260
|
+
line: List of coordinates of the line segment as 2D tuples.
|
|
1261
|
+
|
|
1262
|
+
Returns:
|
|
1263
|
+
A list of ``Intersection`` objects, each object having ``pt``, ``t1``
|
|
1264
|
+
and ``t2`` attributes containing the intersection point, time on first
|
|
1265
|
+
segment and time on second segment respectively.
|
|
1266
|
+
|
|
1267
|
+
Examples::
|
|
1268
|
+
>>> curve = [ (100, 240), (30, 60), (210, 230), (160, 30) ]
|
|
1269
|
+
>>> line = [ (25, 260), (230, 20) ]
|
|
1270
|
+
>>> intersections = curveLineIntersections(curve, line)
|
|
1271
|
+
>>> len(intersections)
|
|
1272
|
+
3
|
|
1273
|
+
>>> intersections[0].pt
|
|
1274
|
+
(84.9000930760723, 189.87306176459828)
|
|
1275
|
+
"""
|
|
1276
|
+
if len(curve) == 3:
|
|
1277
|
+
pointFinder = quadraticPointAtT
|
|
1278
|
+
elif len(curve) == 4:
|
|
1279
|
+
pointFinder = cubicPointAtT
|
|
1280
|
+
else:
|
|
1281
|
+
raise ValueError("Unknown curve degree")
|
|
1282
|
+
intersections = []
|
|
1283
|
+
for t in _curve_line_intersections_t(curve, line):
|
|
1284
|
+
pt = pointFinder(*curve, t)
|
|
1285
|
+
# Back-project the point onto the line, to avoid problems with
|
|
1286
|
+
# numerical accuracy in the case of vertical and horizontal lines
|
|
1287
|
+
line_t = _line_t_of_pt(*line, pt)
|
|
1288
|
+
pt = linePointAtT(*line, line_t)
|
|
1289
|
+
intersections.append(Intersection(pt=pt, t1=t, t2=line_t))
|
|
1290
|
+
return intersections
|
|
1291
|
+
|
|
1292
|
+
|
|
1293
|
+
def _curve_bounds(c):
|
|
1294
|
+
if len(c) == 3:
|
|
1295
|
+
return calcQuadraticBounds(*c)
|
|
1296
|
+
elif len(c) == 4:
|
|
1297
|
+
return calcCubicBounds(*c)
|
|
1298
|
+
raise ValueError("Unknown curve degree")
|
|
1299
|
+
|
|
1300
|
+
|
|
1301
|
+
def _split_segment_at_t(c, t):
|
|
1302
|
+
if len(c) == 2:
|
|
1303
|
+
s, e = c
|
|
1304
|
+
midpoint = linePointAtT(s, e, t)
|
|
1305
|
+
return [(s, midpoint), (midpoint, e)]
|
|
1306
|
+
if len(c) == 3:
|
|
1307
|
+
return splitQuadraticAtT(*c, t)
|
|
1308
|
+
elif len(c) == 4:
|
|
1309
|
+
return splitCubicAtT(*c, t)
|
|
1310
|
+
raise ValueError("Unknown curve degree")
|
|
1311
|
+
|
|
1312
|
+
|
|
1313
|
+
def _curve_curve_intersections_t(
|
|
1314
|
+
curve1, curve2, precision=1e-3, range1=None, range2=None
|
|
1315
|
+
):
|
|
1316
|
+
bounds1 = _curve_bounds(curve1)
|
|
1317
|
+
bounds2 = _curve_bounds(curve2)
|
|
1318
|
+
|
|
1319
|
+
if not range1:
|
|
1320
|
+
range1 = (0.0, 1.0)
|
|
1321
|
+
if not range2:
|
|
1322
|
+
range2 = (0.0, 1.0)
|
|
1323
|
+
|
|
1324
|
+
# If bounds don't intersect, go home
|
|
1325
|
+
intersects, _ = sectRect(bounds1, bounds2)
|
|
1326
|
+
if not intersects:
|
|
1327
|
+
return []
|
|
1328
|
+
|
|
1329
|
+
def midpoint(r):
|
|
1330
|
+
return 0.5 * (r[0] + r[1])
|
|
1331
|
+
|
|
1332
|
+
# If they do overlap but they're tiny, approximate
|
|
1333
|
+
if rectArea(bounds1) < precision and rectArea(bounds2) < precision:
|
|
1334
|
+
return [(midpoint(range1), midpoint(range2))]
|
|
1335
|
+
|
|
1336
|
+
c11, c12 = _split_segment_at_t(curve1, 0.5)
|
|
1337
|
+
c11_range = (range1[0], midpoint(range1))
|
|
1338
|
+
c12_range = (midpoint(range1), range1[1])
|
|
1339
|
+
|
|
1340
|
+
c21, c22 = _split_segment_at_t(curve2, 0.5)
|
|
1341
|
+
c21_range = (range2[0], midpoint(range2))
|
|
1342
|
+
c22_range = (midpoint(range2), range2[1])
|
|
1343
|
+
|
|
1344
|
+
found = []
|
|
1345
|
+
found.extend(
|
|
1346
|
+
_curve_curve_intersections_t(
|
|
1347
|
+
c11, c21, precision, range1=c11_range, range2=c21_range
|
|
1348
|
+
)
|
|
1349
|
+
)
|
|
1350
|
+
found.extend(
|
|
1351
|
+
_curve_curve_intersections_t(
|
|
1352
|
+
c12, c21, precision, range1=c12_range, range2=c21_range
|
|
1353
|
+
)
|
|
1354
|
+
)
|
|
1355
|
+
found.extend(
|
|
1356
|
+
_curve_curve_intersections_t(
|
|
1357
|
+
c11, c22, precision, range1=c11_range, range2=c22_range
|
|
1358
|
+
)
|
|
1359
|
+
)
|
|
1360
|
+
found.extend(
|
|
1361
|
+
_curve_curve_intersections_t(
|
|
1362
|
+
c12, c22, precision, range1=c12_range, range2=c22_range
|
|
1363
|
+
)
|
|
1364
|
+
)
|
|
1365
|
+
|
|
1366
|
+
unique_key = lambda ts: (int(ts[0] / precision), int(ts[1] / precision))
|
|
1367
|
+
seen = set()
|
|
1368
|
+
unique_values = []
|
|
1369
|
+
|
|
1370
|
+
for ts in found:
|
|
1371
|
+
key = unique_key(ts)
|
|
1372
|
+
if key in seen:
|
|
1373
|
+
continue
|
|
1374
|
+
seen.add(key)
|
|
1375
|
+
unique_values.append(ts)
|
|
1376
|
+
|
|
1377
|
+
return unique_values
|
|
1378
|
+
|
|
1379
|
+
|
|
1380
|
+
def _is_linelike(segment):
|
|
1381
|
+
maybeline = _alignment_transformation(segment).transformPoints(segment)
|
|
1382
|
+
return all(math.isclose(p[1], 0.0) for p in maybeline)
|
|
1383
|
+
|
|
1384
|
+
|
|
1385
|
+
def curveCurveIntersections(curve1, curve2):
|
|
1386
|
+
"""Finds intersections between a curve and a curve.
|
|
1387
|
+
|
|
1388
|
+
Args:
|
|
1389
|
+
curve1: List of coordinates of the first curve segment as 2D tuples.
|
|
1390
|
+
curve2: List of coordinates of the second curve segment as 2D tuples.
|
|
1391
|
+
|
|
1392
|
+
Returns:
|
|
1393
|
+
A list of ``Intersection`` objects, each object having ``pt``, ``t1``
|
|
1394
|
+
and ``t2`` attributes containing the intersection point, time on first
|
|
1395
|
+
segment and time on second segment respectively.
|
|
1396
|
+
|
|
1397
|
+
Examples::
|
|
1398
|
+
>>> curve1 = [ (10,100), (90,30), (40,140), (220,220) ]
|
|
1399
|
+
>>> curve2 = [ (5,150), (180,20), (80,250), (210,190) ]
|
|
1400
|
+
>>> intersections = curveCurveIntersections(curve1, curve2)
|
|
1401
|
+
>>> len(intersections)
|
|
1402
|
+
3
|
|
1403
|
+
>>> intersections[0].pt
|
|
1404
|
+
(81.7831487395506, 109.88904552375288)
|
|
1405
|
+
"""
|
|
1406
|
+
if _is_linelike(curve1):
|
|
1407
|
+
line1 = curve1[0], curve1[-1]
|
|
1408
|
+
if _is_linelike(curve2):
|
|
1409
|
+
line2 = curve2[0], curve2[-1]
|
|
1410
|
+
return lineLineIntersections(*line1, *line2)
|
|
1411
|
+
else:
|
|
1412
|
+
hits = curveLineIntersections(curve2, line1)
|
|
1413
|
+
# curve is passed first to this fn but is the second segment, so
|
|
1414
|
+
# we need to swap t1/t2 in the result
|
|
1415
|
+
return [Intersection(pt=x.pt, t1=x.t2, t2=x.t1) for x in hits]
|
|
1416
|
+
elif _is_linelike(curve2):
|
|
1417
|
+
line2 = curve2[0], curve2[-1]
|
|
1418
|
+
return curveLineIntersections(curve1, line2)
|
|
1419
|
+
|
|
1420
|
+
intersection_ts = _curve_curve_intersections_t(curve1, curve2)
|
|
1421
|
+
return [
|
|
1422
|
+
Intersection(pt=segmentPointAtT(curve1, ts[0]), t1=ts[0], t2=ts[1])
|
|
1423
|
+
for ts in intersection_ts
|
|
1424
|
+
]
|
|
1425
|
+
|
|
1426
|
+
|
|
1427
|
+
def segmentSegmentIntersections(seg1, seg2):
|
|
1428
|
+
"""Finds intersections between two segments.
|
|
1429
|
+
|
|
1430
|
+
Args:
|
|
1431
|
+
seg1: List of coordinates of the first segment as 2D tuples.
|
|
1432
|
+
seg2: List of coordinates of the second segment as 2D tuples.
|
|
1433
|
+
|
|
1434
|
+
Returns:
|
|
1435
|
+
A list of ``Intersection`` objects, each object having ``pt``, ``t1``
|
|
1436
|
+
and ``t2`` attributes containing the intersection point, time on first
|
|
1437
|
+
segment and time on second segment respectively.
|
|
1438
|
+
|
|
1439
|
+
Examples::
|
|
1440
|
+
>>> curve1 = [ (10,100), (90,30), (40,140), (220,220) ]
|
|
1441
|
+
>>> curve2 = [ (5,150), (180,20), (80,250), (210,190) ]
|
|
1442
|
+
>>> intersections = segmentSegmentIntersections(curve1, curve2)
|
|
1443
|
+
>>> len(intersections)
|
|
1444
|
+
3
|
|
1445
|
+
>>> intersections[0].pt
|
|
1446
|
+
(81.7831487395506, 109.88904552375288)
|
|
1447
|
+
>>> curve3 = [ (100, 240), (30, 60), (210, 230), (160, 30) ]
|
|
1448
|
+
>>> line = [ (25, 260), (230, 20) ]
|
|
1449
|
+
>>> intersections = segmentSegmentIntersections(curve3, line)
|
|
1450
|
+
>>> len(intersections)
|
|
1451
|
+
3
|
|
1452
|
+
>>> intersections[0].pt
|
|
1453
|
+
(84.9000930760723, 189.87306176459828)
|
|
1454
|
+
|
|
1455
|
+
"""
|
|
1456
|
+
# Arrange by degree
|
|
1457
|
+
swapped = False
|
|
1458
|
+
if len(seg2) > len(seg1):
|
|
1459
|
+
seg2, seg1 = seg1, seg2
|
|
1460
|
+
swapped = True
|
|
1461
|
+
if len(seg1) > 2:
|
|
1462
|
+
if len(seg2) > 2:
|
|
1463
|
+
intersections = curveCurveIntersections(seg1, seg2)
|
|
1464
|
+
else:
|
|
1465
|
+
intersections = curveLineIntersections(seg1, seg2)
|
|
1466
|
+
elif len(seg1) == 2 and len(seg2) == 2:
|
|
1467
|
+
intersections = lineLineIntersections(*seg1, *seg2)
|
|
1468
|
+
else:
|
|
1469
|
+
raise ValueError("Couldn't work out which intersection function to use")
|
|
1470
|
+
if not swapped:
|
|
1471
|
+
return intersections
|
|
1472
|
+
return [Intersection(pt=i.pt, t1=i.t2, t2=i.t1) for i in intersections]
|
|
1473
|
+
|
|
1474
|
+
|
|
1475
|
+
def _segmentrepr(obj):
|
|
1476
|
+
"""
|
|
1477
|
+
>>> _segmentrepr([1, [2, 3], [], [[2, [3, 4], [0.1, 2.2]]]])
|
|
1478
|
+
'(1, (2, 3), (), ((2, (3, 4), (0.1, 2.2))))'
|
|
1479
|
+
"""
|
|
1480
|
+
try:
|
|
1481
|
+
it = iter(obj)
|
|
1482
|
+
except TypeError:
|
|
1483
|
+
return "%g" % obj
|
|
1484
|
+
else:
|
|
1485
|
+
return "(%s)" % ", ".join(_segmentrepr(x) for x in it)
|
|
1486
|
+
|
|
1487
|
+
|
|
1488
|
+
def printSegments(segments):
|
|
1489
|
+
"""Helper for the doctests, displaying each segment in a list of
|
|
1490
|
+
segments on a single line as a tuple.
|
|
1491
|
+
"""
|
|
1492
|
+
for segment in segments:
|
|
1493
|
+
print(_segmentrepr(segment))
|
|
1494
|
+
|
|
1495
|
+
|
|
1496
|
+
if __name__ == "__main__":
|
|
1497
|
+
import sys
|
|
1498
|
+
import doctest
|
|
1499
|
+
|
|
1500
|
+
sys.exit(doctest.testmod().failed)
|