endoreg-db 0.3.6__py3-none-any.whl → 0.3.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- endoreg_db/admin.py +3 -3
- endoreg_db/apps.py +6 -6
- endoreg_db/data/__init__.py +67 -64
- endoreg_db/data/active_model/data.yaml +2 -2
- endoreg_db/data/case_template/rule/00_patient_lab_sample_add_default_value.yaml +167 -167
- endoreg_db/data/case_template/rule/01_patient-set-age.yaml +7 -7
- endoreg_db/data/case_template/rule/01_patient-set-gender.yaml +8 -8
- endoreg_db/data/case_template/rule/11_create_patient_lab_sample.yaml +22 -22
- endoreg_db/data/case_template/rule/12_create-patient_medication-anticoagulation.yaml +18 -18
- endoreg_db/data/case_template/rule/13_create-patient_medication_schedule-anticoagulation.yaml +18 -18
- endoreg_db/data/case_template/rule/19_create_patient.yaml +16 -16
- endoreg_db/data/case_template/rule_type/base_types.yaml +35 -35
- endoreg_db/data/case_template/rule_value/.init +0 -0
- endoreg_db/data/case_template/rule_value_type/base_types.yaml +58 -58
- endoreg_db/data/case_template/template/base.yaml +7 -7
- endoreg_db/data/case_template/template_type/pre_endoscopy.yaml +2 -2
- endoreg_db/data/case_template/tmp/_rule_value +13 -13
- endoreg_db/data/case_template/tmp/rule/01_atrial_fibrillation.yaml +21 -21
- endoreg_db/data/case_template/tmp/rule/02_create_object.yaml +9 -9
- endoreg_db/data/case_template/tmp/template/atrial_fibrillation_low_risk.yaml +6 -6
- endoreg_db/data/center/data.yaml +59 -59
- endoreg_db/data/center_resource/green_endoscopy_dashboard_CenterResource.yaml +144 -144
- endoreg_db/data/center_waste/green_endoscopy_dashboard_CenterWaste.yaml +48 -48
- endoreg_db/data/disease/cardiovascular.yaml +37 -37
- endoreg_db/data/disease/hepatology.yaml +4 -4
- endoreg_db/data/disease/misc.yaml +5 -5
- endoreg_db/data/disease/renal.yaml +4 -4
- endoreg_db/data/disease_classification/chronic_kidney_disease.yaml +5 -5
- endoreg_db/data/disease_classification/coronary_vessel_disease.yaml +5 -5
- endoreg_db/data/disease_classification_choice/chronic_kidney_disease.yaml +40 -40
- endoreg_db/data/disease_classification_choice/coronary_vessel_disease.yaml +19 -19
- endoreg_db/data/distribution/date/patient.yaml +6 -6
- endoreg_db/data/distribution/multiple_categorical/.init +0 -0
- endoreg_db/data/distribution/numeric/.init +0 -0
- endoreg_db/data/distribution/single_categorical/patient.yaml +6 -6
- endoreg_db/data/emission_factor/green_endoscopy_dashboard_EmissionFactor.yaml +132 -132
- endoreg_db/data/endoscope_type/data.yaml +10 -10
- endoreg_db/data/endoscopy_processor/data.yaml +45 -45
- endoreg_db/data/event/cardiology.yaml +27 -27
- endoreg_db/data/event/neurology.yaml +13 -13
- endoreg_db/data/event/surgery.yaml +12 -12
- endoreg_db/data/event/thrombembolism.yaml +19 -19
- endoreg_db/data/examination/examinations/data.yaml +65 -65
- endoreg_db/data/examination/time/data.yaml +47 -47
- endoreg_db/data/examination/time-type/data.yaml +7 -7
- endoreg_db/data/examination/type/data.yaml +5 -5
- endoreg_db/data/gender/data.yaml +18 -18
- endoreg_db/data/information_source/data.yaml +30 -30
- endoreg_db/data/information_source/medication.yaml +5 -5
- endoreg_db/data/lab_value/cardiac_enzymes.yaml +30 -30
- endoreg_db/data/lab_value/coagulation.yaml +48 -48
- endoreg_db/data/lab_value/electrolytes.yaml +189 -189
- endoreg_db/data/lab_value/gastrointestinal_function.yaml +121 -121
- endoreg_db/data/lab_value/hematology.yaml +169 -169
- endoreg_db/data/lab_value/hormones.yaml +53 -53
- endoreg_db/data/lab_value/lipids.yaml +44 -44
- endoreg_db/data/lab_value/misc.yaml +30 -30
- endoreg_db/data/lab_value/renal_function.yaml +10 -10
- endoreg_db/data/label/label/data.yaml +62 -62
- endoreg_db/data/label/label-set/data.yaml +17 -17
- endoreg_db/data/label/label-type/data.yaml +6 -6
- endoreg_db/data/medication/anticoagulation.yaml +64 -64
- endoreg_db/data/medication/tah.yaml +69 -69
- endoreg_db/data/medication_indication/anticoagulation.yaml +120 -120
- endoreg_db/data/medication_indication_type/data.yaml +10 -10
- endoreg_db/data/medication_indication_type/thrombembolism.yaml +40 -40
- endoreg_db/data/medication_intake_time/base.yaml +30 -30
- endoreg_db/data/medication_schedule/apixaban.yaml +94 -94
- endoreg_db/data/medication_schedule/ass.yaml +12 -12
- endoreg_db/data/medication_schedule/enoxaparin.yaml +26 -26
- endoreg_db/data/model_type/data.yaml +6 -6
- endoreg_db/data/network_device/data.yaml +17 -0
- endoreg_db/data/network_device_type/data.yaml +8 -0
- endoreg_db/data/patient_lab_sample_type/generic.yaml +5 -5
- endoreg_db/data/pdf_type/data.yaml +28 -28
- endoreg_db/data/product/green_endoscopy_dashboard_Product.yaml +66 -66
- endoreg_db/data/product_group/green_endoscopy_dashboard_ProductGroup.yaml +33 -33
- endoreg_db/data/product_material/green_endoscopy_dashboard_ProductMaterial.yaml +308 -308
- endoreg_db/data/product_weight/green_endoscopy_dashboard_ProductWeight.yaml +88 -88
- endoreg_db/data/profession/data.yaml +70 -70
- endoreg_db/data/reference_product/green_endoscopy_dashboard_ReferenceProduct.yaml +55 -55
- endoreg_db/data/report_reader_flag/ukw-examination-generic.yaml +26 -26
- endoreg_db/data/report_reader_flag/ukw-histology-generic.yaml +19 -19
- endoreg_db/data/resource/green_endoscopy_dashboard_Resource.yaml +15 -15
- endoreg_db/data/transport_route/green_endoscopy_dashboard_TransportRoute.yaml +12 -12
- endoreg_db/data/unit/concentration.yaml +92 -92
- endoreg_db/data/unit/data.yaml +17 -17
- endoreg_db/data/unit/length.yaml +30 -30
- endoreg_db/data/unit/misc.yaml +19 -19
- endoreg_db/data/unit/rate.yaml +5 -5
- endoreg_db/data/unit/time.yaml +12 -12
- endoreg_db/data/unit/volume.yaml +35 -35
- endoreg_db/data/unit/weight.yaml +37 -37
- endoreg_db/data/waste/data.yaml +11 -11
- endoreg_db/forms/__init__.py +2 -2
- endoreg_db/forms/questionnaires/tto_questionnaire.py +23 -23
- endoreg_db/forms/settings/__init__.py +8 -8
- endoreg_db/forms/unit.py +5 -5
- endoreg_db/management/commands/_load_model_template.py +40 -40
- endoreg_db/management/commands/delete_all.py +18 -18
- endoreg_db/management/commands/delete_legacy_images.py +19 -19
- endoreg_db/management/commands/delete_legacy_videos.py +16 -16
- endoreg_db/management/commands/extract_legacy_video_frames.py +18 -18
- endoreg_db/management/commands/fetch_legacy_image_dataset.py +32 -32
- endoreg_db/management/commands/fix_auth_permission.py +20 -20
- endoreg_db/management/commands/import_legacy_images.py +94 -94
- endoreg_db/management/commands/import_legacy_videos.py +76 -76
- endoreg_db/management/commands/load_active_model_data.py +44 -44
- endoreg_db/management/commands/load_ai_model_data.py +44 -44
- endoreg_db/management/commands/load_base_db_data.py +132 -128
- endoreg_db/management/commands/load_center_data.py +42 -42
- endoreg_db/management/commands/load_disease_classification_choices_data.py +40 -40
- endoreg_db/management/commands/load_disease_classification_data.py +40 -40
- endoreg_db/management/commands/load_disease_data.py +39 -39
- endoreg_db/management/commands/load_distribution_data.py +65 -65
- endoreg_db/management/commands/load_endoscope_type_data.py +44 -44
- endoreg_db/management/commands/load_endoscopy_processor_data.py +44 -44
- endoreg_db/management/commands/load_event_data.py +40 -40
- endoreg_db/management/commands/load_examination_data.py +74 -74
- endoreg_db/management/commands/load_g_play_data.py +112 -112
- endoreg_db/management/commands/load_gender_data.py +43 -43
- endoreg_db/management/commands/load_green_endoscopy_wuerzburg_data.py +132 -132
- endoreg_db/management/commands/load_information_source.py +44 -44
- endoreg_db/management/commands/load_lab_value_data.py +49 -49
- endoreg_db/management/commands/load_label_data.py +66 -66
- endoreg_db/management/commands/load_medication_data.py +40 -40
- endoreg_db/management/commands/load_medication_indication_data.py +62 -62
- endoreg_db/management/commands/load_medication_indication_type_data.py +40 -40
- endoreg_db/management/commands/load_medication_intake_time_data.py +40 -40
- endoreg_db/management/commands/load_medication_schedule_data.py +54 -54
- endoreg_db/management/commands/load_network_data.py +49 -0
- endoreg_db/management/commands/load_pdf_type_data.py +60 -60
- endoreg_db/management/commands/load_profession_data.py +43 -43
- endoreg_db/management/commands/load_report_reader_flag.py +45 -45
- endoreg_db/management/commands/load_unit_data.py +45 -45
- endoreg_db/management/commands/load_user_groups.py +28 -28
- endoreg_db/management/commands/register_ai_model.py +65 -65
- endoreg_db/management/commands/reset_celery_schedule.py +9 -9
- endoreg_db/migrations/0001_initial.py +582 -582
- endoreg_db/migrations/0002_rawvideofile.py +26 -26
- endoreg_db/migrations/0003_rawvideofile_frames_required.py +18 -18
- endoreg_db/migrations/0004_rename_hash_rawvideofile_video_hash.py +18 -18
- endoreg_db/migrations/0005_ffmpegmeta_remove_videoimportmeta_center_and_more.py +56 -56
- endoreg_db/migrations/0006_rawvideofile_center_alter_videometa_processor.py +25 -25
- endoreg_db/migrations/0007_rawvideofile_processor.py +19 -19
- endoreg_db/migrations/0008_rename_frames_required_rawvideofile_state_frames_required.py +18 -18
- endoreg_db/migrations/0009_sensitivemeta_rawvideofile_sensitive_meta.py +31 -31
- endoreg_db/migrations/0010_rename_endoscope_serial_number_sensitivemeta_endoscope_sn.py +18 -18
- endoreg_db/migrations/0011_rawvideofile_state_sensitive_data_retrieved.py +18 -18
- endoreg_db/migrations/0012_rawvideofile_prediction_dir_and_more.py +109 -109
- endoreg_db/migrations/0013_rawpdffile.py +31 -31
- endoreg_db/migrations/0014_pdftype_alter_rawpdffile_file_pdfmeta.py +38 -38
- endoreg_db/migrations/0015_rename_report_processed_rawpdffile_state_report_processed_and_more.py +31 -31
- endoreg_db/migrations/0016_rawpdffile_state_report_processing_required.py +18 -18
- endoreg_db/migrations/0017_firstname_lastname_center_first_names_and_more.py +37 -37
- endoreg_db/migrations/0018_reportreaderflag_reportreaderconfig.py +37 -37
- endoreg_db/migrations/0019_pdftype_cut_off_above_lines_and_more.py +42 -42
- endoreg_db/migrations/0020_rename_endoscopy_info_line_pdftype_endoscope_info_line.py +18 -18
- endoreg_db/migrations/0021_alter_pdftype_endoscope_info_line.py +19 -19
- endoreg_db/migrations/0022_alter_pdftype_endoscope_info_line.py +19 -19
- endoreg_db/migrations/0023_ttoquestionnaire_alter_pdftype_endoscope_info_line.py +59 -59
- endoreg_db/migrations/0024_remove_ttoquestionnaire_infections_and_more.py +27 -27
- endoreg_db/migrations/0025_event_alter_rawpdffile_file_patientevent.py +42 -42
- endoreg_db/migrations/0026_disease_diseaseclassification_and_more.py +166 -166
- endoreg_db/migrations/0027_labvalue_abbreviation_labvalue_default_normal_range_and_more.py +38 -38
- endoreg_db/migrations/0028_alter_unit_abbreviation.py +18 -18
- endoreg_db/migrations/0029_medicationintaketime_and_more.py +75 -75
- endoreg_db/migrations/0030_medicationindicationtype_and_more.py +101 -101
- endoreg_db/migrations/0031_rename_adapt_to_liver_function_medication_adapt_to_age_and_more.py +38 -38
- endoreg_db/migrations/0032_alter_medicationschedule_therapy_duration_d.py +18 -18
- endoreg_db/migrations/0033_medicationindication_sources.py +18 -18
- endoreg_db/migrations/0034_alter_rawpdffile_file.py +20 -20
- endoreg_db/migrations/0035_alter_medicationindication_sources.py +18 -18
- endoreg_db/migrations/0036_alter_rawpdffile_file.py +20 -20
- endoreg_db/migrations/0037_alter_medicationindication_sources.py +18 -18
- endoreg_db/migrations/0038_emissionfactor_material_product_productgroup_and_more.py +164 -164
- endoreg_db/migrations/0039_referenceproduct_name.py +19 -19
- endoreg_db/migrations/0040_quizanswertype_quizquestiontype_quizquestion_and_more.py +50 -50
- endoreg_db/migrations/0041_gender_patientmedication_medication_indication_and_more.py +40 -40
- endoreg_db/migrations/0042_casetemplateruletype_casetemplaterulevalue_and_more.py +74 -74
- endoreg_db/migrations/0043_casetemplatetype_name_de_casetemplatetype_name_en.py +23 -23
- endoreg_db/migrations/0044_casetemplateruletype_name_de_and_more.py +23 -23
- endoreg_db/migrations/0045_casetemplaterulevalue_value_type.py +19 -19
- endoreg_db/migrations/0046_casetemplaterulevalue_target_field.py +18 -18
- endoreg_db/migrations/0047_casetemplaterule_target_model.py +18 -18
- endoreg_db/migrations/0048_remove_casetemplaterule_chained_rules_and_more.py +22 -22
- endoreg_db/migrations/0049_remove_casetemplaterule_rule_values.py +17 -17
- endoreg_db/migrations/0050_casetemplaterule_rule_values.py +18 -18
- endoreg_db/migrations/0051_remove_casetemplaterule_calling_rules_and_more.py +27 -27
- endoreg_db/migrations/0052_rename_case_template_type_casetemplate_template_type.py +18 -18
- endoreg_db/migrations/0053_patientlabsampletype_patientlabsample_and_more.py +38 -38
- endoreg_db/migrations/0054_multiplecategoricalvaluedistribution_and_more.py +69 -69
- endoreg_db/migrations/0055_remove_casetemplaterule_rule_values_and_more.py +59 -59
- endoreg_db/migrations/0056_datevaluedistribution_and_more.py +32 -32
- endoreg_db/migrations/0057_remove_datevaluedistribution_max_date_and_more.py +72 -72
- endoreg_db/migrations/0058_datevaluedistribution_description_and_more.py +28 -28
- endoreg_db/migrations/0059_casetemplaterule_rule_values.py +18 -18
- endoreg_db/migrations/0060_labvalue__default_date_value_distribution_and_more.py +44 -44
- endoreg_db/migrations/0061_remove_patientlabvalue_date_patientlabvalue_datetime.py +24 -24
- endoreg_db/migrations/0062_labvalue_numeric_precision.py +18 -18
- endoreg_db/migrations/0063_alter_labvalue_numeric_precision.py +18 -18
- endoreg_db/migrations/0064_casetemplaterule_extra_parameters_and_more.py +23 -23
- endoreg_db/migrations/0065_rename__date_value_distribution_casetemplaterule_date_value_distribution_and_more.py +58 -58
- endoreg_db/migrations/0066_alter_patientlabvalue_patient_and_more.py +29 -29
- endoreg_db/migrations/0067_alter_medicationindication_indication_type.py +19 -19
- endoreg_db/migrations/0068_networkdevicetype_networkdevicetypemanager_and_more.py +57 -0
- endoreg_db/models/__init__.py +75 -74
- endoreg_db/models/ai_model/__init__.py +3 -3
- endoreg_db/models/ai_model/active_model.py +9 -9
- endoreg_db/models/ai_model/model_meta.py +24 -24
- endoreg_db/models/ai_model/model_type.py +25 -25
- endoreg_db/models/ai_model/utils.py +8 -8
- endoreg_db/models/annotation/__init__.py +1 -1
- endoreg_db/models/annotation/binary_classification_annotation_task.py +80 -80
- endoreg_db/models/annotation/image_classification.py +26 -26
- endoreg_db/models/case_template/__init__.py +5 -5
- endoreg_db/models/case_template/case_template.py +81 -81
- endoreg_db/models/case_template/case_template_rule.py +276 -276
- endoreg_db/models/case_template/case_template_rule_value.py +73 -73
- endoreg_db/models/case_template/case_template_type.py +27 -27
- endoreg_db/models/center/__init__.py +4 -4
- endoreg_db/models/center/center.py +24 -24
- endoreg_db/models/center/center_product.py +33 -33
- endoreg_db/models/center/center_resource.py +18 -18
- endoreg_db/models/center/center_waste.py +10 -10
- endoreg_db/models/data_file/__init__.py +5 -5
- endoreg_db/models/data_file/base_classes/__init__.py +2 -2
- endoreg_db/models/data_file/base_classes/abstract_frame.py +50 -50
- endoreg_db/models/data_file/base_classes/abstract_video.py +200 -200
- endoreg_db/models/data_file/frame.py +45 -45
- endoreg_db/models/data_file/import_classes/__init__.py +31 -31
- endoreg_db/models/data_file/import_classes/processing_functions/__init__.py +34 -34
- endoreg_db/models/data_file/import_classes/processing_functions/pdf.py +28 -28
- endoreg_db/models/data_file/import_classes/processing_functions/video.py +260 -260
- endoreg_db/models/data_file/import_classes/raw_pdf.py +188 -188
- endoreg_db/models/data_file/import_classes/raw_video.py +343 -343
- endoreg_db/models/data_file/metadata/__init__.py +3 -3
- endoreg_db/models/data_file/metadata/pdf_meta.py +70 -70
- endoreg_db/models/data_file/metadata/sensitive_meta.py +31 -31
- endoreg_db/models/data_file/metadata/video_meta.py +132 -132
- endoreg_db/models/data_file/report_file.py +89 -89
- endoreg_db/models/data_file/video/__init__.py +6 -6
- endoreg_db/models/data_file/video/import_meta.py +25 -25
- endoreg_db/models/data_file/video/video.py +25 -25
- endoreg_db/models/data_file/video_segment.py +107 -107
- endoreg_db/models/disease.py +55 -55
- endoreg_db/models/emission/emission_factor.py +19 -19
- endoreg_db/models/event.py +21 -21
- endoreg_db/models/examination/__init__.py +3 -3
- endoreg_db/models/examination/examination.py +26 -26
- endoreg_db/models/examination/examination_time.py +27 -27
- endoreg_db/models/examination/examination_time_type.py +24 -24
- endoreg_db/models/examination/examination_type.py +18 -18
- endoreg_db/models/hardware/__init__.py +1 -1
- endoreg_db/models/hardware/endoscope.py +44 -44
- endoreg_db/models/hardware/endoscopy_processor.py +143 -143
- endoreg_db/models/information_source.py +29 -29
- endoreg_db/models/label/label.py +84 -84
- endoreg_db/models/laboratory/lab_value.py +102 -102
- endoreg_db/models/legacy_data/__init__.py +3 -3
- endoreg_db/models/legacy_data/image.py +34 -34
- endoreg_db/models/medication/medication.py +148 -148
- endoreg_db/models/network/__init__.py +2 -0
- endoreg_db/models/network/network_device.py +27 -0
- endoreg_db/models/network/network_device_type.py +23 -0
- endoreg_db/models/other/__init__.py +4 -4
- endoreg_db/models/other/distribution.py +215 -215
- endoreg_db/models/other/material.py +16 -16
- endoreg_db/models/other/resource.py +17 -17
- endoreg_db/models/other/transport_route.py +20 -20
- endoreg_db/models/other/waste.py +20 -20
- endoreg_db/models/patient_examination/__init__.py +35 -35
- endoreg_db/models/permissions/__init__.py +44 -44
- endoreg_db/models/persons/__init__.py +6 -6
- endoreg_db/models/persons/examiner/__init__.py +1 -1
- endoreg_db/models/persons/examiner/examiner.py +15 -15
- endoreg_db/models/persons/examiner/examiner_type.py +1 -1
- endoreg_db/models/persons/first_name.py +17 -17
- endoreg_db/models/persons/gender.py +22 -22
- endoreg_db/models/persons/last_name.py +19 -19
- endoreg_db/models/persons/patient/__init__.py +7 -7
- endoreg_db/models/persons/patient/case/case.py +30 -30
- endoreg_db/models/persons/patient/patient.py +216 -216
- endoreg_db/models/persons/patient/patient_disease.py +16 -16
- endoreg_db/models/persons/patient/patient_event.py +22 -22
- endoreg_db/models/persons/patient/patient_lab_sample.py +106 -106
- endoreg_db/models/persons/patient/patient_lab_value.py +176 -176
- endoreg_db/models/persons/patient/patient_medication.py +43 -43
- endoreg_db/models/persons/patient/patient_medication_schedule.py +27 -27
- endoreg_db/models/persons/person.py +31 -31
- endoreg_db/models/persons/portal_user_information.py +27 -27
- endoreg_db/models/prediction/__init__.py +1 -1
- endoreg_db/models/prediction/image_classification.py +37 -37
- endoreg_db/models/prediction/video_prediction_meta.py +244 -244
- endoreg_db/models/product/__init__.py +4 -4
- endoreg_db/models/product/product.py +97 -97
- endoreg_db/models/product/product_group.py +19 -19
- endoreg_db/models/product/product_material.py +24 -24
- endoreg_db/models/product/product_weight.py +26 -26
- endoreg_db/models/product/reference_product.py +99 -99
- endoreg_db/models/questionnaires/__init__.py +114 -114
- endoreg_db/models/quiz/__init__.py +1 -1
- endoreg_db/models/quiz/quiz_answer.py +41 -41
- endoreg_db/models/quiz/quiz_question.py +54 -54
- endoreg_db/models/report_reader/__init__.py +1 -1
- endoreg_db/models/report_reader/report_reader_config.py +53 -53
- endoreg_db/models/report_reader/report_reader_flag.py +19 -19
- endoreg_db/models/rules/__init__.py +4 -4
- endoreg_db/models/rules/rule.py +23 -23
- endoreg_db/models/rules/rule_applicator.py +224 -224
- endoreg_db/models/rules/rule_attribute_dtype.py +18 -18
- endoreg_db/models/rules/rule_type.py +21 -21
- endoreg_db/models/rules/ruleset.py +19 -19
- endoreg_db/models/unit.py +21 -21
- endoreg_db/queries/__init__.py +4 -4
- endoreg_db/queries/annotations/__init__.py +2 -2
- endoreg_db/queries/annotations/legacy.py +159 -159
- endoreg_db/queries/get/__init__.py +5 -5
- endoreg_db/queries/get/center.py +42 -42
- endoreg_db/queries/get/model.py +13 -13
- endoreg_db/queries/get/patient.py +14 -14
- endoreg_db/queries/get/patient_examination.py +20 -20
- endoreg_db/queries/get/report_file.py +33 -33
- endoreg_db/queries/get/video.py +31 -31
- endoreg_db/serializers/__init__.py +9 -9
- endoreg_db/serializers/ai_model.py +18 -18
- endoreg_db/serializers/annotation.py +17 -17
- endoreg_db/serializers/center.py +11 -11
- endoreg_db/serializers/examination.py +32 -32
- endoreg_db/serializers/frame.py +13 -13
- endoreg_db/serializers/hardware.py +20 -20
- endoreg_db/serializers/label.py +22 -22
- endoreg_db/serializers/patient.py +10 -10
- endoreg_db/serializers/prediction.py +15 -15
- endoreg_db/serializers/report_file.py +7 -7
- endoreg_db/serializers/video.py +27 -27
- endoreg_db/tests.py +3 -3
- endoreg_db/utils/cropping.py +28 -28
- endoreg_db/utils/dataloader.py +92 -92
- endoreg_db/utils/file_operations.py +30 -30
- endoreg_db/utils/hashs.py +33 -33
- endoreg_db/utils/legacy_ocr.py +201 -201
- endoreg_db/utils/ocr.py +197 -197
- endoreg_db/utils/uuid.py +4 -4
- endoreg_db/utils/video_metadata.py +87 -87
- endoreg_db/views.py +3 -3
- {endoreg_db-0.3.6.dist-info → endoreg_db-0.3.8.dist-info}/LICENSE +674 -674
- {endoreg_db-0.3.6.dist-info → endoreg_db-0.3.8.dist-info}/METADATA +3 -1
- endoreg_db-0.3.8.dist-info/RECORD +367 -0
- {endoreg_db-0.3.6.dist-info → endoreg_db-0.3.8.dist-info}/WHEEL +1 -1
- endoreg_db-0.3.6.dist-info/RECORD +0 -357
endoreg_db/utils/legacy_ocr.py
CHANGED
|
@@ -1,201 +1,201 @@
|
|
|
1
|
-
import pytesseract
|
|
2
|
-
# import cv2
|
|
3
|
-
from endoreg_db.models import EndoscopyProcessor
|
|
4
|
-
import os
|
|
5
|
-
from collections import Counter
|
|
6
|
-
from tempfile import TemporaryDirectory
|
|
7
|
-
import re
|
|
8
|
-
from datetime import datetime
|
|
9
|
-
from typing import Dict, List
|
|
10
|
-
from icecream import ic
|
|
11
|
-
import numpy as np
|
|
12
|
-
|
|
13
|
-
N_FRAMES_MEAN_OCR = 2
|
|
14
|
-
|
|
15
|
-
# Helper function to process date strings
|
|
16
|
-
def process_date_text(date_text):
|
|
17
|
-
"""
|
|
18
|
-
Processes a string of text that represents a date and returns a datetime.date object.
|
|
19
|
-
|
|
20
|
-
Args:
|
|
21
|
-
date_text (str): A string of text that represents a date.
|
|
22
|
-
|
|
23
|
-
Returns:
|
|
24
|
-
datetime.date: A datetime.date object representing the parsed date, or None if the text cannot be parsed.
|
|
25
|
-
"""
|
|
26
|
-
try:
|
|
27
|
-
# Remove any non-digit characters
|
|
28
|
-
date_text_clean = re.sub(r'\D', '', date_text)
|
|
29
|
-
# Reformat to 'ddmmyyyy' if necessary
|
|
30
|
-
if len(date_text_clean) == 8:
|
|
31
|
-
return datetime.strptime(date_text_clean, "%d%m%Y").date()
|
|
32
|
-
elif len(date_text_clean) == 14:
|
|
33
|
-
return datetime.strptime(date_text_clean, "%d%m%Y%H%M%S").date()
|
|
34
|
-
except ValueError:
|
|
35
|
-
# Return None if the text cannot be parsed into a date
|
|
36
|
-
# set date to 1/1/1900
|
|
37
|
-
return datetime.strptime("01011900", "%d%m%Y").date()
|
|
38
|
-
|
|
39
|
-
# Helper function to process patient names
|
|
40
|
-
def process_name_text(name_text):
|
|
41
|
-
"""
|
|
42
|
-
Remove all numbers, punctuation, and whitespace from a string of text and return the result.
|
|
43
|
-
"""
|
|
44
|
-
name = re.sub(r'[0-9!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~\s]+', '', name_text).strip()
|
|
45
|
-
# capitalize first letter of each word
|
|
46
|
-
name = ' '.join([word.capitalize() for word in name.split()])
|
|
47
|
-
return name
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
# Helper function to process endoscope type text
|
|
51
|
-
def process_general_text(endoscope_text):
|
|
52
|
-
"""
|
|
53
|
-
This function takes in a string of text from an endoscope and returns a cleaned version of the text.
|
|
54
|
-
"""
|
|
55
|
-
return ' '.join(endoscope_text.split())
|
|
56
|
-
|
|
57
|
-
def roi_values_valid(roi):
|
|
58
|
-
"""
|
|
59
|
-
Check if all values in an ROI dictionary are valid (>=0).
|
|
60
|
-
"""
|
|
61
|
-
return all([value >= 0 for value in roi.values()])
|
|
62
|
-
|
|
63
|
-
# Function to extract text from ROIs
|
|
64
|
-
def extract_text_from_rois(image_path, processor:EndoscopyProcessor):
|
|
65
|
-
"""
|
|
66
|
-
Extracts text from regions of interest (ROIs) in an image using OCR.
|
|
67
|
-
|
|
68
|
-
Args:
|
|
69
|
-
image_path (str): The path to the image file.
|
|
70
|
-
processor (EndoscopyProcessor): An instance of the EndoscopyProcessor class.
|
|
71
|
-
|
|
72
|
-
Returns:
|
|
73
|
-
dict: A dictionary containing the extracted text for each ROI.
|
|
74
|
-
"""
|
|
75
|
-
# Read the image using OpenCV
|
|
76
|
-
image = cv2.imread(image_path)
|
|
77
|
-
|
|
78
|
-
# Initialize the dictionary to hold the extracted text
|
|
79
|
-
extracted_texts = {}
|
|
80
|
-
|
|
81
|
-
# Define your ROIs and their corresponding post-processing functions in tuples
|
|
82
|
-
rois_with_postprocessing = [
|
|
83
|
-
('examination_date', processor.get_roi_examination_date, process_date_text),
|
|
84
|
-
("patient_first_name", processor.get_roi_patient_first_name, process_name_text),
|
|
85
|
-
('patient_last_name', processor.get_roi_patient_last_name, process_name_text),
|
|
86
|
-
('patient_dob', processor.get_roi_patient_dob, process_date_text),
|
|
87
|
-
('endoscope_type', processor.get_roi_endoscope_type, process_general_text),
|
|
88
|
-
('endoscope_sn', processor.get_roi_endoscopy_sn, process_general_text),
|
|
89
|
-
]
|
|
90
|
-
|
|
91
|
-
# Extract and post-process text for each ROI
|
|
92
|
-
for roi_name, roi_function, post_process in rois_with_postprocessing:
|
|
93
|
-
# Get the ROI dictionary
|
|
94
|
-
roi = roi_function()
|
|
95
|
-
|
|
96
|
-
# Check if the ROI has values
|
|
97
|
-
|
|
98
|
-
if roi_values_valid(roi):
|
|
99
|
-
# Crop the image to the ROI
|
|
100
|
-
x, y, w, h = roi['x'], roi['y'], roi['width'], roi['height']
|
|
101
|
-
roi_cropped = image[y:y+h, x:x+w]
|
|
102
|
-
# Convert to grayscale
|
|
103
|
-
gray = cv2.cvtColor(roi_cropped, cv2.COLOR_BGR2GRAY)
|
|
104
|
-
|
|
105
|
-
# Invert colors for white text on black background
|
|
106
|
-
gray = cv2.bitwise_not(gray)
|
|
107
|
-
|
|
108
|
-
# Binarize the image - using Otsu's method
|
|
109
|
-
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
|
110
|
-
|
|
111
|
-
# Dilate the image to improve the contour of the pixelated text
|
|
112
|
-
kernel = np.ones((2,2), np.uint8)
|
|
113
|
-
dilation = cv2.dilate(binary, kernel, iterations=1)
|
|
114
|
-
|
|
115
|
-
# OCR configuration: Recognize white text on black background without corrections
|
|
116
|
-
config = '--psm 10 -c tessedit_char_whitelist=0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ-üöäÜÖÄß'
|
|
117
|
-
|
|
118
|
-
# Use pytesseract to do OCR on the preprocessed ROI
|
|
119
|
-
text = pytesseract.image_to_string(dilation, config=config).strip()
|
|
120
|
-
|
|
121
|
-
# Post-process extracted text
|
|
122
|
-
processed_text = post_process(text)
|
|
123
|
-
# processed_text = text
|
|
124
|
-
|
|
125
|
-
# Store the processed text in the dictionary
|
|
126
|
-
extracted_texts[roi_name] = processed_text
|
|
127
|
-
|
|
128
|
-
else:
|
|
129
|
-
ic(roi_name)
|
|
130
|
-
ic(roi)
|
|
131
|
-
ic("No values for this ROI")
|
|
132
|
-
|
|
133
|
-
return extracted_texts
|
|
134
|
-
|
|
135
|
-
|
|
136
|
-
def get_most_frequent_values(rois_texts: Dict[str, List[str]]) -> Dict[str, str]:
|
|
137
|
-
"""
|
|
138
|
-
Given a dictionary of ROIs and their corresponding texts, returns a dictionary of the most frequent text for each ROI.
|
|
139
|
-
|
|
140
|
-
Args:
|
|
141
|
-
rois_texts: A dictionary where the keys are the names of the ROIs and the values are lists of texts.
|
|
142
|
-
|
|
143
|
-
Returns:
|
|
144
|
-
A dictionary where the keys are the names of the ROIs and the values are the most frequent text for each ROI.
|
|
145
|
-
"""
|
|
146
|
-
most_frequent = {}
|
|
147
|
-
for key in rois_texts.keys():
|
|
148
|
-
counter = Counter([text for text in rois_texts[key] if text])
|
|
149
|
-
ic(key)
|
|
150
|
-
ic(counter)
|
|
151
|
-
most_frequent[key], _ = counter.most_common(1)[0] if counter else (None, None)
|
|
152
|
-
return most_frequent
|
|
153
|
-
|
|
154
|
-
def process_video(video_path, processor):
|
|
155
|
-
"""
|
|
156
|
-
Processes a video file by extracting text from regions of interest (ROIs) in each frame.
|
|
157
|
-
|
|
158
|
-
Args:
|
|
159
|
-
video_path (str): The path to the video file to process.
|
|
160
|
-
processor (OCRProcessor): An instance of the OCRProcessor class that defines the ROIs to extract text from.
|
|
161
|
-
|
|
162
|
-
Returns:
|
|
163
|
-
dict: A dictionary containing the most frequent text values extracted from each ROI.
|
|
164
|
-
"""
|
|
165
|
-
# Create a temporary directory to store frames
|
|
166
|
-
with TemporaryDirectory() as temp_dir:
|
|
167
|
-
ic(temp_dir)
|
|
168
|
-
# Capture the video
|
|
169
|
-
video = cv2.VideoCapture(video_path)
|
|
170
|
-
success, frame_number = True, 0
|
|
171
|
-
rois_texts = {roi_name: [] for roi_name in processor.get_rois().keys()}
|
|
172
|
-
frames_for_mean_extraction = 0
|
|
173
|
-
|
|
174
|
-
while success:
|
|
175
|
-
success, frame = video.read()
|
|
176
|
-
|
|
177
|
-
# Check if this is the 200th frame
|
|
178
|
-
if frame_number % 1000 == 0 and success:
|
|
179
|
-
frame_path = os.path.join(temp_dir, f"frame_{frame_number}.jpg")
|
|
180
|
-
cv2.imwrite(frame_path, frame) # Save the frame as a JPEG file
|
|
181
|
-
# cv2.imwrite(f"_tmp/frame_{frame_number}.jpg", frame)
|
|
182
|
-
|
|
183
|
-
# Extract text from ROIs
|
|
184
|
-
extracted_texts = extract_text_from_rois(frame_path, processor)
|
|
185
|
-
ic(extracted_texts)
|
|
186
|
-
|
|
187
|
-
# Store the extracted text from each ROI
|
|
188
|
-
for key, text in extracted_texts.items():
|
|
189
|
-
rois_texts[key].append(text)
|
|
190
|
-
frames_for_mean_extraction += 1
|
|
191
|
-
|
|
192
|
-
frame_number += 1
|
|
193
|
-
|
|
194
|
-
if frames_for_mean_extraction >= N_FRAMES_MEAN_OCR: break
|
|
195
|
-
|
|
196
|
-
# Release the video capture object
|
|
197
|
-
video.release()
|
|
198
|
-
|
|
199
|
-
# Get the most frequent values for each ROI
|
|
200
|
-
return get_most_frequent_values(rois_texts)
|
|
201
|
-
|
|
1
|
+
import pytesseract
|
|
2
|
+
# import cv2
|
|
3
|
+
from endoreg_db.models import EndoscopyProcessor
|
|
4
|
+
import os
|
|
5
|
+
from collections import Counter
|
|
6
|
+
from tempfile import TemporaryDirectory
|
|
7
|
+
import re
|
|
8
|
+
from datetime import datetime
|
|
9
|
+
from typing import Dict, List
|
|
10
|
+
from icecream import ic
|
|
11
|
+
import numpy as np
|
|
12
|
+
|
|
13
|
+
N_FRAMES_MEAN_OCR = 2
|
|
14
|
+
|
|
15
|
+
# Helper function to process date strings
|
|
16
|
+
def process_date_text(date_text):
|
|
17
|
+
"""
|
|
18
|
+
Processes a string of text that represents a date and returns a datetime.date object.
|
|
19
|
+
|
|
20
|
+
Args:
|
|
21
|
+
date_text (str): A string of text that represents a date.
|
|
22
|
+
|
|
23
|
+
Returns:
|
|
24
|
+
datetime.date: A datetime.date object representing the parsed date, or None if the text cannot be parsed.
|
|
25
|
+
"""
|
|
26
|
+
try:
|
|
27
|
+
# Remove any non-digit characters
|
|
28
|
+
date_text_clean = re.sub(r'\D', '', date_text)
|
|
29
|
+
# Reformat to 'ddmmyyyy' if necessary
|
|
30
|
+
if len(date_text_clean) == 8:
|
|
31
|
+
return datetime.strptime(date_text_clean, "%d%m%Y").date()
|
|
32
|
+
elif len(date_text_clean) == 14:
|
|
33
|
+
return datetime.strptime(date_text_clean, "%d%m%Y%H%M%S").date()
|
|
34
|
+
except ValueError:
|
|
35
|
+
# Return None if the text cannot be parsed into a date
|
|
36
|
+
# set date to 1/1/1900
|
|
37
|
+
return datetime.strptime("01011900", "%d%m%Y").date()
|
|
38
|
+
|
|
39
|
+
# Helper function to process patient names
|
|
40
|
+
def process_name_text(name_text):
|
|
41
|
+
"""
|
|
42
|
+
Remove all numbers, punctuation, and whitespace from a string of text and return the result.
|
|
43
|
+
"""
|
|
44
|
+
name = re.sub(r'[0-9!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~\s]+', '', name_text).strip()
|
|
45
|
+
# capitalize first letter of each word
|
|
46
|
+
name = ' '.join([word.capitalize() for word in name.split()])
|
|
47
|
+
return name
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
# Helper function to process endoscope type text
|
|
51
|
+
def process_general_text(endoscope_text):
|
|
52
|
+
"""
|
|
53
|
+
This function takes in a string of text from an endoscope and returns a cleaned version of the text.
|
|
54
|
+
"""
|
|
55
|
+
return ' '.join(endoscope_text.split())
|
|
56
|
+
|
|
57
|
+
def roi_values_valid(roi):
|
|
58
|
+
"""
|
|
59
|
+
Check if all values in an ROI dictionary are valid (>=0).
|
|
60
|
+
"""
|
|
61
|
+
return all([value >= 0 for value in roi.values()])
|
|
62
|
+
|
|
63
|
+
# Function to extract text from ROIs
|
|
64
|
+
def extract_text_from_rois(image_path, processor:EndoscopyProcessor):
|
|
65
|
+
"""
|
|
66
|
+
Extracts text from regions of interest (ROIs) in an image using OCR.
|
|
67
|
+
|
|
68
|
+
Args:
|
|
69
|
+
image_path (str): The path to the image file.
|
|
70
|
+
processor (EndoscopyProcessor): An instance of the EndoscopyProcessor class.
|
|
71
|
+
|
|
72
|
+
Returns:
|
|
73
|
+
dict: A dictionary containing the extracted text for each ROI.
|
|
74
|
+
"""
|
|
75
|
+
# Read the image using OpenCV
|
|
76
|
+
image = cv2.imread(image_path)
|
|
77
|
+
|
|
78
|
+
# Initialize the dictionary to hold the extracted text
|
|
79
|
+
extracted_texts = {}
|
|
80
|
+
|
|
81
|
+
# Define your ROIs and their corresponding post-processing functions in tuples
|
|
82
|
+
rois_with_postprocessing = [
|
|
83
|
+
('examination_date', processor.get_roi_examination_date, process_date_text),
|
|
84
|
+
("patient_first_name", processor.get_roi_patient_first_name, process_name_text),
|
|
85
|
+
('patient_last_name', processor.get_roi_patient_last_name, process_name_text),
|
|
86
|
+
('patient_dob', processor.get_roi_patient_dob, process_date_text),
|
|
87
|
+
('endoscope_type', processor.get_roi_endoscope_type, process_general_text),
|
|
88
|
+
('endoscope_sn', processor.get_roi_endoscopy_sn, process_general_text),
|
|
89
|
+
]
|
|
90
|
+
|
|
91
|
+
# Extract and post-process text for each ROI
|
|
92
|
+
for roi_name, roi_function, post_process in rois_with_postprocessing:
|
|
93
|
+
# Get the ROI dictionary
|
|
94
|
+
roi = roi_function()
|
|
95
|
+
|
|
96
|
+
# Check if the ROI has values
|
|
97
|
+
|
|
98
|
+
if roi_values_valid(roi):
|
|
99
|
+
# Crop the image to the ROI
|
|
100
|
+
x, y, w, h = roi['x'], roi['y'], roi['width'], roi['height']
|
|
101
|
+
roi_cropped = image[y:y+h, x:x+w]
|
|
102
|
+
# Convert to grayscale
|
|
103
|
+
gray = cv2.cvtColor(roi_cropped, cv2.COLOR_BGR2GRAY)
|
|
104
|
+
|
|
105
|
+
# Invert colors for white text on black background
|
|
106
|
+
gray = cv2.bitwise_not(gray)
|
|
107
|
+
|
|
108
|
+
# Binarize the image - using Otsu's method
|
|
109
|
+
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
|
110
|
+
|
|
111
|
+
# Dilate the image to improve the contour of the pixelated text
|
|
112
|
+
kernel = np.ones((2,2), np.uint8)
|
|
113
|
+
dilation = cv2.dilate(binary, kernel, iterations=1)
|
|
114
|
+
|
|
115
|
+
# OCR configuration: Recognize white text on black background without corrections
|
|
116
|
+
config = '--psm 10 -c tessedit_char_whitelist=0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ-üöäÜÖÄß'
|
|
117
|
+
|
|
118
|
+
# Use pytesseract to do OCR on the preprocessed ROI
|
|
119
|
+
text = pytesseract.image_to_string(dilation, config=config).strip()
|
|
120
|
+
|
|
121
|
+
# Post-process extracted text
|
|
122
|
+
processed_text = post_process(text)
|
|
123
|
+
# processed_text = text
|
|
124
|
+
|
|
125
|
+
# Store the processed text in the dictionary
|
|
126
|
+
extracted_texts[roi_name] = processed_text
|
|
127
|
+
|
|
128
|
+
else:
|
|
129
|
+
ic(roi_name)
|
|
130
|
+
ic(roi)
|
|
131
|
+
ic("No values for this ROI")
|
|
132
|
+
|
|
133
|
+
return extracted_texts
|
|
134
|
+
|
|
135
|
+
|
|
136
|
+
def get_most_frequent_values(rois_texts: Dict[str, List[str]]) -> Dict[str, str]:
|
|
137
|
+
"""
|
|
138
|
+
Given a dictionary of ROIs and their corresponding texts, returns a dictionary of the most frequent text for each ROI.
|
|
139
|
+
|
|
140
|
+
Args:
|
|
141
|
+
rois_texts: A dictionary where the keys are the names of the ROIs and the values are lists of texts.
|
|
142
|
+
|
|
143
|
+
Returns:
|
|
144
|
+
A dictionary where the keys are the names of the ROIs and the values are the most frequent text for each ROI.
|
|
145
|
+
"""
|
|
146
|
+
most_frequent = {}
|
|
147
|
+
for key in rois_texts.keys():
|
|
148
|
+
counter = Counter([text for text in rois_texts[key] if text])
|
|
149
|
+
ic(key)
|
|
150
|
+
ic(counter)
|
|
151
|
+
most_frequent[key], _ = counter.most_common(1)[0] if counter else (None, None)
|
|
152
|
+
return most_frequent
|
|
153
|
+
|
|
154
|
+
def process_video(video_path, processor):
|
|
155
|
+
"""
|
|
156
|
+
Processes a video file by extracting text from regions of interest (ROIs) in each frame.
|
|
157
|
+
|
|
158
|
+
Args:
|
|
159
|
+
video_path (str): The path to the video file to process.
|
|
160
|
+
processor (OCRProcessor): An instance of the OCRProcessor class that defines the ROIs to extract text from.
|
|
161
|
+
|
|
162
|
+
Returns:
|
|
163
|
+
dict: A dictionary containing the most frequent text values extracted from each ROI.
|
|
164
|
+
"""
|
|
165
|
+
# Create a temporary directory to store frames
|
|
166
|
+
with TemporaryDirectory() as temp_dir:
|
|
167
|
+
ic(temp_dir)
|
|
168
|
+
# Capture the video
|
|
169
|
+
video = cv2.VideoCapture(video_path)
|
|
170
|
+
success, frame_number = True, 0
|
|
171
|
+
rois_texts = {roi_name: [] for roi_name in processor.get_rois().keys()}
|
|
172
|
+
frames_for_mean_extraction = 0
|
|
173
|
+
|
|
174
|
+
while success:
|
|
175
|
+
success, frame = video.read()
|
|
176
|
+
|
|
177
|
+
# Check if this is the 200th frame
|
|
178
|
+
if frame_number % 1000 == 0 and success:
|
|
179
|
+
frame_path = os.path.join(temp_dir, f"frame_{frame_number}.jpg")
|
|
180
|
+
cv2.imwrite(frame_path, frame) # Save the frame as a JPEG file
|
|
181
|
+
# cv2.imwrite(f"_tmp/frame_{frame_number}.jpg", frame)
|
|
182
|
+
|
|
183
|
+
# Extract text from ROIs
|
|
184
|
+
extracted_texts = extract_text_from_rois(frame_path, processor)
|
|
185
|
+
ic(extracted_texts)
|
|
186
|
+
|
|
187
|
+
# Store the extracted text from each ROI
|
|
188
|
+
for key, text in extracted_texts.items():
|
|
189
|
+
rois_texts[key].append(text)
|
|
190
|
+
frames_for_mean_extraction += 1
|
|
191
|
+
|
|
192
|
+
frame_number += 1
|
|
193
|
+
|
|
194
|
+
if frames_for_mean_extraction >= N_FRAMES_MEAN_OCR: break
|
|
195
|
+
|
|
196
|
+
# Release the video capture object
|
|
197
|
+
video.release()
|
|
198
|
+
|
|
199
|
+
# Get the most frequent values for each ROI
|
|
200
|
+
return get_most_frequent_values(rois_texts)
|
|
201
|
+
|