endoreg-db 0.3.6__py3-none-any.whl → 0.3.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- endoreg_db/admin.py +3 -3
- endoreg_db/apps.py +6 -6
- endoreg_db/data/__init__.py +67 -64
- endoreg_db/data/active_model/data.yaml +2 -2
- endoreg_db/data/case_template/rule/00_patient_lab_sample_add_default_value.yaml +167 -167
- endoreg_db/data/case_template/rule/01_patient-set-age.yaml +7 -7
- endoreg_db/data/case_template/rule/01_patient-set-gender.yaml +8 -8
- endoreg_db/data/case_template/rule/11_create_patient_lab_sample.yaml +22 -22
- endoreg_db/data/case_template/rule/12_create-patient_medication-anticoagulation.yaml +18 -18
- endoreg_db/data/case_template/rule/13_create-patient_medication_schedule-anticoagulation.yaml +18 -18
- endoreg_db/data/case_template/rule/19_create_patient.yaml +16 -16
- endoreg_db/data/case_template/rule_type/base_types.yaml +35 -35
- endoreg_db/data/case_template/rule_value/.init +0 -0
- endoreg_db/data/case_template/rule_value_type/base_types.yaml +58 -58
- endoreg_db/data/case_template/template/base.yaml +7 -7
- endoreg_db/data/case_template/template_type/pre_endoscopy.yaml +2 -2
- endoreg_db/data/case_template/tmp/_rule_value +13 -13
- endoreg_db/data/case_template/tmp/rule/01_atrial_fibrillation.yaml +21 -21
- endoreg_db/data/case_template/tmp/rule/02_create_object.yaml +9 -9
- endoreg_db/data/case_template/tmp/template/atrial_fibrillation_low_risk.yaml +6 -6
- endoreg_db/data/center/data.yaml +59 -59
- endoreg_db/data/center_resource/green_endoscopy_dashboard_CenterResource.yaml +144 -144
- endoreg_db/data/center_waste/green_endoscopy_dashboard_CenterWaste.yaml +48 -48
- endoreg_db/data/disease/cardiovascular.yaml +37 -37
- endoreg_db/data/disease/hepatology.yaml +4 -4
- endoreg_db/data/disease/misc.yaml +5 -5
- endoreg_db/data/disease/renal.yaml +4 -4
- endoreg_db/data/disease_classification/chronic_kidney_disease.yaml +5 -5
- endoreg_db/data/disease_classification/coronary_vessel_disease.yaml +5 -5
- endoreg_db/data/disease_classification_choice/chronic_kidney_disease.yaml +40 -40
- endoreg_db/data/disease_classification_choice/coronary_vessel_disease.yaml +19 -19
- endoreg_db/data/distribution/date/patient.yaml +6 -6
- endoreg_db/data/distribution/multiple_categorical/.init +0 -0
- endoreg_db/data/distribution/numeric/.init +0 -0
- endoreg_db/data/distribution/single_categorical/patient.yaml +6 -6
- endoreg_db/data/emission_factor/green_endoscopy_dashboard_EmissionFactor.yaml +132 -132
- endoreg_db/data/endoscope_type/data.yaml +10 -10
- endoreg_db/data/endoscopy_processor/data.yaml +45 -45
- endoreg_db/data/event/cardiology.yaml +27 -27
- endoreg_db/data/event/neurology.yaml +13 -13
- endoreg_db/data/event/surgery.yaml +12 -12
- endoreg_db/data/event/thrombembolism.yaml +19 -19
- endoreg_db/data/examination/examinations/data.yaml +65 -65
- endoreg_db/data/examination/time/data.yaml +47 -47
- endoreg_db/data/examination/time-type/data.yaml +7 -7
- endoreg_db/data/examination/type/data.yaml +5 -5
- endoreg_db/data/gender/data.yaml +18 -18
- endoreg_db/data/information_source/data.yaml +30 -30
- endoreg_db/data/information_source/medication.yaml +5 -5
- endoreg_db/data/lab_value/cardiac_enzymes.yaml +30 -30
- endoreg_db/data/lab_value/coagulation.yaml +48 -48
- endoreg_db/data/lab_value/electrolytes.yaml +189 -189
- endoreg_db/data/lab_value/gastrointestinal_function.yaml +121 -121
- endoreg_db/data/lab_value/hematology.yaml +169 -169
- endoreg_db/data/lab_value/hormones.yaml +53 -53
- endoreg_db/data/lab_value/lipids.yaml +44 -44
- endoreg_db/data/lab_value/misc.yaml +30 -30
- endoreg_db/data/lab_value/renal_function.yaml +10 -10
- endoreg_db/data/label/label/data.yaml +62 -62
- endoreg_db/data/label/label-set/data.yaml +17 -17
- endoreg_db/data/label/label-type/data.yaml +6 -6
- endoreg_db/data/medication/anticoagulation.yaml +64 -64
- endoreg_db/data/medication/tah.yaml +69 -69
- endoreg_db/data/medication_indication/anticoagulation.yaml +120 -120
- endoreg_db/data/medication_indication_type/data.yaml +10 -10
- endoreg_db/data/medication_indication_type/thrombembolism.yaml +40 -40
- endoreg_db/data/medication_intake_time/base.yaml +30 -30
- endoreg_db/data/medication_schedule/apixaban.yaml +94 -94
- endoreg_db/data/medication_schedule/ass.yaml +12 -12
- endoreg_db/data/medication_schedule/enoxaparin.yaml +26 -26
- endoreg_db/data/model_type/data.yaml +6 -6
- endoreg_db/data/network_device/data.yaml +17 -0
- endoreg_db/data/network_device_type/data.yaml +8 -0
- endoreg_db/data/patient_lab_sample_type/generic.yaml +5 -5
- endoreg_db/data/pdf_type/data.yaml +28 -28
- endoreg_db/data/product/green_endoscopy_dashboard_Product.yaml +66 -66
- endoreg_db/data/product_group/green_endoscopy_dashboard_ProductGroup.yaml +33 -33
- endoreg_db/data/product_material/green_endoscopy_dashboard_ProductMaterial.yaml +308 -308
- endoreg_db/data/product_weight/green_endoscopy_dashboard_ProductWeight.yaml +88 -88
- endoreg_db/data/profession/data.yaml +70 -70
- endoreg_db/data/reference_product/green_endoscopy_dashboard_ReferenceProduct.yaml +55 -55
- endoreg_db/data/report_reader_flag/ukw-examination-generic.yaml +26 -26
- endoreg_db/data/report_reader_flag/ukw-histology-generic.yaml +19 -19
- endoreg_db/data/resource/green_endoscopy_dashboard_Resource.yaml +15 -15
- endoreg_db/data/transport_route/green_endoscopy_dashboard_TransportRoute.yaml +12 -12
- endoreg_db/data/unit/concentration.yaml +92 -92
- endoreg_db/data/unit/data.yaml +17 -17
- endoreg_db/data/unit/length.yaml +30 -30
- endoreg_db/data/unit/misc.yaml +19 -19
- endoreg_db/data/unit/rate.yaml +5 -5
- endoreg_db/data/unit/time.yaml +12 -12
- endoreg_db/data/unit/volume.yaml +35 -35
- endoreg_db/data/unit/weight.yaml +37 -37
- endoreg_db/data/waste/data.yaml +11 -11
- endoreg_db/forms/__init__.py +2 -2
- endoreg_db/forms/questionnaires/tto_questionnaire.py +23 -23
- endoreg_db/forms/settings/__init__.py +8 -8
- endoreg_db/forms/unit.py +5 -5
- endoreg_db/management/commands/_load_model_template.py +40 -40
- endoreg_db/management/commands/delete_all.py +18 -18
- endoreg_db/management/commands/delete_legacy_images.py +19 -19
- endoreg_db/management/commands/delete_legacy_videos.py +16 -16
- endoreg_db/management/commands/extract_legacy_video_frames.py +18 -18
- endoreg_db/management/commands/fetch_legacy_image_dataset.py +32 -32
- endoreg_db/management/commands/fix_auth_permission.py +20 -20
- endoreg_db/management/commands/import_legacy_images.py +94 -94
- endoreg_db/management/commands/import_legacy_videos.py +76 -76
- endoreg_db/management/commands/load_active_model_data.py +44 -44
- endoreg_db/management/commands/load_ai_model_data.py +44 -44
- endoreg_db/management/commands/load_base_db_data.py +132 -128
- endoreg_db/management/commands/load_center_data.py +42 -42
- endoreg_db/management/commands/load_disease_classification_choices_data.py +40 -40
- endoreg_db/management/commands/load_disease_classification_data.py +40 -40
- endoreg_db/management/commands/load_disease_data.py +39 -39
- endoreg_db/management/commands/load_distribution_data.py +65 -65
- endoreg_db/management/commands/load_endoscope_type_data.py +44 -44
- endoreg_db/management/commands/load_endoscopy_processor_data.py +44 -44
- endoreg_db/management/commands/load_event_data.py +40 -40
- endoreg_db/management/commands/load_examination_data.py +74 -74
- endoreg_db/management/commands/load_g_play_data.py +112 -112
- endoreg_db/management/commands/load_gender_data.py +43 -43
- endoreg_db/management/commands/load_green_endoscopy_wuerzburg_data.py +132 -132
- endoreg_db/management/commands/load_information_source.py +44 -44
- endoreg_db/management/commands/load_lab_value_data.py +49 -49
- endoreg_db/management/commands/load_label_data.py +66 -66
- endoreg_db/management/commands/load_medication_data.py +40 -40
- endoreg_db/management/commands/load_medication_indication_data.py +62 -62
- endoreg_db/management/commands/load_medication_indication_type_data.py +40 -40
- endoreg_db/management/commands/load_medication_intake_time_data.py +40 -40
- endoreg_db/management/commands/load_medication_schedule_data.py +54 -54
- endoreg_db/management/commands/load_network_data.py +49 -0
- endoreg_db/management/commands/load_pdf_type_data.py +60 -60
- endoreg_db/management/commands/load_profession_data.py +43 -43
- endoreg_db/management/commands/load_report_reader_flag.py +45 -45
- endoreg_db/management/commands/load_unit_data.py +45 -45
- endoreg_db/management/commands/load_user_groups.py +28 -28
- endoreg_db/management/commands/register_ai_model.py +65 -65
- endoreg_db/management/commands/reset_celery_schedule.py +9 -9
- endoreg_db/migrations/0001_initial.py +582 -582
- endoreg_db/migrations/0002_rawvideofile.py +26 -26
- endoreg_db/migrations/0003_rawvideofile_frames_required.py +18 -18
- endoreg_db/migrations/0004_rename_hash_rawvideofile_video_hash.py +18 -18
- endoreg_db/migrations/0005_ffmpegmeta_remove_videoimportmeta_center_and_more.py +56 -56
- endoreg_db/migrations/0006_rawvideofile_center_alter_videometa_processor.py +25 -25
- endoreg_db/migrations/0007_rawvideofile_processor.py +19 -19
- endoreg_db/migrations/0008_rename_frames_required_rawvideofile_state_frames_required.py +18 -18
- endoreg_db/migrations/0009_sensitivemeta_rawvideofile_sensitive_meta.py +31 -31
- endoreg_db/migrations/0010_rename_endoscope_serial_number_sensitivemeta_endoscope_sn.py +18 -18
- endoreg_db/migrations/0011_rawvideofile_state_sensitive_data_retrieved.py +18 -18
- endoreg_db/migrations/0012_rawvideofile_prediction_dir_and_more.py +109 -109
- endoreg_db/migrations/0013_rawpdffile.py +31 -31
- endoreg_db/migrations/0014_pdftype_alter_rawpdffile_file_pdfmeta.py +38 -38
- endoreg_db/migrations/0015_rename_report_processed_rawpdffile_state_report_processed_and_more.py +31 -31
- endoreg_db/migrations/0016_rawpdffile_state_report_processing_required.py +18 -18
- endoreg_db/migrations/0017_firstname_lastname_center_first_names_and_more.py +37 -37
- endoreg_db/migrations/0018_reportreaderflag_reportreaderconfig.py +37 -37
- endoreg_db/migrations/0019_pdftype_cut_off_above_lines_and_more.py +42 -42
- endoreg_db/migrations/0020_rename_endoscopy_info_line_pdftype_endoscope_info_line.py +18 -18
- endoreg_db/migrations/0021_alter_pdftype_endoscope_info_line.py +19 -19
- endoreg_db/migrations/0022_alter_pdftype_endoscope_info_line.py +19 -19
- endoreg_db/migrations/0023_ttoquestionnaire_alter_pdftype_endoscope_info_line.py +59 -59
- endoreg_db/migrations/0024_remove_ttoquestionnaire_infections_and_more.py +27 -27
- endoreg_db/migrations/0025_event_alter_rawpdffile_file_patientevent.py +42 -42
- endoreg_db/migrations/0026_disease_diseaseclassification_and_more.py +166 -166
- endoreg_db/migrations/0027_labvalue_abbreviation_labvalue_default_normal_range_and_more.py +38 -38
- endoreg_db/migrations/0028_alter_unit_abbreviation.py +18 -18
- endoreg_db/migrations/0029_medicationintaketime_and_more.py +75 -75
- endoreg_db/migrations/0030_medicationindicationtype_and_more.py +101 -101
- endoreg_db/migrations/0031_rename_adapt_to_liver_function_medication_adapt_to_age_and_more.py +38 -38
- endoreg_db/migrations/0032_alter_medicationschedule_therapy_duration_d.py +18 -18
- endoreg_db/migrations/0033_medicationindication_sources.py +18 -18
- endoreg_db/migrations/0034_alter_rawpdffile_file.py +20 -20
- endoreg_db/migrations/0035_alter_medicationindication_sources.py +18 -18
- endoreg_db/migrations/0036_alter_rawpdffile_file.py +20 -20
- endoreg_db/migrations/0037_alter_medicationindication_sources.py +18 -18
- endoreg_db/migrations/0038_emissionfactor_material_product_productgroup_and_more.py +164 -164
- endoreg_db/migrations/0039_referenceproduct_name.py +19 -19
- endoreg_db/migrations/0040_quizanswertype_quizquestiontype_quizquestion_and_more.py +50 -50
- endoreg_db/migrations/0041_gender_patientmedication_medication_indication_and_more.py +40 -40
- endoreg_db/migrations/0042_casetemplateruletype_casetemplaterulevalue_and_more.py +74 -74
- endoreg_db/migrations/0043_casetemplatetype_name_de_casetemplatetype_name_en.py +23 -23
- endoreg_db/migrations/0044_casetemplateruletype_name_de_and_more.py +23 -23
- endoreg_db/migrations/0045_casetemplaterulevalue_value_type.py +19 -19
- endoreg_db/migrations/0046_casetemplaterulevalue_target_field.py +18 -18
- endoreg_db/migrations/0047_casetemplaterule_target_model.py +18 -18
- endoreg_db/migrations/0048_remove_casetemplaterule_chained_rules_and_more.py +22 -22
- endoreg_db/migrations/0049_remove_casetemplaterule_rule_values.py +17 -17
- endoreg_db/migrations/0050_casetemplaterule_rule_values.py +18 -18
- endoreg_db/migrations/0051_remove_casetemplaterule_calling_rules_and_more.py +27 -27
- endoreg_db/migrations/0052_rename_case_template_type_casetemplate_template_type.py +18 -18
- endoreg_db/migrations/0053_patientlabsampletype_patientlabsample_and_more.py +38 -38
- endoreg_db/migrations/0054_multiplecategoricalvaluedistribution_and_more.py +69 -69
- endoreg_db/migrations/0055_remove_casetemplaterule_rule_values_and_more.py +59 -59
- endoreg_db/migrations/0056_datevaluedistribution_and_more.py +32 -32
- endoreg_db/migrations/0057_remove_datevaluedistribution_max_date_and_more.py +72 -72
- endoreg_db/migrations/0058_datevaluedistribution_description_and_more.py +28 -28
- endoreg_db/migrations/0059_casetemplaterule_rule_values.py +18 -18
- endoreg_db/migrations/0060_labvalue__default_date_value_distribution_and_more.py +44 -44
- endoreg_db/migrations/0061_remove_patientlabvalue_date_patientlabvalue_datetime.py +24 -24
- endoreg_db/migrations/0062_labvalue_numeric_precision.py +18 -18
- endoreg_db/migrations/0063_alter_labvalue_numeric_precision.py +18 -18
- endoreg_db/migrations/0064_casetemplaterule_extra_parameters_and_more.py +23 -23
- endoreg_db/migrations/0065_rename__date_value_distribution_casetemplaterule_date_value_distribution_and_more.py +58 -58
- endoreg_db/migrations/0066_alter_patientlabvalue_patient_and_more.py +29 -29
- endoreg_db/migrations/0067_alter_medicationindication_indication_type.py +19 -19
- endoreg_db/migrations/0068_networkdevicetype_networkdevicetypemanager_and_more.py +57 -0
- endoreg_db/models/__init__.py +75 -74
- endoreg_db/models/ai_model/__init__.py +3 -3
- endoreg_db/models/ai_model/active_model.py +9 -9
- endoreg_db/models/ai_model/model_meta.py +24 -24
- endoreg_db/models/ai_model/model_type.py +25 -25
- endoreg_db/models/ai_model/utils.py +8 -8
- endoreg_db/models/annotation/__init__.py +1 -1
- endoreg_db/models/annotation/binary_classification_annotation_task.py +80 -80
- endoreg_db/models/annotation/image_classification.py +26 -26
- endoreg_db/models/case_template/__init__.py +5 -5
- endoreg_db/models/case_template/case_template.py +81 -81
- endoreg_db/models/case_template/case_template_rule.py +276 -276
- endoreg_db/models/case_template/case_template_rule_value.py +73 -73
- endoreg_db/models/case_template/case_template_type.py +27 -27
- endoreg_db/models/center/__init__.py +4 -4
- endoreg_db/models/center/center.py +24 -24
- endoreg_db/models/center/center_product.py +33 -33
- endoreg_db/models/center/center_resource.py +18 -18
- endoreg_db/models/center/center_waste.py +10 -10
- endoreg_db/models/data_file/__init__.py +5 -5
- endoreg_db/models/data_file/base_classes/__init__.py +2 -2
- endoreg_db/models/data_file/base_classes/abstract_frame.py +50 -50
- endoreg_db/models/data_file/base_classes/abstract_video.py +200 -200
- endoreg_db/models/data_file/frame.py +45 -45
- endoreg_db/models/data_file/import_classes/__init__.py +31 -31
- endoreg_db/models/data_file/import_classes/processing_functions/__init__.py +34 -34
- endoreg_db/models/data_file/import_classes/processing_functions/pdf.py +28 -28
- endoreg_db/models/data_file/import_classes/processing_functions/video.py +260 -260
- endoreg_db/models/data_file/import_classes/raw_pdf.py +188 -188
- endoreg_db/models/data_file/import_classes/raw_video.py +343 -343
- endoreg_db/models/data_file/metadata/__init__.py +3 -3
- endoreg_db/models/data_file/metadata/pdf_meta.py +70 -70
- endoreg_db/models/data_file/metadata/sensitive_meta.py +31 -31
- endoreg_db/models/data_file/metadata/video_meta.py +132 -132
- endoreg_db/models/data_file/report_file.py +89 -89
- endoreg_db/models/data_file/video/__init__.py +6 -6
- endoreg_db/models/data_file/video/import_meta.py +25 -25
- endoreg_db/models/data_file/video/video.py +25 -25
- endoreg_db/models/data_file/video_segment.py +107 -107
- endoreg_db/models/disease.py +55 -55
- endoreg_db/models/emission/emission_factor.py +19 -19
- endoreg_db/models/event.py +21 -21
- endoreg_db/models/examination/__init__.py +3 -3
- endoreg_db/models/examination/examination.py +26 -26
- endoreg_db/models/examination/examination_time.py +27 -27
- endoreg_db/models/examination/examination_time_type.py +24 -24
- endoreg_db/models/examination/examination_type.py +18 -18
- endoreg_db/models/hardware/__init__.py +1 -1
- endoreg_db/models/hardware/endoscope.py +44 -44
- endoreg_db/models/hardware/endoscopy_processor.py +143 -143
- endoreg_db/models/information_source.py +29 -29
- endoreg_db/models/label/label.py +84 -84
- endoreg_db/models/laboratory/lab_value.py +102 -102
- endoreg_db/models/legacy_data/__init__.py +3 -3
- endoreg_db/models/legacy_data/image.py +34 -34
- endoreg_db/models/medication/medication.py +148 -148
- endoreg_db/models/network/__init__.py +2 -0
- endoreg_db/models/network/network_device.py +27 -0
- endoreg_db/models/network/network_device_type.py +23 -0
- endoreg_db/models/other/__init__.py +4 -4
- endoreg_db/models/other/distribution.py +215 -215
- endoreg_db/models/other/material.py +16 -16
- endoreg_db/models/other/resource.py +17 -17
- endoreg_db/models/other/transport_route.py +20 -20
- endoreg_db/models/other/waste.py +20 -20
- endoreg_db/models/patient_examination/__init__.py +35 -35
- endoreg_db/models/permissions/__init__.py +44 -44
- endoreg_db/models/persons/__init__.py +6 -6
- endoreg_db/models/persons/examiner/__init__.py +1 -1
- endoreg_db/models/persons/examiner/examiner.py +15 -15
- endoreg_db/models/persons/examiner/examiner_type.py +1 -1
- endoreg_db/models/persons/first_name.py +17 -17
- endoreg_db/models/persons/gender.py +22 -22
- endoreg_db/models/persons/last_name.py +19 -19
- endoreg_db/models/persons/patient/__init__.py +7 -7
- endoreg_db/models/persons/patient/case/case.py +30 -30
- endoreg_db/models/persons/patient/patient.py +216 -216
- endoreg_db/models/persons/patient/patient_disease.py +16 -16
- endoreg_db/models/persons/patient/patient_event.py +22 -22
- endoreg_db/models/persons/patient/patient_lab_sample.py +106 -106
- endoreg_db/models/persons/patient/patient_lab_value.py +176 -176
- endoreg_db/models/persons/patient/patient_medication.py +43 -43
- endoreg_db/models/persons/patient/patient_medication_schedule.py +27 -27
- endoreg_db/models/persons/person.py +31 -31
- endoreg_db/models/persons/portal_user_information.py +27 -27
- endoreg_db/models/prediction/__init__.py +1 -1
- endoreg_db/models/prediction/image_classification.py +37 -37
- endoreg_db/models/prediction/video_prediction_meta.py +244 -244
- endoreg_db/models/product/__init__.py +4 -4
- endoreg_db/models/product/product.py +97 -97
- endoreg_db/models/product/product_group.py +19 -19
- endoreg_db/models/product/product_material.py +24 -24
- endoreg_db/models/product/product_weight.py +26 -26
- endoreg_db/models/product/reference_product.py +99 -99
- endoreg_db/models/questionnaires/__init__.py +114 -114
- endoreg_db/models/quiz/__init__.py +1 -1
- endoreg_db/models/quiz/quiz_answer.py +41 -41
- endoreg_db/models/quiz/quiz_question.py +54 -54
- endoreg_db/models/report_reader/__init__.py +1 -1
- endoreg_db/models/report_reader/report_reader_config.py +53 -53
- endoreg_db/models/report_reader/report_reader_flag.py +19 -19
- endoreg_db/models/rules/__init__.py +4 -4
- endoreg_db/models/rules/rule.py +23 -23
- endoreg_db/models/rules/rule_applicator.py +224 -224
- endoreg_db/models/rules/rule_attribute_dtype.py +18 -18
- endoreg_db/models/rules/rule_type.py +21 -21
- endoreg_db/models/rules/ruleset.py +19 -19
- endoreg_db/models/unit.py +21 -21
- endoreg_db/queries/__init__.py +4 -4
- endoreg_db/queries/annotations/__init__.py +2 -2
- endoreg_db/queries/annotations/legacy.py +159 -159
- endoreg_db/queries/get/__init__.py +5 -5
- endoreg_db/queries/get/center.py +42 -42
- endoreg_db/queries/get/model.py +13 -13
- endoreg_db/queries/get/patient.py +14 -14
- endoreg_db/queries/get/patient_examination.py +20 -20
- endoreg_db/queries/get/report_file.py +33 -33
- endoreg_db/queries/get/video.py +31 -31
- endoreg_db/serializers/__init__.py +9 -9
- endoreg_db/serializers/ai_model.py +18 -18
- endoreg_db/serializers/annotation.py +17 -17
- endoreg_db/serializers/center.py +11 -11
- endoreg_db/serializers/examination.py +32 -32
- endoreg_db/serializers/frame.py +13 -13
- endoreg_db/serializers/hardware.py +20 -20
- endoreg_db/serializers/label.py +22 -22
- endoreg_db/serializers/patient.py +10 -10
- endoreg_db/serializers/prediction.py +15 -15
- endoreg_db/serializers/report_file.py +7 -7
- endoreg_db/serializers/video.py +27 -27
- endoreg_db/tests.py +3 -3
- endoreg_db/utils/cropping.py +28 -28
- endoreg_db/utils/dataloader.py +92 -92
- endoreg_db/utils/file_operations.py +30 -30
- endoreg_db/utils/hashs.py +33 -33
- endoreg_db/utils/legacy_ocr.py +201 -201
- endoreg_db/utils/ocr.py +197 -197
- endoreg_db/utils/uuid.py +4 -4
- endoreg_db/utils/video_metadata.py +87 -87
- endoreg_db/views.py +3 -3
- {endoreg_db-0.3.6.dist-info → endoreg_db-0.3.8.dist-info}/LICENSE +674 -674
- {endoreg_db-0.3.6.dist-info → endoreg_db-0.3.8.dist-info}/METADATA +3 -1
- endoreg_db-0.3.8.dist-info/RECORD +367 -0
- {endoreg_db-0.3.6.dist-info → endoreg_db-0.3.8.dist-info}/WHEEL +1 -1
- endoreg_db-0.3.6.dist-info/RECORD +0 -357
|
@@ -1,215 +1,215 @@
|
|
|
1
|
-
from django.db import models
|
|
2
|
-
import numpy as np
|
|
3
|
-
from scipy.stats import skewnorm
|
|
4
|
-
|
|
5
|
-
class BaseValueDistribution(models.Model):
|
|
6
|
-
"""
|
|
7
|
-
Abstract base class for value distributions.
|
|
8
|
-
"""
|
|
9
|
-
name = models.CharField(max_length=100)
|
|
10
|
-
|
|
11
|
-
class Meta:
|
|
12
|
-
abstract = True
|
|
13
|
-
|
|
14
|
-
def generate_value(self):
|
|
15
|
-
"""
|
|
16
|
-
Generate a value based on the distribution rules.
|
|
17
|
-
Must be implemented by subclasses.
|
|
18
|
-
"""
|
|
19
|
-
raise NotImplementedError("Subclasses must implement this method")
|
|
20
|
-
|
|
21
|
-
def natural_key(self):
|
|
22
|
-
return (self.name,)
|
|
23
|
-
|
|
24
|
-
class NumericValueDistributionManager(models.Manager):
|
|
25
|
-
def get_by_natural_key(self, name):
|
|
26
|
-
return self.get(name=name)
|
|
27
|
-
|
|
28
|
-
class NumericValueDistribution(BaseValueDistribution):
|
|
29
|
-
"""
|
|
30
|
-
Numeric value distribution model.
|
|
31
|
-
Supports uniform, normal, and skewed normal distributions with hard limits.
|
|
32
|
-
"""
|
|
33
|
-
objects = NumericValueDistributionManager()
|
|
34
|
-
DISTRIBUTION_CHOICES = [
|
|
35
|
-
('uniform', 'Uniform'),
|
|
36
|
-
('normal', 'Normal'),
|
|
37
|
-
('skewed_normal', 'Skewed Normal'),
|
|
38
|
-
]
|
|
39
|
-
|
|
40
|
-
distribution_type = models.CharField(max_length=20, choices=DISTRIBUTION_CHOICES)
|
|
41
|
-
min_value = models.FloatField()
|
|
42
|
-
max_value = models.FloatField()
|
|
43
|
-
mean = models.FloatField(null=True, blank=True)
|
|
44
|
-
std_dev = models.FloatField(null=True, blank=True)
|
|
45
|
-
skewness = models.FloatField(null=True, blank=True)
|
|
46
|
-
|
|
47
|
-
def generate_value(self):
|
|
48
|
-
if self.distribution_type == 'uniform':
|
|
49
|
-
return np.random.uniform(self.min_value, self.max_value)
|
|
50
|
-
elif self.distribution_type == 'normal':
|
|
51
|
-
value = np.random.normal(self.mean, self.std_dev)
|
|
52
|
-
return np.clip(value, self.min_value, self.max_value)
|
|
53
|
-
elif self.distribution_type == 'skewed_normal':
|
|
54
|
-
value = skewnorm.rvs(a=self.skewness, loc=self.mean, scale=self.std_dev)
|
|
55
|
-
return np.clip(value, self.min_value, self.max_value)
|
|
56
|
-
else:
|
|
57
|
-
raise ValueError("Unsupported distribution type")
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
class SingleCategoricalValueDistributionManager(models.Manager):
|
|
61
|
-
def get_by_natural_key(self, name):
|
|
62
|
-
return self.get(name=name)
|
|
63
|
-
|
|
64
|
-
class SingleCategoricalValueDistribution(BaseValueDistribution):
|
|
65
|
-
"""
|
|
66
|
-
Single categorical value distribution model.
|
|
67
|
-
Assigns a single value based on specified probabilities.
|
|
68
|
-
"""
|
|
69
|
-
objects = SingleCategoricalValueDistributionManager()
|
|
70
|
-
categories = models.JSONField() # { "category": "probability", ... }
|
|
71
|
-
|
|
72
|
-
def generate_value(self):
|
|
73
|
-
categories, probabilities = zip(*self.categories.items())
|
|
74
|
-
return np.random.choice(categories, p=probabilities)
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
class MultipleCategoricalValueDistributionManager(models.Manager):
|
|
78
|
-
def get_by_natural_key(self, name):
|
|
79
|
-
return self.get(name=name)
|
|
80
|
-
|
|
81
|
-
class MultipleCategoricalValueDistribution(BaseValueDistribution):
|
|
82
|
-
"""
|
|
83
|
-
Multiple categorical value distribution model.
|
|
84
|
-
Assigns a specific number or varying number of values based on probabilities.
|
|
85
|
-
"""
|
|
86
|
-
objects = MultipleCategoricalValueDistributionManager()
|
|
87
|
-
categories = models.JSONField() # { "category": "probability", ... }
|
|
88
|
-
min_count = models.IntegerField()
|
|
89
|
-
max_count = models.IntegerField()
|
|
90
|
-
count_distribution_type = models.CharField(max_length=20, choices=[('uniform', 'Uniform'), ('normal', 'Normal')])
|
|
91
|
-
count_mean = models.FloatField(null=True, blank=True)
|
|
92
|
-
count_std_dev = models.FloatField(null=True, blank=True)
|
|
93
|
-
|
|
94
|
-
def generate_value(self):
|
|
95
|
-
if self.count_distribution_type == 'uniform':
|
|
96
|
-
count = np.random.randint(self.min_count, self.max_count + 1)
|
|
97
|
-
elif self.count_distribution_type == 'normal':
|
|
98
|
-
count = int(np.random.normal(self.count_mean, self.count_std_dev))
|
|
99
|
-
count = np.clip(count, self.min_count, self.max_count)
|
|
100
|
-
else:
|
|
101
|
-
raise ValueError("Unsupported count distribution type")
|
|
102
|
-
|
|
103
|
-
categories, probabilities = zip(*self.categories.items())
|
|
104
|
-
return list(np.random.choice(categories, size=count, p=probabilities))
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
class DateValueDistributionManager(models.Manager):
|
|
108
|
-
def get_by_natural_key(self, name):
|
|
109
|
-
return self.get(name=name)
|
|
110
|
-
|
|
111
|
-
from datetime import date, timedelta
|
|
112
|
-
class DateValueDistribution(BaseValueDistribution):
|
|
113
|
-
"""
|
|
114
|
-
Assign date values based on specified distribution.
|
|
115
|
-
Expects distribution_type (uniform, normal) and mode (date, timedelta) and based on this either
|
|
116
|
-
date_min, date_max, date_mean, date_std_dev or
|
|
117
|
-
timedelta_days_min, timedelta_days_max, timedelta_days_mean, timedelta_days_std_dev
|
|
118
|
-
"""
|
|
119
|
-
objects = DateValueDistributionManager()
|
|
120
|
-
name = models.CharField(max_length=100)
|
|
121
|
-
name_de = models.CharField(max_length=100, blank=True, null=True)
|
|
122
|
-
name_en = models.CharField(max_length=100, blank=True, null=True)
|
|
123
|
-
description = models.TextField(blank=True, null=True)
|
|
124
|
-
DISTRIBUTION_CHOICES = [
|
|
125
|
-
('uniform', 'Uniform'),
|
|
126
|
-
('normal', 'Normal'),
|
|
127
|
-
]
|
|
128
|
-
MODE_CHOICES = [
|
|
129
|
-
('date', 'Date'),
|
|
130
|
-
('timedelta', 'Timedelta'),
|
|
131
|
-
]
|
|
132
|
-
|
|
133
|
-
distribution_type = models.CharField(max_length=20, choices=DISTRIBUTION_CHOICES)
|
|
134
|
-
mode = models.CharField(max_length=20, choices=MODE_CHOICES)
|
|
135
|
-
|
|
136
|
-
# Date-related fields
|
|
137
|
-
date_min = models.DateField(blank=True, null=True)
|
|
138
|
-
date_max = models.DateField(blank=True, null=True)
|
|
139
|
-
date_mean = models.DateField(blank=True, null=True)
|
|
140
|
-
date_std_dev = models.IntegerField(blank=True, null=True) # Standard deviation in days
|
|
141
|
-
|
|
142
|
-
# Timedelta-related fields
|
|
143
|
-
timedelta_days_min = models.IntegerField(blank=True, null=True)
|
|
144
|
-
timedelta_days_max = models.IntegerField(blank=True, null=True)
|
|
145
|
-
timedelta_days_mean = models.IntegerField(blank=True, null=True)
|
|
146
|
-
timedelta_days_std_dev = models.IntegerField(blank=True, null=True)
|
|
147
|
-
|
|
148
|
-
def generate_value(self):
|
|
149
|
-
if self.mode == 'date':
|
|
150
|
-
return self._generate_date_value()
|
|
151
|
-
elif self.mode == 'timedelta':
|
|
152
|
-
return self._generate_timedelta_value()
|
|
153
|
-
else:
|
|
154
|
-
raise ValueError("Unsupported mode")
|
|
155
|
-
|
|
156
|
-
def _generate_date_value(self):
|
|
157
|
-
#UNTESTED
|
|
158
|
-
if self.distribution_type == 'uniform':
|
|
159
|
-
start_date = self.date_min.toordinal()
|
|
160
|
-
end_date = self.date_max.toordinal()
|
|
161
|
-
random_ordinal = np.random.randint(start_date, end_date)
|
|
162
|
-
return date.fromordinal(random_ordinal)
|
|
163
|
-
elif self.distribution_type == 'normal':
|
|
164
|
-
mean_ordinal = self.date_mean.toordinal()
|
|
165
|
-
std_dev_days = self.date_std_dev
|
|
166
|
-
random_ordinal = int(np.random.normal(mean_ordinal, std_dev_days))
|
|
167
|
-
random_ordinal = np.clip(random_ordinal, self.date_min.toordinal(), self.date_max.toordinal())
|
|
168
|
-
return date.fromordinal(random_ordinal)
|
|
169
|
-
else:
|
|
170
|
-
raise ValueError("Unsupported distribution type")
|
|
171
|
-
|
|
172
|
-
def _generate_timedelta_value(self):
|
|
173
|
-
if self.distribution_type == 'uniform':
|
|
174
|
-
random_days = np.random.randint(self.timedelta_days_min, self.timedelta_days_max + 1)
|
|
175
|
-
|
|
176
|
-
|
|
177
|
-
elif self.distribution_type == 'normal':
|
|
178
|
-
random_days = int(np.random.normal(self.timedelta_days_mean, self.timedelta_days_std_dev))
|
|
179
|
-
random_days = np.clip(random_days, self.timedelta_days_min, self.timedelta_days_max)
|
|
180
|
-
|
|
181
|
-
else:
|
|
182
|
-
raise ValueError("Unsupported distribution type")
|
|
183
|
-
|
|
184
|
-
current_date = date.today()
|
|
185
|
-
generated_date = current_date - timedelta(days=random_days)
|
|
186
|
-
print(generated_date)
|
|
187
|
-
return(generated_date)
|
|
188
|
-
|
|
189
|
-
# Example Usage
|
|
190
|
-
# Numeric distribution for age
|
|
191
|
-
# age_distribution = NumericValueDistribution.objects.create(
|
|
192
|
-
# name='Age Distribution',
|
|
193
|
-
# distribution_type='normal',
|
|
194
|
-
# min_value=0,
|
|
195
|
-
# max_value=100,
|
|
196
|
-
# mean=50,
|
|
197
|
-
# std_dev=15
|
|
198
|
-
# )
|
|
199
|
-
|
|
200
|
-
# # Single categorical distribution for gender
|
|
201
|
-
# gender_distribution = SingleCategoricalValueDistribution.objects.create(
|
|
202
|
-
# name='Gender Distribution',
|
|
203
|
-
# categories={'male': 0.5, 'female': 0.5}
|
|
204
|
-
# )
|
|
205
|
-
|
|
206
|
-
# # Multiple categorical distribution for symptoms
|
|
207
|
-
# symptoms_distribution = MultipleCategoricalValueDistribution.objects.create(
|
|
208
|
-
# name='Symptoms Distribution',
|
|
209
|
-
# categories={'fever': 0.3, 'cough': 0.4, 'fatigue': 0.2, 'nausea': 0.1},
|
|
210
|
-
# min_count=1,
|
|
211
|
-
# max_count=3,
|
|
212
|
-
# count_distribution_type='normal',
|
|
213
|
-
# count_mean=2,
|
|
214
|
-
# count_std_dev=0.5
|
|
215
|
-
# )
|
|
1
|
+
from django.db import models
|
|
2
|
+
import numpy as np
|
|
3
|
+
from scipy.stats import skewnorm
|
|
4
|
+
|
|
5
|
+
class BaseValueDistribution(models.Model):
|
|
6
|
+
"""
|
|
7
|
+
Abstract base class for value distributions.
|
|
8
|
+
"""
|
|
9
|
+
name = models.CharField(max_length=100)
|
|
10
|
+
|
|
11
|
+
class Meta:
|
|
12
|
+
abstract = True
|
|
13
|
+
|
|
14
|
+
def generate_value(self):
|
|
15
|
+
"""
|
|
16
|
+
Generate a value based on the distribution rules.
|
|
17
|
+
Must be implemented by subclasses.
|
|
18
|
+
"""
|
|
19
|
+
raise NotImplementedError("Subclasses must implement this method")
|
|
20
|
+
|
|
21
|
+
def natural_key(self):
|
|
22
|
+
return (self.name,)
|
|
23
|
+
|
|
24
|
+
class NumericValueDistributionManager(models.Manager):
|
|
25
|
+
def get_by_natural_key(self, name):
|
|
26
|
+
return self.get(name=name)
|
|
27
|
+
|
|
28
|
+
class NumericValueDistribution(BaseValueDistribution):
|
|
29
|
+
"""
|
|
30
|
+
Numeric value distribution model.
|
|
31
|
+
Supports uniform, normal, and skewed normal distributions with hard limits.
|
|
32
|
+
"""
|
|
33
|
+
objects = NumericValueDistributionManager()
|
|
34
|
+
DISTRIBUTION_CHOICES = [
|
|
35
|
+
('uniform', 'Uniform'),
|
|
36
|
+
('normal', 'Normal'),
|
|
37
|
+
('skewed_normal', 'Skewed Normal'),
|
|
38
|
+
]
|
|
39
|
+
|
|
40
|
+
distribution_type = models.CharField(max_length=20, choices=DISTRIBUTION_CHOICES)
|
|
41
|
+
min_value = models.FloatField()
|
|
42
|
+
max_value = models.FloatField()
|
|
43
|
+
mean = models.FloatField(null=True, blank=True)
|
|
44
|
+
std_dev = models.FloatField(null=True, blank=True)
|
|
45
|
+
skewness = models.FloatField(null=True, blank=True)
|
|
46
|
+
|
|
47
|
+
def generate_value(self):
|
|
48
|
+
if self.distribution_type == 'uniform':
|
|
49
|
+
return np.random.uniform(self.min_value, self.max_value)
|
|
50
|
+
elif self.distribution_type == 'normal':
|
|
51
|
+
value = np.random.normal(self.mean, self.std_dev)
|
|
52
|
+
return np.clip(value, self.min_value, self.max_value)
|
|
53
|
+
elif self.distribution_type == 'skewed_normal':
|
|
54
|
+
value = skewnorm.rvs(a=self.skewness, loc=self.mean, scale=self.std_dev)
|
|
55
|
+
return np.clip(value, self.min_value, self.max_value)
|
|
56
|
+
else:
|
|
57
|
+
raise ValueError("Unsupported distribution type")
|
|
58
|
+
|
|
59
|
+
|
|
60
|
+
class SingleCategoricalValueDistributionManager(models.Manager):
|
|
61
|
+
def get_by_natural_key(self, name):
|
|
62
|
+
return self.get(name=name)
|
|
63
|
+
|
|
64
|
+
class SingleCategoricalValueDistribution(BaseValueDistribution):
|
|
65
|
+
"""
|
|
66
|
+
Single categorical value distribution model.
|
|
67
|
+
Assigns a single value based on specified probabilities.
|
|
68
|
+
"""
|
|
69
|
+
objects = SingleCategoricalValueDistributionManager()
|
|
70
|
+
categories = models.JSONField() # { "category": "probability", ... }
|
|
71
|
+
|
|
72
|
+
def generate_value(self):
|
|
73
|
+
categories, probabilities = zip(*self.categories.items())
|
|
74
|
+
return np.random.choice(categories, p=probabilities)
|
|
75
|
+
|
|
76
|
+
|
|
77
|
+
class MultipleCategoricalValueDistributionManager(models.Manager):
|
|
78
|
+
def get_by_natural_key(self, name):
|
|
79
|
+
return self.get(name=name)
|
|
80
|
+
|
|
81
|
+
class MultipleCategoricalValueDistribution(BaseValueDistribution):
|
|
82
|
+
"""
|
|
83
|
+
Multiple categorical value distribution model.
|
|
84
|
+
Assigns a specific number or varying number of values based on probabilities.
|
|
85
|
+
"""
|
|
86
|
+
objects = MultipleCategoricalValueDistributionManager()
|
|
87
|
+
categories = models.JSONField() # { "category": "probability", ... }
|
|
88
|
+
min_count = models.IntegerField()
|
|
89
|
+
max_count = models.IntegerField()
|
|
90
|
+
count_distribution_type = models.CharField(max_length=20, choices=[('uniform', 'Uniform'), ('normal', 'Normal')])
|
|
91
|
+
count_mean = models.FloatField(null=True, blank=True)
|
|
92
|
+
count_std_dev = models.FloatField(null=True, blank=True)
|
|
93
|
+
|
|
94
|
+
def generate_value(self):
|
|
95
|
+
if self.count_distribution_type == 'uniform':
|
|
96
|
+
count = np.random.randint(self.min_count, self.max_count + 1)
|
|
97
|
+
elif self.count_distribution_type == 'normal':
|
|
98
|
+
count = int(np.random.normal(self.count_mean, self.count_std_dev))
|
|
99
|
+
count = np.clip(count, self.min_count, self.max_count)
|
|
100
|
+
else:
|
|
101
|
+
raise ValueError("Unsupported count distribution type")
|
|
102
|
+
|
|
103
|
+
categories, probabilities = zip(*self.categories.items())
|
|
104
|
+
return list(np.random.choice(categories, size=count, p=probabilities))
|
|
105
|
+
|
|
106
|
+
|
|
107
|
+
class DateValueDistributionManager(models.Manager):
|
|
108
|
+
def get_by_natural_key(self, name):
|
|
109
|
+
return self.get(name=name)
|
|
110
|
+
|
|
111
|
+
from datetime import date, timedelta
|
|
112
|
+
class DateValueDistribution(BaseValueDistribution):
|
|
113
|
+
"""
|
|
114
|
+
Assign date values based on specified distribution.
|
|
115
|
+
Expects distribution_type (uniform, normal) and mode (date, timedelta) and based on this either
|
|
116
|
+
date_min, date_max, date_mean, date_std_dev or
|
|
117
|
+
timedelta_days_min, timedelta_days_max, timedelta_days_mean, timedelta_days_std_dev
|
|
118
|
+
"""
|
|
119
|
+
objects = DateValueDistributionManager()
|
|
120
|
+
name = models.CharField(max_length=100)
|
|
121
|
+
name_de = models.CharField(max_length=100, blank=True, null=True)
|
|
122
|
+
name_en = models.CharField(max_length=100, blank=True, null=True)
|
|
123
|
+
description = models.TextField(blank=True, null=True)
|
|
124
|
+
DISTRIBUTION_CHOICES = [
|
|
125
|
+
('uniform', 'Uniform'),
|
|
126
|
+
('normal', 'Normal'),
|
|
127
|
+
]
|
|
128
|
+
MODE_CHOICES = [
|
|
129
|
+
('date', 'Date'),
|
|
130
|
+
('timedelta', 'Timedelta'),
|
|
131
|
+
]
|
|
132
|
+
|
|
133
|
+
distribution_type = models.CharField(max_length=20, choices=DISTRIBUTION_CHOICES)
|
|
134
|
+
mode = models.CharField(max_length=20, choices=MODE_CHOICES)
|
|
135
|
+
|
|
136
|
+
# Date-related fields
|
|
137
|
+
date_min = models.DateField(blank=True, null=True)
|
|
138
|
+
date_max = models.DateField(blank=True, null=True)
|
|
139
|
+
date_mean = models.DateField(blank=True, null=True)
|
|
140
|
+
date_std_dev = models.IntegerField(blank=True, null=True) # Standard deviation in days
|
|
141
|
+
|
|
142
|
+
# Timedelta-related fields
|
|
143
|
+
timedelta_days_min = models.IntegerField(blank=True, null=True)
|
|
144
|
+
timedelta_days_max = models.IntegerField(blank=True, null=True)
|
|
145
|
+
timedelta_days_mean = models.IntegerField(blank=True, null=True)
|
|
146
|
+
timedelta_days_std_dev = models.IntegerField(blank=True, null=True)
|
|
147
|
+
|
|
148
|
+
def generate_value(self):
|
|
149
|
+
if self.mode == 'date':
|
|
150
|
+
return self._generate_date_value()
|
|
151
|
+
elif self.mode == 'timedelta':
|
|
152
|
+
return self._generate_timedelta_value()
|
|
153
|
+
else:
|
|
154
|
+
raise ValueError("Unsupported mode")
|
|
155
|
+
|
|
156
|
+
def _generate_date_value(self):
|
|
157
|
+
#UNTESTED
|
|
158
|
+
if self.distribution_type == 'uniform':
|
|
159
|
+
start_date = self.date_min.toordinal()
|
|
160
|
+
end_date = self.date_max.toordinal()
|
|
161
|
+
random_ordinal = np.random.randint(start_date, end_date)
|
|
162
|
+
return date.fromordinal(random_ordinal)
|
|
163
|
+
elif self.distribution_type == 'normal':
|
|
164
|
+
mean_ordinal = self.date_mean.toordinal()
|
|
165
|
+
std_dev_days = self.date_std_dev
|
|
166
|
+
random_ordinal = int(np.random.normal(mean_ordinal, std_dev_days))
|
|
167
|
+
random_ordinal = np.clip(random_ordinal, self.date_min.toordinal(), self.date_max.toordinal())
|
|
168
|
+
return date.fromordinal(random_ordinal)
|
|
169
|
+
else:
|
|
170
|
+
raise ValueError("Unsupported distribution type")
|
|
171
|
+
|
|
172
|
+
def _generate_timedelta_value(self):
|
|
173
|
+
if self.distribution_type == 'uniform':
|
|
174
|
+
random_days = np.random.randint(self.timedelta_days_min, self.timedelta_days_max + 1)
|
|
175
|
+
|
|
176
|
+
|
|
177
|
+
elif self.distribution_type == 'normal':
|
|
178
|
+
random_days = int(np.random.normal(self.timedelta_days_mean, self.timedelta_days_std_dev))
|
|
179
|
+
random_days = np.clip(random_days, self.timedelta_days_min, self.timedelta_days_max)
|
|
180
|
+
|
|
181
|
+
else:
|
|
182
|
+
raise ValueError("Unsupported distribution type")
|
|
183
|
+
|
|
184
|
+
current_date = date.today()
|
|
185
|
+
generated_date = current_date - timedelta(days=random_days)
|
|
186
|
+
print(generated_date)
|
|
187
|
+
return(generated_date)
|
|
188
|
+
|
|
189
|
+
# Example Usage
|
|
190
|
+
# Numeric distribution for age
|
|
191
|
+
# age_distribution = NumericValueDistribution.objects.create(
|
|
192
|
+
# name='Age Distribution',
|
|
193
|
+
# distribution_type='normal',
|
|
194
|
+
# min_value=0,
|
|
195
|
+
# max_value=100,
|
|
196
|
+
# mean=50,
|
|
197
|
+
# std_dev=15
|
|
198
|
+
# )
|
|
199
|
+
|
|
200
|
+
# # Single categorical distribution for gender
|
|
201
|
+
# gender_distribution = SingleCategoricalValueDistribution.objects.create(
|
|
202
|
+
# name='Gender Distribution',
|
|
203
|
+
# categories={'male': 0.5, 'female': 0.5}
|
|
204
|
+
# )
|
|
205
|
+
|
|
206
|
+
# # Multiple categorical distribution for symptoms
|
|
207
|
+
# symptoms_distribution = MultipleCategoricalValueDistribution.objects.create(
|
|
208
|
+
# name='Symptoms Distribution',
|
|
209
|
+
# categories={'fever': 0.3, 'cough': 0.4, 'fatigue': 0.2, 'nausea': 0.1},
|
|
210
|
+
# min_count=1,
|
|
211
|
+
# max_count=3,
|
|
212
|
+
# count_distribution_type='normal',
|
|
213
|
+
# count_mean=2,
|
|
214
|
+
# count_std_dev=0.5
|
|
215
|
+
# )
|
|
@@ -1,16 +1,16 @@
|
|
|
1
|
-
from django.db import models
|
|
2
|
-
|
|
3
|
-
class MaterialManager(models.Manager):
|
|
4
|
-
def get_by_natural_key(self, name):
|
|
5
|
-
return self.get(name=name)
|
|
6
|
-
|
|
7
|
-
class Material(models.Model):
|
|
8
|
-
objects = MaterialManager()
|
|
9
|
-
|
|
10
|
-
name = models.CharField(max_length=255)
|
|
11
|
-
name_de = models.CharField(max_length=255, null=True)
|
|
12
|
-
name_en = models.CharField(max_length=255, null=True)
|
|
13
|
-
emission_factor = models.ForeignKey("EmissionFactor", on_delete=models.SET_NULL, null=True)
|
|
14
|
-
|
|
15
|
-
def natural_key(self):
|
|
16
|
-
return (self.name,)
|
|
1
|
+
from django.db import models
|
|
2
|
+
|
|
3
|
+
class MaterialManager(models.Manager):
|
|
4
|
+
def get_by_natural_key(self, name):
|
|
5
|
+
return self.get(name=name)
|
|
6
|
+
|
|
7
|
+
class Material(models.Model):
|
|
8
|
+
objects = MaterialManager()
|
|
9
|
+
|
|
10
|
+
name = models.CharField(max_length=255)
|
|
11
|
+
name_de = models.CharField(max_length=255, null=True)
|
|
12
|
+
name_en = models.CharField(max_length=255, null=True)
|
|
13
|
+
emission_factor = models.ForeignKey("EmissionFactor", on_delete=models.SET_NULL, null=True)
|
|
14
|
+
|
|
15
|
+
def natural_key(self):
|
|
16
|
+
return (self.name,)
|
|
@@ -1,18 +1,18 @@
|
|
|
1
|
-
from django.db import models
|
|
2
|
-
|
|
3
|
-
class ResourceManager(models.Manager):
|
|
4
|
-
def get_by_natural_key(self, name):
|
|
5
|
-
return self.get(name=name)
|
|
6
|
-
|
|
7
|
-
class Resource(models.Model):
|
|
8
|
-
objects = ResourceManager()
|
|
9
|
-
|
|
10
|
-
name = models.CharField(max_length=255)
|
|
11
|
-
name_de = models.CharField(max_length=255, null=True)
|
|
12
|
-
name_en = models.CharField(max_length=255, null=True)
|
|
13
|
-
|
|
14
|
-
def natural_key(self):
|
|
15
|
-
return (self.name,)
|
|
16
|
-
|
|
17
|
-
def __str__(self):
|
|
1
|
+
from django.db import models
|
|
2
|
+
|
|
3
|
+
class ResourceManager(models.Manager):
|
|
4
|
+
def get_by_natural_key(self, name):
|
|
5
|
+
return self.get(name=name)
|
|
6
|
+
|
|
7
|
+
class Resource(models.Model):
|
|
8
|
+
objects = ResourceManager()
|
|
9
|
+
|
|
10
|
+
name = models.CharField(max_length=255)
|
|
11
|
+
name_de = models.CharField(max_length=255, null=True)
|
|
12
|
+
name_en = models.CharField(max_length=255, null=True)
|
|
13
|
+
|
|
14
|
+
def natural_key(self):
|
|
15
|
+
return (self.name,)
|
|
16
|
+
|
|
17
|
+
def __str__(self):
|
|
18
18
|
return self.name
|
|
@@ -1,21 +1,21 @@
|
|
|
1
|
-
from django.db import models
|
|
2
|
-
|
|
3
|
-
class TransportRouteManager(models.Manager):
|
|
4
|
-
def get_by_natural_key(self, name):
|
|
5
|
-
return self.get(name=name)
|
|
6
|
-
|
|
7
|
-
class TransportRoute(models.Model):
|
|
8
|
-
objects = TransportRouteManager()
|
|
9
|
-
|
|
10
|
-
distance = models.FloatField()
|
|
11
|
-
name = models.CharField(max_length=255)
|
|
12
|
-
name_de = models.CharField(max_length=255, null=True)
|
|
13
|
-
name_en = models.CharField(max_length=255, null=True)
|
|
14
|
-
emission_factor = models.ForeignKey("EmissionFactor", on_delete=models.SET_NULL, null=True)
|
|
15
|
-
unit = models.ForeignKey("Unit", on_delete=models.SET_NULL, null=True)
|
|
16
|
-
|
|
17
|
-
def natural_key(self):
|
|
18
|
-
return (self.name,)
|
|
19
|
-
|
|
20
|
-
def __str__(self):
|
|
1
|
+
from django.db import models
|
|
2
|
+
|
|
3
|
+
class TransportRouteManager(models.Manager):
|
|
4
|
+
def get_by_natural_key(self, name):
|
|
5
|
+
return self.get(name=name)
|
|
6
|
+
|
|
7
|
+
class TransportRoute(models.Model):
|
|
8
|
+
objects = TransportRouteManager()
|
|
9
|
+
|
|
10
|
+
distance = models.FloatField()
|
|
11
|
+
name = models.CharField(max_length=255)
|
|
12
|
+
name_de = models.CharField(max_length=255, null=True)
|
|
13
|
+
name_en = models.CharField(max_length=255, null=True)
|
|
14
|
+
emission_factor = models.ForeignKey("EmissionFactor", on_delete=models.SET_NULL, null=True)
|
|
15
|
+
unit = models.ForeignKey("Unit", on_delete=models.SET_NULL, null=True)
|
|
16
|
+
|
|
17
|
+
def natural_key(self):
|
|
18
|
+
return (self.name,)
|
|
19
|
+
|
|
20
|
+
def __str__(self):
|
|
21
21
|
return self.name
|
endoreg_db/models/other/waste.py
CHANGED
|
@@ -1,20 +1,20 @@
|
|
|
1
|
-
from django.db import models
|
|
2
|
-
|
|
3
|
-
class WasteManager(models.Manager):
|
|
4
|
-
def get_by_natural_key(self, name):
|
|
5
|
-
return self.get(name=name)
|
|
6
|
-
|
|
7
|
-
class Waste(models.Model):
|
|
8
|
-
objects = WasteManager()
|
|
9
|
-
|
|
10
|
-
name = models.CharField(max_length=255)
|
|
11
|
-
name_de = models.CharField(max_length=255, null=True)
|
|
12
|
-
name_en = models.CharField(max_length=255, null=True)
|
|
13
|
-
# emission_factor = models.ForeignKey("EmissionFactor", on_delete=models.SET_NULL, null=True)
|
|
14
|
-
|
|
15
|
-
def natural_key(self):
|
|
16
|
-
return (self.name,)
|
|
17
|
-
|
|
18
|
-
def __str__(self):
|
|
19
|
-
return self.name
|
|
20
|
-
|
|
1
|
+
from django.db import models
|
|
2
|
+
|
|
3
|
+
class WasteManager(models.Manager):
|
|
4
|
+
def get_by_natural_key(self, name):
|
|
5
|
+
return self.get(name=name)
|
|
6
|
+
|
|
7
|
+
class Waste(models.Model):
|
|
8
|
+
objects = WasteManager()
|
|
9
|
+
|
|
10
|
+
name = models.CharField(max_length=255)
|
|
11
|
+
name_de = models.CharField(max_length=255, null=True)
|
|
12
|
+
name_en = models.CharField(max_length=255, null=True)
|
|
13
|
+
# emission_factor = models.ForeignKey("EmissionFactor", on_delete=models.SET_NULL, null=True)
|
|
14
|
+
|
|
15
|
+
def natural_key(self):
|
|
16
|
+
return (self.name,)
|
|
17
|
+
|
|
18
|
+
def __str__(self):
|
|
19
|
+
return self.name
|
|
20
|
+
|
|
@@ -1,35 +1,35 @@
|
|
|
1
|
-
from django.db import models
|
|
2
|
-
|
|
3
|
-
# Serializer located in serializers/examination.py
|
|
4
|
-
class PatientExamination(models.Model):
|
|
5
|
-
patient = models.ForeignKey('Patient', on_delete=models.CASCADE, related_name='patient_examinations')
|
|
6
|
-
examination = models.ForeignKey('Examination', on_delete=models.CASCADE, null = True, blank = True)
|
|
7
|
-
video = models.OneToOneField('Video', on_delete=models.CASCADE, null = True, blank = True, related_name='patient_examination')
|
|
8
|
-
report_file = models.OneToOneField('ReportFile', on_delete=models.CASCADE, null = True, blank = True, related_name='patient_examination')
|
|
9
|
-
|
|
10
|
-
class Meta:
|
|
11
|
-
verbose_name = 'Patient Examination'
|
|
12
|
-
verbose_name_plural = 'Patient Examinations'
|
|
13
|
-
ordering = ['patient', 'examination']
|
|
14
|
-
|
|
15
|
-
def __str__(self):
|
|
16
|
-
return f"{self.patient} - {self.report_file}"
|
|
17
|
-
|
|
18
|
-
def find_matching_video_from_patient(self):
|
|
19
|
-
"""
|
|
20
|
-
Finds a video for this patient examination based on the patient's videos.
|
|
21
|
-
For this, the videos date must be the same as the report file's date.
|
|
22
|
-
#TODO add more criteria for matching: Examination type
|
|
23
|
-
"""
|
|
24
|
-
videos = self.patient.video_set.filter(date=self.report_file.date, patient_examination__isnull=True)
|
|
25
|
-
if videos:
|
|
26
|
-
if len(videos) > 1:
|
|
27
|
-
print(f"Warning: Found more than one video for patient {self.patient} on date {self.report_file.date}. Choosing the first one.")
|
|
28
|
-
return videos[0]
|
|
29
|
-
else:
|
|
30
|
-
videos = self.patient.video_set.filter(patient_examination__isnull=True)
|
|
31
|
-
if len(videos)==1:
|
|
32
|
-
return videos[0]
|
|
33
|
-
|
|
34
|
-
return None
|
|
35
|
-
|
|
1
|
+
from django.db import models
|
|
2
|
+
|
|
3
|
+
# Serializer located in serializers/examination.py
|
|
4
|
+
class PatientExamination(models.Model):
|
|
5
|
+
patient = models.ForeignKey('Patient', on_delete=models.CASCADE, related_name='patient_examinations')
|
|
6
|
+
examination = models.ForeignKey('Examination', on_delete=models.CASCADE, null = True, blank = True)
|
|
7
|
+
video = models.OneToOneField('Video', on_delete=models.CASCADE, null = True, blank = True, related_name='patient_examination')
|
|
8
|
+
report_file = models.OneToOneField('ReportFile', on_delete=models.CASCADE, null = True, blank = True, related_name='patient_examination')
|
|
9
|
+
|
|
10
|
+
class Meta:
|
|
11
|
+
verbose_name = 'Patient Examination'
|
|
12
|
+
verbose_name_plural = 'Patient Examinations'
|
|
13
|
+
ordering = ['patient', 'examination']
|
|
14
|
+
|
|
15
|
+
def __str__(self):
|
|
16
|
+
return f"{self.patient} - {self.report_file}"
|
|
17
|
+
|
|
18
|
+
def find_matching_video_from_patient(self):
|
|
19
|
+
"""
|
|
20
|
+
Finds a video for this patient examination based on the patient's videos.
|
|
21
|
+
For this, the videos date must be the same as the report file's date.
|
|
22
|
+
#TODO add more criteria for matching: Examination type
|
|
23
|
+
"""
|
|
24
|
+
videos = self.patient.video_set.filter(date=self.report_file.date, patient_examination__isnull=True)
|
|
25
|
+
if videos:
|
|
26
|
+
if len(videos) > 1:
|
|
27
|
+
print(f"Warning: Found more than one video for patient {self.patient} on date {self.report_file.date}. Choosing the first one.")
|
|
28
|
+
return videos[0]
|
|
29
|
+
else:
|
|
30
|
+
videos = self.patient.video_set.filter(patient_examination__isnull=True)
|
|
31
|
+
if len(videos)==1:
|
|
32
|
+
return videos[0]
|
|
33
|
+
|
|
34
|
+
return None
|
|
35
|
+
|