easy-cs-rec-custommodel 0.8.6__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of easy-cs-rec-custommodel might be problematic. Click here for more details.

Files changed (336) hide show
  1. easy_cs_rec_custommodel-0.8.6.dist-info/LICENSE +203 -0
  2. easy_cs_rec_custommodel-0.8.6.dist-info/METADATA +48 -0
  3. easy_cs_rec_custommodel-0.8.6.dist-info/RECORD +336 -0
  4. easy_cs_rec_custommodel-0.8.6.dist-info/WHEEL +6 -0
  5. easy_cs_rec_custommodel-0.8.6.dist-info/top_level.txt +2 -0
  6. easy_rec/__init__.py +114 -0
  7. easy_rec/python/__init__.py +0 -0
  8. easy_rec/python/builders/__init__.py +0 -0
  9. easy_rec/python/builders/hyperparams_builder.py +78 -0
  10. easy_rec/python/builders/loss_builder.py +333 -0
  11. easy_rec/python/builders/optimizer_builder.py +211 -0
  12. easy_rec/python/builders/strategy_builder.py +44 -0
  13. easy_rec/python/compat/__init__.py +0 -0
  14. easy_rec/python/compat/adam_s.py +245 -0
  15. easy_rec/python/compat/array_ops.py +229 -0
  16. easy_rec/python/compat/dynamic_variable.py +542 -0
  17. easy_rec/python/compat/early_stopping.py +653 -0
  18. easy_rec/python/compat/embedding_ops.py +162 -0
  19. easy_rec/python/compat/embedding_parallel_saver.py +316 -0
  20. easy_rec/python/compat/estimator_train.py +116 -0
  21. easy_rec/python/compat/exporter.py +473 -0
  22. easy_rec/python/compat/feature_column/__init__.py +0 -0
  23. easy_rec/python/compat/feature_column/feature_column.py +3675 -0
  24. easy_rec/python/compat/feature_column/feature_column_v2.py +5233 -0
  25. easy_rec/python/compat/feature_column/sequence_feature_column.py +648 -0
  26. easy_rec/python/compat/feature_column/utils.py +154 -0
  27. easy_rec/python/compat/layers.py +329 -0
  28. easy_rec/python/compat/ops.py +14 -0
  29. easy_rec/python/compat/optimizers.py +619 -0
  30. easy_rec/python/compat/queues.py +311 -0
  31. easy_rec/python/compat/regularizers.py +208 -0
  32. easy_rec/python/compat/sok_optimizer.py +440 -0
  33. easy_rec/python/compat/sync_replicas_optimizer.py +528 -0
  34. easy_rec/python/compat/weight_decay_optimizers.py +475 -0
  35. easy_rec/python/core/__init__.py +0 -0
  36. easy_rec/python/core/easyrec_metrics/__init__.py +24 -0
  37. easy_rec/python/core/easyrec_metrics/distribute_metrics_impl_pai.py +3702 -0
  38. easy_rec/python/core/easyrec_metrics/distribute_metrics_impl_tf.py +3768 -0
  39. easy_rec/python/core/learning_schedules.py +228 -0
  40. easy_rec/python/core/metrics.py +402 -0
  41. easy_rec/python/core/sampler.py +844 -0
  42. easy_rec/python/eval.py +102 -0
  43. easy_rec/python/export.py +150 -0
  44. easy_rec/python/feature_column/__init__.py +0 -0
  45. easy_rec/python/feature_column/feature_column.py +664 -0
  46. easy_rec/python/feature_column/feature_group.py +89 -0
  47. easy_rec/python/hpo/__init__.py +0 -0
  48. easy_rec/python/hpo/emr_hpo.py +140 -0
  49. easy_rec/python/hpo/generate_hpo_sql.py +71 -0
  50. easy_rec/python/hpo/pai_hpo.py +297 -0
  51. easy_rec/python/inference/__init__.py +0 -0
  52. easy_rec/python/inference/csv_predictor.py +189 -0
  53. easy_rec/python/inference/hive_parquet_predictor.py +200 -0
  54. easy_rec/python/inference/hive_predictor.py +166 -0
  55. easy_rec/python/inference/odps_predictor.py +70 -0
  56. easy_rec/python/inference/parquet_predictor.py +147 -0
  57. easy_rec/python/inference/parquet_predictor_v2.py +147 -0
  58. easy_rec/python/inference/predictor.py +621 -0
  59. easy_rec/python/inference/processor/__init__.py +0 -0
  60. easy_rec/python/inference/processor/test.py +170 -0
  61. easy_rec/python/inference/vector_retrieve.py +124 -0
  62. easy_rec/python/input/__init__.py +0 -0
  63. easy_rec/python/input/batch_tfrecord_input.py +117 -0
  64. easy_rec/python/input/criteo_binary_reader.py +259 -0
  65. easy_rec/python/input/criteo_input.py +107 -0
  66. easy_rec/python/input/csv_input.py +175 -0
  67. easy_rec/python/input/csv_input_ex.py +72 -0
  68. easy_rec/python/input/csv_input_v2.py +68 -0
  69. easy_rec/python/input/datahub_input.py +320 -0
  70. easy_rec/python/input/dummy_input.py +58 -0
  71. easy_rec/python/input/hive_input.py +123 -0
  72. easy_rec/python/input/hive_parquet_input.py +140 -0
  73. easy_rec/python/input/hive_rtp_input.py +174 -0
  74. easy_rec/python/input/input.py +1064 -0
  75. easy_rec/python/input/kafka_dataset.py +144 -0
  76. easy_rec/python/input/kafka_input.py +235 -0
  77. easy_rec/python/input/load_parquet.py +317 -0
  78. easy_rec/python/input/odps_input.py +101 -0
  79. easy_rec/python/input/odps_input_v2.py +110 -0
  80. easy_rec/python/input/odps_input_v3.py +132 -0
  81. easy_rec/python/input/odps_rtp_input.py +187 -0
  82. easy_rec/python/input/odps_rtp_input_v2.py +104 -0
  83. easy_rec/python/input/parquet_input.py +397 -0
  84. easy_rec/python/input/parquet_input_v2.py +180 -0
  85. easy_rec/python/input/parquet_input_v3.py +203 -0
  86. easy_rec/python/input/rtp_input.py +225 -0
  87. easy_rec/python/input/rtp_input_v2.py +145 -0
  88. easy_rec/python/input/tfrecord_input.py +100 -0
  89. easy_rec/python/layers/__init__.py +0 -0
  90. easy_rec/python/layers/backbone.py +571 -0
  91. easy_rec/python/layers/capsule_layer.py +176 -0
  92. easy_rec/python/layers/cmbf.py +390 -0
  93. easy_rec/python/layers/common_layers.py +192 -0
  94. easy_rec/python/layers/dnn.py +87 -0
  95. easy_rec/python/layers/embed_input_layer.py +25 -0
  96. easy_rec/python/layers/fm.py +26 -0
  97. easy_rec/python/layers/input_layer.py +396 -0
  98. easy_rec/python/layers/keras/__init__.py +34 -0
  99. easy_rec/python/layers/keras/activation.py +114 -0
  100. easy_rec/python/layers/keras/attention.py +267 -0
  101. easy_rec/python/layers/keras/auxiliary_loss.py +47 -0
  102. easy_rec/python/layers/keras/blocks.py +262 -0
  103. easy_rec/python/layers/keras/bst.py +119 -0
  104. easy_rec/python/layers/keras/custom_ops.py +250 -0
  105. easy_rec/python/layers/keras/data_augment.py +133 -0
  106. easy_rec/python/layers/keras/din.py +67 -0
  107. easy_rec/python/layers/keras/einsum_dense.py +598 -0
  108. easy_rec/python/layers/keras/embedding.py +81 -0
  109. easy_rec/python/layers/keras/fibinet.py +251 -0
  110. easy_rec/python/layers/keras/interaction.py +416 -0
  111. easy_rec/python/layers/keras/layer_norm.py +364 -0
  112. easy_rec/python/layers/keras/mask_net.py +166 -0
  113. easy_rec/python/layers/keras/multi_head_attention.py +717 -0
  114. easy_rec/python/layers/keras/multi_task.py +125 -0
  115. easy_rec/python/layers/keras/numerical_embedding.py +376 -0
  116. easy_rec/python/layers/keras/ppnet.py +194 -0
  117. easy_rec/python/layers/keras/transformer.py +192 -0
  118. easy_rec/python/layers/layer_norm.py +51 -0
  119. easy_rec/python/layers/mmoe.py +83 -0
  120. easy_rec/python/layers/multihead_attention.py +162 -0
  121. easy_rec/python/layers/multihead_cross_attention.py +749 -0
  122. easy_rec/python/layers/senet.py +73 -0
  123. easy_rec/python/layers/seq_input_layer.py +134 -0
  124. easy_rec/python/layers/sequence_feature_layer.py +249 -0
  125. easy_rec/python/layers/uniter.py +301 -0
  126. easy_rec/python/layers/utils.py +248 -0
  127. easy_rec/python/layers/variational_dropout_layer.py +130 -0
  128. easy_rec/python/loss/__init__.py +0 -0
  129. easy_rec/python/loss/circle_loss.py +82 -0
  130. easy_rec/python/loss/contrastive_loss.py +79 -0
  131. easy_rec/python/loss/f1_reweight_loss.py +38 -0
  132. easy_rec/python/loss/focal_loss.py +93 -0
  133. easy_rec/python/loss/jrc_loss.py +128 -0
  134. easy_rec/python/loss/listwise_loss.py +161 -0
  135. easy_rec/python/loss/multi_similarity.py +68 -0
  136. easy_rec/python/loss/pairwise_loss.py +307 -0
  137. easy_rec/python/loss/softmax_loss_with_negative_mining.py +110 -0
  138. easy_rec/python/loss/zero_inflated_lognormal.py +76 -0
  139. easy_rec/python/main.py +878 -0
  140. easy_rec/python/model/__init__.py +0 -0
  141. easy_rec/python/model/autoint.py +73 -0
  142. easy_rec/python/model/cmbf.py +47 -0
  143. easy_rec/python/model/collaborative_metric_learning.py +182 -0
  144. easy_rec/python/model/custom_model.py +323 -0
  145. easy_rec/python/model/dat.py +138 -0
  146. easy_rec/python/model/dbmtl.py +116 -0
  147. easy_rec/python/model/dcn.py +70 -0
  148. easy_rec/python/model/deepfm.py +106 -0
  149. easy_rec/python/model/dlrm.py +73 -0
  150. easy_rec/python/model/dropoutnet.py +207 -0
  151. easy_rec/python/model/dssm.py +154 -0
  152. easy_rec/python/model/dssm_senet.py +143 -0
  153. easy_rec/python/model/dummy_model.py +48 -0
  154. easy_rec/python/model/easy_rec_estimator.py +739 -0
  155. easy_rec/python/model/easy_rec_model.py +467 -0
  156. easy_rec/python/model/esmm.py +242 -0
  157. easy_rec/python/model/fm.py +63 -0
  158. easy_rec/python/model/match_model.py +357 -0
  159. easy_rec/python/model/mind.py +445 -0
  160. easy_rec/python/model/mmoe.py +70 -0
  161. easy_rec/python/model/multi_task_model.py +303 -0
  162. easy_rec/python/model/multi_tower.py +62 -0
  163. easy_rec/python/model/multi_tower_bst.py +190 -0
  164. easy_rec/python/model/multi_tower_din.py +130 -0
  165. easy_rec/python/model/multi_tower_recall.py +68 -0
  166. easy_rec/python/model/pdn.py +203 -0
  167. easy_rec/python/model/ple.py +120 -0
  168. easy_rec/python/model/rank_model.py +485 -0
  169. easy_rec/python/model/rocket_launching.py +203 -0
  170. easy_rec/python/model/simple_multi_task.py +54 -0
  171. easy_rec/python/model/uniter.py +46 -0
  172. easy_rec/python/model/wide_and_deep.py +121 -0
  173. easy_rec/python/ops/1.12/incr_record.so +0 -0
  174. easy_rec/python/ops/1.12/kafka.so +0 -0
  175. easy_rec/python/ops/1.12/libcustom_ops.so +0 -0
  176. easy_rec/python/ops/1.12/libembed_op.so +0 -0
  177. easy_rec/python/ops/1.12/libhiredis.so.1.0.0 +0 -0
  178. easy_rec/python/ops/1.12/librdkafka++.so.1 +0 -0
  179. easy_rec/python/ops/1.12/librdkafka.so.1 +0 -0
  180. easy_rec/python/ops/1.12/libredis++.so +0 -0
  181. easy_rec/python/ops/1.12/libredis++.so.1 +0 -0
  182. easy_rec/python/ops/1.12/libredis++.so.1.2.3 +0 -0
  183. easy_rec/python/ops/1.12/libstr_avx_op.so +0 -0
  184. easy_rec/python/ops/1.12/libwrite_sparse_kv.so +0 -0
  185. easy_rec/python/ops/1.15/incr_record.so +0 -0
  186. easy_rec/python/ops/1.15/kafka.so +0 -0
  187. easy_rec/python/ops/1.15/libcustom_ops.so +0 -0
  188. easy_rec/python/ops/1.15/libembed_op.so +0 -0
  189. easy_rec/python/ops/1.15/libhiredis.so.1.0.0 +0 -0
  190. easy_rec/python/ops/1.15/librdkafka++.so +0 -0
  191. easy_rec/python/ops/1.15/librdkafka++.so.1 +0 -0
  192. easy_rec/python/ops/1.15/librdkafka.so +0 -0
  193. easy_rec/python/ops/1.15/librdkafka.so.1 +0 -0
  194. easy_rec/python/ops/1.15/libredis++.so.1 +0 -0
  195. easy_rec/python/ops/1.15/libstr_avx_op.so +0 -0
  196. easy_rec/python/ops/2.12/libcustom_ops.so +0 -0
  197. easy_rec/python/ops/2.12/libload_embed.so +0 -0
  198. easy_rec/python/ops/2.12/libstr_avx_op.so +0 -0
  199. easy_rec/python/ops/__init__.py +0 -0
  200. easy_rec/python/ops/gen_kafka_ops.py +193 -0
  201. easy_rec/python/ops/gen_str_avx_op.py +28 -0
  202. easy_rec/python/ops/incr_record.py +30 -0
  203. easy_rec/python/predict.py +170 -0
  204. easy_rec/python/protos/__init__.py +0 -0
  205. easy_rec/python/protos/autoint_pb2.py +122 -0
  206. easy_rec/python/protos/backbone_pb2.py +1416 -0
  207. easy_rec/python/protos/cmbf_pb2.py +435 -0
  208. easy_rec/python/protos/collaborative_metric_learning_pb2.py +252 -0
  209. easy_rec/python/protos/custom_model_pb2.py +57 -0
  210. easy_rec/python/protos/dat_pb2.py +262 -0
  211. easy_rec/python/protos/data_source_pb2.py +422 -0
  212. easy_rec/python/protos/dataset_pb2.py +1920 -0
  213. easy_rec/python/protos/dbmtl_pb2.py +191 -0
  214. easy_rec/python/protos/dcn_pb2.py +197 -0
  215. easy_rec/python/protos/deepfm_pb2.py +163 -0
  216. easy_rec/python/protos/dlrm_pb2.py +163 -0
  217. easy_rec/python/protos/dnn_pb2.py +329 -0
  218. easy_rec/python/protos/dropoutnet_pb2.py +239 -0
  219. easy_rec/python/protos/dssm_pb2.py +262 -0
  220. easy_rec/python/protos/dssm_senet_pb2.py +282 -0
  221. easy_rec/python/protos/easy_rec_model_pb2.py +1672 -0
  222. easy_rec/python/protos/esmm_pb2.py +133 -0
  223. easy_rec/python/protos/eval_pb2.py +930 -0
  224. easy_rec/python/protos/export_pb2.py +379 -0
  225. easy_rec/python/protos/feature_config_pb2.py +1359 -0
  226. easy_rec/python/protos/fm_pb2.py +90 -0
  227. easy_rec/python/protos/hive_config_pb2.py +138 -0
  228. easy_rec/python/protos/hyperparams_pb2.py +624 -0
  229. easy_rec/python/protos/keras_layer_pb2.py +692 -0
  230. easy_rec/python/protos/layer_pb2.py +1936 -0
  231. easy_rec/python/protos/loss_pb2.py +1713 -0
  232. easy_rec/python/protos/mind_pb2.py +497 -0
  233. easy_rec/python/protos/mmoe_pb2.py +215 -0
  234. easy_rec/python/protos/multi_tower_pb2.py +295 -0
  235. easy_rec/python/protos/multi_tower_recall_pb2.py +198 -0
  236. easy_rec/python/protos/optimizer_pb2.py +2017 -0
  237. easy_rec/python/protos/pdn_pb2.py +293 -0
  238. easy_rec/python/protos/pipeline_pb2.py +516 -0
  239. easy_rec/python/protos/ple_pb2.py +231 -0
  240. easy_rec/python/protos/predict_pb2.py +1140 -0
  241. easy_rec/python/protos/rocket_launching_pb2.py +169 -0
  242. easy_rec/python/protos/seq_encoder_pb2.py +1084 -0
  243. easy_rec/python/protos/simi_pb2.py +54 -0
  244. easy_rec/python/protos/simple_multi_task_pb2.py +97 -0
  245. easy_rec/python/protos/tf_predict_pb2.py +630 -0
  246. easy_rec/python/protos/tower_pb2.py +661 -0
  247. easy_rec/python/protos/train_pb2.py +1197 -0
  248. easy_rec/python/protos/uniter_pb2.py +307 -0
  249. easy_rec/python/protos/variational_dropout_pb2.py +91 -0
  250. easy_rec/python/protos/wide_and_deep_pb2.py +131 -0
  251. easy_rec/python/test/__init__.py +0 -0
  252. easy_rec/python/test/csv_input_test.py +340 -0
  253. easy_rec/python/test/custom_early_stop_func.py +19 -0
  254. easy_rec/python/test/dh_local_run.py +104 -0
  255. easy_rec/python/test/embed_test.py +155 -0
  256. easy_rec/python/test/emr_run.py +119 -0
  257. easy_rec/python/test/eval_metric_test.py +107 -0
  258. easy_rec/python/test/excel_convert_test.py +64 -0
  259. easy_rec/python/test/export_test.py +513 -0
  260. easy_rec/python/test/fg_test.py +70 -0
  261. easy_rec/python/test/hive_input_test.py +311 -0
  262. easy_rec/python/test/hpo_test.py +235 -0
  263. easy_rec/python/test/kafka_test.py +373 -0
  264. easy_rec/python/test/local_incr_test.py +122 -0
  265. easy_rec/python/test/loss_test.py +110 -0
  266. easy_rec/python/test/odps_command.py +61 -0
  267. easy_rec/python/test/odps_local_run.py +86 -0
  268. easy_rec/python/test/odps_run.py +254 -0
  269. easy_rec/python/test/odps_test_cls.py +39 -0
  270. easy_rec/python/test/odps_test_prepare.py +198 -0
  271. easy_rec/python/test/odps_test_util.py +237 -0
  272. easy_rec/python/test/pre_check_test.py +54 -0
  273. easy_rec/python/test/predictor_test.py +394 -0
  274. easy_rec/python/test/rtp_convert_test.py +133 -0
  275. easy_rec/python/test/run.py +138 -0
  276. easy_rec/python/test/train_eval_test.py +1299 -0
  277. easy_rec/python/test/util_test.py +85 -0
  278. easy_rec/python/test/zero_inflated_lognormal_test.py +53 -0
  279. easy_rec/python/tools/__init__.py +0 -0
  280. easy_rec/python/tools/add_boundaries_to_config.py +67 -0
  281. easy_rec/python/tools/add_feature_info_to_config.py +145 -0
  282. easy_rec/python/tools/convert_config_format.py +48 -0
  283. easy_rec/python/tools/convert_rtp_data.py +79 -0
  284. easy_rec/python/tools/convert_rtp_fg.py +106 -0
  285. easy_rec/python/tools/create_config_from_excel.py +427 -0
  286. easy_rec/python/tools/criteo/__init__.py +0 -0
  287. easy_rec/python/tools/criteo/convert_data.py +157 -0
  288. easy_rec/python/tools/edit_lookup_graph.py +134 -0
  289. easy_rec/python/tools/faiss_index_pai.py +116 -0
  290. easy_rec/python/tools/feature_selection.py +316 -0
  291. easy_rec/python/tools/hit_rate_ds.py +223 -0
  292. easy_rec/python/tools/hit_rate_pai.py +138 -0
  293. easy_rec/python/tools/pre_check.py +120 -0
  294. easy_rec/python/tools/predict_and_chk.py +111 -0
  295. easy_rec/python/tools/read_kafka.py +55 -0
  296. easy_rec/python/tools/split_model_pai.py +286 -0
  297. easy_rec/python/tools/split_pdn_model_pai.py +272 -0
  298. easy_rec/python/tools/test_saved_model.py +80 -0
  299. easy_rec/python/tools/view_saved_model.py +39 -0
  300. easy_rec/python/tools/write_kafka.py +65 -0
  301. easy_rec/python/train_eval.py +325 -0
  302. easy_rec/python/utils/__init__.py +15 -0
  303. easy_rec/python/utils/activation.py +120 -0
  304. easy_rec/python/utils/check_utils.py +87 -0
  305. easy_rec/python/utils/compat.py +14 -0
  306. easy_rec/python/utils/config_util.py +652 -0
  307. easy_rec/python/utils/constant.py +43 -0
  308. easy_rec/python/utils/convert_rtp_fg.py +616 -0
  309. easy_rec/python/utils/dag.py +192 -0
  310. easy_rec/python/utils/distribution_utils.py +268 -0
  311. easy_rec/python/utils/ds_util.py +65 -0
  312. easy_rec/python/utils/embedding_utils.py +73 -0
  313. easy_rec/python/utils/estimator_utils.py +1036 -0
  314. easy_rec/python/utils/export_big_model.py +630 -0
  315. easy_rec/python/utils/expr_util.py +118 -0
  316. easy_rec/python/utils/fg_util.py +53 -0
  317. easy_rec/python/utils/hit_rate_utils.py +220 -0
  318. easy_rec/python/utils/hive_utils.py +183 -0
  319. easy_rec/python/utils/hpo_util.py +137 -0
  320. easy_rec/python/utils/hvd_utils.py +56 -0
  321. easy_rec/python/utils/input_utils.py +108 -0
  322. easy_rec/python/utils/io_util.py +282 -0
  323. easy_rec/python/utils/load_class.py +249 -0
  324. easy_rec/python/utils/meta_graph_editor.py +941 -0
  325. easy_rec/python/utils/multi_optimizer.py +62 -0
  326. easy_rec/python/utils/numpy_utils.py +18 -0
  327. easy_rec/python/utils/odps_util.py +79 -0
  328. easy_rec/python/utils/pai_util.py +86 -0
  329. easy_rec/python/utils/proto_util.py +90 -0
  330. easy_rec/python/utils/restore_filter.py +89 -0
  331. easy_rec/python/utils/shape_utils.py +432 -0
  332. easy_rec/python/utils/static_shape.py +71 -0
  333. easy_rec/python/utils/test_utils.py +866 -0
  334. easy_rec/python/utils/tf_utils.py +56 -0
  335. easy_rec/version.py +4 -0
  336. test/__init__.py +0 -0
@@ -0,0 +1,445 @@
1
+ # -*- encoding:utf-8 -*-
2
+ # Copyright (c) Alibaba, Inc. and its affiliates.
3
+ import logging
4
+
5
+ import tensorflow as tf
6
+
7
+ from easy_rec.python.compat import regularizers
8
+ from easy_rec.python.layers import dnn
9
+ from easy_rec.python.layers.capsule_layer import CapsuleLayer
10
+ from easy_rec.python.model.match_model import MatchModel
11
+ from easy_rec.python.protos.loss_pb2 import LossType
12
+ from easy_rec.python.protos.mind_pb2 import MIND as MINDConfig
13
+ from easy_rec.python.protos.simi_pb2 import Similarity
14
+ from easy_rec.python.utils.proto_util import copy_obj
15
+
16
+ if tf.__version__ >= '2.0':
17
+ tf = tf.compat.v1
18
+ losses = tf.losses
19
+
20
+
21
+ class MIND(MatchModel):
22
+
23
+ def __init__(self,
24
+ model_config,
25
+ feature_configs,
26
+ features,
27
+ labels=None,
28
+ is_training=False):
29
+ super(MIND, self).__init__(model_config, feature_configs, features, labels,
30
+ is_training)
31
+ assert self._model_config.WhichOneof('model') == 'mind', \
32
+ 'invalid model config: %s' % self._model_config.WhichOneof('model')
33
+ self._model_config = self._model_config.mind
34
+
35
+ self._hist_seq_features, _, _ = self._input_layer(
36
+ self._feature_dict, 'hist', is_combine=False)
37
+ self._user_features, _ = self._input_layer(self._feature_dict, 'user')
38
+ self._item_features, _ = self._input_layer(self._feature_dict, 'item')
39
+
40
+ # copy_obj so that any modification will not affect original config
41
+ self.user_dnn = copy_obj(self._model_config.user_dnn)
42
+ # copy_obj so that any modification will not affect original config
43
+ self.item_dnn = copy_obj(self._model_config.item_dnn)
44
+ # copy obj so that any modification will not affect original config
45
+ self.concat_dnn = copy_obj(self._model_config.concat_dnn)
46
+
47
+ self._l2_reg = regularizers.l2_regularizer(
48
+ self._model_config.l2_regularization)
49
+
50
+ def build_predict_graph(self):
51
+ capsule_layer = CapsuleLayer(self._model_config.capsule_config,
52
+ self._is_training)
53
+
54
+ if self._model_config.time_id_fea:
55
+ time_id_fea = [
56
+ x[0]
57
+ for x in self._hist_seq_features
58
+ if self._model_config.time_id_fea in x[0].name
59
+ ]
60
+ logging.info('time_id_fea is set(%s), find num: %d' %
61
+ (self._model_config.time_id_fea, len(time_id_fea)))
62
+ else:
63
+ time_id_fea = []
64
+ time_id_fea = time_id_fea[0] if len(time_id_fea) > 0 else None
65
+
66
+ if time_id_fea is not None:
67
+ hist_seq_feas = [
68
+ x[0]
69
+ for x in self._hist_seq_features
70
+ if self._model_config.time_id_fea not in x[0].name
71
+ ]
72
+ else:
73
+ hist_seq_feas = [x[0] for x in self._hist_seq_features]
74
+
75
+ # it is assumed that all hist have the same length
76
+ hist_seq_len = self._hist_seq_features[0][1]
77
+
78
+ if self._model_config.user_seq_combine == MINDConfig.SUM:
79
+ # sum pooling over the features
80
+ hist_embed_dims = [x.get_shape()[-1] for x in hist_seq_feas]
81
+ for i in range(1, len(hist_embed_dims)):
82
+ assert hist_embed_dims[i] == hist_embed_dims[0], \
83
+ 'all hist seq must have the same embedding shape, but: %s' \
84
+ % str(hist_embed_dims)
85
+ hist_seq_feas = tf.add_n(hist_seq_feas) / len(hist_seq_feas)
86
+ else:
87
+ hist_seq_feas = tf.concat(hist_seq_feas, axis=2)
88
+
89
+ if self._model_config.HasField('pre_capsule_dnn') and \
90
+ len(self._model_config.pre_capsule_dnn.hidden_units) > 0:
91
+ pre_dnn_layer = dnn.DNN(self._model_config.pre_capsule_dnn, self._l2_reg,
92
+ 'pre_capsule_dnn', self._is_training)
93
+ hist_seq_feas = pre_dnn_layer(hist_seq_feas)
94
+
95
+ if time_id_fea is not None:
96
+ assert time_id_fea.get_shape(
97
+ )[-1] == 1, 'time_id must have only embedding_size of 1'
98
+ time_id_mask = tf.sequence_mask(hist_seq_len, tf.shape(time_id_fea)[1])
99
+ time_id_mask = (tf.cast(time_id_mask, tf.float32) * 2 - 1) * 1e32
100
+ time_id_fea = tf.minimum(time_id_fea, time_id_mask[:, :, None])
101
+ hist_seq_feas = hist_seq_feas * tf.nn.softmax(time_id_fea, axis=1)
102
+
103
+ tf.summary.histogram('hist_seq_len', hist_seq_len)
104
+
105
+ # batch_size x max_k x high_capsule_dim
106
+ high_capsules, num_high_capsules = capsule_layer(hist_seq_feas,
107
+ hist_seq_len)
108
+
109
+ tf.summary.histogram('num_high_capsules', num_high_capsules)
110
+
111
+ # high_capsules = tf.layers.batch_normalization(
112
+ # high_capsules, training=self._is_training,
113
+ # trainable=True, name='capsule_bn')
114
+ # high_capsules = high_capsules * 0.1
115
+
116
+ tf.summary.scalar('high_capsules_norm',
117
+ tf.reduce_mean(tf.norm(high_capsules, axis=-1)))
118
+ tf.summary.scalar('num_high_capsules',
119
+ tf.reduce_mean(tf.to_float(num_high_capsules)))
120
+
121
+ user_features = tf.layers.batch_normalization(
122
+ self._user_features,
123
+ training=self._is_training,
124
+ trainable=True,
125
+ name='user_fea_bn')
126
+ user_dnn = dnn.DNN(self.user_dnn, self._l2_reg, 'user_dnn',
127
+ self._is_training)
128
+ user_features = user_dnn(user_features)
129
+
130
+ tf.summary.scalar('user_features_norm',
131
+ tf.reduce_mean(tf.norm(self._user_features, axis=-1)))
132
+
133
+ # concatenate with user features
134
+ user_features_tile = tf.tile(user_features[:, None, :],
135
+ [1, tf.shape(high_capsules)[1], 1])
136
+ user_interests = tf.concat([high_capsules, user_features_tile], axis=2)
137
+
138
+ num_concat_dnn_layer = len(self.concat_dnn.hidden_units)
139
+ last_hidden = self.concat_dnn.hidden_units.pop()
140
+ concat_dnn = dnn.DNN(self.concat_dnn, self._l2_reg, 'concat_dnn',
141
+ self._is_training)
142
+ user_interests = concat_dnn(user_interests)
143
+ user_interests = tf.layers.dense(
144
+ inputs=user_interests,
145
+ units=last_hidden,
146
+ kernel_regularizer=self._l2_reg,
147
+ name='concat_dnn/dnn_%d' % (num_concat_dnn_layer - 1))
148
+
149
+ num_item_dnn_layer = len(self.item_dnn.hidden_units)
150
+ last_item_hidden = self.item_dnn.hidden_units.pop()
151
+ item_dnn = dnn.DNN(self.item_dnn, self._l2_reg, 'item_dnn',
152
+ self._is_training)
153
+ item_tower_emb = item_dnn(self._item_features)
154
+ item_tower_emb = tf.layers.dense(
155
+ inputs=item_tower_emb,
156
+ units=last_item_hidden,
157
+ kernel_regularizer=self._l2_reg,
158
+ name='item_dnn/dnn_%d' % (num_item_dnn_layer - 1))
159
+
160
+ assert self._model_config.simi_func in [
161
+ Similarity.COSINE, Similarity.INNER_PRODUCT
162
+ ]
163
+
164
+ if self._model_config.simi_func == Similarity.COSINE:
165
+ item_tower_emb = self.norm(item_tower_emb)
166
+ user_interests = self.norm(user_interests)
167
+
168
+ # label guided attention
169
+ # attention item features on high capsules vector
170
+ batch_size = tf.shape(user_interests)[0]
171
+ pos_item_fea = item_tower_emb[:batch_size]
172
+ simi = tf.einsum('bhe,be->bh', user_interests, pos_item_fea)
173
+ tf.summary.histogram('interest_item_simi/pre_scale',
174
+ tf.reduce_max(simi, axis=1))
175
+ # simi = tf.Print(simi, [tf.reduce_max(simi, axis=1), tf.reduce_min(simi, axis=1)], message='simi_max_0')
176
+ # simi = tf.pow(simi, self._model_config.simi_pow)
177
+ simi = simi * self._model_config.simi_pow
178
+ tf.summary.histogram('interest_item_simi/scaled',
179
+ tf.reduce_max(simi, axis=1))
180
+ # simi = tf.Print(simi, [tf.reduce_max(simi, axis=1), tf.reduce_min(simi, axis=1)], message='simi_max')
181
+ simi_mask = tf.sequence_mask(num_high_capsules,
182
+ self._model_config.capsule_config.max_k)
183
+
184
+ user_interests = user_interests * tf.to_float(simi_mask[:, :, None])
185
+ self._prediction_dict['user_interests'] = user_interests
186
+
187
+ max_thresh = (tf.cast(simi_mask, tf.float32) * 2 - 1) * 1e32
188
+ simi = tf.minimum(simi, max_thresh)
189
+ simi = tf.nn.softmax(simi, axis=1)
190
+ tf.summary.histogram('interest_item_simi/softmax',
191
+ tf.reduce_max(simi, axis=1))
192
+
193
+ if self._model_config.simi_pow >= 100:
194
+ logging.info(
195
+ 'simi_pow=%d, will change to argmax, only use the most similar interests for calculate loss.'
196
+ % self._model_config.simi_pow)
197
+ simi_max_id = tf.argmax(simi, axis=1)
198
+ simi = tf.one_hot(simi_max_id, tf.shape(simi)[1], dtype=tf.float32)
199
+
200
+ user_tower_emb = tf.einsum('bhe,bh->be', user_interests, simi)
201
+
202
+ # calculate similarity between user_tower_emb and item_tower_emb
203
+ user_item_sim = self.sim(user_tower_emb, item_tower_emb)
204
+ if self._model_config.scale_simi:
205
+ sim_w = tf.get_variable(
206
+ 'sim_w',
207
+ dtype=tf.float32,
208
+ shape=(1),
209
+ initializer=tf.ones_initializer())
210
+ sim_b = tf.get_variable(
211
+ 'sim_b',
212
+ dtype=tf.float32,
213
+ shape=(1),
214
+ initializer=tf.zeros_initializer())
215
+ y_pred = user_item_sim * tf.abs(sim_w) + sim_b
216
+ else:
217
+ y_pred = user_item_sim
218
+
219
+ if self._is_point_wise:
220
+ y_pred = tf.reshape(y_pred, [-1])
221
+
222
+ if self._loss_type == LossType.CLASSIFICATION:
223
+ self._prediction_dict['logits'] = y_pred
224
+ self._prediction_dict['probs'] = tf.nn.sigmoid(y_pred)
225
+ elif self._loss_type == LossType.SOFTMAX_CROSS_ENTROPY:
226
+ y_pred = self._mask_in_batch(y_pred)
227
+ self._prediction_dict['logits'] = y_pred
228
+ self._prediction_dict['probs'] = tf.nn.softmax(y_pred)
229
+ else:
230
+ self._prediction_dict['y'] = y_pred
231
+
232
+ self._prediction_dict['high_capsules'] = high_capsules
233
+ self._prediction_dict['user_interests'] = user_interests
234
+ self._prediction_dict['user_tower_emb'] = user_tower_emb
235
+ self._prediction_dict['item_tower_emb'] = item_tower_emb
236
+ self._prediction_dict['user_emb'] = tf.reduce_join(
237
+ tf.reduce_join(tf.as_string(user_interests), axis=-1, separator=','),
238
+ axis=-1,
239
+ separator='|')
240
+ self._prediction_dict['user_emb_num'] = num_high_capsules
241
+ self._prediction_dict['item_emb'] = tf.reduce_join(
242
+ tf.as_string(item_tower_emb), axis=-1, separator=',')
243
+
244
+ if self._labels is not None:
245
+ # for summary purpose
246
+ batch_simi, batch_capsule_simi = self._build_interest_simi()
247
+ # self._prediction_dict['probs'] = tf.Print(self._prediction_dict['probs'],
248
+ # [batch_simi, batch_capsule_simi], message='batch_simi')
249
+ self._prediction_dict['interests_simi'] = batch_simi
250
+ return self._prediction_dict
251
+
252
+ def build_loss_graph(self):
253
+ loss_dict = super(MIND, self).build_loss_graph()
254
+ if self._model_config.max_interests_simi < 1.0:
255
+ loss_dict['reg_interest_simi'] = tf.nn.relu(
256
+ self._prediction_dict['interests_simi'] -
257
+ self._model_config.max_interests_simi)
258
+ return loss_dict
259
+
260
+ def _build_interest_simi(self):
261
+ user_emb_num = self._prediction_dict['user_emb_num']
262
+ high_capsule_mask = tf.sequence_mask(
263
+ user_emb_num, self._model_config.capsule_config.max_k)
264
+
265
+ user_interests = self._prediction_dict['user_interests']
266
+ high_capsule_mask = tf.to_float(high_capsule_mask[:, :, None])
267
+ user_interests = self.norm(user_interests) * high_capsule_mask
268
+
269
+ user_feature_sum_sqr = tf.square(tf.reduce_sum(user_interests, axis=1))
270
+ user_feature_sqr_sum = tf.reduce_sum(tf.square(user_interests), axis=1)
271
+ interest_simi = user_feature_sum_sqr - user_feature_sqr_sum
272
+
273
+ high_capsules = self._prediction_dict['high_capsules']
274
+ high_capsules = self.norm(high_capsules) * high_capsule_mask
275
+ high_capsule_sum_sqr = tf.square(tf.reduce_sum(high_capsules, axis=1))
276
+ high_capsule_sqr_sum = tf.reduce_sum(tf.square(high_capsules), axis=1)
277
+ high_capsule_simi = high_capsule_sum_sqr - high_capsule_sqr_sum
278
+
279
+ # normalize by interest number
280
+ interest_div = tf.maximum(
281
+ tf.to_float(user_emb_num * (user_emb_num - 1)), 1.0)
282
+ interest_simi = tf.reduce_sum(interest_simi, axis=1) / interest_div
283
+
284
+ high_capsule_simi = tf.reduce_sum(high_capsule_simi, axis=1) / interest_div
285
+
286
+ # normalize by batch_size
287
+ multi_interest = tf.to_float(user_emb_num > 1)
288
+ sum_interest_simi = tf.reduce_sum(
289
+ (interest_simi + 1) * multi_interest) / 2.0
290
+ sum_div = tf.maximum(tf.reduce_sum(multi_interest), 1.0)
291
+ avg_interest_simi = sum_interest_simi / sum_div
292
+
293
+ sum_capsule_simi = tf.reduce_sum(
294
+ (high_capsule_simi + 1) * multi_interest) / 2.0
295
+ avg_capsule_simi = sum_capsule_simi / sum_div
296
+
297
+ tf.summary.scalar('interest_similarity', avg_interest_simi)
298
+ tf.summary.scalar('capsule_similarity', avg_capsule_simi)
299
+ return avg_interest_simi, avg_capsule_simi
300
+
301
+ def build_metric_graph(self, eval_config):
302
+ from easy_rec.python.core.easyrec_metrics import metrics_tf as metrics
303
+ # build interest metric
304
+ interest_simi, capsule_simi = self._build_interest_simi()
305
+ metric_dict = {
306
+ 'interest_similarity': metrics.mean(interest_simi),
307
+ 'capsule_similarity': metrics.mean(capsule_simi)
308
+ }
309
+ if self._is_point_wise:
310
+ metric_dict.update(self._build_point_wise_metric_graph(eval_config))
311
+ return metric_dict
312
+
313
+ recall_at_topks = []
314
+ for metric in eval_config.metrics_set:
315
+ if metric.WhichOneof('metric') == 'recall_at_topk':
316
+ assert self._loss_type in [
317
+ LossType.CLASSIFICATION, LossType.SOFTMAX_CROSS_ENTROPY
318
+ ]
319
+ if metric.recall_at_topk.topk not in recall_at_topks:
320
+ recall_at_topks.append(metric.recall_at_topk.topk)
321
+
322
+ # compute interest recall
323
+ # [batch_size, num_interests, embed_dim]
324
+ user_interests = self._prediction_dict['user_interests']
325
+ # [?, embed_dim]
326
+ item_tower_emb = self._prediction_dict['item_tower_emb']
327
+ batch_size = tf.shape(user_interests)[0]
328
+ # [?, 2] first dimension is the sample_id in batch
329
+ # second dimension is the neg_id with respect to the sample
330
+ hard_neg_indices = self._feature_dict.get('hard_neg_indices', None)
331
+
332
+ if hard_neg_indices is not None:
333
+ logging.info('With hard negative examples')
334
+ noclk_size = tf.shape(hard_neg_indices)[0]
335
+ simple_item_emb, hard_neg_item_emb = tf.split(
336
+ item_tower_emb, [-1, noclk_size], axis=0)
337
+ else:
338
+ simple_item_emb = item_tower_emb
339
+ hard_neg_item_emb = None
340
+
341
+ # batch_size num_interest sample_neg_num
342
+ simple_item_sim = tf.einsum('bhe,ne->bhn', user_interests, simple_item_emb)
343
+ # batch_size sample_neg_num
344
+ simple_item_sim = tf.reduce_max(simple_item_sim, axis=1)
345
+ simple_lbls = tf.cast(tf.range(tf.shape(user_interests)[0]), tf.int64)
346
+
347
+ # labels = tf.zeros_like(logits[:, :1], dtype=tf.int64)
348
+ pos_indices = tf.range(batch_size)
349
+ pos_indices = tf.concat([pos_indices[:, None], pos_indices[:, None]],
350
+ axis=1)
351
+ pos_item_sim = tf.gather_nd(simple_item_sim[:batch_size, :batch_size],
352
+ pos_indices)
353
+
354
+ simple_item_sim_v2 = tf.concat(
355
+ [pos_item_sim[:, None], simple_item_sim[:, batch_size:]], axis=1)
356
+ simple_lbls_v2 = tf.zeros_like(simple_item_sim_v2[:, :1], dtype=tf.int64)
357
+
358
+ for topk in recall_at_topks:
359
+ metric_dict['interests_recall@%d' % topk] = metrics.recall_at_k(
360
+ labels=simple_lbls,
361
+ predictions=simple_item_sim,
362
+ k=topk,
363
+ name='interests_recall_at_%d' % topk)
364
+ metric_dict['interests_neg_sam_recall@%d' % topk] = metrics.recall_at_k(
365
+ labels=simple_lbls_v2,
366
+ predictions=simple_item_sim_v2,
367
+ k=topk,
368
+ name='interests_recall_neg_sam_at_%d' % topk)
369
+
370
+ logits = self._prediction_dict['logits']
371
+ pos_item_logits = tf.gather_nd(logits[:batch_size, :batch_size],
372
+ pos_indices)
373
+ logits_v2 = tf.concat([pos_item_logits[:, None], logits[:, batch_size:]],
374
+ axis=1)
375
+ labels_v2 = tf.zeros_like(logits_v2[:, :1], dtype=tf.int64)
376
+
377
+ for topk in recall_at_topks:
378
+ metric_dict['recall@%d' % topk] = metrics.recall_at_k(
379
+ labels=simple_lbls,
380
+ predictions=logits,
381
+ k=topk,
382
+ name='recall_at_%d' % topk)
383
+ metric_dict['recall_neg_sam@%d' % topk] = metrics.recall_at_k(
384
+ labels=labels_v2,
385
+ predictions=logits_v2,
386
+ k=topk,
387
+ name='recall_neg_sam_at_%d' % topk)
388
+ eval_logits = logits[:, :batch_size]
389
+ eval_logits = tf.cond(
390
+ batch_size < topk, lambda: tf.pad(
391
+ eval_logits, [[0, 0], [0, topk - batch_size]],
392
+ mode='CONSTANT',
393
+ constant_values=-1e32,
394
+ name='pad_eval_logits'), lambda: eval_logits)
395
+ metric_dict['recall_in_batch@%d' % topk] = metrics.recall_at_k(
396
+ labels=simple_lbls,
397
+ predictions=eval_logits,
398
+ k=topk,
399
+ name='recall_in_batch_at_%d' % topk)
400
+
401
+ # batch_size num_interest
402
+ if hard_neg_indices is not None:
403
+ hard_neg_user_emb = tf.gather(user_interests, hard_neg_indices[:, 0])
404
+ hard_neg_sim = tf.einsum('nhe,ne->nh', hard_neg_user_emb,
405
+ hard_neg_item_emb)
406
+ hard_neg_sim = tf.reduce_max(hard_neg_sim, axis=1)
407
+ max_num_neg = tf.reduce_max(hard_neg_indices[:, 1]) + 1
408
+ hard_neg_shape = tf.stack([tf.to_int64(batch_size), max_num_neg])
409
+ hard_neg_mask = tf.scatter_nd(
410
+ hard_neg_indices,
411
+ tf.ones_like(hard_neg_sim, dtype=tf.float32),
412
+ shape=hard_neg_shape)
413
+ hard_neg_sim = tf.scatter_nd(hard_neg_indices, hard_neg_sim,
414
+ hard_neg_shape)
415
+ hard_neg_sim = hard_neg_sim - (1 - hard_neg_mask) * 1e32
416
+
417
+ hard_logits = tf.concat([pos_item_logits[:, None], hard_neg_sim], axis=1)
418
+ hard_lbls = tf.zeros_like(hard_logits[:, :1], dtype=tf.int64)
419
+ metric_dict['hard_neg_acc'] = metrics.accuracy(
420
+ hard_lbls, tf.argmax(hard_logits, axis=1))
421
+
422
+ return metric_dict
423
+
424
+ def get_outputs(self):
425
+ if self._loss_type == LossType.CLASSIFICATION:
426
+ return [
427
+ 'logits', 'probs', 'user_emb', 'item_emb', 'user_emb_num',
428
+ 'user_interests', 'item_tower_emb'
429
+ ]
430
+ elif self._loss_type == LossType.SOFTMAX_CROSS_ENTROPY:
431
+ self._prediction_dict['logits'] = tf.squeeze(
432
+ self._prediction_dict['logits'], axis=-1)
433
+ self._prediction_dict['probs'] = tf.nn.sigmoid(
434
+ self._prediction_dict['logits'])
435
+ return [
436
+ 'logits', 'probs', 'user_emb', 'item_emb', 'user_emb_num',
437
+ 'user_interests', 'item_tower_emb'
438
+ ]
439
+ elif self._loss_type == LossType.L2_LOSS:
440
+ return [
441
+ 'y', 'user_emb', 'item_emb', 'user_emb_num', 'user_interests',
442
+ 'item_tower_emb'
443
+ ]
444
+ else:
445
+ raise ValueError('invalid loss type: %s' % str(self._loss_type))
@@ -0,0 +1,70 @@
1
+ # -*- encoding:utf-8 -*-
2
+ # Copyright (c) Alibaba, Inc. and its affiliates.
3
+ import tensorflow as tf
4
+
5
+ from easy_rec.python.layers import dnn
6
+ from easy_rec.python.layers import mmoe
7
+ from easy_rec.python.model.multi_task_model import MultiTaskModel
8
+ from easy_rec.python.protos.mmoe_pb2 import MMoE as MMoEConfig
9
+
10
+ if tf.__version__ >= '2.0':
11
+ tf = tf.compat.v1
12
+
13
+
14
+ class MMoE(MultiTaskModel):
15
+
16
+ def __init__(self,
17
+ model_config,
18
+ feature_configs,
19
+ features,
20
+ labels=None,
21
+ is_training=False):
22
+ super(MMoE, self).__init__(model_config, feature_configs, features, labels,
23
+ is_training)
24
+ assert self._model_config.WhichOneof('model') == 'mmoe', \
25
+ 'invalid model config: %s' % self._model_config.WhichOneof('model')
26
+ self._model_config = self._model_config.mmoe
27
+ assert isinstance(self._model_config, MMoEConfig)
28
+
29
+ if self.has_backbone:
30
+ self._features = self.backbone
31
+ else:
32
+ self._features, _ = self._input_layer(self._feature_dict, 'all')
33
+ self._init_towers(self._model_config.task_towers)
34
+
35
+ def build_predict_graph(self):
36
+ if self._model_config.HasField('expert_dnn'):
37
+ mmoe_layer = mmoe.MMOE(
38
+ self._model_config.expert_dnn,
39
+ l2_reg=self._l2_reg,
40
+ num_task=self._task_num,
41
+ num_expert=self._model_config.num_expert)
42
+ else:
43
+ # For backward compatibility with original mmoe layer config
44
+ mmoe_layer = mmoe.MMOE([x.dnn for x in self._model_config.experts],
45
+ l2_reg=self._l2_reg,
46
+ num_task=self._task_num)
47
+ task_input_list = mmoe_layer(self._features)
48
+
49
+ tower_outputs = {}
50
+ for i, task_tower_cfg in enumerate(self._model_config.task_towers):
51
+ tower_name = task_tower_cfg.tower_name
52
+
53
+ if task_tower_cfg.HasField('dnn'):
54
+ tower_dnn = dnn.DNN(
55
+ task_tower_cfg.dnn,
56
+ self._l2_reg,
57
+ name=tower_name,
58
+ is_training=self._is_training)
59
+ tower_output = tower_dnn(task_input_list[i])
60
+ else:
61
+ tower_output = task_input_list[i]
62
+ tower_output = tf.layers.dense(
63
+ inputs=tower_output,
64
+ units=task_tower_cfg.num_class,
65
+ kernel_regularizer=self._l2_reg,
66
+ name='dnn_output_%d' % i)
67
+
68
+ tower_outputs[tower_name] = tower_output
69
+ self._add_to_prediction_dict(tower_outputs)
70
+ return self._prediction_dict