easy-cs-rec-custommodel 0.8.6__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of easy-cs-rec-custommodel might be problematic. Click here for more details.
- easy_cs_rec_custommodel-0.8.6.dist-info/LICENSE +203 -0
- easy_cs_rec_custommodel-0.8.6.dist-info/METADATA +48 -0
- easy_cs_rec_custommodel-0.8.6.dist-info/RECORD +336 -0
- easy_cs_rec_custommodel-0.8.6.dist-info/WHEEL +6 -0
- easy_cs_rec_custommodel-0.8.6.dist-info/top_level.txt +2 -0
- easy_rec/__init__.py +114 -0
- easy_rec/python/__init__.py +0 -0
- easy_rec/python/builders/__init__.py +0 -0
- easy_rec/python/builders/hyperparams_builder.py +78 -0
- easy_rec/python/builders/loss_builder.py +333 -0
- easy_rec/python/builders/optimizer_builder.py +211 -0
- easy_rec/python/builders/strategy_builder.py +44 -0
- easy_rec/python/compat/__init__.py +0 -0
- easy_rec/python/compat/adam_s.py +245 -0
- easy_rec/python/compat/array_ops.py +229 -0
- easy_rec/python/compat/dynamic_variable.py +542 -0
- easy_rec/python/compat/early_stopping.py +653 -0
- easy_rec/python/compat/embedding_ops.py +162 -0
- easy_rec/python/compat/embedding_parallel_saver.py +316 -0
- easy_rec/python/compat/estimator_train.py +116 -0
- easy_rec/python/compat/exporter.py +473 -0
- easy_rec/python/compat/feature_column/__init__.py +0 -0
- easy_rec/python/compat/feature_column/feature_column.py +3675 -0
- easy_rec/python/compat/feature_column/feature_column_v2.py +5233 -0
- easy_rec/python/compat/feature_column/sequence_feature_column.py +648 -0
- easy_rec/python/compat/feature_column/utils.py +154 -0
- easy_rec/python/compat/layers.py +329 -0
- easy_rec/python/compat/ops.py +14 -0
- easy_rec/python/compat/optimizers.py +619 -0
- easy_rec/python/compat/queues.py +311 -0
- easy_rec/python/compat/regularizers.py +208 -0
- easy_rec/python/compat/sok_optimizer.py +440 -0
- easy_rec/python/compat/sync_replicas_optimizer.py +528 -0
- easy_rec/python/compat/weight_decay_optimizers.py +475 -0
- easy_rec/python/core/__init__.py +0 -0
- easy_rec/python/core/easyrec_metrics/__init__.py +24 -0
- easy_rec/python/core/easyrec_metrics/distribute_metrics_impl_pai.py +3702 -0
- easy_rec/python/core/easyrec_metrics/distribute_metrics_impl_tf.py +3768 -0
- easy_rec/python/core/learning_schedules.py +228 -0
- easy_rec/python/core/metrics.py +402 -0
- easy_rec/python/core/sampler.py +844 -0
- easy_rec/python/eval.py +102 -0
- easy_rec/python/export.py +150 -0
- easy_rec/python/feature_column/__init__.py +0 -0
- easy_rec/python/feature_column/feature_column.py +664 -0
- easy_rec/python/feature_column/feature_group.py +89 -0
- easy_rec/python/hpo/__init__.py +0 -0
- easy_rec/python/hpo/emr_hpo.py +140 -0
- easy_rec/python/hpo/generate_hpo_sql.py +71 -0
- easy_rec/python/hpo/pai_hpo.py +297 -0
- easy_rec/python/inference/__init__.py +0 -0
- easy_rec/python/inference/csv_predictor.py +189 -0
- easy_rec/python/inference/hive_parquet_predictor.py +200 -0
- easy_rec/python/inference/hive_predictor.py +166 -0
- easy_rec/python/inference/odps_predictor.py +70 -0
- easy_rec/python/inference/parquet_predictor.py +147 -0
- easy_rec/python/inference/parquet_predictor_v2.py +147 -0
- easy_rec/python/inference/predictor.py +621 -0
- easy_rec/python/inference/processor/__init__.py +0 -0
- easy_rec/python/inference/processor/test.py +170 -0
- easy_rec/python/inference/vector_retrieve.py +124 -0
- easy_rec/python/input/__init__.py +0 -0
- easy_rec/python/input/batch_tfrecord_input.py +117 -0
- easy_rec/python/input/criteo_binary_reader.py +259 -0
- easy_rec/python/input/criteo_input.py +107 -0
- easy_rec/python/input/csv_input.py +175 -0
- easy_rec/python/input/csv_input_ex.py +72 -0
- easy_rec/python/input/csv_input_v2.py +68 -0
- easy_rec/python/input/datahub_input.py +320 -0
- easy_rec/python/input/dummy_input.py +58 -0
- easy_rec/python/input/hive_input.py +123 -0
- easy_rec/python/input/hive_parquet_input.py +140 -0
- easy_rec/python/input/hive_rtp_input.py +174 -0
- easy_rec/python/input/input.py +1064 -0
- easy_rec/python/input/kafka_dataset.py +144 -0
- easy_rec/python/input/kafka_input.py +235 -0
- easy_rec/python/input/load_parquet.py +317 -0
- easy_rec/python/input/odps_input.py +101 -0
- easy_rec/python/input/odps_input_v2.py +110 -0
- easy_rec/python/input/odps_input_v3.py +132 -0
- easy_rec/python/input/odps_rtp_input.py +187 -0
- easy_rec/python/input/odps_rtp_input_v2.py +104 -0
- easy_rec/python/input/parquet_input.py +397 -0
- easy_rec/python/input/parquet_input_v2.py +180 -0
- easy_rec/python/input/parquet_input_v3.py +203 -0
- easy_rec/python/input/rtp_input.py +225 -0
- easy_rec/python/input/rtp_input_v2.py +145 -0
- easy_rec/python/input/tfrecord_input.py +100 -0
- easy_rec/python/layers/__init__.py +0 -0
- easy_rec/python/layers/backbone.py +571 -0
- easy_rec/python/layers/capsule_layer.py +176 -0
- easy_rec/python/layers/cmbf.py +390 -0
- easy_rec/python/layers/common_layers.py +192 -0
- easy_rec/python/layers/dnn.py +87 -0
- easy_rec/python/layers/embed_input_layer.py +25 -0
- easy_rec/python/layers/fm.py +26 -0
- easy_rec/python/layers/input_layer.py +396 -0
- easy_rec/python/layers/keras/__init__.py +34 -0
- easy_rec/python/layers/keras/activation.py +114 -0
- easy_rec/python/layers/keras/attention.py +267 -0
- easy_rec/python/layers/keras/auxiliary_loss.py +47 -0
- easy_rec/python/layers/keras/blocks.py +262 -0
- easy_rec/python/layers/keras/bst.py +119 -0
- easy_rec/python/layers/keras/custom_ops.py +250 -0
- easy_rec/python/layers/keras/data_augment.py +133 -0
- easy_rec/python/layers/keras/din.py +67 -0
- easy_rec/python/layers/keras/einsum_dense.py +598 -0
- easy_rec/python/layers/keras/embedding.py +81 -0
- easy_rec/python/layers/keras/fibinet.py +251 -0
- easy_rec/python/layers/keras/interaction.py +416 -0
- easy_rec/python/layers/keras/layer_norm.py +364 -0
- easy_rec/python/layers/keras/mask_net.py +166 -0
- easy_rec/python/layers/keras/multi_head_attention.py +717 -0
- easy_rec/python/layers/keras/multi_task.py +125 -0
- easy_rec/python/layers/keras/numerical_embedding.py +376 -0
- easy_rec/python/layers/keras/ppnet.py +194 -0
- easy_rec/python/layers/keras/transformer.py +192 -0
- easy_rec/python/layers/layer_norm.py +51 -0
- easy_rec/python/layers/mmoe.py +83 -0
- easy_rec/python/layers/multihead_attention.py +162 -0
- easy_rec/python/layers/multihead_cross_attention.py +749 -0
- easy_rec/python/layers/senet.py +73 -0
- easy_rec/python/layers/seq_input_layer.py +134 -0
- easy_rec/python/layers/sequence_feature_layer.py +249 -0
- easy_rec/python/layers/uniter.py +301 -0
- easy_rec/python/layers/utils.py +248 -0
- easy_rec/python/layers/variational_dropout_layer.py +130 -0
- easy_rec/python/loss/__init__.py +0 -0
- easy_rec/python/loss/circle_loss.py +82 -0
- easy_rec/python/loss/contrastive_loss.py +79 -0
- easy_rec/python/loss/f1_reweight_loss.py +38 -0
- easy_rec/python/loss/focal_loss.py +93 -0
- easy_rec/python/loss/jrc_loss.py +128 -0
- easy_rec/python/loss/listwise_loss.py +161 -0
- easy_rec/python/loss/multi_similarity.py +68 -0
- easy_rec/python/loss/pairwise_loss.py +307 -0
- easy_rec/python/loss/softmax_loss_with_negative_mining.py +110 -0
- easy_rec/python/loss/zero_inflated_lognormal.py +76 -0
- easy_rec/python/main.py +878 -0
- easy_rec/python/model/__init__.py +0 -0
- easy_rec/python/model/autoint.py +73 -0
- easy_rec/python/model/cmbf.py +47 -0
- easy_rec/python/model/collaborative_metric_learning.py +182 -0
- easy_rec/python/model/custom_model.py +323 -0
- easy_rec/python/model/dat.py +138 -0
- easy_rec/python/model/dbmtl.py +116 -0
- easy_rec/python/model/dcn.py +70 -0
- easy_rec/python/model/deepfm.py +106 -0
- easy_rec/python/model/dlrm.py +73 -0
- easy_rec/python/model/dropoutnet.py +207 -0
- easy_rec/python/model/dssm.py +154 -0
- easy_rec/python/model/dssm_senet.py +143 -0
- easy_rec/python/model/dummy_model.py +48 -0
- easy_rec/python/model/easy_rec_estimator.py +739 -0
- easy_rec/python/model/easy_rec_model.py +467 -0
- easy_rec/python/model/esmm.py +242 -0
- easy_rec/python/model/fm.py +63 -0
- easy_rec/python/model/match_model.py +357 -0
- easy_rec/python/model/mind.py +445 -0
- easy_rec/python/model/mmoe.py +70 -0
- easy_rec/python/model/multi_task_model.py +303 -0
- easy_rec/python/model/multi_tower.py +62 -0
- easy_rec/python/model/multi_tower_bst.py +190 -0
- easy_rec/python/model/multi_tower_din.py +130 -0
- easy_rec/python/model/multi_tower_recall.py +68 -0
- easy_rec/python/model/pdn.py +203 -0
- easy_rec/python/model/ple.py +120 -0
- easy_rec/python/model/rank_model.py +485 -0
- easy_rec/python/model/rocket_launching.py +203 -0
- easy_rec/python/model/simple_multi_task.py +54 -0
- easy_rec/python/model/uniter.py +46 -0
- easy_rec/python/model/wide_and_deep.py +121 -0
- easy_rec/python/ops/1.12/incr_record.so +0 -0
- easy_rec/python/ops/1.12/kafka.so +0 -0
- easy_rec/python/ops/1.12/libcustom_ops.so +0 -0
- easy_rec/python/ops/1.12/libembed_op.so +0 -0
- easy_rec/python/ops/1.12/libhiredis.so.1.0.0 +0 -0
- easy_rec/python/ops/1.12/librdkafka++.so.1 +0 -0
- easy_rec/python/ops/1.12/librdkafka.so.1 +0 -0
- easy_rec/python/ops/1.12/libredis++.so +0 -0
- easy_rec/python/ops/1.12/libredis++.so.1 +0 -0
- easy_rec/python/ops/1.12/libredis++.so.1.2.3 +0 -0
- easy_rec/python/ops/1.12/libstr_avx_op.so +0 -0
- easy_rec/python/ops/1.12/libwrite_sparse_kv.so +0 -0
- easy_rec/python/ops/1.15/incr_record.so +0 -0
- easy_rec/python/ops/1.15/kafka.so +0 -0
- easy_rec/python/ops/1.15/libcustom_ops.so +0 -0
- easy_rec/python/ops/1.15/libembed_op.so +0 -0
- easy_rec/python/ops/1.15/libhiredis.so.1.0.0 +0 -0
- easy_rec/python/ops/1.15/librdkafka++.so +0 -0
- easy_rec/python/ops/1.15/librdkafka++.so.1 +0 -0
- easy_rec/python/ops/1.15/librdkafka.so +0 -0
- easy_rec/python/ops/1.15/librdkafka.so.1 +0 -0
- easy_rec/python/ops/1.15/libredis++.so.1 +0 -0
- easy_rec/python/ops/1.15/libstr_avx_op.so +0 -0
- easy_rec/python/ops/2.12/libcustom_ops.so +0 -0
- easy_rec/python/ops/2.12/libload_embed.so +0 -0
- easy_rec/python/ops/2.12/libstr_avx_op.so +0 -0
- easy_rec/python/ops/__init__.py +0 -0
- easy_rec/python/ops/gen_kafka_ops.py +193 -0
- easy_rec/python/ops/gen_str_avx_op.py +28 -0
- easy_rec/python/ops/incr_record.py +30 -0
- easy_rec/python/predict.py +170 -0
- easy_rec/python/protos/__init__.py +0 -0
- easy_rec/python/protos/autoint_pb2.py +122 -0
- easy_rec/python/protos/backbone_pb2.py +1416 -0
- easy_rec/python/protos/cmbf_pb2.py +435 -0
- easy_rec/python/protos/collaborative_metric_learning_pb2.py +252 -0
- easy_rec/python/protos/custom_model_pb2.py +57 -0
- easy_rec/python/protos/dat_pb2.py +262 -0
- easy_rec/python/protos/data_source_pb2.py +422 -0
- easy_rec/python/protos/dataset_pb2.py +1920 -0
- easy_rec/python/protos/dbmtl_pb2.py +191 -0
- easy_rec/python/protos/dcn_pb2.py +197 -0
- easy_rec/python/protos/deepfm_pb2.py +163 -0
- easy_rec/python/protos/dlrm_pb2.py +163 -0
- easy_rec/python/protos/dnn_pb2.py +329 -0
- easy_rec/python/protos/dropoutnet_pb2.py +239 -0
- easy_rec/python/protos/dssm_pb2.py +262 -0
- easy_rec/python/protos/dssm_senet_pb2.py +282 -0
- easy_rec/python/protos/easy_rec_model_pb2.py +1672 -0
- easy_rec/python/protos/esmm_pb2.py +133 -0
- easy_rec/python/protos/eval_pb2.py +930 -0
- easy_rec/python/protos/export_pb2.py +379 -0
- easy_rec/python/protos/feature_config_pb2.py +1359 -0
- easy_rec/python/protos/fm_pb2.py +90 -0
- easy_rec/python/protos/hive_config_pb2.py +138 -0
- easy_rec/python/protos/hyperparams_pb2.py +624 -0
- easy_rec/python/protos/keras_layer_pb2.py +692 -0
- easy_rec/python/protos/layer_pb2.py +1936 -0
- easy_rec/python/protos/loss_pb2.py +1713 -0
- easy_rec/python/protos/mind_pb2.py +497 -0
- easy_rec/python/protos/mmoe_pb2.py +215 -0
- easy_rec/python/protos/multi_tower_pb2.py +295 -0
- easy_rec/python/protos/multi_tower_recall_pb2.py +198 -0
- easy_rec/python/protos/optimizer_pb2.py +2017 -0
- easy_rec/python/protos/pdn_pb2.py +293 -0
- easy_rec/python/protos/pipeline_pb2.py +516 -0
- easy_rec/python/protos/ple_pb2.py +231 -0
- easy_rec/python/protos/predict_pb2.py +1140 -0
- easy_rec/python/protos/rocket_launching_pb2.py +169 -0
- easy_rec/python/protos/seq_encoder_pb2.py +1084 -0
- easy_rec/python/protos/simi_pb2.py +54 -0
- easy_rec/python/protos/simple_multi_task_pb2.py +97 -0
- easy_rec/python/protos/tf_predict_pb2.py +630 -0
- easy_rec/python/protos/tower_pb2.py +661 -0
- easy_rec/python/protos/train_pb2.py +1197 -0
- easy_rec/python/protos/uniter_pb2.py +307 -0
- easy_rec/python/protos/variational_dropout_pb2.py +91 -0
- easy_rec/python/protos/wide_and_deep_pb2.py +131 -0
- easy_rec/python/test/__init__.py +0 -0
- easy_rec/python/test/csv_input_test.py +340 -0
- easy_rec/python/test/custom_early_stop_func.py +19 -0
- easy_rec/python/test/dh_local_run.py +104 -0
- easy_rec/python/test/embed_test.py +155 -0
- easy_rec/python/test/emr_run.py +119 -0
- easy_rec/python/test/eval_metric_test.py +107 -0
- easy_rec/python/test/excel_convert_test.py +64 -0
- easy_rec/python/test/export_test.py +513 -0
- easy_rec/python/test/fg_test.py +70 -0
- easy_rec/python/test/hive_input_test.py +311 -0
- easy_rec/python/test/hpo_test.py +235 -0
- easy_rec/python/test/kafka_test.py +373 -0
- easy_rec/python/test/local_incr_test.py +122 -0
- easy_rec/python/test/loss_test.py +110 -0
- easy_rec/python/test/odps_command.py +61 -0
- easy_rec/python/test/odps_local_run.py +86 -0
- easy_rec/python/test/odps_run.py +254 -0
- easy_rec/python/test/odps_test_cls.py +39 -0
- easy_rec/python/test/odps_test_prepare.py +198 -0
- easy_rec/python/test/odps_test_util.py +237 -0
- easy_rec/python/test/pre_check_test.py +54 -0
- easy_rec/python/test/predictor_test.py +394 -0
- easy_rec/python/test/rtp_convert_test.py +133 -0
- easy_rec/python/test/run.py +138 -0
- easy_rec/python/test/train_eval_test.py +1299 -0
- easy_rec/python/test/util_test.py +85 -0
- easy_rec/python/test/zero_inflated_lognormal_test.py +53 -0
- easy_rec/python/tools/__init__.py +0 -0
- easy_rec/python/tools/add_boundaries_to_config.py +67 -0
- easy_rec/python/tools/add_feature_info_to_config.py +145 -0
- easy_rec/python/tools/convert_config_format.py +48 -0
- easy_rec/python/tools/convert_rtp_data.py +79 -0
- easy_rec/python/tools/convert_rtp_fg.py +106 -0
- easy_rec/python/tools/create_config_from_excel.py +427 -0
- easy_rec/python/tools/criteo/__init__.py +0 -0
- easy_rec/python/tools/criteo/convert_data.py +157 -0
- easy_rec/python/tools/edit_lookup_graph.py +134 -0
- easy_rec/python/tools/faiss_index_pai.py +116 -0
- easy_rec/python/tools/feature_selection.py +316 -0
- easy_rec/python/tools/hit_rate_ds.py +223 -0
- easy_rec/python/tools/hit_rate_pai.py +138 -0
- easy_rec/python/tools/pre_check.py +120 -0
- easy_rec/python/tools/predict_and_chk.py +111 -0
- easy_rec/python/tools/read_kafka.py +55 -0
- easy_rec/python/tools/split_model_pai.py +286 -0
- easy_rec/python/tools/split_pdn_model_pai.py +272 -0
- easy_rec/python/tools/test_saved_model.py +80 -0
- easy_rec/python/tools/view_saved_model.py +39 -0
- easy_rec/python/tools/write_kafka.py +65 -0
- easy_rec/python/train_eval.py +325 -0
- easy_rec/python/utils/__init__.py +15 -0
- easy_rec/python/utils/activation.py +120 -0
- easy_rec/python/utils/check_utils.py +87 -0
- easy_rec/python/utils/compat.py +14 -0
- easy_rec/python/utils/config_util.py +652 -0
- easy_rec/python/utils/constant.py +43 -0
- easy_rec/python/utils/convert_rtp_fg.py +616 -0
- easy_rec/python/utils/dag.py +192 -0
- easy_rec/python/utils/distribution_utils.py +268 -0
- easy_rec/python/utils/ds_util.py +65 -0
- easy_rec/python/utils/embedding_utils.py +73 -0
- easy_rec/python/utils/estimator_utils.py +1036 -0
- easy_rec/python/utils/export_big_model.py +630 -0
- easy_rec/python/utils/expr_util.py +118 -0
- easy_rec/python/utils/fg_util.py +53 -0
- easy_rec/python/utils/hit_rate_utils.py +220 -0
- easy_rec/python/utils/hive_utils.py +183 -0
- easy_rec/python/utils/hpo_util.py +137 -0
- easy_rec/python/utils/hvd_utils.py +56 -0
- easy_rec/python/utils/input_utils.py +108 -0
- easy_rec/python/utils/io_util.py +282 -0
- easy_rec/python/utils/load_class.py +249 -0
- easy_rec/python/utils/meta_graph_editor.py +941 -0
- easy_rec/python/utils/multi_optimizer.py +62 -0
- easy_rec/python/utils/numpy_utils.py +18 -0
- easy_rec/python/utils/odps_util.py +79 -0
- easy_rec/python/utils/pai_util.py +86 -0
- easy_rec/python/utils/proto_util.py +90 -0
- easy_rec/python/utils/restore_filter.py +89 -0
- easy_rec/python/utils/shape_utils.py +432 -0
- easy_rec/python/utils/static_shape.py +71 -0
- easy_rec/python/utils/test_utils.py +866 -0
- easy_rec/python/utils/tf_utils.py +56 -0
- easy_rec/version.py +4 -0
- test/__init__.py +0 -0
|
@@ -0,0 +1,653 @@
|
|
|
1
|
+
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
"""Utilities for early stopping."""
|
|
16
|
+
|
|
17
|
+
import collections
|
|
18
|
+
import datetime
|
|
19
|
+
import logging
|
|
20
|
+
import operator
|
|
21
|
+
import os
|
|
22
|
+
import threading
|
|
23
|
+
import time
|
|
24
|
+
|
|
25
|
+
import tensorflow as tf
|
|
26
|
+
from distutils.version import LooseVersion
|
|
27
|
+
from tensorflow.python.framework import dtypes
|
|
28
|
+
from tensorflow.python.framework import ops
|
|
29
|
+
from tensorflow.python.ops import init_ops
|
|
30
|
+
from tensorflow.python.ops import state_ops
|
|
31
|
+
from tensorflow.python.ops import variable_scope
|
|
32
|
+
from tensorflow.python.platform import gfile
|
|
33
|
+
from tensorflow.python.platform import tf_logging
|
|
34
|
+
from tensorflow.python.summary import summary_iterator
|
|
35
|
+
from tensorflow.python.training import basic_session_run_hooks
|
|
36
|
+
from tensorflow.python.training import session_run_hook
|
|
37
|
+
from tensorflow.python.training import training_util
|
|
38
|
+
|
|
39
|
+
from easy_rec.python.utils.config_util import parse_time
|
|
40
|
+
from easy_rec.python.utils.load_class import load_by_path
|
|
41
|
+
|
|
42
|
+
if LooseVersion(tf.__version__) >= LooseVersion('2.12.0'):
|
|
43
|
+
from tensorflow_estimator.python.estimator.estimator_export import estimator_export
|
|
44
|
+
else:
|
|
45
|
+
from tensorflow.python.util.tf_export import estimator_export
|
|
46
|
+
|
|
47
|
+
_EVENT_FILE_GLOB_PATTERN = 'events.out.tfevents.*'
|
|
48
|
+
|
|
49
|
+
EARLY_STOP_SIG_SCOPE = 'signal_early_stopping'
|
|
50
|
+
EARLY_STOP_SIG_NAME = 'STOP'
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
def find_early_stop_var(var_list):
|
|
54
|
+
pattern = EARLY_STOP_SIG_SCOPE + '/' + EARLY_STOP_SIG_NAME
|
|
55
|
+
for var in var_list:
|
|
56
|
+
if pattern in var.name:
|
|
57
|
+
return var
|
|
58
|
+
return None
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
@estimator_export('estimator.experimental.make_early_stopping_hook')
|
|
62
|
+
def make_early_stopping_hook(estimator,
|
|
63
|
+
should_stop_fn,
|
|
64
|
+
run_every_secs=60,
|
|
65
|
+
run_every_steps=None):
|
|
66
|
+
"""Creates early-stopping hook.
|
|
67
|
+
|
|
68
|
+
Returns a `SessionRunHook` that stops training when `should_stop_fn` returns `True`. Usage example:
|
|
69
|
+
```python
|
|
70
|
+
estimator = ...
|
|
71
|
+
hook = early_stopping.make_early_stopping_hook(
|
|
72
|
+
estimator, should_stop_fn=make_stop_fn(...))
|
|
73
|
+
train_spec = tf.estimator.TrainSpec(..., hooks=[hook])
|
|
74
|
+
tf.estimator.train_and_evaluate(estimator, train_spec, ...)
|
|
75
|
+
```
|
|
76
|
+
|
|
77
|
+
Caveat: Current implementation supports early-stopping both training and
|
|
78
|
+
evaluation in local mode. In distributed mode, training can be stopped but
|
|
79
|
+
evaluation (where it's a separate job) will indefinitely wait for new model
|
|
80
|
+
checkpoints to evaluate, so you will need other means to detect and stop it.
|
|
81
|
+
Early-stopping evaluation in distributed mode requires changes in
|
|
82
|
+
`train_and_evaluate` API and will be addressed in a future revision.
|
|
83
|
+
|
|
84
|
+
Args:
|
|
85
|
+
estimator: A `tf.estimator.Estimator` instance.
|
|
86
|
+
should_stop_fn: `callable`, function that takes no arguments and returns a
|
|
87
|
+
`bool`. If the function returns `True`, stopping will be initiated by the
|
|
88
|
+
chief.
|
|
89
|
+
run_every_secs: If specified, calls `should_stop_fn` at an interval of
|
|
90
|
+
`run_every_secs` seconds. Defaults to 60 seconds. Either this or
|
|
91
|
+
`run_every_steps` must be set.
|
|
92
|
+
run_every_steps: If specified, calls `should_stop_fn` every
|
|
93
|
+
`run_every_steps` steps. Either this or `run_every_secs` must be set.
|
|
94
|
+
|
|
95
|
+
Returns:
|
|
96
|
+
A `SessionRunHook` that periodically executes `should_stop_fn` and initiates
|
|
97
|
+
early stopping if the function returns `True`.
|
|
98
|
+
|
|
99
|
+
Raises:
|
|
100
|
+
TypeError: If `estimator` is not of type `tf.estimator.Estimator`.
|
|
101
|
+
ValueError: If both `run_every_secs` and `run_every_steps` are set.
|
|
102
|
+
"""
|
|
103
|
+
if run_every_secs is not None and run_every_steps is not None:
|
|
104
|
+
raise ValueError('Only one of `run_every_secs` and `run_every_steps` must '
|
|
105
|
+
'be set.')
|
|
106
|
+
|
|
107
|
+
if estimator.config.is_chief:
|
|
108
|
+
return _StopOnPredicateHook(should_stop_fn, run_every_secs, run_every_steps)
|
|
109
|
+
else:
|
|
110
|
+
return _CheckForStoppingHook()
|
|
111
|
+
|
|
112
|
+
|
|
113
|
+
@estimator_export('estimator.experimental.stop_if_higher_hook')
|
|
114
|
+
def stop_if_higher_hook(estimator,
|
|
115
|
+
metric_name,
|
|
116
|
+
threshold,
|
|
117
|
+
eval_dir=None,
|
|
118
|
+
min_steps=0,
|
|
119
|
+
run_every_secs=60,
|
|
120
|
+
run_every_steps=None):
|
|
121
|
+
"""Creates hook to stop if the given metric is higher than the threshold.
|
|
122
|
+
|
|
123
|
+
Usage example:
|
|
124
|
+
|
|
125
|
+
```python
|
|
126
|
+
estimator = ...
|
|
127
|
+
# Hook to stop training if accuracy becomes higher than 0.9.
|
|
128
|
+
hook = early_stopping.stop_if_higher_hook(estimator, "accuracy", 0.9)
|
|
129
|
+
train_spec = tf.estimator.TrainSpec(..., hooks=[hook])
|
|
130
|
+
tf.estimator.train_and_evaluate(estimator, train_spec, ...)
|
|
131
|
+
```
|
|
132
|
+
|
|
133
|
+
Caveat: Current implementation supports early-stopping both training and
|
|
134
|
+
evaluation in local mode. In distributed mode, training can be stopped but
|
|
135
|
+
evaluation (where it's a separate job) will indefinitely wait for new model
|
|
136
|
+
checkpoints to evaluate, so you will need other means to detect and stop it.
|
|
137
|
+
Early-stopping evaluation in distributed mode requires changes in
|
|
138
|
+
`train_and_evaluate` API and will be addressed in a future revision.
|
|
139
|
+
|
|
140
|
+
Args:
|
|
141
|
+
estimator: A `tf.estimator.Estimator` instance.
|
|
142
|
+
metric_name: `str`, metric to track. "loss", "accuracy", etc.
|
|
143
|
+
threshold: Numeric threshold for the given metric.
|
|
144
|
+
eval_dir: If set, directory containing summary files with eval metrics. By
|
|
145
|
+
default, `estimator.eval_dir()` will be used.
|
|
146
|
+
min_steps: `int`, stop is never requested if global step is less than this
|
|
147
|
+
value. Defaults to 0.
|
|
148
|
+
run_every_secs: If specified, calls `should_stop_fn` at an interval of
|
|
149
|
+
`run_every_secs` seconds. Defaults to 60 seconds. Either this or
|
|
150
|
+
`run_every_steps` must be set.
|
|
151
|
+
run_every_steps: If specified, calls `should_stop_fn` every
|
|
152
|
+
`run_every_steps` steps. Either this or `run_every_secs` must be set.
|
|
153
|
+
|
|
154
|
+
Returns:
|
|
155
|
+
An early-stopping hook of type `SessionRunHook` that periodically checks
|
|
156
|
+
if the given metric is higher than specified threshold and initiates
|
|
157
|
+
early stopping if true.
|
|
158
|
+
"""
|
|
159
|
+
return _stop_if_threshold_crossed_hook(
|
|
160
|
+
estimator=estimator,
|
|
161
|
+
metric_name=metric_name,
|
|
162
|
+
threshold=threshold,
|
|
163
|
+
higher_is_better=True,
|
|
164
|
+
eval_dir=eval_dir,
|
|
165
|
+
min_steps=min_steps,
|
|
166
|
+
run_every_secs=run_every_secs,
|
|
167
|
+
run_every_steps=run_every_steps)
|
|
168
|
+
|
|
169
|
+
|
|
170
|
+
@estimator_export('estimator.experimental.stop_if_lower_hook')
|
|
171
|
+
def stop_if_lower_hook(estimator,
|
|
172
|
+
metric_name,
|
|
173
|
+
threshold,
|
|
174
|
+
eval_dir=None,
|
|
175
|
+
min_steps=0,
|
|
176
|
+
run_every_secs=60,
|
|
177
|
+
run_every_steps=None):
|
|
178
|
+
"""Creates hook to stop if the given metric is lower than the threshold.
|
|
179
|
+
|
|
180
|
+
Usage example:
|
|
181
|
+
|
|
182
|
+
```python
|
|
183
|
+
estimator = ...
|
|
184
|
+
# Hook to stop training if loss becomes lower than 100.
|
|
185
|
+
hook = early_stopping.stop_if_lower_hook(estimator, "loss", 100)
|
|
186
|
+
train_spec = tf.estimator.TrainSpec(..., hooks=[hook])
|
|
187
|
+
tf.estimator.train_and_evaluate(estimator, train_spec, ...)
|
|
188
|
+
```
|
|
189
|
+
|
|
190
|
+
Caveat: Current implementation supports early-stopping both training and
|
|
191
|
+
evaluation in local mode. In distributed mode, training can be stopped but
|
|
192
|
+
evaluation (where it's a separate job) will indefinitely wait for new model
|
|
193
|
+
checkpoints to evaluate, so you will need other means to detect and stop it.
|
|
194
|
+
Early-stopping evaluation in distributed mode requires changes in
|
|
195
|
+
`train_and_evaluate` API and will be addressed in a future revision.
|
|
196
|
+
|
|
197
|
+
Args:
|
|
198
|
+
estimator: A `tf.estimator.Estimator` instance.
|
|
199
|
+
metric_name: `str`, metric to track. "loss", "accuracy", etc.
|
|
200
|
+
threshold: Numeric threshold for the given metric.
|
|
201
|
+
eval_dir: If set, directory containing summary files with eval metrics. By
|
|
202
|
+
default, `estimator.eval_dir()` will be used.
|
|
203
|
+
min_steps: `int`, stop is never requested if global step is less than this
|
|
204
|
+
value. Defaults to 0.
|
|
205
|
+
run_every_secs: If specified, calls `should_stop_fn` at an interval of
|
|
206
|
+
`run_every_secs` seconds. Defaults to 60 seconds. Either this or
|
|
207
|
+
`run_every_steps` must be set.
|
|
208
|
+
run_every_steps: If specified, calls `should_stop_fn` every
|
|
209
|
+
`run_every_steps` steps. Either this or `run_every_secs` must be set.
|
|
210
|
+
|
|
211
|
+
Returns:
|
|
212
|
+
An early-stopping hook of type `SessionRunHook` that periodically checks
|
|
213
|
+
if the given metric is lower than specified threshold and initiates
|
|
214
|
+
early stopping if true.
|
|
215
|
+
"""
|
|
216
|
+
return _stop_if_threshold_crossed_hook(
|
|
217
|
+
estimator=estimator,
|
|
218
|
+
metric_name=metric_name,
|
|
219
|
+
threshold=threshold,
|
|
220
|
+
higher_is_better=False,
|
|
221
|
+
eval_dir=eval_dir,
|
|
222
|
+
min_steps=min_steps,
|
|
223
|
+
run_every_secs=run_every_secs,
|
|
224
|
+
run_every_steps=run_every_steps)
|
|
225
|
+
|
|
226
|
+
|
|
227
|
+
@estimator_export('estimator.experimental.stop_if_no_increase_hook')
|
|
228
|
+
def stop_if_no_increase_hook(estimator,
|
|
229
|
+
metric_name,
|
|
230
|
+
max_steps_without_increase,
|
|
231
|
+
eval_dir=None,
|
|
232
|
+
min_steps=0,
|
|
233
|
+
run_every_secs=60,
|
|
234
|
+
run_every_steps=None):
|
|
235
|
+
"""Creates hook to stop if metric does not increase within given max steps.
|
|
236
|
+
|
|
237
|
+
Usage example:
|
|
238
|
+
|
|
239
|
+
```python
|
|
240
|
+
estimator = ...
|
|
241
|
+
# Hook to stop training if accuracy does not increase in over 100000 steps.
|
|
242
|
+
hook = early_stopping.stop_if_no_increase_hook(estimator, "accuracy", 100000)
|
|
243
|
+
train_spec = tf.estimator.TrainSpec(..., hooks=[hook])
|
|
244
|
+
tf.estimator.train_and_evaluate(estimator, train_spec, ...)
|
|
245
|
+
```
|
|
246
|
+
|
|
247
|
+
Caveat: Current implementation supports early-stopping both training and
|
|
248
|
+
evaluation in local mode. In distributed mode, training can be stopped but
|
|
249
|
+
evaluation (where it's a separate job) will indefinitely wait for new model
|
|
250
|
+
checkpoints to evaluate, so you will need other means to detect and stop it.
|
|
251
|
+
Early-stopping evaluation in distributed mode requires changes in
|
|
252
|
+
`train_and_evaluate` API and will be addressed in a future revision.
|
|
253
|
+
|
|
254
|
+
Args:
|
|
255
|
+
estimator: A `tf.estimator.Estimator` instance.
|
|
256
|
+
metric_name: `str`, metric to track. "loss", "accuracy", etc.
|
|
257
|
+
max_steps_without_increase: `int`, maximum number of training steps with no
|
|
258
|
+
increase in the given metric.
|
|
259
|
+
eval_dir: If set, directory containing summary files with eval metrics. By
|
|
260
|
+
default, `estimator.eval_dir()` will be used.
|
|
261
|
+
min_steps: `int`, stop is never requested if global step is less than this
|
|
262
|
+
value. Defaults to 0.
|
|
263
|
+
run_every_secs: If specified, calls `should_stop_fn` at an interval of
|
|
264
|
+
`run_every_secs` seconds. Defaults to 60 seconds. Either this or
|
|
265
|
+
`run_every_steps` must be set.
|
|
266
|
+
run_every_steps: If specified, calls `should_stop_fn` every
|
|
267
|
+
`run_every_steps` steps. Either this or `run_every_secs` must be set.
|
|
268
|
+
|
|
269
|
+
Returns:
|
|
270
|
+
An early-stopping hook of type `SessionRunHook` that periodically checks
|
|
271
|
+
if the given metric shows no increase over given maximum number of
|
|
272
|
+
training steps, and initiates early stopping if true.
|
|
273
|
+
"""
|
|
274
|
+
return _stop_if_no_metric_improvement_hook(
|
|
275
|
+
estimator=estimator,
|
|
276
|
+
metric_name=metric_name,
|
|
277
|
+
max_steps_without_improvement=max_steps_without_increase,
|
|
278
|
+
higher_is_better=True,
|
|
279
|
+
eval_dir=eval_dir,
|
|
280
|
+
min_steps=min_steps,
|
|
281
|
+
run_every_secs=run_every_secs,
|
|
282
|
+
run_every_steps=run_every_steps)
|
|
283
|
+
|
|
284
|
+
|
|
285
|
+
def custom_early_stop_hook(estimator,
|
|
286
|
+
eval_dir,
|
|
287
|
+
custom_stop_func,
|
|
288
|
+
custom_stop_func_params,
|
|
289
|
+
run_every_secs=60,
|
|
290
|
+
run_every_steps=None):
|
|
291
|
+
"""Custom early stop hook for complex early stop conditions.
|
|
292
|
+
|
|
293
|
+
Args:
|
|
294
|
+
estimator: A `tf.estimator.Estimator` instance.
|
|
295
|
+
eval_dir: If set, directory containing summary files with eval metrics. By
|
|
296
|
+
default, `estimator.eval_dir()` will be used.
|
|
297
|
+
custom_stop_func: custom stop function, accept two parameters: eval_results,
|
|
298
|
+
custom_stop_func_params
|
|
299
|
+
custom_stop_func_params: string, parameters to custom_stop_func
|
|
300
|
+
run_every_secs: If specified, calls `should_stop_fn` at an interval of
|
|
301
|
+
`run_every_secs` seconds. Defaults to 60 seconds. Either this or
|
|
302
|
+
`run_every_steps` must be set.
|
|
303
|
+
run_every_steps: If specified, calls `should_stop_fn` every
|
|
304
|
+
`run_every_steps` steps. Either this or `run_every_secs` must be set.
|
|
305
|
+
|
|
306
|
+
Returns:
|
|
307
|
+
An early-stopping hook of type `SessionRunHook` that stop training and
|
|
308
|
+
evaluation under user defined conditions.
|
|
309
|
+
"""
|
|
310
|
+
if eval_dir is None:
|
|
311
|
+
eval_dir = estimator.eval_dir()
|
|
312
|
+
|
|
313
|
+
if isinstance(custom_stop_func, str) or isinstance(custom_stop_func,
|
|
314
|
+
type(u'')):
|
|
315
|
+
custom_stop_func = load_by_path(custom_stop_func)
|
|
316
|
+
|
|
317
|
+
def _custom_stop_fn():
|
|
318
|
+
eval_results = read_eval_metrics(eval_dir)
|
|
319
|
+
return custom_stop_func(eval_results, custom_stop_func_params)
|
|
320
|
+
|
|
321
|
+
return make_early_stopping_hook(
|
|
322
|
+
estimator=estimator,
|
|
323
|
+
should_stop_fn=_custom_stop_fn,
|
|
324
|
+
run_every_secs=run_every_secs,
|
|
325
|
+
run_every_steps=run_every_steps)
|
|
326
|
+
|
|
327
|
+
|
|
328
|
+
@estimator_export('estimator.experimental.stop_if_no_decrease_hook')
|
|
329
|
+
def stop_if_no_decrease_hook(estimator,
|
|
330
|
+
metric_name,
|
|
331
|
+
max_steps_without_decrease,
|
|
332
|
+
eval_dir=None,
|
|
333
|
+
min_steps=0,
|
|
334
|
+
run_every_secs=60,
|
|
335
|
+
run_every_steps=None):
|
|
336
|
+
"""Creates hook to stop if metric does not decrease within given max steps.
|
|
337
|
+
|
|
338
|
+
Usage example:
|
|
339
|
+
|
|
340
|
+
```python
|
|
341
|
+
estimator = ...
|
|
342
|
+
# Hook to stop training if loss does not decrease in over 100000 steps.
|
|
343
|
+
hook = early_stopping.stop_if_no_decrease_hook(estimator, "loss", 100000)
|
|
344
|
+
train_spec = tf.estimator.TrainSpec(..., hooks=[hook])
|
|
345
|
+
tf.estimator.train_and_evaluate(estimator, train_spec, ...)
|
|
346
|
+
```
|
|
347
|
+
|
|
348
|
+
Caveat: Current implementation supports early-stopping both training and
|
|
349
|
+
evaluation in local mode. In distributed mode, training can be stopped but
|
|
350
|
+
evaluation (where it's a separate job) will indefinitely wait for new model
|
|
351
|
+
checkpoints to evaluate, so you will need other means to detect and stop it.
|
|
352
|
+
Early-stopping evaluation in distributed mode requires changes in
|
|
353
|
+
`train_and_evaluate` API and will be addressed in a future revision.
|
|
354
|
+
|
|
355
|
+
Args:
|
|
356
|
+
estimator: A `tf.estimator.Estimator` instance.
|
|
357
|
+
metric_name: `str`, metric to track. "loss", "accuracy", etc.
|
|
358
|
+
max_steps_without_decrease: `int`, maximum number of training steps with no
|
|
359
|
+
decrease in the given metric.
|
|
360
|
+
eval_dir: If set, directory containing summary files with eval metrics. By
|
|
361
|
+
default, `estimator.eval_dir()` will be used.
|
|
362
|
+
min_steps: `int`, stop is never requested if global step is less than this
|
|
363
|
+
value. Defaults to 0.
|
|
364
|
+
run_every_secs: If specified, calls `should_stop_fn` at an interval of
|
|
365
|
+
`run_every_secs` seconds. Defaults to 60 seconds. Either this or
|
|
366
|
+
`run_every_steps` must be set.
|
|
367
|
+
run_every_steps: If specified, calls `should_stop_fn` every
|
|
368
|
+
`run_every_steps` steps. Either this or `run_every_secs` must be set.
|
|
369
|
+
|
|
370
|
+
Returns:
|
|
371
|
+
An early-stopping hook of type `SessionRunHook` that periodically checks
|
|
372
|
+
if the given metric shows no decrease over given maximum number of
|
|
373
|
+
training steps, and initiates early stopping if true.
|
|
374
|
+
"""
|
|
375
|
+
return _stop_if_no_metric_improvement_hook(
|
|
376
|
+
estimator=estimator,
|
|
377
|
+
metric_name=metric_name,
|
|
378
|
+
max_steps_without_improvement=max_steps_without_decrease,
|
|
379
|
+
higher_is_better=False,
|
|
380
|
+
eval_dir=eval_dir,
|
|
381
|
+
min_steps=min_steps,
|
|
382
|
+
run_every_secs=run_every_secs,
|
|
383
|
+
run_every_steps=run_every_steps)
|
|
384
|
+
|
|
385
|
+
|
|
386
|
+
def read_eval_metrics(eval_dir):
|
|
387
|
+
"""Helper to read eval metrics from eval summary files.
|
|
388
|
+
|
|
389
|
+
Args:
|
|
390
|
+
eval_dir: Directory containing summary files with eval metrics.
|
|
391
|
+
|
|
392
|
+
Returns:
|
|
393
|
+
A `dict` with global steps mapping to `dict` of metric names and values.
|
|
394
|
+
"""
|
|
395
|
+
eval_metrics_dict = collections.defaultdict(dict)
|
|
396
|
+
for event in _summaries(eval_dir):
|
|
397
|
+
if not event.HasField('summary'):
|
|
398
|
+
continue
|
|
399
|
+
metrics = {}
|
|
400
|
+
for value in event.summary.value:
|
|
401
|
+
if value.HasField('simple_value'):
|
|
402
|
+
metrics[value.tag] = value.simple_value
|
|
403
|
+
if metrics:
|
|
404
|
+
eval_metrics_dict[event.step].update(metrics)
|
|
405
|
+
return collections.OrderedDict(
|
|
406
|
+
sorted(eval_metrics_dict.items(), key=lambda t: t[0]))
|
|
407
|
+
|
|
408
|
+
|
|
409
|
+
def _stop_if_threshold_crossed_hook(estimator, metric_name, threshold,
|
|
410
|
+
higher_is_better, eval_dir, min_steps,
|
|
411
|
+
run_every_secs, run_every_steps):
|
|
412
|
+
"""Creates early-stopping hook to stop training if threshold is crossed."""
|
|
413
|
+
if eval_dir is None:
|
|
414
|
+
eval_dir = estimator.eval_dir()
|
|
415
|
+
|
|
416
|
+
is_lhs_better = operator.gt if higher_is_better else operator.lt
|
|
417
|
+
greater_or_lesser = 'greater than' if higher_is_better else 'less than'
|
|
418
|
+
|
|
419
|
+
def stop_if_threshold_crossed_fn():
|
|
420
|
+
"""Returns `True` if the given metric crosses specified threshold."""
|
|
421
|
+
eval_results = read_eval_metrics(eval_dir)
|
|
422
|
+
|
|
423
|
+
for step, metrics in eval_results.items():
|
|
424
|
+
if step < min_steps:
|
|
425
|
+
continue
|
|
426
|
+
val = metrics[metric_name]
|
|
427
|
+
if is_lhs_better(val, threshold):
|
|
428
|
+
tf_logging.info(
|
|
429
|
+
'At step %s, metric "%s" has value %s which is %s the configured '
|
|
430
|
+
'threshold (%s) for early stopping.', step, metric_name, val,
|
|
431
|
+
greater_or_lesser, threshold)
|
|
432
|
+
return True
|
|
433
|
+
return False
|
|
434
|
+
|
|
435
|
+
return make_early_stopping_hook(
|
|
436
|
+
estimator=estimator,
|
|
437
|
+
should_stop_fn=stop_if_threshold_crossed_fn,
|
|
438
|
+
run_every_secs=run_every_secs,
|
|
439
|
+
run_every_steps=run_every_steps)
|
|
440
|
+
|
|
441
|
+
|
|
442
|
+
def _stop_if_no_metric_improvement_hook(estimator, metric_name,
|
|
443
|
+
max_steps_without_improvement,
|
|
444
|
+
higher_is_better, eval_dir, min_steps,
|
|
445
|
+
run_every_secs, run_every_steps):
|
|
446
|
+
"""Returns hook to stop training if given metric shows no improvement."""
|
|
447
|
+
if eval_dir is None:
|
|
448
|
+
eval_dir = estimator.eval_dir()
|
|
449
|
+
|
|
450
|
+
is_lhs_better = operator.gt if higher_is_better else operator.lt
|
|
451
|
+
increase_or_decrease = 'increase' if higher_is_better else 'decrease'
|
|
452
|
+
|
|
453
|
+
def stop_if_no_metric_improvement_fn():
|
|
454
|
+
"""Returns `True` if metric does not improve within max steps."""
|
|
455
|
+
eval_results = read_eval_metrics(eval_dir)
|
|
456
|
+
|
|
457
|
+
best_val = None
|
|
458
|
+
best_val_step = None
|
|
459
|
+
for step, metrics in eval_results.items():
|
|
460
|
+
if step < min_steps:
|
|
461
|
+
continue
|
|
462
|
+
val = metrics[metric_name]
|
|
463
|
+
if best_val is None or is_lhs_better(val, best_val):
|
|
464
|
+
best_val = val
|
|
465
|
+
best_val_step = step
|
|
466
|
+
if step - best_val_step >= max_steps_without_improvement:
|
|
467
|
+
tf_logging.info(
|
|
468
|
+
'No %s in metric "%s" for %s steps, which is greater than or equal '
|
|
469
|
+
'to max steps (%s) configured for early stopping.',
|
|
470
|
+
increase_or_decrease, metric_name, step - best_val_step,
|
|
471
|
+
max_steps_without_improvement)
|
|
472
|
+
return True
|
|
473
|
+
return False
|
|
474
|
+
|
|
475
|
+
return make_early_stopping_hook(
|
|
476
|
+
estimator=estimator,
|
|
477
|
+
should_stop_fn=stop_if_no_metric_improvement_fn,
|
|
478
|
+
run_every_secs=run_every_secs,
|
|
479
|
+
run_every_steps=run_every_steps)
|
|
480
|
+
|
|
481
|
+
|
|
482
|
+
def _summaries(eval_dir):
|
|
483
|
+
"""Yields `tensorflow.Event` protos from event files in the eval dir.
|
|
484
|
+
|
|
485
|
+
Args:
|
|
486
|
+
eval_dir: Directory containing summary files with eval metrics.
|
|
487
|
+
|
|
488
|
+
Yields:
|
|
489
|
+
`tensorflow.Event` object read from the event files.
|
|
490
|
+
"""
|
|
491
|
+
if gfile.Exists(eval_dir):
|
|
492
|
+
for event_file in gfile.Glob(
|
|
493
|
+
os.path.join(eval_dir, _EVENT_FILE_GLOB_PATTERN)):
|
|
494
|
+
for event in summary_iterator.summary_iterator(event_file):
|
|
495
|
+
yield event
|
|
496
|
+
|
|
497
|
+
|
|
498
|
+
def _get_or_create_stop_var():
|
|
499
|
+
with variable_scope.variable_scope(
|
|
500
|
+
name_or_scope=EARLY_STOP_SIG_SCOPE,
|
|
501
|
+
values=[],
|
|
502
|
+
reuse=variable_scope.AUTO_REUSE):
|
|
503
|
+
return variable_scope.get_variable(
|
|
504
|
+
name=EARLY_STOP_SIG_NAME,
|
|
505
|
+
shape=[],
|
|
506
|
+
dtype=dtypes.bool,
|
|
507
|
+
initializer=init_ops.constant_initializer(False),
|
|
508
|
+
collections=[ops.GraphKeys.GLOBAL_VARIABLES],
|
|
509
|
+
trainable=False)
|
|
510
|
+
|
|
511
|
+
|
|
512
|
+
class _StopOnPredicateHook(session_run_hook.SessionRunHook):
|
|
513
|
+
"""Hook that requests stop when `should_stop_fn` returns `True`."""
|
|
514
|
+
|
|
515
|
+
def __init__(self, should_stop_fn, run_every_secs=60, run_every_steps=None):
|
|
516
|
+
if not callable(should_stop_fn):
|
|
517
|
+
raise TypeError('`should_stop_fn` must be callable.')
|
|
518
|
+
|
|
519
|
+
self._should_stop_fn = should_stop_fn
|
|
520
|
+
self._timer = basic_session_run_hooks.SecondOrStepTimer(
|
|
521
|
+
every_secs=run_every_secs, every_steps=run_every_steps)
|
|
522
|
+
self._global_step_tensor = None
|
|
523
|
+
self._stop_var = _get_or_create_stop_var()
|
|
524
|
+
self._stop_op = None
|
|
525
|
+
|
|
526
|
+
def begin(self):
|
|
527
|
+
self._global_step_tensor = training_util.get_global_step()
|
|
528
|
+
self._stop_op = state_ops.assign(self._stop_var, True)
|
|
529
|
+
|
|
530
|
+
def before_run(self, run_context):
|
|
531
|
+
del run_context
|
|
532
|
+
return session_run_hook.SessionRunArgs(self._global_step_tensor)
|
|
533
|
+
|
|
534
|
+
def after_run(self, run_context, run_values):
|
|
535
|
+
global_step = run_values.results
|
|
536
|
+
if self._timer.should_trigger_for_step(global_step):
|
|
537
|
+
self._timer.update_last_triggered_step(global_step)
|
|
538
|
+
if self._should_stop_fn():
|
|
539
|
+
tf_logging.info('Requesting early stopping at global step %d',
|
|
540
|
+
global_step)
|
|
541
|
+
run_context.session.run(self._stop_op)
|
|
542
|
+
run_context.request_stop()
|
|
543
|
+
|
|
544
|
+
|
|
545
|
+
class _CheckForStoppingHook(session_run_hook.SessionRunHook):
|
|
546
|
+
"""Hook that requests stop if stop is requested by `_StopOnPredicateHook`."""
|
|
547
|
+
|
|
548
|
+
def __init__(self):
|
|
549
|
+
self._stop_var = None
|
|
550
|
+
|
|
551
|
+
def begin(self):
|
|
552
|
+
self._stop_var = _get_or_create_stop_var()
|
|
553
|
+
|
|
554
|
+
def before_run(self, run_context):
|
|
555
|
+
del run_context
|
|
556
|
+
return session_run_hook.SessionRunArgs(self._stop_var)
|
|
557
|
+
|
|
558
|
+
def after_run(self, run_context, run_values):
|
|
559
|
+
should_early_stop = run_values.results
|
|
560
|
+
if should_early_stop:
|
|
561
|
+
tf_logging.info('Early stopping requested, suspending run.')
|
|
562
|
+
run_context.request_stop()
|
|
563
|
+
|
|
564
|
+
|
|
565
|
+
class OssStopSignalHook(session_run_hook.SessionRunHook):
|
|
566
|
+
|
|
567
|
+
def __init__(self, model_dir, run_every_secs=10, run_every_steps=None):
|
|
568
|
+
self._stop_sig_file = os.path.join(model_dir, 'OSS_STOP_SIGNAL')
|
|
569
|
+
self._stop = False
|
|
570
|
+
self._check_run = True
|
|
571
|
+
self._timer = basic_session_run_hooks.SecondOrStepTimer(
|
|
572
|
+
every_secs=run_every_secs, every_steps=run_every_steps)
|
|
573
|
+
sleep_time = run_every_secs if run_every_secs is not None else 1
|
|
574
|
+
self._curr_step = 0
|
|
575
|
+
|
|
576
|
+
def _check_stop():
|
|
577
|
+
while self._check_run:
|
|
578
|
+
if self._timer.should_trigger_for_step(self._curr_step):
|
|
579
|
+
self._timer.update_last_triggered_step(self._curr_step)
|
|
580
|
+
if gfile.Exists(self._stop_sig_file):
|
|
581
|
+
self._stop = True
|
|
582
|
+
logging.info('OssStopSignalHook: stop on signal %s' %
|
|
583
|
+
self._stop_sig_file)
|
|
584
|
+
break
|
|
585
|
+
else:
|
|
586
|
+
time.sleep(sleep_time)
|
|
587
|
+
|
|
588
|
+
self._th = threading.Thread(target=_check_stop)
|
|
589
|
+
self._th.start()
|
|
590
|
+
|
|
591
|
+
self._global_step_tensor = None
|
|
592
|
+
self._stop_var = _get_or_create_stop_var()
|
|
593
|
+
self._stop_op = None
|
|
594
|
+
|
|
595
|
+
def begin(self):
|
|
596
|
+
self._global_step_tensor = training_util.get_global_step()
|
|
597
|
+
self._stop_op = state_ops.assign(self._stop_var, True)
|
|
598
|
+
|
|
599
|
+
def before_run(self, run_context):
|
|
600
|
+
return session_run_hook.SessionRunArgs(self._global_step_tensor)
|
|
601
|
+
|
|
602
|
+
def after_run(self, run_context, run_values):
|
|
603
|
+
if self._stop:
|
|
604
|
+
run_context.request_stop()
|
|
605
|
+
run_context.session.run(self._stop_op)
|
|
606
|
+
self._curr_step = run_values.results
|
|
607
|
+
|
|
608
|
+
def end(self, session):
|
|
609
|
+
self._check_run = False
|
|
610
|
+
self._th.join()
|
|
611
|
+
|
|
612
|
+
|
|
613
|
+
def oss_stop_hook(estimator, run_every_secs=10, run_every_steps=None):
|
|
614
|
+
"""Creates oss stop hook.
|
|
615
|
+
|
|
616
|
+
Returns a `SessionRunHook` that stops training when model_dir/OSS_STOP_SIGNAL is created.
|
|
617
|
+
"""
|
|
618
|
+
if estimator.config.is_chief:
|
|
619
|
+
return OssStopSignalHook(
|
|
620
|
+
estimator.model_dir,
|
|
621
|
+
run_every_secs=run_every_secs,
|
|
622
|
+
run_every_steps=run_every_steps)
|
|
623
|
+
else:
|
|
624
|
+
return _CheckForStoppingHook()
|
|
625
|
+
|
|
626
|
+
|
|
627
|
+
class DeadlineStopHook(session_run_hook.SessionRunHook):
|
|
628
|
+
|
|
629
|
+
def __init__(self, deadline_ts):
|
|
630
|
+
self._deadline_ts = deadline_ts
|
|
631
|
+
self._stop_var = _get_or_create_stop_var()
|
|
632
|
+
self._stop_op = None
|
|
633
|
+
|
|
634
|
+
def begin(self):
|
|
635
|
+
self._stop_op = state_ops.assign(self._stop_var, True)
|
|
636
|
+
|
|
637
|
+
def after_run(self, run_context, run_values):
|
|
638
|
+
curr_ts = time.mktime(datetime.datetime.now().timetuple())
|
|
639
|
+
if curr_ts > self._deadline_ts:
|
|
640
|
+
run_context.request_stop()
|
|
641
|
+
run_context.session.run(self._stop_op)
|
|
642
|
+
|
|
643
|
+
|
|
644
|
+
def deadline_stop_hook(estimator, dead_line):
|
|
645
|
+
"""Creates oss stop hook.
|
|
646
|
+
|
|
647
|
+
Returns a `SessionRunHook` that stops training when timestamp > deadline_ts.
|
|
648
|
+
"""
|
|
649
|
+
deadline_ts = parse_time(dead_line)
|
|
650
|
+
if estimator.config.is_chief:
|
|
651
|
+
return DeadlineStopHook(deadline_ts)
|
|
652
|
+
else:
|
|
653
|
+
return _CheckForStoppingHook()
|