easy-cs-rec-custommodel 0.8.6__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of easy-cs-rec-custommodel might be problematic. Click here for more details.
- easy_cs_rec_custommodel-0.8.6.dist-info/LICENSE +203 -0
- easy_cs_rec_custommodel-0.8.6.dist-info/METADATA +48 -0
- easy_cs_rec_custommodel-0.8.6.dist-info/RECORD +336 -0
- easy_cs_rec_custommodel-0.8.6.dist-info/WHEEL +6 -0
- easy_cs_rec_custommodel-0.8.6.dist-info/top_level.txt +2 -0
- easy_rec/__init__.py +114 -0
- easy_rec/python/__init__.py +0 -0
- easy_rec/python/builders/__init__.py +0 -0
- easy_rec/python/builders/hyperparams_builder.py +78 -0
- easy_rec/python/builders/loss_builder.py +333 -0
- easy_rec/python/builders/optimizer_builder.py +211 -0
- easy_rec/python/builders/strategy_builder.py +44 -0
- easy_rec/python/compat/__init__.py +0 -0
- easy_rec/python/compat/adam_s.py +245 -0
- easy_rec/python/compat/array_ops.py +229 -0
- easy_rec/python/compat/dynamic_variable.py +542 -0
- easy_rec/python/compat/early_stopping.py +653 -0
- easy_rec/python/compat/embedding_ops.py +162 -0
- easy_rec/python/compat/embedding_parallel_saver.py +316 -0
- easy_rec/python/compat/estimator_train.py +116 -0
- easy_rec/python/compat/exporter.py +473 -0
- easy_rec/python/compat/feature_column/__init__.py +0 -0
- easy_rec/python/compat/feature_column/feature_column.py +3675 -0
- easy_rec/python/compat/feature_column/feature_column_v2.py +5233 -0
- easy_rec/python/compat/feature_column/sequence_feature_column.py +648 -0
- easy_rec/python/compat/feature_column/utils.py +154 -0
- easy_rec/python/compat/layers.py +329 -0
- easy_rec/python/compat/ops.py +14 -0
- easy_rec/python/compat/optimizers.py +619 -0
- easy_rec/python/compat/queues.py +311 -0
- easy_rec/python/compat/regularizers.py +208 -0
- easy_rec/python/compat/sok_optimizer.py +440 -0
- easy_rec/python/compat/sync_replicas_optimizer.py +528 -0
- easy_rec/python/compat/weight_decay_optimizers.py +475 -0
- easy_rec/python/core/__init__.py +0 -0
- easy_rec/python/core/easyrec_metrics/__init__.py +24 -0
- easy_rec/python/core/easyrec_metrics/distribute_metrics_impl_pai.py +3702 -0
- easy_rec/python/core/easyrec_metrics/distribute_metrics_impl_tf.py +3768 -0
- easy_rec/python/core/learning_schedules.py +228 -0
- easy_rec/python/core/metrics.py +402 -0
- easy_rec/python/core/sampler.py +844 -0
- easy_rec/python/eval.py +102 -0
- easy_rec/python/export.py +150 -0
- easy_rec/python/feature_column/__init__.py +0 -0
- easy_rec/python/feature_column/feature_column.py +664 -0
- easy_rec/python/feature_column/feature_group.py +89 -0
- easy_rec/python/hpo/__init__.py +0 -0
- easy_rec/python/hpo/emr_hpo.py +140 -0
- easy_rec/python/hpo/generate_hpo_sql.py +71 -0
- easy_rec/python/hpo/pai_hpo.py +297 -0
- easy_rec/python/inference/__init__.py +0 -0
- easy_rec/python/inference/csv_predictor.py +189 -0
- easy_rec/python/inference/hive_parquet_predictor.py +200 -0
- easy_rec/python/inference/hive_predictor.py +166 -0
- easy_rec/python/inference/odps_predictor.py +70 -0
- easy_rec/python/inference/parquet_predictor.py +147 -0
- easy_rec/python/inference/parquet_predictor_v2.py +147 -0
- easy_rec/python/inference/predictor.py +621 -0
- easy_rec/python/inference/processor/__init__.py +0 -0
- easy_rec/python/inference/processor/test.py +170 -0
- easy_rec/python/inference/vector_retrieve.py +124 -0
- easy_rec/python/input/__init__.py +0 -0
- easy_rec/python/input/batch_tfrecord_input.py +117 -0
- easy_rec/python/input/criteo_binary_reader.py +259 -0
- easy_rec/python/input/criteo_input.py +107 -0
- easy_rec/python/input/csv_input.py +175 -0
- easy_rec/python/input/csv_input_ex.py +72 -0
- easy_rec/python/input/csv_input_v2.py +68 -0
- easy_rec/python/input/datahub_input.py +320 -0
- easy_rec/python/input/dummy_input.py +58 -0
- easy_rec/python/input/hive_input.py +123 -0
- easy_rec/python/input/hive_parquet_input.py +140 -0
- easy_rec/python/input/hive_rtp_input.py +174 -0
- easy_rec/python/input/input.py +1064 -0
- easy_rec/python/input/kafka_dataset.py +144 -0
- easy_rec/python/input/kafka_input.py +235 -0
- easy_rec/python/input/load_parquet.py +317 -0
- easy_rec/python/input/odps_input.py +101 -0
- easy_rec/python/input/odps_input_v2.py +110 -0
- easy_rec/python/input/odps_input_v3.py +132 -0
- easy_rec/python/input/odps_rtp_input.py +187 -0
- easy_rec/python/input/odps_rtp_input_v2.py +104 -0
- easy_rec/python/input/parquet_input.py +397 -0
- easy_rec/python/input/parquet_input_v2.py +180 -0
- easy_rec/python/input/parquet_input_v3.py +203 -0
- easy_rec/python/input/rtp_input.py +225 -0
- easy_rec/python/input/rtp_input_v2.py +145 -0
- easy_rec/python/input/tfrecord_input.py +100 -0
- easy_rec/python/layers/__init__.py +0 -0
- easy_rec/python/layers/backbone.py +571 -0
- easy_rec/python/layers/capsule_layer.py +176 -0
- easy_rec/python/layers/cmbf.py +390 -0
- easy_rec/python/layers/common_layers.py +192 -0
- easy_rec/python/layers/dnn.py +87 -0
- easy_rec/python/layers/embed_input_layer.py +25 -0
- easy_rec/python/layers/fm.py +26 -0
- easy_rec/python/layers/input_layer.py +396 -0
- easy_rec/python/layers/keras/__init__.py +34 -0
- easy_rec/python/layers/keras/activation.py +114 -0
- easy_rec/python/layers/keras/attention.py +267 -0
- easy_rec/python/layers/keras/auxiliary_loss.py +47 -0
- easy_rec/python/layers/keras/blocks.py +262 -0
- easy_rec/python/layers/keras/bst.py +119 -0
- easy_rec/python/layers/keras/custom_ops.py +250 -0
- easy_rec/python/layers/keras/data_augment.py +133 -0
- easy_rec/python/layers/keras/din.py +67 -0
- easy_rec/python/layers/keras/einsum_dense.py +598 -0
- easy_rec/python/layers/keras/embedding.py +81 -0
- easy_rec/python/layers/keras/fibinet.py +251 -0
- easy_rec/python/layers/keras/interaction.py +416 -0
- easy_rec/python/layers/keras/layer_norm.py +364 -0
- easy_rec/python/layers/keras/mask_net.py +166 -0
- easy_rec/python/layers/keras/multi_head_attention.py +717 -0
- easy_rec/python/layers/keras/multi_task.py +125 -0
- easy_rec/python/layers/keras/numerical_embedding.py +376 -0
- easy_rec/python/layers/keras/ppnet.py +194 -0
- easy_rec/python/layers/keras/transformer.py +192 -0
- easy_rec/python/layers/layer_norm.py +51 -0
- easy_rec/python/layers/mmoe.py +83 -0
- easy_rec/python/layers/multihead_attention.py +162 -0
- easy_rec/python/layers/multihead_cross_attention.py +749 -0
- easy_rec/python/layers/senet.py +73 -0
- easy_rec/python/layers/seq_input_layer.py +134 -0
- easy_rec/python/layers/sequence_feature_layer.py +249 -0
- easy_rec/python/layers/uniter.py +301 -0
- easy_rec/python/layers/utils.py +248 -0
- easy_rec/python/layers/variational_dropout_layer.py +130 -0
- easy_rec/python/loss/__init__.py +0 -0
- easy_rec/python/loss/circle_loss.py +82 -0
- easy_rec/python/loss/contrastive_loss.py +79 -0
- easy_rec/python/loss/f1_reweight_loss.py +38 -0
- easy_rec/python/loss/focal_loss.py +93 -0
- easy_rec/python/loss/jrc_loss.py +128 -0
- easy_rec/python/loss/listwise_loss.py +161 -0
- easy_rec/python/loss/multi_similarity.py +68 -0
- easy_rec/python/loss/pairwise_loss.py +307 -0
- easy_rec/python/loss/softmax_loss_with_negative_mining.py +110 -0
- easy_rec/python/loss/zero_inflated_lognormal.py +76 -0
- easy_rec/python/main.py +878 -0
- easy_rec/python/model/__init__.py +0 -0
- easy_rec/python/model/autoint.py +73 -0
- easy_rec/python/model/cmbf.py +47 -0
- easy_rec/python/model/collaborative_metric_learning.py +182 -0
- easy_rec/python/model/custom_model.py +323 -0
- easy_rec/python/model/dat.py +138 -0
- easy_rec/python/model/dbmtl.py +116 -0
- easy_rec/python/model/dcn.py +70 -0
- easy_rec/python/model/deepfm.py +106 -0
- easy_rec/python/model/dlrm.py +73 -0
- easy_rec/python/model/dropoutnet.py +207 -0
- easy_rec/python/model/dssm.py +154 -0
- easy_rec/python/model/dssm_senet.py +143 -0
- easy_rec/python/model/dummy_model.py +48 -0
- easy_rec/python/model/easy_rec_estimator.py +739 -0
- easy_rec/python/model/easy_rec_model.py +467 -0
- easy_rec/python/model/esmm.py +242 -0
- easy_rec/python/model/fm.py +63 -0
- easy_rec/python/model/match_model.py +357 -0
- easy_rec/python/model/mind.py +445 -0
- easy_rec/python/model/mmoe.py +70 -0
- easy_rec/python/model/multi_task_model.py +303 -0
- easy_rec/python/model/multi_tower.py +62 -0
- easy_rec/python/model/multi_tower_bst.py +190 -0
- easy_rec/python/model/multi_tower_din.py +130 -0
- easy_rec/python/model/multi_tower_recall.py +68 -0
- easy_rec/python/model/pdn.py +203 -0
- easy_rec/python/model/ple.py +120 -0
- easy_rec/python/model/rank_model.py +485 -0
- easy_rec/python/model/rocket_launching.py +203 -0
- easy_rec/python/model/simple_multi_task.py +54 -0
- easy_rec/python/model/uniter.py +46 -0
- easy_rec/python/model/wide_and_deep.py +121 -0
- easy_rec/python/ops/1.12/incr_record.so +0 -0
- easy_rec/python/ops/1.12/kafka.so +0 -0
- easy_rec/python/ops/1.12/libcustom_ops.so +0 -0
- easy_rec/python/ops/1.12/libembed_op.so +0 -0
- easy_rec/python/ops/1.12/libhiredis.so.1.0.0 +0 -0
- easy_rec/python/ops/1.12/librdkafka++.so.1 +0 -0
- easy_rec/python/ops/1.12/librdkafka.so.1 +0 -0
- easy_rec/python/ops/1.12/libredis++.so +0 -0
- easy_rec/python/ops/1.12/libredis++.so.1 +0 -0
- easy_rec/python/ops/1.12/libredis++.so.1.2.3 +0 -0
- easy_rec/python/ops/1.12/libstr_avx_op.so +0 -0
- easy_rec/python/ops/1.12/libwrite_sparse_kv.so +0 -0
- easy_rec/python/ops/1.15/incr_record.so +0 -0
- easy_rec/python/ops/1.15/kafka.so +0 -0
- easy_rec/python/ops/1.15/libcustom_ops.so +0 -0
- easy_rec/python/ops/1.15/libembed_op.so +0 -0
- easy_rec/python/ops/1.15/libhiredis.so.1.0.0 +0 -0
- easy_rec/python/ops/1.15/librdkafka++.so +0 -0
- easy_rec/python/ops/1.15/librdkafka++.so.1 +0 -0
- easy_rec/python/ops/1.15/librdkafka.so +0 -0
- easy_rec/python/ops/1.15/librdkafka.so.1 +0 -0
- easy_rec/python/ops/1.15/libredis++.so.1 +0 -0
- easy_rec/python/ops/1.15/libstr_avx_op.so +0 -0
- easy_rec/python/ops/2.12/libcustom_ops.so +0 -0
- easy_rec/python/ops/2.12/libload_embed.so +0 -0
- easy_rec/python/ops/2.12/libstr_avx_op.so +0 -0
- easy_rec/python/ops/__init__.py +0 -0
- easy_rec/python/ops/gen_kafka_ops.py +193 -0
- easy_rec/python/ops/gen_str_avx_op.py +28 -0
- easy_rec/python/ops/incr_record.py +30 -0
- easy_rec/python/predict.py +170 -0
- easy_rec/python/protos/__init__.py +0 -0
- easy_rec/python/protos/autoint_pb2.py +122 -0
- easy_rec/python/protos/backbone_pb2.py +1416 -0
- easy_rec/python/protos/cmbf_pb2.py +435 -0
- easy_rec/python/protos/collaborative_metric_learning_pb2.py +252 -0
- easy_rec/python/protos/custom_model_pb2.py +57 -0
- easy_rec/python/protos/dat_pb2.py +262 -0
- easy_rec/python/protos/data_source_pb2.py +422 -0
- easy_rec/python/protos/dataset_pb2.py +1920 -0
- easy_rec/python/protos/dbmtl_pb2.py +191 -0
- easy_rec/python/protos/dcn_pb2.py +197 -0
- easy_rec/python/protos/deepfm_pb2.py +163 -0
- easy_rec/python/protos/dlrm_pb2.py +163 -0
- easy_rec/python/protos/dnn_pb2.py +329 -0
- easy_rec/python/protos/dropoutnet_pb2.py +239 -0
- easy_rec/python/protos/dssm_pb2.py +262 -0
- easy_rec/python/protos/dssm_senet_pb2.py +282 -0
- easy_rec/python/protos/easy_rec_model_pb2.py +1672 -0
- easy_rec/python/protos/esmm_pb2.py +133 -0
- easy_rec/python/protos/eval_pb2.py +930 -0
- easy_rec/python/protos/export_pb2.py +379 -0
- easy_rec/python/protos/feature_config_pb2.py +1359 -0
- easy_rec/python/protos/fm_pb2.py +90 -0
- easy_rec/python/protos/hive_config_pb2.py +138 -0
- easy_rec/python/protos/hyperparams_pb2.py +624 -0
- easy_rec/python/protos/keras_layer_pb2.py +692 -0
- easy_rec/python/protos/layer_pb2.py +1936 -0
- easy_rec/python/protos/loss_pb2.py +1713 -0
- easy_rec/python/protos/mind_pb2.py +497 -0
- easy_rec/python/protos/mmoe_pb2.py +215 -0
- easy_rec/python/protos/multi_tower_pb2.py +295 -0
- easy_rec/python/protos/multi_tower_recall_pb2.py +198 -0
- easy_rec/python/protos/optimizer_pb2.py +2017 -0
- easy_rec/python/protos/pdn_pb2.py +293 -0
- easy_rec/python/protos/pipeline_pb2.py +516 -0
- easy_rec/python/protos/ple_pb2.py +231 -0
- easy_rec/python/protos/predict_pb2.py +1140 -0
- easy_rec/python/protos/rocket_launching_pb2.py +169 -0
- easy_rec/python/protos/seq_encoder_pb2.py +1084 -0
- easy_rec/python/protos/simi_pb2.py +54 -0
- easy_rec/python/protos/simple_multi_task_pb2.py +97 -0
- easy_rec/python/protos/tf_predict_pb2.py +630 -0
- easy_rec/python/protos/tower_pb2.py +661 -0
- easy_rec/python/protos/train_pb2.py +1197 -0
- easy_rec/python/protos/uniter_pb2.py +307 -0
- easy_rec/python/protos/variational_dropout_pb2.py +91 -0
- easy_rec/python/protos/wide_and_deep_pb2.py +131 -0
- easy_rec/python/test/__init__.py +0 -0
- easy_rec/python/test/csv_input_test.py +340 -0
- easy_rec/python/test/custom_early_stop_func.py +19 -0
- easy_rec/python/test/dh_local_run.py +104 -0
- easy_rec/python/test/embed_test.py +155 -0
- easy_rec/python/test/emr_run.py +119 -0
- easy_rec/python/test/eval_metric_test.py +107 -0
- easy_rec/python/test/excel_convert_test.py +64 -0
- easy_rec/python/test/export_test.py +513 -0
- easy_rec/python/test/fg_test.py +70 -0
- easy_rec/python/test/hive_input_test.py +311 -0
- easy_rec/python/test/hpo_test.py +235 -0
- easy_rec/python/test/kafka_test.py +373 -0
- easy_rec/python/test/local_incr_test.py +122 -0
- easy_rec/python/test/loss_test.py +110 -0
- easy_rec/python/test/odps_command.py +61 -0
- easy_rec/python/test/odps_local_run.py +86 -0
- easy_rec/python/test/odps_run.py +254 -0
- easy_rec/python/test/odps_test_cls.py +39 -0
- easy_rec/python/test/odps_test_prepare.py +198 -0
- easy_rec/python/test/odps_test_util.py +237 -0
- easy_rec/python/test/pre_check_test.py +54 -0
- easy_rec/python/test/predictor_test.py +394 -0
- easy_rec/python/test/rtp_convert_test.py +133 -0
- easy_rec/python/test/run.py +138 -0
- easy_rec/python/test/train_eval_test.py +1299 -0
- easy_rec/python/test/util_test.py +85 -0
- easy_rec/python/test/zero_inflated_lognormal_test.py +53 -0
- easy_rec/python/tools/__init__.py +0 -0
- easy_rec/python/tools/add_boundaries_to_config.py +67 -0
- easy_rec/python/tools/add_feature_info_to_config.py +145 -0
- easy_rec/python/tools/convert_config_format.py +48 -0
- easy_rec/python/tools/convert_rtp_data.py +79 -0
- easy_rec/python/tools/convert_rtp_fg.py +106 -0
- easy_rec/python/tools/create_config_from_excel.py +427 -0
- easy_rec/python/tools/criteo/__init__.py +0 -0
- easy_rec/python/tools/criteo/convert_data.py +157 -0
- easy_rec/python/tools/edit_lookup_graph.py +134 -0
- easy_rec/python/tools/faiss_index_pai.py +116 -0
- easy_rec/python/tools/feature_selection.py +316 -0
- easy_rec/python/tools/hit_rate_ds.py +223 -0
- easy_rec/python/tools/hit_rate_pai.py +138 -0
- easy_rec/python/tools/pre_check.py +120 -0
- easy_rec/python/tools/predict_and_chk.py +111 -0
- easy_rec/python/tools/read_kafka.py +55 -0
- easy_rec/python/tools/split_model_pai.py +286 -0
- easy_rec/python/tools/split_pdn_model_pai.py +272 -0
- easy_rec/python/tools/test_saved_model.py +80 -0
- easy_rec/python/tools/view_saved_model.py +39 -0
- easy_rec/python/tools/write_kafka.py +65 -0
- easy_rec/python/train_eval.py +325 -0
- easy_rec/python/utils/__init__.py +15 -0
- easy_rec/python/utils/activation.py +120 -0
- easy_rec/python/utils/check_utils.py +87 -0
- easy_rec/python/utils/compat.py +14 -0
- easy_rec/python/utils/config_util.py +652 -0
- easy_rec/python/utils/constant.py +43 -0
- easy_rec/python/utils/convert_rtp_fg.py +616 -0
- easy_rec/python/utils/dag.py +192 -0
- easy_rec/python/utils/distribution_utils.py +268 -0
- easy_rec/python/utils/ds_util.py +65 -0
- easy_rec/python/utils/embedding_utils.py +73 -0
- easy_rec/python/utils/estimator_utils.py +1036 -0
- easy_rec/python/utils/export_big_model.py +630 -0
- easy_rec/python/utils/expr_util.py +118 -0
- easy_rec/python/utils/fg_util.py +53 -0
- easy_rec/python/utils/hit_rate_utils.py +220 -0
- easy_rec/python/utils/hive_utils.py +183 -0
- easy_rec/python/utils/hpo_util.py +137 -0
- easy_rec/python/utils/hvd_utils.py +56 -0
- easy_rec/python/utils/input_utils.py +108 -0
- easy_rec/python/utils/io_util.py +282 -0
- easy_rec/python/utils/load_class.py +249 -0
- easy_rec/python/utils/meta_graph_editor.py +941 -0
- easy_rec/python/utils/multi_optimizer.py +62 -0
- easy_rec/python/utils/numpy_utils.py +18 -0
- easy_rec/python/utils/odps_util.py +79 -0
- easy_rec/python/utils/pai_util.py +86 -0
- easy_rec/python/utils/proto_util.py +90 -0
- easy_rec/python/utils/restore_filter.py +89 -0
- easy_rec/python/utils/shape_utils.py +432 -0
- easy_rec/python/utils/static_shape.py +71 -0
- easy_rec/python/utils/test_utils.py +866 -0
- easy_rec/python/utils/tf_utils.py +56 -0
- easy_rec/version.py +4 -0
- test/__init__.py +0 -0
|
@@ -0,0 +1,119 @@
|
|
|
1
|
+
# -*- encoding: utf-8 -*-
|
|
2
|
+
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
3
|
+
import tensorflow as tf
|
|
4
|
+
from tensorflow.python.keras.layers import Layer
|
|
5
|
+
|
|
6
|
+
from easy_rec.python.layers import multihead_cross_attention
|
|
7
|
+
from easy_rec.python.utils.activation import get_activation
|
|
8
|
+
from easy_rec.python.utils.shape_utils import get_shape_list
|
|
9
|
+
|
|
10
|
+
if tf.__version__ >= '2.0':
|
|
11
|
+
tf = tf.compat.v1
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
class BST(Layer):
|
|
15
|
+
|
|
16
|
+
def __init__(self, params, name='bst', reuse=None, **kwargs):
|
|
17
|
+
super(BST, self).__init__(name=name, **kwargs)
|
|
18
|
+
self.reuse = reuse
|
|
19
|
+
self.l2_reg = params.l2_regularizer
|
|
20
|
+
self.config = params.get_pb_config()
|
|
21
|
+
|
|
22
|
+
def encode(self, seq_input, max_position):
|
|
23
|
+
seq_fea = multihead_cross_attention.embedding_postprocessor(
|
|
24
|
+
seq_input,
|
|
25
|
+
position_embedding_name=self.name,
|
|
26
|
+
max_position_embeddings=max_position,
|
|
27
|
+
reuse_position_embedding=self.reuse)
|
|
28
|
+
|
|
29
|
+
n = tf.count_nonzero(seq_input, axis=-1)
|
|
30
|
+
seq_mask = tf.cast(n > 0, tf.int32)
|
|
31
|
+
|
|
32
|
+
attention_mask = multihead_cross_attention.create_attention_mask_from_input_mask(
|
|
33
|
+
from_tensor=seq_fea, to_mask=seq_mask)
|
|
34
|
+
|
|
35
|
+
hidden_act = get_activation(self.config.hidden_act)
|
|
36
|
+
attention_fea = multihead_cross_attention.transformer_encoder(
|
|
37
|
+
seq_fea,
|
|
38
|
+
hidden_size=self.config.hidden_size,
|
|
39
|
+
num_hidden_layers=self.config.num_hidden_layers,
|
|
40
|
+
num_attention_heads=self.config.num_attention_heads,
|
|
41
|
+
attention_mask=attention_mask,
|
|
42
|
+
intermediate_size=self.config.intermediate_size,
|
|
43
|
+
intermediate_act_fn=hidden_act,
|
|
44
|
+
hidden_dropout_prob=self.config.hidden_dropout_prob,
|
|
45
|
+
attention_probs_dropout_prob=self.config.attention_probs_dropout_prob,
|
|
46
|
+
initializer_range=self.config.initializer_range,
|
|
47
|
+
name=self.name + '/transformer',
|
|
48
|
+
reuse=self.reuse)
|
|
49
|
+
# attention_fea shape: [batch_size, seq_length, hidden_size]
|
|
50
|
+
if self.config.output_all_token_embeddings:
|
|
51
|
+
out_fea = tf.reshape(attention_fea,
|
|
52
|
+
[-1, max_position * self.config.hidden_size])
|
|
53
|
+
else:
|
|
54
|
+
out_fea = attention_fea[:, 0, :] # target feature
|
|
55
|
+
print('bst output shape:', out_fea.shape)
|
|
56
|
+
return out_fea
|
|
57
|
+
|
|
58
|
+
def call(self, inputs, training=None, **kwargs):
|
|
59
|
+
if not training:
|
|
60
|
+
self.config.hidden_dropout_prob = 0.0
|
|
61
|
+
self.config.attention_probs_dropout_prob = 0.0
|
|
62
|
+
assert isinstance(inputs, (list, tuple))
|
|
63
|
+
assert len(inputs) >= 2
|
|
64
|
+
# seq_input: [batch_size, seq_len, embed_size]
|
|
65
|
+
seq_input, seq_len = inputs[:2]
|
|
66
|
+
target = inputs[2] if len(inputs) > 2 else None
|
|
67
|
+
max_position = self.config.max_position_embeddings
|
|
68
|
+
# max_seq_len: the max sequence length in current mini-batch, all sequences are padded to this length
|
|
69
|
+
batch_size, cur_batch_max_seq_len, seq_embed_size = get_shape_list(
|
|
70
|
+
seq_input, 3)
|
|
71
|
+
valid_len = tf.assert_less_equal(
|
|
72
|
+
cur_batch_max_seq_len,
|
|
73
|
+
max_position,
|
|
74
|
+
message='sequence length is greater than `max_position_embeddings`:' +
|
|
75
|
+
str(max_position) + ' in feature group:' + self.name +
|
|
76
|
+
', you should set `max_seq_len` in sequence feature configs')
|
|
77
|
+
|
|
78
|
+
if self.config.output_all_token_embeddings:
|
|
79
|
+
seq_input = tf.cond(
|
|
80
|
+
tf.constant(max_position) > cur_batch_max_seq_len, lambda: tf.pad(
|
|
81
|
+
seq_input, [[0, 0], [0, max_position - cur_batch_max_seq_len],
|
|
82
|
+
[0, 0]], 'CONSTANT'),
|
|
83
|
+
lambda: tf.slice(seq_input, [0, 0, 0], [-1, max_position, -1]))
|
|
84
|
+
|
|
85
|
+
if seq_embed_size != self.config.hidden_size:
|
|
86
|
+
seq_input = tf.layers.dense(
|
|
87
|
+
seq_input,
|
|
88
|
+
self.config.hidden_size,
|
|
89
|
+
activation=tf.nn.relu,
|
|
90
|
+
kernel_regularizer=self.l2_reg,
|
|
91
|
+
name=self.name + '/seq_project',
|
|
92
|
+
reuse=self.reuse)
|
|
93
|
+
|
|
94
|
+
keep_target = self.config.target_item_position in ('head', 'tail')
|
|
95
|
+
if target is not None and keep_target:
|
|
96
|
+
target_size = target.shape.as_list()[-1]
|
|
97
|
+
assert seq_embed_size == target_size, 'the embedding size of sequence and target item is not equal' \
|
|
98
|
+
' in feature group:' + self.name
|
|
99
|
+
if target_size != self.config.hidden_size:
|
|
100
|
+
target = tf.layers.dense(
|
|
101
|
+
target,
|
|
102
|
+
self.config.hidden_size,
|
|
103
|
+
activation=tf.nn.relu,
|
|
104
|
+
kernel_regularizer=self.l2_reg,
|
|
105
|
+
name=self.name + '/target_project',
|
|
106
|
+
reuse=self.reuse)
|
|
107
|
+
# target_feature: [batch_size, 1, embed_size]
|
|
108
|
+
target = tf.expand_dims(target, 1)
|
|
109
|
+
# seq_input: [batch_size, seq_len+1, embed_size]
|
|
110
|
+
if self.config.target_item_position == 'head':
|
|
111
|
+
seq_input = tf.concat([target, seq_input], axis=1)
|
|
112
|
+
else:
|
|
113
|
+
seq_input = tf.concat([seq_input, target], axis=1)
|
|
114
|
+
max_position += 1
|
|
115
|
+
elif self.config.reserve_target_position:
|
|
116
|
+
max_position += 1
|
|
117
|
+
|
|
118
|
+
with tf.control_dependencies([valid_len]):
|
|
119
|
+
return self.encode(seq_input, max_position)
|
|
@@ -0,0 +1,250 @@
|
|
|
1
|
+
# -*- encoding:utf-8 -*-
|
|
2
|
+
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
3
|
+
"""Convenience blocks for using custom ops."""
|
|
4
|
+
import logging
|
|
5
|
+
import os
|
|
6
|
+
|
|
7
|
+
import tensorflow as tf
|
|
8
|
+
from tensorflow.python.framework import ops
|
|
9
|
+
from tensorflow.python.keras.layers import Layer
|
|
10
|
+
|
|
11
|
+
curr_dir, _ = os.path.split(__file__)
|
|
12
|
+
parent_dir = os.path.dirname(curr_dir)
|
|
13
|
+
ops_idr = os.path.dirname(parent_dir)
|
|
14
|
+
ops_dir = os.path.join(ops_idr, 'ops')
|
|
15
|
+
if 'PAI' in tf.__version__:
|
|
16
|
+
ops_dir = os.path.join(ops_dir, '1.12_pai')
|
|
17
|
+
elif tf.__version__.startswith('1.12'):
|
|
18
|
+
ops_dir = os.path.join(ops_dir, '1.12')
|
|
19
|
+
elif tf.__version__.startswith('1.15'):
|
|
20
|
+
if 'IS_ON_PAI' in os.environ:
|
|
21
|
+
ops_dir = os.path.join(ops_dir, 'DeepRec')
|
|
22
|
+
else:
|
|
23
|
+
ops_dir = os.path.join(ops_dir, '1.15')
|
|
24
|
+
elif tf.__version__.startswith('2.12'):
|
|
25
|
+
ops_dir = os.path.join(ops_dir, '2.12')
|
|
26
|
+
|
|
27
|
+
logging.info('ops_dir is %s' % ops_dir)
|
|
28
|
+
custom_op_path = os.path.join(ops_dir, 'libcustom_ops.so')
|
|
29
|
+
try:
|
|
30
|
+
custom_ops = tf.load_op_library(custom_op_path)
|
|
31
|
+
logging.info('load custom op from %s succeed' % custom_op_path)
|
|
32
|
+
except Exception as ex:
|
|
33
|
+
logging.warning('load custom op from %s failed: %s' %
|
|
34
|
+
(custom_op_path, str(ex)))
|
|
35
|
+
custom_ops = None
|
|
36
|
+
|
|
37
|
+
# if tf.__version__ >= '2.0':
|
|
38
|
+
# tf = tf.compat.v1
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
class SeqAugmentOps(Layer):
|
|
42
|
+
"""Do data augmentation for input sequence embedding."""
|
|
43
|
+
|
|
44
|
+
def __init__(self, params, name='sequence_aug', reuse=None, **kwargs):
|
|
45
|
+
super(SeqAugmentOps, self).__init__(name=name, **kwargs)
|
|
46
|
+
self.reuse = reuse
|
|
47
|
+
self.seq_aug_params = params.get_pb_config()
|
|
48
|
+
self.seq_augment = custom_ops.my_seq_augment
|
|
49
|
+
|
|
50
|
+
def call(self, inputs, training=None, **kwargs):
|
|
51
|
+
assert isinstance(
|
|
52
|
+
inputs,
|
|
53
|
+
(list, tuple)), 'the inputs of SeqAugmentOps must be type of list/tuple'
|
|
54
|
+
assert len(inputs) >= 2, 'SeqAugmentOps must have at least 2 inputs'
|
|
55
|
+
seq_input, seq_len = inputs[:2]
|
|
56
|
+
embedding_dim = int(seq_input.shape[-1])
|
|
57
|
+
with tf.variable_scope(self.name, reuse=self.reuse):
|
|
58
|
+
mask_emb = tf.get_variable(
|
|
59
|
+
'mask', (embedding_dim,), dtype=tf.float32, trainable=True)
|
|
60
|
+
seq_len = tf.to_int32(seq_len)
|
|
61
|
+
with ops.device('/CPU:0'):
|
|
62
|
+
aug_seq, aug_len = self.seq_augment(seq_input, seq_len, mask_emb,
|
|
63
|
+
self.seq_aug_params.crop_rate,
|
|
64
|
+
self.seq_aug_params.reorder_rate,
|
|
65
|
+
self.seq_aug_params.mask_rate)
|
|
66
|
+
return aug_seq, aug_len
|
|
67
|
+
|
|
68
|
+
|
|
69
|
+
class TextNormalize(Layer):
|
|
70
|
+
|
|
71
|
+
def __init__(self, params, name='text_normalize', reuse=None, **kwargs):
|
|
72
|
+
super(TextNormalize, self).__init__(name=name, **kwargs)
|
|
73
|
+
self.txt_normalizer = custom_ops.text_normalize_op
|
|
74
|
+
self.norm_parameter = params.get_or_default('norm_parameter', 0)
|
|
75
|
+
self.remove_space = params.get_or_default('remove_space', False)
|
|
76
|
+
|
|
77
|
+
def call(self, inputs, training=None, **kwargs):
|
|
78
|
+
inputs = inputs if type(inputs) in (tuple, list) else [inputs]
|
|
79
|
+
with ops.device('/CPU:0'):
|
|
80
|
+
result = [
|
|
81
|
+
self.txt_normalizer(
|
|
82
|
+
txt,
|
|
83
|
+
parameter=self.norm_parameter,
|
|
84
|
+
remove_space=self.remove_space) for txt in inputs
|
|
85
|
+
]
|
|
86
|
+
if len(result) == 1:
|
|
87
|
+
return result[0]
|
|
88
|
+
return result
|
|
89
|
+
|
|
90
|
+
|
|
91
|
+
class MappedDotProduct(Layer):
|
|
92
|
+
|
|
93
|
+
def __init__(self, params, name='mapped_dot_product', reuse=None, **kwargs):
|
|
94
|
+
super(MappedDotProduct, self).__init__(name=name, **kwargs)
|
|
95
|
+
self.mapped_dot_product = custom_ops.mapped_dot_product
|
|
96
|
+
self.bucketize = custom_ops.my_bucketize
|
|
97
|
+
self.default_value = params.get_or_default('default_value', 0)
|
|
98
|
+
self.separator = params.get_or_default('separator', '\035')
|
|
99
|
+
self.norm_fn = params.get_or_default('normalize_fn', None)
|
|
100
|
+
self.boundaries = list(params.get_or_default('boundaries', []))
|
|
101
|
+
self.emb_dim = params.get_or_default('embedding_dim', 0)
|
|
102
|
+
self.print_first_n = params.get_or_default('print_first_n', 0)
|
|
103
|
+
self.summarize = params.get_or_default('summarize', None)
|
|
104
|
+
if self.emb_dim > 0:
|
|
105
|
+
vocab_size = len(self.boundaries) + 1
|
|
106
|
+
with tf.variable_scope(self.name, reuse=reuse):
|
|
107
|
+
self.embedding_table = tf.get_variable(
|
|
108
|
+
name='dot_product_emb_table',
|
|
109
|
+
shape=[vocab_size, self.emb_dim],
|
|
110
|
+
dtype=tf.float32)
|
|
111
|
+
|
|
112
|
+
def call(self, inputs, training=None, **kwargs):
|
|
113
|
+
query, doc = inputs[:2]
|
|
114
|
+
with ops.device('/CPU:0'):
|
|
115
|
+
feature = self.mapped_dot_product(
|
|
116
|
+
query=query,
|
|
117
|
+
document=doc,
|
|
118
|
+
feature_name=self.name,
|
|
119
|
+
separator=self.separator,
|
|
120
|
+
default_value=self.default_value)
|
|
121
|
+
tf.summary.scalar(self.name, tf.reduce_mean(feature))
|
|
122
|
+
if self.print_first_n:
|
|
123
|
+
encode_q = tf.regex_replace(query, self.separator, ' ')
|
|
124
|
+
encode_t = tf.regex_replace(query, self.separator, ' ')
|
|
125
|
+
feature = tf.Print(
|
|
126
|
+
feature, [encode_q, encode_t, feature],
|
|
127
|
+
message=self.name,
|
|
128
|
+
first_n=self.print_first_n,
|
|
129
|
+
summarize=self.summarize)
|
|
130
|
+
if self.norm_fn is not None:
|
|
131
|
+
fn = eval(self.norm_fn)
|
|
132
|
+
feature = fn(feature)
|
|
133
|
+
tf.summary.scalar('normalized_%s' % self.name, tf.reduce_mean(feature))
|
|
134
|
+
if self.print_first_n:
|
|
135
|
+
feature = tf.Print(
|
|
136
|
+
feature, [feature],
|
|
137
|
+
message='normalized %s' % self.name,
|
|
138
|
+
first_n=self.print_first_n,
|
|
139
|
+
summarize=self.summarize)
|
|
140
|
+
if self.boundaries:
|
|
141
|
+
feature = self.bucketize(feature, boundaries=self.boundaries)
|
|
142
|
+
tf.summary.histogram('bucketized_%s' % self.name, feature)
|
|
143
|
+
if self.emb_dim > 0 and self.boundaries:
|
|
144
|
+
vocab_size = len(self.boundaries) + 1
|
|
145
|
+
one_hot_input_ids = tf.one_hot(feature, depth=vocab_size)
|
|
146
|
+
return tf.matmul(one_hot_input_ids, self.embedding_table)
|
|
147
|
+
return tf.expand_dims(feature, axis=-1)
|
|
148
|
+
|
|
149
|
+
|
|
150
|
+
class OverlapFeature(Layer):
|
|
151
|
+
|
|
152
|
+
def __init__(self, params, name='overlap_feature', reuse=None, **kwargs):
|
|
153
|
+
super(OverlapFeature, self).__init__(name=name, **kwargs)
|
|
154
|
+
self.overlap_feature = custom_ops.overlap_fg_op
|
|
155
|
+
methods = params.get_or_default('methods', [])
|
|
156
|
+
assert methods, 'overlap feature methods must be set'
|
|
157
|
+
self.methods = [str(method) for method in methods]
|
|
158
|
+
self.norm_fn = params.get_or_default('normalize_fn', None)
|
|
159
|
+
self.boundaries = list(params.get_or_default('boundaries', []))
|
|
160
|
+
self.separator = params.get_or_default('separator', '\035')
|
|
161
|
+
self.default_value = params.get_or_default('default_value', '-1')
|
|
162
|
+
self.emb_dim = params.get_or_default('embedding_dim', 0)
|
|
163
|
+
self.print_first_n = params.get_or_default('print_first_n', 0)
|
|
164
|
+
self.summarize = params.get_or_default('summarize', None)
|
|
165
|
+
if self.emb_dim > 0:
|
|
166
|
+
vocab_size = len(self.boundaries) + 1
|
|
167
|
+
vocab_size *= len(self.methods)
|
|
168
|
+
with tf.variable_scope(self.name, reuse=reuse):
|
|
169
|
+
self.embedding_table = tf.get_variable(
|
|
170
|
+
name='overlap_emb_table',
|
|
171
|
+
shape=[vocab_size, self.emb_dim],
|
|
172
|
+
dtype=tf.float32)
|
|
173
|
+
|
|
174
|
+
def call(self, inputs, training=None, **kwargs):
|
|
175
|
+
query, title = inputs[:2]
|
|
176
|
+
with ops.device('/CPU:0'):
|
|
177
|
+
feature = self.overlap_feature(
|
|
178
|
+
query=query,
|
|
179
|
+
title=title,
|
|
180
|
+
feature_name=self.name,
|
|
181
|
+
separator=self.separator,
|
|
182
|
+
default_value=self.default_value,
|
|
183
|
+
boundaries=self.boundaries,
|
|
184
|
+
methods=self.methods,
|
|
185
|
+
dtype=tf.int32 if self.boundaries else tf.float32)
|
|
186
|
+
|
|
187
|
+
for i, method in enumerate(self.methods):
|
|
188
|
+
# warning: feature[:, i] may be not the result of method
|
|
189
|
+
if self.boundaries:
|
|
190
|
+
tf.summary.histogram('bucketized_%s' % method, feature[:, i])
|
|
191
|
+
else:
|
|
192
|
+
tf.summary.scalar(method, tf.reduce_mean(feature[:, i]))
|
|
193
|
+
if self.print_first_n:
|
|
194
|
+
encode_q = tf.regex_replace(query, self.separator, ' ')
|
|
195
|
+
encode_t = tf.regex_replace(query, self.separator, ' ')
|
|
196
|
+
feature = tf.Print(
|
|
197
|
+
feature, [encode_q, encode_t, feature],
|
|
198
|
+
message=self.name,
|
|
199
|
+
first_n=self.print_first_n,
|
|
200
|
+
summarize=self.summarize)
|
|
201
|
+
if self.norm_fn is not None:
|
|
202
|
+
fn = eval(self.norm_fn)
|
|
203
|
+
feature = fn(feature)
|
|
204
|
+
|
|
205
|
+
if self.emb_dim > 0 and self.boundaries:
|
|
206
|
+
# This vocab will be small so we always do one-hot here, since it is always
|
|
207
|
+
# faster for a small vocabulary.
|
|
208
|
+
batch_size = tf.shape(feature)[0]
|
|
209
|
+
vocab_size = len(self.boundaries) + 1
|
|
210
|
+
num_indices = len(self.methods)
|
|
211
|
+
# Compute offsets, add to every column indices
|
|
212
|
+
offsets = tf.range(num_indices) * vocab_size # Shape: [3]
|
|
213
|
+
offsets = tf.reshape(offsets, [1, num_indices]) # Shape: [1, 3]
|
|
214
|
+
offsets = tf.tile(offsets,
|
|
215
|
+
[batch_size, 1]) # Shape: [batch_size, num_indices]
|
|
216
|
+
shifted_indices = feature + offsets # Shape: [batch_size, num_indices]
|
|
217
|
+
flat_feature_ids = tf.reshape(shifted_indices, [-1])
|
|
218
|
+
one_hot_ids = tf.one_hot(flat_feature_ids, depth=vocab_size * num_indices)
|
|
219
|
+
feature_embeddings = tf.matmul(one_hot_ids, self.embedding_table)
|
|
220
|
+
feature_embeddings = tf.reshape(feature_embeddings,
|
|
221
|
+
[batch_size, num_indices * self.emb_dim])
|
|
222
|
+
return feature_embeddings
|
|
223
|
+
return feature
|
|
224
|
+
|
|
225
|
+
|
|
226
|
+
class EditDistance(Layer):
|
|
227
|
+
|
|
228
|
+
def __init__(self, params, name='edit_distance', reuse=None, **kwargs):
|
|
229
|
+
super(EditDistance, self).__init__(name=name, **kwargs)
|
|
230
|
+
self.edit_distance = custom_ops.my_edit_distance
|
|
231
|
+
self.txt_encoding = params.get_or_default('text_encoding', 'utf-8')
|
|
232
|
+
self.emb_size = params.get_or_default('embedding_size', 512)
|
|
233
|
+
emb_dim = params.get_or_default('embedding_dim', 4)
|
|
234
|
+
with tf.variable_scope(self.name, reuse=reuse):
|
|
235
|
+
self.embedding_table = tf.get_variable('embedding_table',
|
|
236
|
+
[self.emb_size, emb_dim],
|
|
237
|
+
tf.float32)
|
|
238
|
+
|
|
239
|
+
def call(self, inputs, training=None, **kwargs):
|
|
240
|
+
input1, input2 = inputs[:2]
|
|
241
|
+
with ops.device('/CPU:0'):
|
|
242
|
+
dist = self.edit_distance(
|
|
243
|
+
input1,
|
|
244
|
+
input2,
|
|
245
|
+
normalize=False,
|
|
246
|
+
dtype=tf.int32,
|
|
247
|
+
encoding=self.txt_encoding)
|
|
248
|
+
ids = tf.clip_by_value(dist, 0, self.emb_size - 1)
|
|
249
|
+
embed = tf.nn.embedding_lookup(self.embedding_table, ids)
|
|
250
|
+
return embed
|
|
@@ -0,0 +1,133 @@
|
|
|
1
|
+
# -*- encoding: utf-8 -*-
|
|
2
|
+
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
3
|
+
import tensorflow as tf
|
|
4
|
+
from tensorflow.python.keras.layers import Layer
|
|
5
|
+
|
|
6
|
+
from easy_rec.python.utils.shape_utils import get_shape_list
|
|
7
|
+
|
|
8
|
+
if tf.__version__ >= '2.0':
|
|
9
|
+
tf = tf.compat.v1
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
def item_mask(aug_data, length, mask_emb, mask_rate):
|
|
13
|
+
length1 = tf.cast(length, dtype=tf.float32)
|
|
14
|
+
num_mask = tf.cast(tf.math.floor(length1 * mask_rate), dtype=tf.int32)
|
|
15
|
+
max_len = tf.shape(aug_data)[0]
|
|
16
|
+
seq_mask = tf.sequence_mask(num_mask, length)
|
|
17
|
+
seq_mask = tf.random.shuffle(seq_mask)
|
|
18
|
+
padding = tf.sequence_mask(0, max_len - length)
|
|
19
|
+
seq_mask = tf.concat([seq_mask, padding], axis=0)
|
|
20
|
+
|
|
21
|
+
mask_emb = tf.tile(mask_emb, [max_len, 1])
|
|
22
|
+
|
|
23
|
+
masked_item_seq = tf.where(seq_mask, mask_emb, aug_data)
|
|
24
|
+
return masked_item_seq, length
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
def item_crop(aug_data, length, crop_rate):
|
|
28
|
+
length1 = tf.cast(length, dtype=tf.float32)
|
|
29
|
+
max_len, _ = get_shape_list(aug_data)
|
|
30
|
+
max_length = tf.cast(max_len, dtype=tf.int32)
|
|
31
|
+
|
|
32
|
+
num_left = tf.cast(tf.math.floor(length1 * crop_rate), dtype=tf.int32)
|
|
33
|
+
crop_begin = tf.random.uniform([],
|
|
34
|
+
minval=0,
|
|
35
|
+
maxval=length - num_left,
|
|
36
|
+
dtype=tf.int32)
|
|
37
|
+
zeros = tf.zeros_like(aug_data)
|
|
38
|
+
x = aug_data[crop_begin:crop_begin + num_left]
|
|
39
|
+
y = zeros[:max_length - num_left]
|
|
40
|
+
cropped = tf.concat([x, y], axis=0)
|
|
41
|
+
cropped_item_seq = tf.where(
|
|
42
|
+
crop_begin + num_left < max_length, cropped,
|
|
43
|
+
tf.concat([aug_data[crop_begin:], zeros[:crop_begin]], axis=0))
|
|
44
|
+
return cropped_item_seq, num_left
|
|
45
|
+
|
|
46
|
+
|
|
47
|
+
def item_reorder(aug_data, length, reorder_rate):
|
|
48
|
+
length1 = tf.cast(length, dtype=tf.float32)
|
|
49
|
+
num_reorder = tf.cast(tf.math.floor(length1 * reorder_rate), dtype=tf.int32)
|
|
50
|
+
reorder_begin = tf.random.uniform([],
|
|
51
|
+
minval=0,
|
|
52
|
+
maxval=length - num_reorder,
|
|
53
|
+
dtype=tf.int32)
|
|
54
|
+
shuffle_index = tf.range(reorder_begin, reorder_begin + num_reorder)
|
|
55
|
+
shuffle_index = tf.random.shuffle(shuffle_index)
|
|
56
|
+
x = tf.range(get_shape_list(aug_data)[0])
|
|
57
|
+
left = tf.slice(x, [0], [reorder_begin])
|
|
58
|
+
right = tf.slice(x, [reorder_begin + num_reorder], [-1])
|
|
59
|
+
reordered_item_index = tf.concat([left, shuffle_index, right], axis=0)
|
|
60
|
+
reordered_item_seq = tf.scatter_nd(
|
|
61
|
+
tf.expand_dims(reordered_item_index, axis=1), aug_data,
|
|
62
|
+
tf.shape(aug_data))
|
|
63
|
+
return reordered_item_seq, length
|
|
64
|
+
|
|
65
|
+
|
|
66
|
+
def augment_fn(x, aug_param, mask):
|
|
67
|
+
seq, length = x
|
|
68
|
+
|
|
69
|
+
def crop_fn():
|
|
70
|
+
return item_crop(seq, length, aug_param.crop_rate)
|
|
71
|
+
|
|
72
|
+
def mask_fn():
|
|
73
|
+
return item_mask(seq, length, mask, aug_param.mask_rate)
|
|
74
|
+
|
|
75
|
+
def reorder_fn():
|
|
76
|
+
return item_reorder(seq, length, aug_param.reorder_rate)
|
|
77
|
+
|
|
78
|
+
trans_fn = []
|
|
79
|
+
if aug_param.crop_rate < 1.0:
|
|
80
|
+
trans_fn.append(crop_fn)
|
|
81
|
+
if aug_param.mask_rate > 0:
|
|
82
|
+
trans_fn.append(mask_fn)
|
|
83
|
+
if aug_param.reorder_rate > 0:
|
|
84
|
+
trans_fn.append(reorder_fn)
|
|
85
|
+
|
|
86
|
+
num_trans = len(trans_fn)
|
|
87
|
+
if num_trans == 0:
|
|
88
|
+
return seq, length
|
|
89
|
+
|
|
90
|
+
if num_trans == 1:
|
|
91
|
+
return trans_fn[0]()
|
|
92
|
+
|
|
93
|
+
method = tf.random.uniform([], minval=0, maxval=num_trans, dtype=tf.int32)
|
|
94
|
+
if num_trans == 2:
|
|
95
|
+
return tf.cond(tf.equal(method, 0), trans_fn[0], trans_fn[1])
|
|
96
|
+
|
|
97
|
+
aug_seq, aug_len = tf.cond(
|
|
98
|
+
tf.equal(method, 0), crop_fn,
|
|
99
|
+
lambda: tf.cond(tf.equal(method, 1), mask_fn, reorder_fn))
|
|
100
|
+
return aug_seq, aug_len
|
|
101
|
+
|
|
102
|
+
|
|
103
|
+
def sequence_augment(seq_input, seq_len, mask, aug_param):
|
|
104
|
+
lengths = tf.cast(seq_len, dtype=tf.int32)
|
|
105
|
+
aug_seq, aug_len = tf.map_fn(
|
|
106
|
+
lambda elems: augment_fn(elems, aug_param, mask),
|
|
107
|
+
elems=(seq_input, lengths),
|
|
108
|
+
dtype=(tf.float32, tf.int32))
|
|
109
|
+
|
|
110
|
+
aug_seq = tf.reshape(aug_seq, tf.shape(seq_input))
|
|
111
|
+
return aug_seq, aug_len
|
|
112
|
+
|
|
113
|
+
|
|
114
|
+
class SeqAugment(Layer):
|
|
115
|
+
"""Do data augmentation for input sequence embedding."""
|
|
116
|
+
|
|
117
|
+
def __init__(self, params, name='seq_aug', reuse=None, **kwargs):
|
|
118
|
+
super(SeqAugment, self).__init__(name=name, **kwargs)
|
|
119
|
+
self.reuse = reuse
|
|
120
|
+
self.seq_aug_params = params.get_pb_config()
|
|
121
|
+
|
|
122
|
+
def call(self, inputs, training=None, **kwargs):
|
|
123
|
+
assert isinstance(inputs, (list, tuple))
|
|
124
|
+
seq_input, seq_len = inputs[:2]
|
|
125
|
+
|
|
126
|
+
embedding_size = int(seq_input.shape[-1])
|
|
127
|
+
with tf.variable_scope(self.name, reuse=self.reuse):
|
|
128
|
+
mask_emb = tf.get_variable(
|
|
129
|
+
'mask', [1, embedding_size], dtype=tf.float32, trainable=True)
|
|
130
|
+
|
|
131
|
+
aug_seq, aug_len = sequence_augment(seq_input, seq_len, mask_emb,
|
|
132
|
+
self.seq_aug_params)
|
|
133
|
+
return aug_seq, aug_len
|
|
@@ -0,0 +1,67 @@
|
|
|
1
|
+
# -*- encoding: utf-8 -*-
|
|
2
|
+
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
3
|
+
import logging
|
|
4
|
+
|
|
5
|
+
import tensorflow as tf
|
|
6
|
+
from tensorflow.python.keras.layers import Layer
|
|
7
|
+
|
|
8
|
+
from easy_rec.python.layers.keras import MLP
|
|
9
|
+
from easy_rec.python.layers.utils import Parameter
|
|
10
|
+
from easy_rec.python.utils.shape_utils import get_shape_list
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
class DIN(Layer):
|
|
14
|
+
|
|
15
|
+
def __init__(self, params, name='din', reuse=None, **kwargs):
|
|
16
|
+
super(DIN, self).__init__(name=name, **kwargs)
|
|
17
|
+
self.reuse = reuse
|
|
18
|
+
self.l2_reg = params.l2_regularizer
|
|
19
|
+
self.config = params.get_pb_config()
|
|
20
|
+
self.config.attention_dnn.use_final_bn = False
|
|
21
|
+
self.config.attention_dnn.use_final_bias = True
|
|
22
|
+
self.config.attention_dnn.final_activation = 'linear'
|
|
23
|
+
mlp_params = Parameter.make_from_pb(self.config.attention_dnn)
|
|
24
|
+
mlp_params.l2_regularizer = self.l2_reg
|
|
25
|
+
self.din_layer = MLP(mlp_params, 'din_attention', reuse=self.reuse)
|
|
26
|
+
|
|
27
|
+
def call(self, inputs, training=None, **kwargs):
|
|
28
|
+
keys, seq_len, query = inputs
|
|
29
|
+
assert query is not None, '[%s] target feature is empty' % self.name
|
|
30
|
+
query_emb_size = int(query.shape[-1])
|
|
31
|
+
seq_emb_size = keys.shape.as_list()[-1]
|
|
32
|
+
if query_emb_size != seq_emb_size:
|
|
33
|
+
logging.info(
|
|
34
|
+
'<din> the embedding size of sequence [%d] and target item [%d] is not equal'
|
|
35
|
+
' in feature group: %s', seq_emb_size, query_emb_size, self.name)
|
|
36
|
+
if query_emb_size < seq_emb_size:
|
|
37
|
+
query = tf.pad(query, [[0, 0], [0, seq_emb_size - query_emb_size]])
|
|
38
|
+
else:
|
|
39
|
+
assert False, 'the embedding size of target item is larger than the one of sequence'
|
|
40
|
+
|
|
41
|
+
batch_size, max_seq_len, _ = get_shape_list(keys, 3)
|
|
42
|
+
queries = tf.tile(tf.expand_dims(query, 1), [1, max_seq_len, 1])
|
|
43
|
+
din_all = tf.concat([queries, keys, queries - keys, queries * keys],
|
|
44
|
+
axis=-1)
|
|
45
|
+
output = self.din_layer(din_all, training) # [B, L, 1]
|
|
46
|
+
scores = tf.transpose(output, [0, 2, 1]) # [B, 1, L]
|
|
47
|
+
|
|
48
|
+
seq_mask = tf.sequence_mask(seq_len, max_seq_len, dtype=tf.bool)
|
|
49
|
+
seq_mask = tf.expand_dims(seq_mask, 1)
|
|
50
|
+
paddings = tf.ones_like(scores) * (-2**32 + 1)
|
|
51
|
+
scores = tf.where(seq_mask, scores, paddings) # [B, 1, L]
|
|
52
|
+
if self.config.attention_normalizer == 'softmax':
|
|
53
|
+
scores = tf.nn.softmax(scores) # (B, 1, L)
|
|
54
|
+
elif self.config.attention_normalizer == 'sigmoid':
|
|
55
|
+
scores = scores / (seq_emb_size**0.5)
|
|
56
|
+
scores = tf.nn.sigmoid(scores)
|
|
57
|
+
else:
|
|
58
|
+
raise ValueError('unsupported attention normalizer: ' +
|
|
59
|
+
self.config.attention_normalizer)
|
|
60
|
+
|
|
61
|
+
if query_emb_size < seq_emb_size:
|
|
62
|
+
keys = keys[:, :, :query_emb_size] # [B, L, E]
|
|
63
|
+
output = tf.squeeze(tf.matmul(scores, keys), axis=[1])
|
|
64
|
+
if self.config.need_target_feature:
|
|
65
|
+
output = tf.concat([output, query], axis=-1)
|
|
66
|
+
print('din output shape:', output.shape)
|
|
67
|
+
return output
|