easy-cs-rec-custommodel 0.8.6__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of easy-cs-rec-custommodel might be problematic. Click here for more details.
- easy_cs_rec_custommodel-0.8.6.dist-info/LICENSE +203 -0
- easy_cs_rec_custommodel-0.8.6.dist-info/METADATA +48 -0
- easy_cs_rec_custommodel-0.8.6.dist-info/RECORD +336 -0
- easy_cs_rec_custommodel-0.8.6.dist-info/WHEEL +6 -0
- easy_cs_rec_custommodel-0.8.6.dist-info/top_level.txt +2 -0
- easy_rec/__init__.py +114 -0
- easy_rec/python/__init__.py +0 -0
- easy_rec/python/builders/__init__.py +0 -0
- easy_rec/python/builders/hyperparams_builder.py +78 -0
- easy_rec/python/builders/loss_builder.py +333 -0
- easy_rec/python/builders/optimizer_builder.py +211 -0
- easy_rec/python/builders/strategy_builder.py +44 -0
- easy_rec/python/compat/__init__.py +0 -0
- easy_rec/python/compat/adam_s.py +245 -0
- easy_rec/python/compat/array_ops.py +229 -0
- easy_rec/python/compat/dynamic_variable.py +542 -0
- easy_rec/python/compat/early_stopping.py +653 -0
- easy_rec/python/compat/embedding_ops.py +162 -0
- easy_rec/python/compat/embedding_parallel_saver.py +316 -0
- easy_rec/python/compat/estimator_train.py +116 -0
- easy_rec/python/compat/exporter.py +473 -0
- easy_rec/python/compat/feature_column/__init__.py +0 -0
- easy_rec/python/compat/feature_column/feature_column.py +3675 -0
- easy_rec/python/compat/feature_column/feature_column_v2.py +5233 -0
- easy_rec/python/compat/feature_column/sequence_feature_column.py +648 -0
- easy_rec/python/compat/feature_column/utils.py +154 -0
- easy_rec/python/compat/layers.py +329 -0
- easy_rec/python/compat/ops.py +14 -0
- easy_rec/python/compat/optimizers.py +619 -0
- easy_rec/python/compat/queues.py +311 -0
- easy_rec/python/compat/regularizers.py +208 -0
- easy_rec/python/compat/sok_optimizer.py +440 -0
- easy_rec/python/compat/sync_replicas_optimizer.py +528 -0
- easy_rec/python/compat/weight_decay_optimizers.py +475 -0
- easy_rec/python/core/__init__.py +0 -0
- easy_rec/python/core/easyrec_metrics/__init__.py +24 -0
- easy_rec/python/core/easyrec_metrics/distribute_metrics_impl_pai.py +3702 -0
- easy_rec/python/core/easyrec_metrics/distribute_metrics_impl_tf.py +3768 -0
- easy_rec/python/core/learning_schedules.py +228 -0
- easy_rec/python/core/metrics.py +402 -0
- easy_rec/python/core/sampler.py +844 -0
- easy_rec/python/eval.py +102 -0
- easy_rec/python/export.py +150 -0
- easy_rec/python/feature_column/__init__.py +0 -0
- easy_rec/python/feature_column/feature_column.py +664 -0
- easy_rec/python/feature_column/feature_group.py +89 -0
- easy_rec/python/hpo/__init__.py +0 -0
- easy_rec/python/hpo/emr_hpo.py +140 -0
- easy_rec/python/hpo/generate_hpo_sql.py +71 -0
- easy_rec/python/hpo/pai_hpo.py +297 -0
- easy_rec/python/inference/__init__.py +0 -0
- easy_rec/python/inference/csv_predictor.py +189 -0
- easy_rec/python/inference/hive_parquet_predictor.py +200 -0
- easy_rec/python/inference/hive_predictor.py +166 -0
- easy_rec/python/inference/odps_predictor.py +70 -0
- easy_rec/python/inference/parquet_predictor.py +147 -0
- easy_rec/python/inference/parquet_predictor_v2.py +147 -0
- easy_rec/python/inference/predictor.py +621 -0
- easy_rec/python/inference/processor/__init__.py +0 -0
- easy_rec/python/inference/processor/test.py +170 -0
- easy_rec/python/inference/vector_retrieve.py +124 -0
- easy_rec/python/input/__init__.py +0 -0
- easy_rec/python/input/batch_tfrecord_input.py +117 -0
- easy_rec/python/input/criteo_binary_reader.py +259 -0
- easy_rec/python/input/criteo_input.py +107 -0
- easy_rec/python/input/csv_input.py +175 -0
- easy_rec/python/input/csv_input_ex.py +72 -0
- easy_rec/python/input/csv_input_v2.py +68 -0
- easy_rec/python/input/datahub_input.py +320 -0
- easy_rec/python/input/dummy_input.py +58 -0
- easy_rec/python/input/hive_input.py +123 -0
- easy_rec/python/input/hive_parquet_input.py +140 -0
- easy_rec/python/input/hive_rtp_input.py +174 -0
- easy_rec/python/input/input.py +1064 -0
- easy_rec/python/input/kafka_dataset.py +144 -0
- easy_rec/python/input/kafka_input.py +235 -0
- easy_rec/python/input/load_parquet.py +317 -0
- easy_rec/python/input/odps_input.py +101 -0
- easy_rec/python/input/odps_input_v2.py +110 -0
- easy_rec/python/input/odps_input_v3.py +132 -0
- easy_rec/python/input/odps_rtp_input.py +187 -0
- easy_rec/python/input/odps_rtp_input_v2.py +104 -0
- easy_rec/python/input/parquet_input.py +397 -0
- easy_rec/python/input/parquet_input_v2.py +180 -0
- easy_rec/python/input/parquet_input_v3.py +203 -0
- easy_rec/python/input/rtp_input.py +225 -0
- easy_rec/python/input/rtp_input_v2.py +145 -0
- easy_rec/python/input/tfrecord_input.py +100 -0
- easy_rec/python/layers/__init__.py +0 -0
- easy_rec/python/layers/backbone.py +571 -0
- easy_rec/python/layers/capsule_layer.py +176 -0
- easy_rec/python/layers/cmbf.py +390 -0
- easy_rec/python/layers/common_layers.py +192 -0
- easy_rec/python/layers/dnn.py +87 -0
- easy_rec/python/layers/embed_input_layer.py +25 -0
- easy_rec/python/layers/fm.py +26 -0
- easy_rec/python/layers/input_layer.py +396 -0
- easy_rec/python/layers/keras/__init__.py +34 -0
- easy_rec/python/layers/keras/activation.py +114 -0
- easy_rec/python/layers/keras/attention.py +267 -0
- easy_rec/python/layers/keras/auxiliary_loss.py +47 -0
- easy_rec/python/layers/keras/blocks.py +262 -0
- easy_rec/python/layers/keras/bst.py +119 -0
- easy_rec/python/layers/keras/custom_ops.py +250 -0
- easy_rec/python/layers/keras/data_augment.py +133 -0
- easy_rec/python/layers/keras/din.py +67 -0
- easy_rec/python/layers/keras/einsum_dense.py +598 -0
- easy_rec/python/layers/keras/embedding.py +81 -0
- easy_rec/python/layers/keras/fibinet.py +251 -0
- easy_rec/python/layers/keras/interaction.py +416 -0
- easy_rec/python/layers/keras/layer_norm.py +364 -0
- easy_rec/python/layers/keras/mask_net.py +166 -0
- easy_rec/python/layers/keras/multi_head_attention.py +717 -0
- easy_rec/python/layers/keras/multi_task.py +125 -0
- easy_rec/python/layers/keras/numerical_embedding.py +376 -0
- easy_rec/python/layers/keras/ppnet.py +194 -0
- easy_rec/python/layers/keras/transformer.py +192 -0
- easy_rec/python/layers/layer_norm.py +51 -0
- easy_rec/python/layers/mmoe.py +83 -0
- easy_rec/python/layers/multihead_attention.py +162 -0
- easy_rec/python/layers/multihead_cross_attention.py +749 -0
- easy_rec/python/layers/senet.py +73 -0
- easy_rec/python/layers/seq_input_layer.py +134 -0
- easy_rec/python/layers/sequence_feature_layer.py +249 -0
- easy_rec/python/layers/uniter.py +301 -0
- easy_rec/python/layers/utils.py +248 -0
- easy_rec/python/layers/variational_dropout_layer.py +130 -0
- easy_rec/python/loss/__init__.py +0 -0
- easy_rec/python/loss/circle_loss.py +82 -0
- easy_rec/python/loss/contrastive_loss.py +79 -0
- easy_rec/python/loss/f1_reweight_loss.py +38 -0
- easy_rec/python/loss/focal_loss.py +93 -0
- easy_rec/python/loss/jrc_loss.py +128 -0
- easy_rec/python/loss/listwise_loss.py +161 -0
- easy_rec/python/loss/multi_similarity.py +68 -0
- easy_rec/python/loss/pairwise_loss.py +307 -0
- easy_rec/python/loss/softmax_loss_with_negative_mining.py +110 -0
- easy_rec/python/loss/zero_inflated_lognormal.py +76 -0
- easy_rec/python/main.py +878 -0
- easy_rec/python/model/__init__.py +0 -0
- easy_rec/python/model/autoint.py +73 -0
- easy_rec/python/model/cmbf.py +47 -0
- easy_rec/python/model/collaborative_metric_learning.py +182 -0
- easy_rec/python/model/custom_model.py +323 -0
- easy_rec/python/model/dat.py +138 -0
- easy_rec/python/model/dbmtl.py +116 -0
- easy_rec/python/model/dcn.py +70 -0
- easy_rec/python/model/deepfm.py +106 -0
- easy_rec/python/model/dlrm.py +73 -0
- easy_rec/python/model/dropoutnet.py +207 -0
- easy_rec/python/model/dssm.py +154 -0
- easy_rec/python/model/dssm_senet.py +143 -0
- easy_rec/python/model/dummy_model.py +48 -0
- easy_rec/python/model/easy_rec_estimator.py +739 -0
- easy_rec/python/model/easy_rec_model.py +467 -0
- easy_rec/python/model/esmm.py +242 -0
- easy_rec/python/model/fm.py +63 -0
- easy_rec/python/model/match_model.py +357 -0
- easy_rec/python/model/mind.py +445 -0
- easy_rec/python/model/mmoe.py +70 -0
- easy_rec/python/model/multi_task_model.py +303 -0
- easy_rec/python/model/multi_tower.py +62 -0
- easy_rec/python/model/multi_tower_bst.py +190 -0
- easy_rec/python/model/multi_tower_din.py +130 -0
- easy_rec/python/model/multi_tower_recall.py +68 -0
- easy_rec/python/model/pdn.py +203 -0
- easy_rec/python/model/ple.py +120 -0
- easy_rec/python/model/rank_model.py +485 -0
- easy_rec/python/model/rocket_launching.py +203 -0
- easy_rec/python/model/simple_multi_task.py +54 -0
- easy_rec/python/model/uniter.py +46 -0
- easy_rec/python/model/wide_and_deep.py +121 -0
- easy_rec/python/ops/1.12/incr_record.so +0 -0
- easy_rec/python/ops/1.12/kafka.so +0 -0
- easy_rec/python/ops/1.12/libcustom_ops.so +0 -0
- easy_rec/python/ops/1.12/libembed_op.so +0 -0
- easy_rec/python/ops/1.12/libhiredis.so.1.0.0 +0 -0
- easy_rec/python/ops/1.12/librdkafka++.so.1 +0 -0
- easy_rec/python/ops/1.12/librdkafka.so.1 +0 -0
- easy_rec/python/ops/1.12/libredis++.so +0 -0
- easy_rec/python/ops/1.12/libredis++.so.1 +0 -0
- easy_rec/python/ops/1.12/libredis++.so.1.2.3 +0 -0
- easy_rec/python/ops/1.12/libstr_avx_op.so +0 -0
- easy_rec/python/ops/1.12/libwrite_sparse_kv.so +0 -0
- easy_rec/python/ops/1.15/incr_record.so +0 -0
- easy_rec/python/ops/1.15/kafka.so +0 -0
- easy_rec/python/ops/1.15/libcustom_ops.so +0 -0
- easy_rec/python/ops/1.15/libembed_op.so +0 -0
- easy_rec/python/ops/1.15/libhiredis.so.1.0.0 +0 -0
- easy_rec/python/ops/1.15/librdkafka++.so +0 -0
- easy_rec/python/ops/1.15/librdkafka++.so.1 +0 -0
- easy_rec/python/ops/1.15/librdkafka.so +0 -0
- easy_rec/python/ops/1.15/librdkafka.so.1 +0 -0
- easy_rec/python/ops/1.15/libredis++.so.1 +0 -0
- easy_rec/python/ops/1.15/libstr_avx_op.so +0 -0
- easy_rec/python/ops/2.12/libcustom_ops.so +0 -0
- easy_rec/python/ops/2.12/libload_embed.so +0 -0
- easy_rec/python/ops/2.12/libstr_avx_op.so +0 -0
- easy_rec/python/ops/__init__.py +0 -0
- easy_rec/python/ops/gen_kafka_ops.py +193 -0
- easy_rec/python/ops/gen_str_avx_op.py +28 -0
- easy_rec/python/ops/incr_record.py +30 -0
- easy_rec/python/predict.py +170 -0
- easy_rec/python/protos/__init__.py +0 -0
- easy_rec/python/protos/autoint_pb2.py +122 -0
- easy_rec/python/protos/backbone_pb2.py +1416 -0
- easy_rec/python/protos/cmbf_pb2.py +435 -0
- easy_rec/python/protos/collaborative_metric_learning_pb2.py +252 -0
- easy_rec/python/protos/custom_model_pb2.py +57 -0
- easy_rec/python/protos/dat_pb2.py +262 -0
- easy_rec/python/protos/data_source_pb2.py +422 -0
- easy_rec/python/protos/dataset_pb2.py +1920 -0
- easy_rec/python/protos/dbmtl_pb2.py +191 -0
- easy_rec/python/protos/dcn_pb2.py +197 -0
- easy_rec/python/protos/deepfm_pb2.py +163 -0
- easy_rec/python/protos/dlrm_pb2.py +163 -0
- easy_rec/python/protos/dnn_pb2.py +329 -0
- easy_rec/python/protos/dropoutnet_pb2.py +239 -0
- easy_rec/python/protos/dssm_pb2.py +262 -0
- easy_rec/python/protos/dssm_senet_pb2.py +282 -0
- easy_rec/python/protos/easy_rec_model_pb2.py +1672 -0
- easy_rec/python/protos/esmm_pb2.py +133 -0
- easy_rec/python/protos/eval_pb2.py +930 -0
- easy_rec/python/protos/export_pb2.py +379 -0
- easy_rec/python/protos/feature_config_pb2.py +1359 -0
- easy_rec/python/protos/fm_pb2.py +90 -0
- easy_rec/python/protos/hive_config_pb2.py +138 -0
- easy_rec/python/protos/hyperparams_pb2.py +624 -0
- easy_rec/python/protos/keras_layer_pb2.py +692 -0
- easy_rec/python/protos/layer_pb2.py +1936 -0
- easy_rec/python/protos/loss_pb2.py +1713 -0
- easy_rec/python/protos/mind_pb2.py +497 -0
- easy_rec/python/protos/mmoe_pb2.py +215 -0
- easy_rec/python/protos/multi_tower_pb2.py +295 -0
- easy_rec/python/protos/multi_tower_recall_pb2.py +198 -0
- easy_rec/python/protos/optimizer_pb2.py +2017 -0
- easy_rec/python/protos/pdn_pb2.py +293 -0
- easy_rec/python/protos/pipeline_pb2.py +516 -0
- easy_rec/python/protos/ple_pb2.py +231 -0
- easy_rec/python/protos/predict_pb2.py +1140 -0
- easy_rec/python/protos/rocket_launching_pb2.py +169 -0
- easy_rec/python/protos/seq_encoder_pb2.py +1084 -0
- easy_rec/python/protos/simi_pb2.py +54 -0
- easy_rec/python/protos/simple_multi_task_pb2.py +97 -0
- easy_rec/python/protos/tf_predict_pb2.py +630 -0
- easy_rec/python/protos/tower_pb2.py +661 -0
- easy_rec/python/protos/train_pb2.py +1197 -0
- easy_rec/python/protos/uniter_pb2.py +307 -0
- easy_rec/python/protos/variational_dropout_pb2.py +91 -0
- easy_rec/python/protos/wide_and_deep_pb2.py +131 -0
- easy_rec/python/test/__init__.py +0 -0
- easy_rec/python/test/csv_input_test.py +340 -0
- easy_rec/python/test/custom_early_stop_func.py +19 -0
- easy_rec/python/test/dh_local_run.py +104 -0
- easy_rec/python/test/embed_test.py +155 -0
- easy_rec/python/test/emr_run.py +119 -0
- easy_rec/python/test/eval_metric_test.py +107 -0
- easy_rec/python/test/excel_convert_test.py +64 -0
- easy_rec/python/test/export_test.py +513 -0
- easy_rec/python/test/fg_test.py +70 -0
- easy_rec/python/test/hive_input_test.py +311 -0
- easy_rec/python/test/hpo_test.py +235 -0
- easy_rec/python/test/kafka_test.py +373 -0
- easy_rec/python/test/local_incr_test.py +122 -0
- easy_rec/python/test/loss_test.py +110 -0
- easy_rec/python/test/odps_command.py +61 -0
- easy_rec/python/test/odps_local_run.py +86 -0
- easy_rec/python/test/odps_run.py +254 -0
- easy_rec/python/test/odps_test_cls.py +39 -0
- easy_rec/python/test/odps_test_prepare.py +198 -0
- easy_rec/python/test/odps_test_util.py +237 -0
- easy_rec/python/test/pre_check_test.py +54 -0
- easy_rec/python/test/predictor_test.py +394 -0
- easy_rec/python/test/rtp_convert_test.py +133 -0
- easy_rec/python/test/run.py +138 -0
- easy_rec/python/test/train_eval_test.py +1299 -0
- easy_rec/python/test/util_test.py +85 -0
- easy_rec/python/test/zero_inflated_lognormal_test.py +53 -0
- easy_rec/python/tools/__init__.py +0 -0
- easy_rec/python/tools/add_boundaries_to_config.py +67 -0
- easy_rec/python/tools/add_feature_info_to_config.py +145 -0
- easy_rec/python/tools/convert_config_format.py +48 -0
- easy_rec/python/tools/convert_rtp_data.py +79 -0
- easy_rec/python/tools/convert_rtp_fg.py +106 -0
- easy_rec/python/tools/create_config_from_excel.py +427 -0
- easy_rec/python/tools/criteo/__init__.py +0 -0
- easy_rec/python/tools/criteo/convert_data.py +157 -0
- easy_rec/python/tools/edit_lookup_graph.py +134 -0
- easy_rec/python/tools/faiss_index_pai.py +116 -0
- easy_rec/python/tools/feature_selection.py +316 -0
- easy_rec/python/tools/hit_rate_ds.py +223 -0
- easy_rec/python/tools/hit_rate_pai.py +138 -0
- easy_rec/python/tools/pre_check.py +120 -0
- easy_rec/python/tools/predict_and_chk.py +111 -0
- easy_rec/python/tools/read_kafka.py +55 -0
- easy_rec/python/tools/split_model_pai.py +286 -0
- easy_rec/python/tools/split_pdn_model_pai.py +272 -0
- easy_rec/python/tools/test_saved_model.py +80 -0
- easy_rec/python/tools/view_saved_model.py +39 -0
- easy_rec/python/tools/write_kafka.py +65 -0
- easy_rec/python/train_eval.py +325 -0
- easy_rec/python/utils/__init__.py +15 -0
- easy_rec/python/utils/activation.py +120 -0
- easy_rec/python/utils/check_utils.py +87 -0
- easy_rec/python/utils/compat.py +14 -0
- easy_rec/python/utils/config_util.py +652 -0
- easy_rec/python/utils/constant.py +43 -0
- easy_rec/python/utils/convert_rtp_fg.py +616 -0
- easy_rec/python/utils/dag.py +192 -0
- easy_rec/python/utils/distribution_utils.py +268 -0
- easy_rec/python/utils/ds_util.py +65 -0
- easy_rec/python/utils/embedding_utils.py +73 -0
- easy_rec/python/utils/estimator_utils.py +1036 -0
- easy_rec/python/utils/export_big_model.py +630 -0
- easy_rec/python/utils/expr_util.py +118 -0
- easy_rec/python/utils/fg_util.py +53 -0
- easy_rec/python/utils/hit_rate_utils.py +220 -0
- easy_rec/python/utils/hive_utils.py +183 -0
- easy_rec/python/utils/hpo_util.py +137 -0
- easy_rec/python/utils/hvd_utils.py +56 -0
- easy_rec/python/utils/input_utils.py +108 -0
- easy_rec/python/utils/io_util.py +282 -0
- easy_rec/python/utils/load_class.py +249 -0
- easy_rec/python/utils/meta_graph_editor.py +941 -0
- easy_rec/python/utils/multi_optimizer.py +62 -0
- easy_rec/python/utils/numpy_utils.py +18 -0
- easy_rec/python/utils/odps_util.py +79 -0
- easy_rec/python/utils/pai_util.py +86 -0
- easy_rec/python/utils/proto_util.py +90 -0
- easy_rec/python/utils/restore_filter.py +89 -0
- easy_rec/python/utils/shape_utils.py +432 -0
- easy_rec/python/utils/static_shape.py +71 -0
- easy_rec/python/utils/test_utils.py +866 -0
- easy_rec/python/utils/tf_utils.py +56 -0
- easy_rec/version.py +4 -0
- test/__init__.py +0 -0
|
@@ -0,0 +1,616 @@
|
|
|
1
|
+
# -*- encoding:utf-8 -*-
|
|
2
|
+
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
3
|
+
import json
|
|
4
|
+
import logging
|
|
5
|
+
import sys
|
|
6
|
+
import traceback
|
|
7
|
+
|
|
8
|
+
import tensorflow as tf
|
|
9
|
+
from google.protobuf import text_format
|
|
10
|
+
|
|
11
|
+
from easy_rec.python.protos.dataset_pb2 import DatasetConfig
|
|
12
|
+
from easy_rec.python.protos.feature_config_pb2 import FeatureConfig
|
|
13
|
+
from easy_rec.python.protos.feature_config_pb2 import FeatureGroupConfig
|
|
14
|
+
from easy_rec.python.protos.feature_config_pb2 import WideOrDeep
|
|
15
|
+
from easy_rec.python.protos.pipeline_pb2 import EasyRecConfig
|
|
16
|
+
from easy_rec.python.utils import config_util
|
|
17
|
+
|
|
18
|
+
if tf.__version__ >= '2.0':
|
|
19
|
+
tf = tf.compat.v1
|
|
20
|
+
|
|
21
|
+
MAX_HASH_BUCKET_SIZE = 9223372036854775807
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
def _gen_raw_config(feature, input_field, feature_config, is_multi,
|
|
25
|
+
curr_embed_dim):
|
|
26
|
+
if 'bucketize_boundaries' in feature:
|
|
27
|
+
if is_multi:
|
|
28
|
+
input_field.input_type = DatasetConfig.STRING
|
|
29
|
+
feature_config.feature_type = feature_config.TagFeature
|
|
30
|
+
else:
|
|
31
|
+
input_field.input_type = DatasetConfig.INT32
|
|
32
|
+
feature_config.feature_type = feature_config.IdFeature
|
|
33
|
+
feature_config.num_buckets = len(
|
|
34
|
+
feature['bucketize_boundaries'].split(',')) + 1
|
|
35
|
+
feature_config.embedding_dim = curr_embed_dim
|
|
36
|
+
else:
|
|
37
|
+
feature_config.feature_type = feature_config.RawFeature
|
|
38
|
+
input_field.default_val = str(feature.get('default_value', '0.0'))
|
|
39
|
+
raw_input_dim = feature.get('value_dimension', 1)
|
|
40
|
+
if raw_input_dim > 1:
|
|
41
|
+
feature_config.raw_input_dim = raw_input_dim
|
|
42
|
+
input_field.input_type = DatasetConfig.STRING
|
|
43
|
+
else:
|
|
44
|
+
input_field.input_type = DatasetConfig.DOUBLE
|
|
45
|
+
if 'boundaries' in feature:
|
|
46
|
+
feature_config.boundaries.extend(feature['boundaries'])
|
|
47
|
+
feature_config.embedding_dim = curr_embed_dim
|
|
48
|
+
if 'normalizer_fn' in feature:
|
|
49
|
+
feature_config.normalizer_fn = feature['normalizer_fn']
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
def _set_hash_bucket(feature, feature_config, input_field):
|
|
53
|
+
if 'max_partitions' in feature:
|
|
54
|
+
feature_config.max_partitions = feature['max_partitions']
|
|
55
|
+
if 'hash_bucket_size' in feature:
|
|
56
|
+
feature_config.hash_bucket_size = feature['hash_bucket_size']
|
|
57
|
+
if feature_config.hash_bucket_size > 10000000:
|
|
58
|
+
if 'max_partitions' not in feature:
|
|
59
|
+
logging.error(
|
|
60
|
+
'it is suggested to set max_partitions > 1 for large hash buckets[%s]'
|
|
61
|
+
% feature['feature_name'])
|
|
62
|
+
sys.exit(1)
|
|
63
|
+
if feature.get('filter_freq', -1) >= 0:
|
|
64
|
+
feature_config.ev_params.filter_freq = feature['filter_freq']
|
|
65
|
+
feature_config.hash_bucket_size = MAX_HASH_BUCKET_SIZE
|
|
66
|
+
if feature.get('steps_to_live', -1) >= 0:
|
|
67
|
+
feature_config.ev_params.steps_to_live = feature['steps_to_live']
|
|
68
|
+
feature_config.hash_bucket_size = MAX_HASH_BUCKET_SIZE
|
|
69
|
+
elif 'vocab_file' in feature:
|
|
70
|
+
feature_config.vocab_file = feature['vocab_file']
|
|
71
|
+
elif 'vocab_list' in feature:
|
|
72
|
+
feature_config.vocab_list = feature['vocab_list']
|
|
73
|
+
elif 'num_buckets' in feature:
|
|
74
|
+
feature_config.num_buckets = feature['num_buckets']
|
|
75
|
+
input_field.default_val = feature.get('default_value', '0')
|
|
76
|
+
else:
|
|
77
|
+
assert False, 'one of hash_bucket_size,vocab_file,vocab_list,num_buckets must be set'
|
|
78
|
+
|
|
79
|
+
|
|
80
|
+
def process_features(feature_type,
|
|
81
|
+
feature_name,
|
|
82
|
+
feature,
|
|
83
|
+
pipeline_config,
|
|
84
|
+
embedding_dim,
|
|
85
|
+
incol_separator,
|
|
86
|
+
is_sequence=False):
|
|
87
|
+
feature_config = FeatureConfig()
|
|
88
|
+
feature_config.input_names.append(feature_name)
|
|
89
|
+
feature_config.separator = incol_separator
|
|
90
|
+
input_field = DatasetConfig.Field()
|
|
91
|
+
input_field.input_name = feature_name
|
|
92
|
+
curr_embed_dim = feature.get('embedding_dimension',
|
|
93
|
+
feature.get('embedding_dim', embedding_dim))
|
|
94
|
+
curr_combiner = feature.get('combiner', 'sum')
|
|
95
|
+
if feature.get('is_cache', False):
|
|
96
|
+
logging.info('will cache %s' % feature_name)
|
|
97
|
+
feature_config.is_cache = True
|
|
98
|
+
is_multi = feature.get('is_multi', False)
|
|
99
|
+
# is_seq = feature.get('is_seq', False)
|
|
100
|
+
if is_sequence:
|
|
101
|
+
feature_config.feature_type = feature_config.SequenceFeature
|
|
102
|
+
feature_config.embedding_dim = curr_embed_dim
|
|
103
|
+
if feature_type == 'raw_feature':
|
|
104
|
+
feature_config.sub_feature_type = feature_config.RawFeature
|
|
105
|
+
input_field.default_val = feature.get('default_value', '0.0')
|
|
106
|
+
raw_input_dim = feature.get('value_dimension', 1)
|
|
107
|
+
if 'boundaries' in feature:
|
|
108
|
+
feature_config.boundaries.extend(feature['boundaries'])
|
|
109
|
+
if raw_input_dim > 1:
|
|
110
|
+
feature_config.raw_input_dim = raw_input_dim
|
|
111
|
+
else:
|
|
112
|
+
feature_config.sub_feature_type = feature_config.IdFeature
|
|
113
|
+
_set_hash_bucket(feature, feature_config, input_field)
|
|
114
|
+
feature_config.combiner = curr_combiner
|
|
115
|
+
elif feature_type == 'id_feature':
|
|
116
|
+
if is_multi:
|
|
117
|
+
feature_config.feature_type = feature_config.TagFeature
|
|
118
|
+
kv_separator = feature.get('kv_separator', None)
|
|
119
|
+
if kv_separator:
|
|
120
|
+
feature_config.kv_separator = kv_separator
|
|
121
|
+
# elif is_seq:
|
|
122
|
+
# feature_config.feature_type = feature_config.SequenceFeature
|
|
123
|
+
else:
|
|
124
|
+
feature_config.feature_type = feature_config.IdFeature
|
|
125
|
+
feature_config.embedding_dim = curr_embed_dim
|
|
126
|
+
_set_hash_bucket(feature, feature_config, input_field)
|
|
127
|
+
feature_config.combiner = curr_combiner
|
|
128
|
+
elif feature_type == 'lookup_feature':
|
|
129
|
+
need_discrete = feature.get('needDiscrete', True)
|
|
130
|
+
if not need_discrete:
|
|
131
|
+
_gen_raw_config(feature, input_field, feature_config, is_multi,
|
|
132
|
+
curr_embed_dim)
|
|
133
|
+
else:
|
|
134
|
+
feature_config.feature_type = feature_config.TagFeature
|
|
135
|
+
if feature.get('needWeighting', False):
|
|
136
|
+
feature_config.kv_separator = ''
|
|
137
|
+
feature_config.embedding_dim = curr_embed_dim
|
|
138
|
+
_set_hash_bucket(feature, feature_config, input_field)
|
|
139
|
+
feature_config.combiner = curr_combiner
|
|
140
|
+
elif feature_type == 'raw_feature':
|
|
141
|
+
_gen_raw_config(feature, input_field, feature_config, is_multi,
|
|
142
|
+
curr_embed_dim)
|
|
143
|
+
elif feature_type == 'match_feature':
|
|
144
|
+
need_discrete = feature.get('needDiscrete', True)
|
|
145
|
+
if feature.get('matchType', '') == 'multihit':
|
|
146
|
+
is_multi = True
|
|
147
|
+
if need_discrete:
|
|
148
|
+
feature_config.feature_type = feature_config.TagFeature
|
|
149
|
+
if feature.get('needWeighting', False):
|
|
150
|
+
feature_config.kv_separator = ''
|
|
151
|
+
feature_config.embedding_dim = curr_embed_dim
|
|
152
|
+
_set_hash_bucket(feature, feature_config, input_field)
|
|
153
|
+
feature_config.combiner = curr_combiner
|
|
154
|
+
else:
|
|
155
|
+
assert 'bucketize_boundaries' not in feature
|
|
156
|
+
_gen_raw_config(feature, input_field, feature_config, is_multi,
|
|
157
|
+
curr_embed_dim)
|
|
158
|
+
elif feature_type == 'combo_feature':
|
|
159
|
+
feature_config.feature_type = feature_config.TagFeature
|
|
160
|
+
_set_hash_bucket(feature, feature_config, input_field)
|
|
161
|
+
feature_config.embedding_dim = curr_embed_dim
|
|
162
|
+
feature_config.combiner = curr_combiner
|
|
163
|
+
elif feature_type == 'overlap_feature':
|
|
164
|
+
if feature['method'] in ['common_word_divided', 'diff_word_divided']:
|
|
165
|
+
feature_config.feature_type = feature_config.TagFeature
|
|
166
|
+
else:
|
|
167
|
+
feature_config.feature_type = feature_config.IdFeature
|
|
168
|
+
_set_hash_bucket(feature, feature_config, input_field)
|
|
169
|
+
feature_config.embedding_dim = curr_embed_dim
|
|
170
|
+
feature_config.combiner = curr_combiner
|
|
171
|
+
else:
|
|
172
|
+
assert 'unknown feature type %s, currently not supported' % feature_type
|
|
173
|
+
if 'shared_name' in feature:
|
|
174
|
+
feature_config.embedding_name = feature['shared_name']
|
|
175
|
+
# pipeline_config.feature_configs.append(feature_config)
|
|
176
|
+
if pipeline_config.feature_configs:
|
|
177
|
+
pipeline_config.feature_configs.append(feature_config)
|
|
178
|
+
else:
|
|
179
|
+
pipeline_config.feature_config.features.append(feature_config)
|
|
180
|
+
pipeline_config.data_config.input_fields.append(input_field)
|
|
181
|
+
|
|
182
|
+
if 'extra_combo_info' in feature:
|
|
183
|
+
extra_combo_info = feature['extra_combo_info']
|
|
184
|
+
feature_names = extra_combo_info.get('feature_names', [])
|
|
185
|
+
assert len(
|
|
186
|
+
feature_names
|
|
187
|
+
) >= 1, 'The feature number for ComboFeature must be greater than 2.'
|
|
188
|
+
combo_feature_config = FeatureConfig()
|
|
189
|
+
combo_feature_config.input_names.append(feature_name)
|
|
190
|
+
|
|
191
|
+
for fea_name in feature_names:
|
|
192
|
+
combo_feature_config.input_names.append(fea_name)
|
|
193
|
+
|
|
194
|
+
final_feature_name = 'combo__' + '_'.join(combo_feature_config.input_names)
|
|
195
|
+
final_feature_name = extra_combo_info.get('final_feature_name',
|
|
196
|
+
final_feature_name)
|
|
197
|
+
combo_feature_config.feature_name = final_feature_name
|
|
198
|
+
combo_feature_config.feature_type = combo_feature_config.ComboFeature
|
|
199
|
+
curr_embed_dim = extra_combo_info.get(
|
|
200
|
+
'embedding_dimension',
|
|
201
|
+
extra_combo_info.get('embedding_dim', embedding_dim))
|
|
202
|
+
curr_combiner = extra_combo_info.get('combiner', 'mean')
|
|
203
|
+
combo_feature_config.embedding_dim = curr_embed_dim
|
|
204
|
+
combo_feature_config.combiner = curr_combiner
|
|
205
|
+
assert 'hash_bucket_size' in extra_combo_info, 'hash_bucket_size must be set in ComboFeature.'
|
|
206
|
+
_set_hash_bucket(extra_combo_info, combo_feature_config, None)
|
|
207
|
+
|
|
208
|
+
if pipeline_config.feature_configs:
|
|
209
|
+
pipeline_config.feature_configs.append(combo_feature_config)
|
|
210
|
+
else:
|
|
211
|
+
pipeline_config.feature_config.features.append(combo_feature_config)
|
|
212
|
+
return pipeline_config
|
|
213
|
+
|
|
214
|
+
|
|
215
|
+
def load_input_field_and_feature_config(rtp_fg,
|
|
216
|
+
label_fields,
|
|
217
|
+
embedding_dim=16,
|
|
218
|
+
incol_separator='\003'):
|
|
219
|
+
embedding_dim = rtp_fg.get('embedding_dim', embedding_dim)
|
|
220
|
+
logging.info('embedding_dim = %s' % embedding_dim)
|
|
221
|
+
logging.info('label_fields = %s' % ','.join(label_fields))
|
|
222
|
+
|
|
223
|
+
pipeline_config = EasyRecConfig()
|
|
224
|
+
for tmp_lbl in label_fields:
|
|
225
|
+
input_field = DatasetConfig.Field()
|
|
226
|
+
input_field.input_name = tmp_lbl
|
|
227
|
+
input_field.input_type = DatasetConfig.INT32
|
|
228
|
+
input_field.default_val = '0'
|
|
229
|
+
pipeline_config.data_config.input_fields.append(input_field)
|
|
230
|
+
|
|
231
|
+
rtp_features = rtp_fg['features']
|
|
232
|
+
for feature in rtp_features:
|
|
233
|
+
logging.info('feature type = %s' % type(feature))
|
|
234
|
+
logging.info('feature = %s' % feature)
|
|
235
|
+
logging.info('feature_type in feature %s' % ('feature_name' in feature))
|
|
236
|
+
try:
|
|
237
|
+
if 'feature_name' in feature:
|
|
238
|
+
feature_type = feature['feature_type']
|
|
239
|
+
feature_name = feature['feature_name']
|
|
240
|
+
pipeline_config = process_features(feature_type, feature_name, feature,
|
|
241
|
+
pipeline_config, embedding_dim,
|
|
242
|
+
incol_separator)
|
|
243
|
+
elif 'sequence_name' in feature:
|
|
244
|
+
logging.info('Set sequence_features group later.')
|
|
245
|
+
sequence_name = feature['sequence_name']
|
|
246
|
+
for sub_feature in feature['features']:
|
|
247
|
+
sub_feature_type = sub_feature['feature_type']
|
|
248
|
+
sub_feature_name = sub_feature['feature_name']
|
|
249
|
+
all_sub_feature_name = sequence_name + '_' + sub_feature_name
|
|
250
|
+
pipeline_config = process_features(
|
|
251
|
+
sub_feature_type,
|
|
252
|
+
all_sub_feature_name,
|
|
253
|
+
sub_feature,
|
|
254
|
+
pipeline_config,
|
|
255
|
+
embedding_dim,
|
|
256
|
+
incol_separator,
|
|
257
|
+
is_sequence=True)
|
|
258
|
+
except Exception:
|
|
259
|
+
logging.info('convert feature[%s] exception[%s]' %
|
|
260
|
+
(str(feature), traceback.format_exc()))
|
|
261
|
+
sys.exit(1)
|
|
262
|
+
return pipeline_config
|
|
263
|
+
|
|
264
|
+
|
|
265
|
+
def convert_rtp_fg(rtp_fg,
|
|
266
|
+
embedding_dim=16,
|
|
267
|
+
batch_size=1024,
|
|
268
|
+
label_fields=[],
|
|
269
|
+
num_steps=10,
|
|
270
|
+
model_type='',
|
|
271
|
+
separator='\002',
|
|
272
|
+
incol_separator='\003',
|
|
273
|
+
train_input_path=None,
|
|
274
|
+
eval_input_path=None,
|
|
275
|
+
selected_cols='',
|
|
276
|
+
input_type='OdpsRTPInput',
|
|
277
|
+
is_async=False):
|
|
278
|
+
with tf.gfile.GFile(rtp_fg, 'r') as fin:
|
|
279
|
+
rtp_fg = json.load(fin)
|
|
280
|
+
|
|
281
|
+
model_dir = rtp_fg.get('model_dir', 'experiments/rtp_fg_demo')
|
|
282
|
+
num_steps = rtp_fg.get('num_steps', num_steps)
|
|
283
|
+
model_type = rtp_fg.get('model_type', model_type)
|
|
284
|
+
label_fields = rtp_fg.get('label_fields', label_fields)
|
|
285
|
+
model_path = rtp_fg.get('model_path', '')
|
|
286
|
+
edit_config_json = rtp_fg.get('edit_config_json', None)
|
|
287
|
+
rtp_features = rtp_fg['features']
|
|
288
|
+
|
|
289
|
+
logging.info('model_dir = %s' % model_dir)
|
|
290
|
+
logging.info('num_steps = %d' % num_steps)
|
|
291
|
+
logging.info('model_type = %s' % model_type)
|
|
292
|
+
logging.info('model_path = %s' % model_path)
|
|
293
|
+
logging.info('edit_config_json = %s' % edit_config_json)
|
|
294
|
+
|
|
295
|
+
pipeline_config = load_input_field_and_feature_config(rtp_fg, label_fields,
|
|
296
|
+
embedding_dim,
|
|
297
|
+
incol_separator)
|
|
298
|
+
pipeline_config.model_dir = model_dir
|
|
299
|
+
pipeline_config.data_config.separator = separator
|
|
300
|
+
if selected_cols:
|
|
301
|
+
pipeline_config.data_config.selected_cols = selected_cols
|
|
302
|
+
if train_input_path is not None:
|
|
303
|
+
pipeline_config.train_input_path = train_input_path
|
|
304
|
+
if eval_input_path is not None:
|
|
305
|
+
pipeline_config.eval_input_path = eval_input_path
|
|
306
|
+
|
|
307
|
+
pipeline_config.data_config.batch_size = batch_size
|
|
308
|
+
pipeline_config.data_config.rtp_separator = ';'
|
|
309
|
+
pipeline_config.data_config.label_fields.extend(label_fields)
|
|
310
|
+
|
|
311
|
+
text_format.Merge('input_type: %s' % input_type, pipeline_config.data_config)
|
|
312
|
+
|
|
313
|
+
if model_path:
|
|
314
|
+
model_type = None
|
|
315
|
+
with tf.gfile.GFile(model_path, 'r') as fin:
|
|
316
|
+
model_config = fin.read()
|
|
317
|
+
text_format.Merge(model_config, pipeline_config)
|
|
318
|
+
|
|
319
|
+
if not pipeline_config.HasField('train_config'):
|
|
320
|
+
train_config_str = """
|
|
321
|
+
train_config {
|
|
322
|
+
log_step_count_steps: 200
|
|
323
|
+
optimizer_config: {
|
|
324
|
+
%s: {
|
|
325
|
+
learning_rate: {
|
|
326
|
+
exponential_decay_learning_rate {
|
|
327
|
+
initial_learning_rate: 0.0001
|
|
328
|
+
decay_steps: 100000
|
|
329
|
+
decay_factor: 0.5
|
|
330
|
+
min_learning_rate: 0.0000001
|
|
331
|
+
}
|
|
332
|
+
}
|
|
333
|
+
}
|
|
334
|
+
use_moving_average: false
|
|
335
|
+
}
|
|
336
|
+
|
|
337
|
+
sync_replicas: %s
|
|
338
|
+
}
|
|
339
|
+
""" % ('adam_optimizer' if not is_async else 'adam_async_optimizer',
|
|
340
|
+
'true' if not is_async else 'false')
|
|
341
|
+
text_format.Merge(train_config_str, pipeline_config)
|
|
342
|
+
|
|
343
|
+
pipeline_config.train_config.num_steps = num_steps
|
|
344
|
+
|
|
345
|
+
if model_type == 'deepfm':
|
|
346
|
+
pipeline_config.model_config.model_class = 'DeepFM'
|
|
347
|
+
wide_group = FeatureGroupConfig()
|
|
348
|
+
wide_group.group_name = 'wide'
|
|
349
|
+
wide_group.wide_deep = WideOrDeep.WIDE
|
|
350
|
+
for feature in rtp_features:
|
|
351
|
+
feature_name = feature['feature_name']
|
|
352
|
+
wide_group.feature_names.append(feature_name)
|
|
353
|
+
pipeline_config.model_config.feature_groups.append(wide_group)
|
|
354
|
+
deep_group = FeatureGroupConfig()
|
|
355
|
+
deep_group.CopyFrom(wide_group)
|
|
356
|
+
deep_group.group_name = 'deep'
|
|
357
|
+
deep_group.wide_deep = WideOrDeep.DEEP
|
|
358
|
+
pipeline_config.model_config.feature_groups.append(deep_group)
|
|
359
|
+
deepfm_config_str = """
|
|
360
|
+
deepfm {
|
|
361
|
+
dnn {
|
|
362
|
+
hidden_units: [128, 64, 32]
|
|
363
|
+
}
|
|
364
|
+
final_dnn {
|
|
365
|
+
hidden_units: [128, 64]
|
|
366
|
+
}
|
|
367
|
+
wide_output_dim: 32
|
|
368
|
+
l2_regularization: 1e-5
|
|
369
|
+
}
|
|
370
|
+
"""
|
|
371
|
+
text_format.Merge(deepfm_config_str, pipeline_config.model_config)
|
|
372
|
+
pipeline_config.model_config.embedding_regularization = 1e-5
|
|
373
|
+
elif model_type == 'wide_and_deep':
|
|
374
|
+
pipeline_config.model_config.model_class = 'WideAndDeep'
|
|
375
|
+
wide_group = FeatureGroupConfig()
|
|
376
|
+
wide_group.group_name = 'wide'
|
|
377
|
+
wide_group.wide_deep = WideOrDeep.WIDE
|
|
378
|
+
for feature in rtp_features:
|
|
379
|
+
feature_name = feature['feature_name']
|
|
380
|
+
group = feature.get('group', 'wide_and_deep')
|
|
381
|
+
if group not in ['wide', 'deep', 'wide_and_deep']:
|
|
382
|
+
logging.warning('invalid group %s for %s' % (group, feature_name))
|
|
383
|
+
group = 'wide_and_deep'
|
|
384
|
+
if group in ['wide', 'wide_and_deep']:
|
|
385
|
+
wide_group.feature_names.append(feature_name)
|
|
386
|
+
pipeline_config.model_config.feature_groups.append(wide_group)
|
|
387
|
+
deep_group = FeatureGroupConfig()
|
|
388
|
+
deep_group.group_name = 'deep'
|
|
389
|
+
deep_group.wide_deep = WideOrDeep.DEEP
|
|
390
|
+
for feature in rtp_features:
|
|
391
|
+
feature_name = feature['feature_name']
|
|
392
|
+
group = feature.get('group', 'wide_and_deep')
|
|
393
|
+
if group not in ['wide', 'deep', 'wide_and_deep']:
|
|
394
|
+
group = 'wide_and_deep'
|
|
395
|
+
if group in ['deep', 'wide_and_deep']:
|
|
396
|
+
deep_group.feature_names.append(feature_name)
|
|
397
|
+
pipeline_config.model_config.feature_groups.append(deep_group)
|
|
398
|
+
deepfm_config_str = """
|
|
399
|
+
wide_and_deep {
|
|
400
|
+
dnn {
|
|
401
|
+
hidden_units: [128, 64, 32]
|
|
402
|
+
}
|
|
403
|
+
l2_regularization: 1e-5
|
|
404
|
+
}
|
|
405
|
+
"""
|
|
406
|
+
text_format.Merge(deepfm_config_str, pipeline_config.model_config)
|
|
407
|
+
pipeline_config.model_config.embedding_regularization = 1e-5
|
|
408
|
+
elif model_type == 'multi_tower':
|
|
409
|
+
pipeline_config.model_config.model_class = 'MultiTower'
|
|
410
|
+
|
|
411
|
+
feature_groups = {}
|
|
412
|
+
group_map = {
|
|
413
|
+
'u': 'user',
|
|
414
|
+
'i': 'item',
|
|
415
|
+
'ctx': 'combo',
|
|
416
|
+
'q': 'combo',
|
|
417
|
+
'comb': 'combo'
|
|
418
|
+
}
|
|
419
|
+
for feature in rtp_features:
|
|
420
|
+
feature_name = feature['feature_name'].strip()
|
|
421
|
+
group_name = ''
|
|
422
|
+
if 'group' in feature:
|
|
423
|
+
group_name = feature['group']
|
|
424
|
+
else:
|
|
425
|
+
toks = feature_name.split('_')
|
|
426
|
+
group_name = toks[0]
|
|
427
|
+
if group_name in group_map:
|
|
428
|
+
group_name = group_map[group_name]
|
|
429
|
+
if group_name in feature_groups:
|
|
430
|
+
feature_groups[group_name].append(feature_name)
|
|
431
|
+
else:
|
|
432
|
+
feature_groups[group_name] = [feature_name]
|
|
433
|
+
|
|
434
|
+
logging.info(
|
|
435
|
+
'if group is specified, group will be used as feature group name; '
|
|
436
|
+
'otherwise, the prefix of feature_name in fg.json is used as feature group name'
|
|
437
|
+
)
|
|
438
|
+
logging.info('prefix map: %s' % str(group_map))
|
|
439
|
+
for group_name in feature_groups:
|
|
440
|
+
logging.info('add group = %s' % group_name)
|
|
441
|
+
group = FeatureGroupConfig()
|
|
442
|
+
group.group_name = group_name
|
|
443
|
+
for fea_name in feature_groups[group_name]:
|
|
444
|
+
group.feature_names.append(fea_name)
|
|
445
|
+
group.wide_deep = WideOrDeep.DEEP
|
|
446
|
+
pipeline_config.model_config.feature_groups.append(group)
|
|
447
|
+
|
|
448
|
+
multi_tower_config_str = ' multi_tower {\n'
|
|
449
|
+
for group_name in feature_groups:
|
|
450
|
+
multi_tower_config_str += """
|
|
451
|
+
towers {
|
|
452
|
+
input: "%s"
|
|
453
|
+
dnn {
|
|
454
|
+
hidden_units: [256, 192, 128]
|
|
455
|
+
}
|
|
456
|
+
}
|
|
457
|
+
""" % group_name
|
|
458
|
+
|
|
459
|
+
multi_tower_config_str = multi_tower_config_str + """
|
|
460
|
+
final_dnn {
|
|
461
|
+
hidden_units: [192, 128, 64]
|
|
462
|
+
}
|
|
463
|
+
l2_regularization: 1e-4
|
|
464
|
+
}
|
|
465
|
+
"""
|
|
466
|
+
text_format.Merge(multi_tower_config_str, pipeline_config.model_config)
|
|
467
|
+
pipeline_config.model_config.embedding_regularization = 1e-5
|
|
468
|
+
|
|
469
|
+
elif model_type == 'esmm':
|
|
470
|
+
pipeline_config.model_config.model_class = 'ESMM'
|
|
471
|
+
|
|
472
|
+
feature_groups = {}
|
|
473
|
+
for feature in rtp_features:
|
|
474
|
+
feature_name = feature['feature_name']
|
|
475
|
+
group = feature.get('group', 'all')
|
|
476
|
+
if group in feature_groups:
|
|
477
|
+
feature_groups[group].append(feature_name)
|
|
478
|
+
else:
|
|
479
|
+
feature_groups[group] = [feature_name]
|
|
480
|
+
|
|
481
|
+
for group_name in feature_groups:
|
|
482
|
+
logging.info('add group = %s' % group_name)
|
|
483
|
+
group = FeatureGroupConfig()
|
|
484
|
+
group.group_name = group_name
|
|
485
|
+
for fea_name in feature_groups[group_name]:
|
|
486
|
+
group.feature_names.append(fea_name)
|
|
487
|
+
group.wide_deep = WideOrDeep.DEEP
|
|
488
|
+
pipeline_config.model_config.feature_groups.append(group)
|
|
489
|
+
|
|
490
|
+
esmm_config_str = ' esmm {\n'
|
|
491
|
+
for group_name in feature_groups:
|
|
492
|
+
esmm_config_str += """
|
|
493
|
+
groups {
|
|
494
|
+
input: "%s"
|
|
495
|
+
dnn {
|
|
496
|
+
hidden_units: [256, 128, 96, 64]
|
|
497
|
+
}
|
|
498
|
+
}""" % group_name
|
|
499
|
+
|
|
500
|
+
esmm_config_str += """
|
|
501
|
+
ctr_tower {
|
|
502
|
+
tower_name: "ctr"
|
|
503
|
+
label_name: "%s"
|
|
504
|
+
dnn {
|
|
505
|
+
hidden_units: [128, 96, 64, 32, 16]
|
|
506
|
+
}
|
|
507
|
+
num_class: 1
|
|
508
|
+
weight: 1.0
|
|
509
|
+
loss_type: CLASSIFICATION
|
|
510
|
+
metrics_set: {
|
|
511
|
+
auc {}
|
|
512
|
+
}
|
|
513
|
+
}
|
|
514
|
+
cvr_tower {
|
|
515
|
+
tower_name: "cvr"
|
|
516
|
+
label_name: "%s"
|
|
517
|
+
dnn {
|
|
518
|
+
hidden_units: [128, 96, 64, 32, 16]
|
|
519
|
+
}
|
|
520
|
+
num_class: 1
|
|
521
|
+
weight: 1.0
|
|
522
|
+
loss_type: CLASSIFICATION
|
|
523
|
+
metrics_set: {
|
|
524
|
+
auc {}
|
|
525
|
+
}
|
|
526
|
+
}
|
|
527
|
+
l2_regularization: 1e-6
|
|
528
|
+
}""" % (label_fields[0], label_fields[1])
|
|
529
|
+
text_format.Merge(esmm_config_str, pipeline_config.model_config)
|
|
530
|
+
pipeline_config.model_config.embedding_regularization = 5e-5
|
|
531
|
+
elif model_type == 'dbmtl':
|
|
532
|
+
pipeline_config.model_config.model_class = 'DBMTL'
|
|
533
|
+
|
|
534
|
+
feature_groups = {}
|
|
535
|
+
for feature in rtp_features:
|
|
536
|
+
feature_name = feature['feature_name']
|
|
537
|
+
group = 'all'
|
|
538
|
+
if group in feature_groups:
|
|
539
|
+
feature_groups[group].append(feature_name)
|
|
540
|
+
else:
|
|
541
|
+
feature_groups[group] = [feature_name]
|
|
542
|
+
|
|
543
|
+
for group_name in feature_groups:
|
|
544
|
+
logging.info('add group = %s' % group_name)
|
|
545
|
+
group = FeatureGroupConfig()
|
|
546
|
+
group.group_name = group_name
|
|
547
|
+
for fea_name in feature_groups[group_name]:
|
|
548
|
+
group.feature_names.append(fea_name)
|
|
549
|
+
group.wide_deep = WideOrDeep.DEEP
|
|
550
|
+
pipeline_config.model_config.feature_groups.append(group)
|
|
551
|
+
|
|
552
|
+
dbmtl_config_str = """
|
|
553
|
+
dbmtl {
|
|
554
|
+
bottom_dnn {
|
|
555
|
+
hidden_units: [1024]
|
|
556
|
+
}
|
|
557
|
+
expert_dnn {
|
|
558
|
+
hidden_units: [256, 128, 64, 32]
|
|
559
|
+
}
|
|
560
|
+
num_expert: 8
|
|
561
|
+
task_towers {
|
|
562
|
+
tower_name: "ctr"
|
|
563
|
+
label_name: "%s"
|
|
564
|
+
loss_type: CLASSIFICATION
|
|
565
|
+
metrics_set: {
|
|
566
|
+
auc {}
|
|
567
|
+
}
|
|
568
|
+
dnn {
|
|
569
|
+
hidden_units: [256, 128, 64, 32]
|
|
570
|
+
}
|
|
571
|
+
relation_dnn {
|
|
572
|
+
hidden_units: [32]
|
|
573
|
+
}
|
|
574
|
+
weight: 1.0
|
|
575
|
+
}
|
|
576
|
+
task_towers {
|
|
577
|
+
tower_name: "cvr"
|
|
578
|
+
label_name: "%s"
|
|
579
|
+
loss_type: CLASSIFICATION
|
|
580
|
+
metrics_set: {
|
|
581
|
+
auc {}
|
|
582
|
+
}
|
|
583
|
+
dnn {
|
|
584
|
+
hidden_units: [256, 128, 64, 32]
|
|
585
|
+
}
|
|
586
|
+
relation_tower_names: ["ctr"]
|
|
587
|
+
relation_dnn {
|
|
588
|
+
hidden_units: [32]
|
|
589
|
+
}
|
|
590
|
+
weight: 1.0
|
|
591
|
+
}
|
|
592
|
+
l2_regularization: 1e-6
|
|
593
|
+
}
|
|
594
|
+
""" % (label_fields[0], label_fields[1])
|
|
595
|
+
text_format.Merge(dbmtl_config_str, pipeline_config.model_config)
|
|
596
|
+
pipeline_config.model_config.embedding_regularization = 5e-6
|
|
597
|
+
|
|
598
|
+
if model_type in ['wide_and_deep', 'deepfm', 'multi_tower']:
|
|
599
|
+
text_format.Merge("""
|
|
600
|
+
metrics_set {
|
|
601
|
+
auc {}
|
|
602
|
+
}
|
|
603
|
+
""", pipeline_config.eval_config)
|
|
604
|
+
|
|
605
|
+
text_format.Merge(
|
|
606
|
+
""" export_config {
|
|
607
|
+
multi_placeholder: false
|
|
608
|
+
}
|
|
609
|
+
""", pipeline_config)
|
|
610
|
+
|
|
611
|
+
if edit_config_json:
|
|
612
|
+
for edit_obj in edit_config_json:
|
|
613
|
+
config_util.edit_config(pipeline_config, edit_obj)
|
|
614
|
+
|
|
615
|
+
pipeline_config.model_config.embedding_regularization = 1e-5
|
|
616
|
+
return pipeline_config
|