easy-cs-rec-custommodel 0.8.6__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of easy-cs-rec-custommodel might be problematic. Click here for more details.

Files changed (336) hide show
  1. easy_cs_rec_custommodel-0.8.6.dist-info/LICENSE +203 -0
  2. easy_cs_rec_custommodel-0.8.6.dist-info/METADATA +48 -0
  3. easy_cs_rec_custommodel-0.8.6.dist-info/RECORD +336 -0
  4. easy_cs_rec_custommodel-0.8.6.dist-info/WHEEL +6 -0
  5. easy_cs_rec_custommodel-0.8.6.dist-info/top_level.txt +2 -0
  6. easy_rec/__init__.py +114 -0
  7. easy_rec/python/__init__.py +0 -0
  8. easy_rec/python/builders/__init__.py +0 -0
  9. easy_rec/python/builders/hyperparams_builder.py +78 -0
  10. easy_rec/python/builders/loss_builder.py +333 -0
  11. easy_rec/python/builders/optimizer_builder.py +211 -0
  12. easy_rec/python/builders/strategy_builder.py +44 -0
  13. easy_rec/python/compat/__init__.py +0 -0
  14. easy_rec/python/compat/adam_s.py +245 -0
  15. easy_rec/python/compat/array_ops.py +229 -0
  16. easy_rec/python/compat/dynamic_variable.py +542 -0
  17. easy_rec/python/compat/early_stopping.py +653 -0
  18. easy_rec/python/compat/embedding_ops.py +162 -0
  19. easy_rec/python/compat/embedding_parallel_saver.py +316 -0
  20. easy_rec/python/compat/estimator_train.py +116 -0
  21. easy_rec/python/compat/exporter.py +473 -0
  22. easy_rec/python/compat/feature_column/__init__.py +0 -0
  23. easy_rec/python/compat/feature_column/feature_column.py +3675 -0
  24. easy_rec/python/compat/feature_column/feature_column_v2.py +5233 -0
  25. easy_rec/python/compat/feature_column/sequence_feature_column.py +648 -0
  26. easy_rec/python/compat/feature_column/utils.py +154 -0
  27. easy_rec/python/compat/layers.py +329 -0
  28. easy_rec/python/compat/ops.py +14 -0
  29. easy_rec/python/compat/optimizers.py +619 -0
  30. easy_rec/python/compat/queues.py +311 -0
  31. easy_rec/python/compat/regularizers.py +208 -0
  32. easy_rec/python/compat/sok_optimizer.py +440 -0
  33. easy_rec/python/compat/sync_replicas_optimizer.py +528 -0
  34. easy_rec/python/compat/weight_decay_optimizers.py +475 -0
  35. easy_rec/python/core/__init__.py +0 -0
  36. easy_rec/python/core/easyrec_metrics/__init__.py +24 -0
  37. easy_rec/python/core/easyrec_metrics/distribute_metrics_impl_pai.py +3702 -0
  38. easy_rec/python/core/easyrec_metrics/distribute_metrics_impl_tf.py +3768 -0
  39. easy_rec/python/core/learning_schedules.py +228 -0
  40. easy_rec/python/core/metrics.py +402 -0
  41. easy_rec/python/core/sampler.py +844 -0
  42. easy_rec/python/eval.py +102 -0
  43. easy_rec/python/export.py +150 -0
  44. easy_rec/python/feature_column/__init__.py +0 -0
  45. easy_rec/python/feature_column/feature_column.py +664 -0
  46. easy_rec/python/feature_column/feature_group.py +89 -0
  47. easy_rec/python/hpo/__init__.py +0 -0
  48. easy_rec/python/hpo/emr_hpo.py +140 -0
  49. easy_rec/python/hpo/generate_hpo_sql.py +71 -0
  50. easy_rec/python/hpo/pai_hpo.py +297 -0
  51. easy_rec/python/inference/__init__.py +0 -0
  52. easy_rec/python/inference/csv_predictor.py +189 -0
  53. easy_rec/python/inference/hive_parquet_predictor.py +200 -0
  54. easy_rec/python/inference/hive_predictor.py +166 -0
  55. easy_rec/python/inference/odps_predictor.py +70 -0
  56. easy_rec/python/inference/parquet_predictor.py +147 -0
  57. easy_rec/python/inference/parquet_predictor_v2.py +147 -0
  58. easy_rec/python/inference/predictor.py +621 -0
  59. easy_rec/python/inference/processor/__init__.py +0 -0
  60. easy_rec/python/inference/processor/test.py +170 -0
  61. easy_rec/python/inference/vector_retrieve.py +124 -0
  62. easy_rec/python/input/__init__.py +0 -0
  63. easy_rec/python/input/batch_tfrecord_input.py +117 -0
  64. easy_rec/python/input/criteo_binary_reader.py +259 -0
  65. easy_rec/python/input/criteo_input.py +107 -0
  66. easy_rec/python/input/csv_input.py +175 -0
  67. easy_rec/python/input/csv_input_ex.py +72 -0
  68. easy_rec/python/input/csv_input_v2.py +68 -0
  69. easy_rec/python/input/datahub_input.py +320 -0
  70. easy_rec/python/input/dummy_input.py +58 -0
  71. easy_rec/python/input/hive_input.py +123 -0
  72. easy_rec/python/input/hive_parquet_input.py +140 -0
  73. easy_rec/python/input/hive_rtp_input.py +174 -0
  74. easy_rec/python/input/input.py +1064 -0
  75. easy_rec/python/input/kafka_dataset.py +144 -0
  76. easy_rec/python/input/kafka_input.py +235 -0
  77. easy_rec/python/input/load_parquet.py +317 -0
  78. easy_rec/python/input/odps_input.py +101 -0
  79. easy_rec/python/input/odps_input_v2.py +110 -0
  80. easy_rec/python/input/odps_input_v3.py +132 -0
  81. easy_rec/python/input/odps_rtp_input.py +187 -0
  82. easy_rec/python/input/odps_rtp_input_v2.py +104 -0
  83. easy_rec/python/input/parquet_input.py +397 -0
  84. easy_rec/python/input/parquet_input_v2.py +180 -0
  85. easy_rec/python/input/parquet_input_v3.py +203 -0
  86. easy_rec/python/input/rtp_input.py +225 -0
  87. easy_rec/python/input/rtp_input_v2.py +145 -0
  88. easy_rec/python/input/tfrecord_input.py +100 -0
  89. easy_rec/python/layers/__init__.py +0 -0
  90. easy_rec/python/layers/backbone.py +571 -0
  91. easy_rec/python/layers/capsule_layer.py +176 -0
  92. easy_rec/python/layers/cmbf.py +390 -0
  93. easy_rec/python/layers/common_layers.py +192 -0
  94. easy_rec/python/layers/dnn.py +87 -0
  95. easy_rec/python/layers/embed_input_layer.py +25 -0
  96. easy_rec/python/layers/fm.py +26 -0
  97. easy_rec/python/layers/input_layer.py +396 -0
  98. easy_rec/python/layers/keras/__init__.py +34 -0
  99. easy_rec/python/layers/keras/activation.py +114 -0
  100. easy_rec/python/layers/keras/attention.py +267 -0
  101. easy_rec/python/layers/keras/auxiliary_loss.py +47 -0
  102. easy_rec/python/layers/keras/blocks.py +262 -0
  103. easy_rec/python/layers/keras/bst.py +119 -0
  104. easy_rec/python/layers/keras/custom_ops.py +250 -0
  105. easy_rec/python/layers/keras/data_augment.py +133 -0
  106. easy_rec/python/layers/keras/din.py +67 -0
  107. easy_rec/python/layers/keras/einsum_dense.py +598 -0
  108. easy_rec/python/layers/keras/embedding.py +81 -0
  109. easy_rec/python/layers/keras/fibinet.py +251 -0
  110. easy_rec/python/layers/keras/interaction.py +416 -0
  111. easy_rec/python/layers/keras/layer_norm.py +364 -0
  112. easy_rec/python/layers/keras/mask_net.py +166 -0
  113. easy_rec/python/layers/keras/multi_head_attention.py +717 -0
  114. easy_rec/python/layers/keras/multi_task.py +125 -0
  115. easy_rec/python/layers/keras/numerical_embedding.py +376 -0
  116. easy_rec/python/layers/keras/ppnet.py +194 -0
  117. easy_rec/python/layers/keras/transformer.py +192 -0
  118. easy_rec/python/layers/layer_norm.py +51 -0
  119. easy_rec/python/layers/mmoe.py +83 -0
  120. easy_rec/python/layers/multihead_attention.py +162 -0
  121. easy_rec/python/layers/multihead_cross_attention.py +749 -0
  122. easy_rec/python/layers/senet.py +73 -0
  123. easy_rec/python/layers/seq_input_layer.py +134 -0
  124. easy_rec/python/layers/sequence_feature_layer.py +249 -0
  125. easy_rec/python/layers/uniter.py +301 -0
  126. easy_rec/python/layers/utils.py +248 -0
  127. easy_rec/python/layers/variational_dropout_layer.py +130 -0
  128. easy_rec/python/loss/__init__.py +0 -0
  129. easy_rec/python/loss/circle_loss.py +82 -0
  130. easy_rec/python/loss/contrastive_loss.py +79 -0
  131. easy_rec/python/loss/f1_reweight_loss.py +38 -0
  132. easy_rec/python/loss/focal_loss.py +93 -0
  133. easy_rec/python/loss/jrc_loss.py +128 -0
  134. easy_rec/python/loss/listwise_loss.py +161 -0
  135. easy_rec/python/loss/multi_similarity.py +68 -0
  136. easy_rec/python/loss/pairwise_loss.py +307 -0
  137. easy_rec/python/loss/softmax_loss_with_negative_mining.py +110 -0
  138. easy_rec/python/loss/zero_inflated_lognormal.py +76 -0
  139. easy_rec/python/main.py +878 -0
  140. easy_rec/python/model/__init__.py +0 -0
  141. easy_rec/python/model/autoint.py +73 -0
  142. easy_rec/python/model/cmbf.py +47 -0
  143. easy_rec/python/model/collaborative_metric_learning.py +182 -0
  144. easy_rec/python/model/custom_model.py +323 -0
  145. easy_rec/python/model/dat.py +138 -0
  146. easy_rec/python/model/dbmtl.py +116 -0
  147. easy_rec/python/model/dcn.py +70 -0
  148. easy_rec/python/model/deepfm.py +106 -0
  149. easy_rec/python/model/dlrm.py +73 -0
  150. easy_rec/python/model/dropoutnet.py +207 -0
  151. easy_rec/python/model/dssm.py +154 -0
  152. easy_rec/python/model/dssm_senet.py +143 -0
  153. easy_rec/python/model/dummy_model.py +48 -0
  154. easy_rec/python/model/easy_rec_estimator.py +739 -0
  155. easy_rec/python/model/easy_rec_model.py +467 -0
  156. easy_rec/python/model/esmm.py +242 -0
  157. easy_rec/python/model/fm.py +63 -0
  158. easy_rec/python/model/match_model.py +357 -0
  159. easy_rec/python/model/mind.py +445 -0
  160. easy_rec/python/model/mmoe.py +70 -0
  161. easy_rec/python/model/multi_task_model.py +303 -0
  162. easy_rec/python/model/multi_tower.py +62 -0
  163. easy_rec/python/model/multi_tower_bst.py +190 -0
  164. easy_rec/python/model/multi_tower_din.py +130 -0
  165. easy_rec/python/model/multi_tower_recall.py +68 -0
  166. easy_rec/python/model/pdn.py +203 -0
  167. easy_rec/python/model/ple.py +120 -0
  168. easy_rec/python/model/rank_model.py +485 -0
  169. easy_rec/python/model/rocket_launching.py +203 -0
  170. easy_rec/python/model/simple_multi_task.py +54 -0
  171. easy_rec/python/model/uniter.py +46 -0
  172. easy_rec/python/model/wide_and_deep.py +121 -0
  173. easy_rec/python/ops/1.12/incr_record.so +0 -0
  174. easy_rec/python/ops/1.12/kafka.so +0 -0
  175. easy_rec/python/ops/1.12/libcustom_ops.so +0 -0
  176. easy_rec/python/ops/1.12/libembed_op.so +0 -0
  177. easy_rec/python/ops/1.12/libhiredis.so.1.0.0 +0 -0
  178. easy_rec/python/ops/1.12/librdkafka++.so.1 +0 -0
  179. easy_rec/python/ops/1.12/librdkafka.so.1 +0 -0
  180. easy_rec/python/ops/1.12/libredis++.so +0 -0
  181. easy_rec/python/ops/1.12/libredis++.so.1 +0 -0
  182. easy_rec/python/ops/1.12/libredis++.so.1.2.3 +0 -0
  183. easy_rec/python/ops/1.12/libstr_avx_op.so +0 -0
  184. easy_rec/python/ops/1.12/libwrite_sparse_kv.so +0 -0
  185. easy_rec/python/ops/1.15/incr_record.so +0 -0
  186. easy_rec/python/ops/1.15/kafka.so +0 -0
  187. easy_rec/python/ops/1.15/libcustom_ops.so +0 -0
  188. easy_rec/python/ops/1.15/libembed_op.so +0 -0
  189. easy_rec/python/ops/1.15/libhiredis.so.1.0.0 +0 -0
  190. easy_rec/python/ops/1.15/librdkafka++.so +0 -0
  191. easy_rec/python/ops/1.15/librdkafka++.so.1 +0 -0
  192. easy_rec/python/ops/1.15/librdkafka.so +0 -0
  193. easy_rec/python/ops/1.15/librdkafka.so.1 +0 -0
  194. easy_rec/python/ops/1.15/libredis++.so.1 +0 -0
  195. easy_rec/python/ops/1.15/libstr_avx_op.so +0 -0
  196. easy_rec/python/ops/2.12/libcustom_ops.so +0 -0
  197. easy_rec/python/ops/2.12/libload_embed.so +0 -0
  198. easy_rec/python/ops/2.12/libstr_avx_op.so +0 -0
  199. easy_rec/python/ops/__init__.py +0 -0
  200. easy_rec/python/ops/gen_kafka_ops.py +193 -0
  201. easy_rec/python/ops/gen_str_avx_op.py +28 -0
  202. easy_rec/python/ops/incr_record.py +30 -0
  203. easy_rec/python/predict.py +170 -0
  204. easy_rec/python/protos/__init__.py +0 -0
  205. easy_rec/python/protos/autoint_pb2.py +122 -0
  206. easy_rec/python/protos/backbone_pb2.py +1416 -0
  207. easy_rec/python/protos/cmbf_pb2.py +435 -0
  208. easy_rec/python/protos/collaborative_metric_learning_pb2.py +252 -0
  209. easy_rec/python/protos/custom_model_pb2.py +57 -0
  210. easy_rec/python/protos/dat_pb2.py +262 -0
  211. easy_rec/python/protos/data_source_pb2.py +422 -0
  212. easy_rec/python/protos/dataset_pb2.py +1920 -0
  213. easy_rec/python/protos/dbmtl_pb2.py +191 -0
  214. easy_rec/python/protos/dcn_pb2.py +197 -0
  215. easy_rec/python/protos/deepfm_pb2.py +163 -0
  216. easy_rec/python/protos/dlrm_pb2.py +163 -0
  217. easy_rec/python/protos/dnn_pb2.py +329 -0
  218. easy_rec/python/protos/dropoutnet_pb2.py +239 -0
  219. easy_rec/python/protos/dssm_pb2.py +262 -0
  220. easy_rec/python/protos/dssm_senet_pb2.py +282 -0
  221. easy_rec/python/protos/easy_rec_model_pb2.py +1672 -0
  222. easy_rec/python/protos/esmm_pb2.py +133 -0
  223. easy_rec/python/protos/eval_pb2.py +930 -0
  224. easy_rec/python/protos/export_pb2.py +379 -0
  225. easy_rec/python/protos/feature_config_pb2.py +1359 -0
  226. easy_rec/python/protos/fm_pb2.py +90 -0
  227. easy_rec/python/protos/hive_config_pb2.py +138 -0
  228. easy_rec/python/protos/hyperparams_pb2.py +624 -0
  229. easy_rec/python/protos/keras_layer_pb2.py +692 -0
  230. easy_rec/python/protos/layer_pb2.py +1936 -0
  231. easy_rec/python/protos/loss_pb2.py +1713 -0
  232. easy_rec/python/protos/mind_pb2.py +497 -0
  233. easy_rec/python/protos/mmoe_pb2.py +215 -0
  234. easy_rec/python/protos/multi_tower_pb2.py +295 -0
  235. easy_rec/python/protos/multi_tower_recall_pb2.py +198 -0
  236. easy_rec/python/protos/optimizer_pb2.py +2017 -0
  237. easy_rec/python/protos/pdn_pb2.py +293 -0
  238. easy_rec/python/protos/pipeline_pb2.py +516 -0
  239. easy_rec/python/protos/ple_pb2.py +231 -0
  240. easy_rec/python/protos/predict_pb2.py +1140 -0
  241. easy_rec/python/protos/rocket_launching_pb2.py +169 -0
  242. easy_rec/python/protos/seq_encoder_pb2.py +1084 -0
  243. easy_rec/python/protos/simi_pb2.py +54 -0
  244. easy_rec/python/protos/simple_multi_task_pb2.py +97 -0
  245. easy_rec/python/protos/tf_predict_pb2.py +630 -0
  246. easy_rec/python/protos/tower_pb2.py +661 -0
  247. easy_rec/python/protos/train_pb2.py +1197 -0
  248. easy_rec/python/protos/uniter_pb2.py +307 -0
  249. easy_rec/python/protos/variational_dropout_pb2.py +91 -0
  250. easy_rec/python/protos/wide_and_deep_pb2.py +131 -0
  251. easy_rec/python/test/__init__.py +0 -0
  252. easy_rec/python/test/csv_input_test.py +340 -0
  253. easy_rec/python/test/custom_early_stop_func.py +19 -0
  254. easy_rec/python/test/dh_local_run.py +104 -0
  255. easy_rec/python/test/embed_test.py +155 -0
  256. easy_rec/python/test/emr_run.py +119 -0
  257. easy_rec/python/test/eval_metric_test.py +107 -0
  258. easy_rec/python/test/excel_convert_test.py +64 -0
  259. easy_rec/python/test/export_test.py +513 -0
  260. easy_rec/python/test/fg_test.py +70 -0
  261. easy_rec/python/test/hive_input_test.py +311 -0
  262. easy_rec/python/test/hpo_test.py +235 -0
  263. easy_rec/python/test/kafka_test.py +373 -0
  264. easy_rec/python/test/local_incr_test.py +122 -0
  265. easy_rec/python/test/loss_test.py +110 -0
  266. easy_rec/python/test/odps_command.py +61 -0
  267. easy_rec/python/test/odps_local_run.py +86 -0
  268. easy_rec/python/test/odps_run.py +254 -0
  269. easy_rec/python/test/odps_test_cls.py +39 -0
  270. easy_rec/python/test/odps_test_prepare.py +198 -0
  271. easy_rec/python/test/odps_test_util.py +237 -0
  272. easy_rec/python/test/pre_check_test.py +54 -0
  273. easy_rec/python/test/predictor_test.py +394 -0
  274. easy_rec/python/test/rtp_convert_test.py +133 -0
  275. easy_rec/python/test/run.py +138 -0
  276. easy_rec/python/test/train_eval_test.py +1299 -0
  277. easy_rec/python/test/util_test.py +85 -0
  278. easy_rec/python/test/zero_inflated_lognormal_test.py +53 -0
  279. easy_rec/python/tools/__init__.py +0 -0
  280. easy_rec/python/tools/add_boundaries_to_config.py +67 -0
  281. easy_rec/python/tools/add_feature_info_to_config.py +145 -0
  282. easy_rec/python/tools/convert_config_format.py +48 -0
  283. easy_rec/python/tools/convert_rtp_data.py +79 -0
  284. easy_rec/python/tools/convert_rtp_fg.py +106 -0
  285. easy_rec/python/tools/create_config_from_excel.py +427 -0
  286. easy_rec/python/tools/criteo/__init__.py +0 -0
  287. easy_rec/python/tools/criteo/convert_data.py +157 -0
  288. easy_rec/python/tools/edit_lookup_graph.py +134 -0
  289. easy_rec/python/tools/faiss_index_pai.py +116 -0
  290. easy_rec/python/tools/feature_selection.py +316 -0
  291. easy_rec/python/tools/hit_rate_ds.py +223 -0
  292. easy_rec/python/tools/hit_rate_pai.py +138 -0
  293. easy_rec/python/tools/pre_check.py +120 -0
  294. easy_rec/python/tools/predict_and_chk.py +111 -0
  295. easy_rec/python/tools/read_kafka.py +55 -0
  296. easy_rec/python/tools/split_model_pai.py +286 -0
  297. easy_rec/python/tools/split_pdn_model_pai.py +272 -0
  298. easy_rec/python/tools/test_saved_model.py +80 -0
  299. easy_rec/python/tools/view_saved_model.py +39 -0
  300. easy_rec/python/tools/write_kafka.py +65 -0
  301. easy_rec/python/train_eval.py +325 -0
  302. easy_rec/python/utils/__init__.py +15 -0
  303. easy_rec/python/utils/activation.py +120 -0
  304. easy_rec/python/utils/check_utils.py +87 -0
  305. easy_rec/python/utils/compat.py +14 -0
  306. easy_rec/python/utils/config_util.py +652 -0
  307. easy_rec/python/utils/constant.py +43 -0
  308. easy_rec/python/utils/convert_rtp_fg.py +616 -0
  309. easy_rec/python/utils/dag.py +192 -0
  310. easy_rec/python/utils/distribution_utils.py +268 -0
  311. easy_rec/python/utils/ds_util.py +65 -0
  312. easy_rec/python/utils/embedding_utils.py +73 -0
  313. easy_rec/python/utils/estimator_utils.py +1036 -0
  314. easy_rec/python/utils/export_big_model.py +630 -0
  315. easy_rec/python/utils/expr_util.py +118 -0
  316. easy_rec/python/utils/fg_util.py +53 -0
  317. easy_rec/python/utils/hit_rate_utils.py +220 -0
  318. easy_rec/python/utils/hive_utils.py +183 -0
  319. easy_rec/python/utils/hpo_util.py +137 -0
  320. easy_rec/python/utils/hvd_utils.py +56 -0
  321. easy_rec/python/utils/input_utils.py +108 -0
  322. easy_rec/python/utils/io_util.py +282 -0
  323. easy_rec/python/utils/load_class.py +249 -0
  324. easy_rec/python/utils/meta_graph_editor.py +941 -0
  325. easy_rec/python/utils/multi_optimizer.py +62 -0
  326. easy_rec/python/utils/numpy_utils.py +18 -0
  327. easy_rec/python/utils/odps_util.py +79 -0
  328. easy_rec/python/utils/pai_util.py +86 -0
  329. easy_rec/python/utils/proto_util.py +90 -0
  330. easy_rec/python/utils/restore_filter.py +89 -0
  331. easy_rec/python/utils/shape_utils.py +432 -0
  332. easy_rec/python/utils/static_shape.py +71 -0
  333. easy_rec/python/utils/test_utils.py +866 -0
  334. easy_rec/python/utils/tf_utils.py +56 -0
  335. easy_rec/version.py +4 -0
  336. test/__init__.py +0 -0
@@ -0,0 +1,717 @@
1
+ # -*- encoding:utf-8 -*-
2
+ # Copyright (c) Alibaba, Inc. and its affiliates.
3
+ import math
4
+ import string
5
+
6
+ import numpy as np
7
+ import tensorflow as tf
8
+ from tensorflow.python.keras import constraints
9
+ from tensorflow.python.keras import initializers
10
+ from tensorflow.python.keras import regularizers
11
+ from tensorflow.python.keras.layers import Dropout
12
+ from tensorflow.python.keras.layers import Layer
13
+ from tensorflow.python.keras.layers import Softmax
14
+
15
+ from easy_rec.python.layers.keras.activation import MaskedSoftmax
16
+ from easy_rec.python.layers.keras.einsum_dense import EinsumDense
17
+
18
+
19
+ class MultiHeadAttention(Layer):
20
+ """MultiHeadAttention layer.
21
+
22
+ This is an implementation of multi-headed attention as described in the
23
+ paper "Attention is all you Need"
24
+ [Vaswani et al., 2017](https://arxiv.org/abs/1706.03762).
25
+ If `query`, `key,` `value` are the same, then
26
+ this is self-attention. Each time step in `query` attends to the
27
+ corresponding sequence in `key`, and returns a fixed-width vector.
28
+
29
+ This layer first projects `query`, `key` and `value`. These are
30
+ (effectively) a list of tensors of length `num_attention_heads`, where the
31
+ corresponding shapes are `(batch_size, <query dimensions>, key_dim)`,
32
+ `(batch_size, <key/value dimensions>, key_dim)`,
33
+ `(batch_size, <key/value dimensions>, value_dim)`.
34
+
35
+ Then, the query and key tensors are dot-producted and scaled. These are
36
+ softmaxed to obtain attention probabilities. The value tensors are then
37
+ interpolated by these probabilities, then concatenated back to a single
38
+ tensor.
39
+
40
+ Finally, the result tensor with the last dimension as `value_dim` can take
41
+ a linear projection and return.
42
+
43
+ Args:
44
+ num_heads: Number of attention heads.
45
+ key_dim: Size of each attention head for query and key.
46
+ value_dim: Size of each attention head for value.
47
+ dropout: Dropout probability.
48
+ use_bias: Boolean, whether the dense layers use bias vectors/matrices.
49
+ output_shape: The expected shape of an output tensor, besides the batch
50
+ and sequence dims. If not specified, projects back to the query
51
+ feature dim (the query input's last dimension).
52
+ attention_axes: axes over which the attention is applied. `None` means
53
+ attention over all axes, but batch, heads, and features.
54
+ kernel_initializer: Initializer for dense layer kernels.
55
+ bias_initializer: Initializer for dense layer biases.
56
+ kernel_regularizer: Regularizer for dense layer kernels.
57
+ bias_regularizer: Regularizer for dense layer biases.
58
+ activity_regularizer: Regularizer for dense layer activity.
59
+ kernel_constraint: Constraint for dense layer kernels.
60
+ bias_constraint: Constraint for dense layer kernels.
61
+ use_causal_mask: A boolean to indicate whether to apply a causal mask to
62
+ prevent tokens from attending to future tokens (e.g., used in a
63
+ decoder Transformer).
64
+ return_attention_scores: A boolean to indicate whether the output should
65
+ be `(attention_output, attention_scores)` if `True`, or
66
+ `attention_output` if `False`. Defaults to `False`.
67
+
68
+ Call arguments:
69
+ query: Query tensor of shape `(B, T, dim)`, where `B` is the batch size,
70
+ `T` is the target sequence length, and dim is the feature dimension.
71
+ value: Value tensor of shape `(B, S, dim)`, where `B` is the batch size,
72
+ `S` is the source sequence length, and dim is the feature dimension.
73
+ key: Optional key tensor of shape `(B, S, dim)`. If not given, will
74
+ use `value` for both `key` and `value`, which is the most common
75
+ case.
76
+ attention_mask: a boolean mask of shape `(B, T, S)`, that prevents
77
+ attention to certain positions. The boolean mask specifies which
78
+ query elements can attend to which key elements, 1 indicates
79
+ attention and 0 indicates no attention. Broadcasting can happen for
80
+ the missing batch dimensions and the head dimension.
81
+ training: Python boolean indicating whether the layer should behave in
82
+ training mode (adding dropout) or in inference mode (no dropout).
83
+ Will go with either using the training mode of the parent
84
+ layer/model, or `False` (inference) if there is no parent layer.
85
+
86
+ Returns:
87
+ attention_output: The result of the computation, of shape `(B, T, E)`,
88
+ where `T` is for target sequence shapes and `E` is the query input
89
+ last dimension if `output_shape` is `None`. Otherwise, the
90
+ multi-head outputs are projected to the shape specified by
91
+ `output_shape`.
92
+ attention_scores: (Optional) multi-head attention coefficients over
93
+ attention axes.
94
+ """
95
+
96
+ def __init__(self, params, name='multi_head_attention', reuse=None, **kwargs):
97
+ super(MultiHeadAttention, self).__init__(name=name, **kwargs)
98
+ self.supports_masking = True
99
+ self._num_heads = params.num_heads
100
+ self._key_dim = params.key_dim
101
+ # Cache 1.0 / math.sqrt(self._key_dim).
102
+ self._inverse_sqrt_key_dim = None
103
+ value_dim = params.get_or_default('value_dim', None)
104
+ self._value_dim = value_dim if value_dim else self._key_dim
105
+ self._dropout = params.get_or_default('dropout', 0.0)
106
+ self._use_bias = params.get_or_default('use_bias', True)
107
+ self._output_shape = params.get_or_default('output_shape', None)
108
+ self._kernel_initializer = initializers.get(
109
+ params.get_or_default('kernel_initializer', 'glorot_uniform'))
110
+ self._bias_initializer = initializers.get(
111
+ params.get_or_default('bias_initializer', 'zeros'))
112
+ self._kernel_regularizer = regularizers.get(
113
+ params.get_or_default('kernel_regularizer', None))
114
+ self._bias_regularizer = regularizers.get(
115
+ params.get_or_default('bias_regularizer', None))
116
+ self._activity_regularizer = regularizers.get(
117
+ params.get_or_default('activity_regularizer', None))
118
+ self._kernel_constraint = constraints.get(
119
+ params.get_or_default('kernel_constraint', None))
120
+ self._bias_constraint = constraints.get(
121
+ params.get_or_default('bias_constraint', None))
122
+ self._attention_axes = params.get_or_default('attention_axes', None)
123
+ self._use_causal_mask = params.get_or_default('use_causal_mask', False)
124
+ self._return_attention_scores = params.get_or_default(
125
+ 'return_attention_scores', False)
126
+
127
+ @property
128
+ def num_heads(self):
129
+ return self._num_heads
130
+
131
+ @property
132
+ def key_dim(self):
133
+ return self._key_dim
134
+
135
+ @property
136
+ def value_dim(self):
137
+ return self._value_dim
138
+
139
+ @property
140
+ def dropout(self):
141
+ return self._dropout
142
+
143
+ @property
144
+ def use_bias(self):
145
+ return self._use_bias
146
+
147
+ @property
148
+ def output_shape(self):
149
+ return self._output_shape
150
+
151
+ @property
152
+ def attention_axes(self):
153
+ return self._attention_axes
154
+
155
+ def get_config(self):
156
+ base_config = super(MultiHeadAttention, self).get_config()
157
+ config = {
158
+ 'num_heads':
159
+ self._num_heads,
160
+ 'key_dim':
161
+ self._key_dim,
162
+ 'value_dim':
163
+ self._value_dim,
164
+ 'dropout':
165
+ self._dropout,
166
+ 'use_bias':
167
+ self._use_bias,
168
+ 'output_shape':
169
+ self._output_shape,
170
+ 'attention_axes':
171
+ self._attention_axes,
172
+ 'kernel_initializer':
173
+ initializers.serialize(self._kernel_initializer),
174
+ 'bias_initializer':
175
+ initializers.serialize(self._bias_initializer),
176
+ 'kernel_regularizer':
177
+ regularizers.serialize(self._kernel_regularizer),
178
+ 'bias_regularizer':
179
+ regularizers.serialize(self._bias_regularizer),
180
+ 'activity_regularizer':
181
+ regularizers.serialize(self._activity_regularizer),
182
+ 'kernel_constraint':
183
+ constraints.serialize(self._kernel_constraint),
184
+ 'bias_constraint':
185
+ constraints.serialize(self._bias_constraint),
186
+ }
187
+ config.update(base_config)
188
+ return config
189
+
190
+ def build(self, input_shape):
191
+ """Builds layers and variables."""
192
+ if len(input_shape) == 3:
193
+ query_shape, value_shape, key_shape = input_shape
194
+ elif len(input_shape) == 2:
195
+ query_shape, value_shape = input_shape
196
+ key_shape = None
197
+ else:
198
+ raise ValueError('invalid input shape of MultiHeadAttention')
199
+
200
+ key_shape = value_shape if key_shape is None else key_shape
201
+ query_rank = len(query_shape)
202
+ value_rank = len(value_shape)
203
+ key_rank = len(key_shape)
204
+ einsum_equation, bias_axes, output_rank = _build_proj_equation(
205
+ query_rank - 1, bound_dims=1, output_dims=2)
206
+ self._query_dense = EinsumDense(
207
+ einsum_equation,
208
+ output_shape=_get_output_shape(output_rank - 1,
209
+ [self._num_heads, self._key_dim]),
210
+ bias_axes=bias_axes if self._use_bias else None,
211
+ name='query',
212
+ **self._get_common_kwargs_for_sublayer())
213
+ self._query_dense.build(query_shape)
214
+ einsum_equation, bias_axes, output_rank = _build_proj_equation(
215
+ key_rank - 1, bound_dims=1, output_dims=2)
216
+ self._key_dense = EinsumDense(
217
+ einsum_equation,
218
+ output_shape=_get_output_shape(output_rank - 1,
219
+ [self._num_heads, self._key_dim]),
220
+ bias_axes=bias_axes if self._use_bias else None,
221
+ name='key',
222
+ **self._get_common_kwargs_for_sublayer())
223
+ self._key_dense.build(key_shape)
224
+ einsum_equation, bias_axes, output_rank = _build_proj_equation(
225
+ value_rank - 1, bound_dims=1, output_dims=2)
226
+ self._value_dense = EinsumDense(
227
+ einsum_equation,
228
+ output_shape=_get_output_shape(output_rank - 1,
229
+ [self._num_heads, self._value_dim]),
230
+ bias_axes=bias_axes if self._use_bias else None,
231
+ name='value',
232
+ **self._get_common_kwargs_for_sublayer())
233
+ self._value_dense.build(value_shape)
234
+ # Builds the attention computations for multi-head dot product
235
+ # attention. These computations could be wrapped into the keras
236
+ # attention layer once it supports multi-head einsum computations.
237
+ self._build_attention(output_rank)
238
+ self._output_dense = self._make_output_dense(
239
+ query_shape,
240
+ self._get_common_kwargs_for_sublayer(),
241
+ 'attention_output',
242
+ )
243
+ output_dense_input_shape = list(
244
+ self._query_dense.compute_output_shape(query_shape))
245
+ output_dense_input_shape[-1] = self._value_dim
246
+ self._output_dense.build(tuple(output_dense_input_shape))
247
+ self.built = True
248
+ print('MultiHeadAttention (%s) built' % self.name)
249
+
250
+ @property
251
+ def query_dense(self):
252
+ return self._query_dense
253
+
254
+ @property
255
+ def key_dense(self):
256
+ return self._key_dense
257
+
258
+ @property
259
+ def value_dense(self):
260
+ return self._value_dense
261
+
262
+ @property
263
+ def output_dense(self):
264
+ return self._output_dense
265
+
266
+ def _get_common_kwargs_for_sublayer(self):
267
+ common_kwargs = dict(
268
+ kernel_regularizer=self._kernel_regularizer,
269
+ bias_regularizer=self._bias_regularizer,
270
+ activity_regularizer=self._activity_regularizer,
271
+ kernel_constraint=self._kernel_constraint,
272
+ bias_constraint=self._bias_constraint,
273
+ dtype=tf.float32,
274
+ )
275
+ # Create new clone of kernel/bias initializer, so that we don't reuse
276
+ # the initializer instance, which could lead to same init value since
277
+ # initializer is stateless.
278
+ kernel_initializer = self._kernel_initializer.__class__.from_config(
279
+ self._kernel_initializer.get_config())
280
+ bias_initializer = self._bias_initializer.__class__.from_config(
281
+ self._bias_initializer.get_config())
282
+ common_kwargs['kernel_initializer'] = kernel_initializer
283
+ common_kwargs['bias_initializer'] = bias_initializer
284
+ return common_kwargs
285
+
286
+ def _make_output_dense(self, query_shape, common_kwargs, name=None):
287
+ """Builds the output projection matrix.
288
+
289
+ Args:
290
+ query_shape: query tensor shape
291
+ common_kwargs: Common keyword arguments for einsum layer.
292
+ name: Name for the projection layer.
293
+
294
+ Returns:
295
+ Projection layer.
296
+ """
297
+ query_rank = len(query_shape)
298
+ if self._output_shape:
299
+ if hasattr(self._output_shape, '__len__'):
300
+ output_shape = self._output_shape
301
+ else:
302
+ output_shape = [self._output_shape]
303
+ else:
304
+ output_shape = [query_shape[-1]]
305
+ einsum_equation, bias_axes, output_rank = _build_proj_equation(
306
+ query_rank - 1, bound_dims=2, output_dims=len(output_shape))
307
+ return EinsumDense(
308
+ einsum_equation,
309
+ output_shape=_get_output_shape(output_rank - 1, output_shape),
310
+ bias_axes=bias_axes if self._use_bias else None,
311
+ name=name,
312
+ **common_kwargs)
313
+
314
+ def _build_attention(self, rank):
315
+ """Builds multi-head dot-product attention computations.
316
+
317
+ This function builds attributes necessary for `_compute_attention` to
318
+ customize attention computation to replace the default dot-product
319
+ attention.
320
+
321
+ Args:
322
+ rank: the rank of query, key, value tensors.
323
+ """
324
+ if self._attention_axes is None:
325
+ self._attention_axes = tuple(range(1, rank - 2))
326
+ else:
327
+ self._attention_axes = tuple(self._attention_axes)
328
+ (
329
+ self._dot_product_equation,
330
+ self._combine_equation,
331
+ attn_scores_rank,
332
+ ) = _build_attention_equation(
333
+ rank, attn_axes=self._attention_axes)
334
+ norm_axes = tuple(
335
+ range(attn_scores_rank - len(self._attention_axes), attn_scores_rank))
336
+ self._softmax = Softmax(
337
+ axis=norm_axes) if tf.__version__ >= '2.0' else MaskedSoftmax(
338
+ axis=norm_axes)
339
+ self._dropout_layer = Dropout(rate=self._dropout)
340
+ self._inverse_sqrt_key_dim = 1.0 / math.sqrt(float(self._key_dim))
341
+
342
+ def _masked_softmax(self, attention_scores, attention_mask=None):
343
+ # Normalize the attention scores to probabilities.
344
+ # attention_scores = [B, N, T, S]
345
+ if attention_mask is not None:
346
+ # The expand dim happens starting from the `num_heads` dimension,
347
+ # (<batch_dims>, num_heads, <query_attention_dims,
348
+ # key_attention_dims>)
349
+ mask_expansion_axis = -len(self._attention_axes) * 2 - 1
350
+ for _ in range(len(attention_scores.shape) - len(attention_mask.shape)):
351
+ attention_mask = tf.expand_dims(
352
+ attention_mask, axis=mask_expansion_axis)
353
+ return self._softmax(attention_scores, mask=attention_mask)
354
+
355
+ def _compute_attention(self,
356
+ query,
357
+ key,
358
+ value,
359
+ attention_mask=None,
360
+ training=None):
361
+ """Applies Dot-product attention with query, key, value tensors.
362
+
363
+ This function defines the computation inside `call` with projected
364
+ multi-head Q, K, V inputs. Users can override this function for
365
+ customized attention implementation.
366
+
367
+ Args:
368
+ query: Projected query tensor of shape `(B, T, N, key_dim)`.
369
+ key: Projected key tensor of shape `(B, S, N, key_dim)`.
370
+ value: Projected value tensor of shape `(B, S, N, value_dim)`.
371
+ attention_mask: a boolean mask of shape `(B, T, S)`, that prevents
372
+ attention to certain positions. It is generally not needed if
373
+ the `query` and `value` (and/or `key`) are masked.
374
+ training: Python boolean indicating whether the layer should behave
375
+ in training mode (adding dropout) or in inference mode (doing
376
+ nothing).
377
+
378
+ Returns:
379
+ attention_output: Multi-headed outputs of attention computation.
380
+ attention_scores: Multi-headed attention weights.
381
+ """
382
+ # Note: Applying scalar multiply at the smaller end of einsum improves
383
+ # XLA performance, but may introduce slight numeric differences in
384
+ # the Transformer attention head.
385
+ query = tf.multiply(query, tf.cast(self._inverse_sqrt_key_dim, query.dtype))
386
+
387
+ # Take the dot product between "query" and "key" to get the raw
388
+ # attention scores.
389
+ attention_scores = tf.einsum(self._dot_product_equation, key, query)
390
+
391
+ attention_scores = self._masked_softmax(attention_scores, attention_mask)
392
+
393
+ # This is actually dropping out entire tokens to attend to, which might
394
+ # seem a bit unusual, but is taken from the original Transformer paper.
395
+ if self.dropout:
396
+ final_attn_scores = self._dropout_layer(
397
+ attention_scores, training=training)
398
+ else:
399
+ final_attn_scores = attention_scores
400
+
401
+ # `context_layer` = [B, T, N, H]
402
+ attention_output = tf.einsum(self._combine_equation, final_attn_scores,
403
+ value)
404
+ return attention_output, attention_scores
405
+
406
+ def call(self, inputs, mask=None, training=None, **kwargs):
407
+ assert isinstance(
408
+ inputs, (tuple, list)), 'inputs of MultiHeadAttention must be a list'
409
+ query, value, key = (list(inputs) + [None] * 2)[:3]
410
+ if key is None:
411
+ key = value
412
+ if mask is None:
413
+ masks = [None] * 4
414
+ elif type(mask) in (list, tuple):
415
+ masks = (list(mask) + [None] * 4)[:4]
416
+ else:
417
+ masks = ([mask] + [None] * 3)[:4]
418
+ query_mask, value_mask, key_mask, attention_mask = masks
419
+ if attention_mask is None and value_mask is None:
420
+ value_mask = query_mask
421
+ attention_mask = self._compute_attention_mask(
422
+ query,
423
+ value,
424
+ query_mask=query_mask,
425
+ value_mask=value_mask,
426
+ key_mask=key_mask,
427
+ attention_mask=attention_mask,
428
+ use_causal_mask=self._use_causal_mask,
429
+ )
430
+
431
+ # N = `num_attention_heads`
432
+ # H = `size_per_head`
433
+ # `query` = [B, T, N ,H]
434
+ query = self._query_dense(query)
435
+
436
+ # `key` = [B, S, N, H]
437
+ key = self._key_dense(key)
438
+
439
+ # `value` = [B, S, N, H]
440
+ value = self._value_dense(value)
441
+ attention_output, attention_scores = self._compute_attention(
442
+ query, key, value, attention_mask, training)
443
+ attention_output = self._output_dense(attention_output)
444
+ if self._return_attention_scores:
445
+ return attention_output, attention_scores
446
+ return attention_output
447
+
448
+ def _compute_attention_mask(
449
+ self,
450
+ query,
451
+ value,
452
+ query_mask=None,
453
+ value_mask=None,
454
+ key_mask=None,
455
+ attention_mask=None,
456
+ use_causal_mask=False,
457
+ ):
458
+ """Computes the attention mask, using the Keras masks of the inputs.
459
+
460
+ * The `query`'s mask is reshaped from [B, T] to [B, T, 1].
461
+ * The `value`'s mask is reshaped from [B, S] to [B, 1, S].
462
+ * The `key`'s mask is reshaped from [B, S] to [B, 1, S]. The `key`'s
463
+ mask is ignored if `key` is `None` or if `key is value`.
464
+ * If `use_causal_mask=True`, then the causal mask is computed. Its shape
465
+ is [1, T, S].
466
+
467
+ All defined masks are merged using a logical AND operation (`&`).
468
+
469
+ In general, if the `query` and `value` are masked, then there is no need
470
+ to define the `attention_mask`.
471
+
472
+ Args:
473
+ query: Projected query tensor of shape `(B, T, N, key_dim)`.
474
+ value: Projected value tensor of shape `(B, T, N, value_dim)`.
475
+ attention_mask: a boolean mask of shape `(B, T, S)`, that prevents
476
+ attention to certain positions.
477
+ use_causal_mask: A boolean to indicate whether to apply a causal
478
+ mask to prevent tokens from attending to future tokens (e.g.,
479
+ used in a decoder Transformer).
480
+
481
+ Returns:
482
+ attention_mask: a boolean mask of shape `(B, T, S)`, that prevents
483
+ attention to certain positions, based on the Keras masks of the
484
+ `query`, `key`, `value`, and `attention_mask` tensors, and the
485
+ causal mask if `use_causal_mask=True`.
486
+ """
487
+ auto_mask = None
488
+ if query_mask is not None:
489
+ query_mask = tf.cast(query_mask, tf.bool) # defensive casting
490
+ # B = batch size, T = max query length
491
+ auto_mask = tf.expand_dims(query_mask, -1) # shape is [B, T, 1]
492
+ if value_mask is not None:
493
+ value_mask = tf.cast(value_mask, tf.bool) # defensive casting
494
+ # B = batch size, S == max value length
495
+ mask = tf.expand_dims(value_mask, -2) # shape is [B, 1, S]
496
+ auto_mask = mask if auto_mask is None else auto_mask & mask
497
+ if key_mask is not None:
498
+ key_mask = tf.cast(key_mask, tf.bool) # defensive casting
499
+ # B == batch size, S == max key length == max value length
500
+ mask = tf.expand_dims(key_mask, -2) # shape is [B, 1, S]
501
+ auto_mask = mask if auto_mask is None else auto_mask & mask
502
+ if use_causal_mask:
503
+ # the shape of the causal mask is [1, T, S]
504
+ mask = self._compute_causal_mask(query, value)
505
+ auto_mask = mask if auto_mask is None else auto_mask & mask
506
+ if auto_mask is not None:
507
+ # merge attention_mask & automatic mask, to shape [B, T, S]
508
+ attention_mask = (
509
+ auto_mask if attention_mask is None else
510
+ tf.cast(attention_mask, tf.bool) & auto_mask)
511
+ return attention_mask
512
+
513
+ def _compute_causal_mask(self, query, value=None):
514
+ """Computes a causal mask (e.g., for masked self-attention layers).
515
+
516
+ For example, if query and value both contain sequences of length 4,
517
+ this function returns a boolean tensor equal to:
518
+
519
+ ```
520
+ [[[True, False, False, False],
521
+ [True, True, False, False],
522
+ [True, True, True, False],
523
+ [True, True, True, True]]]
524
+ ```
525
+
526
+ Args:
527
+ query: query tensor of shape `(B, T, ...)`.
528
+ value: value tensor of shape `(B, S, ...)` (optional, defaults to
529
+ query).
530
+
531
+ Returns:
532
+ mask: a boolean tensor of shape `(1, T, S)` containing a lower
533
+ triangular matrix of shape `(T, S)`.
534
+ """
535
+ q_seq_length = tf.shape(query)[1]
536
+ v_seq_length = q_seq_length if value is None else tf.shape(value)[1]
537
+ ones_mask = tf.ones((1, q_seq_length, v_seq_length), dtype='int32')
538
+ row_index = tf.cumsum(ones_mask, axis=-2)
539
+ col_index = tf.cumsum(ones_mask, axis=-1)
540
+ return tf.greater_equal(row_index, col_index)
541
+
542
+ def compute_output_shape(self, input_shape):
543
+ if len(input_shape) == 3:
544
+ query_shape, value_shape, key_shape = input_shape
545
+ elif len(input_shape) == 2:
546
+ query_shape, value_shape = input_shape
547
+ key_shape = None
548
+ else:
549
+ raise ValueError('invalid input shape of MultiHeadAttention')
550
+ if key_shape is None:
551
+ key_shape = value_shape
552
+
553
+ if query_shape[-1] != value_shape[-1]:
554
+ raise ValueError(
555
+ 'The last dimension of `query_shape` and `value_shape` '
556
+ 'must be equal, but are {query_last_dim}, {value_last_dim}. '
557
+ 'Received: query_shape={query_shape}, value_shape={value_shape}'
558
+ .format(
559
+ query_shape=query_shape,
560
+ value_shape=value_shape,
561
+ query_last_dim=query_shape[-1],
562
+ value_last_dim=value_shape[-1]))
563
+
564
+ if value_shape[1:-1] != key_shape[1:-1]:
565
+ raise ValueError(
566
+ 'All dimensions of `value` and `key`, except the last one, '
567
+ 'must be equal. Received: value_shape={value_shape} and '
568
+ 'key_shape={key_shape}'.format(
569
+ key_shape=key_shape, value_shape=value_shape))
570
+
571
+ if self._output_shape:
572
+ if hasattr(self._output_dense, '__len__'):
573
+ return query_shape[:-1] + self._output_shape
574
+ else:
575
+ return query_shape[:-1] + [self._output_shape]
576
+
577
+ return query_shape
578
+
579
+
580
+ def _index_to_einsum_variable(i):
581
+ """Coverts an index to a einsum variable name.
582
+
583
+ We simply map indices to lowercase characters, e.g. 0 -> 'a', 1 -> 'b'.
584
+ """
585
+ return string.ascii_lowercase[i]
586
+
587
+
588
+ def _build_attention_equation(rank, attn_axes):
589
+ """Builds einsum equations for the attention computation.
590
+
591
+ Query, key, value inputs after projection are expected to have the shape as:
592
+ `(bs, <non-attention dims>, <attention dims>, num_heads, channels)`.
593
+ `bs` and `<non-attention dims>` are treated as `<batch dims>`.
594
+
595
+ The attention operations can be generalized:
596
+ 1. Query-key dot product:
597
+ (<batch dims>, <query attention dims>, num_heads, channels),
598
+ (<batch dims>, <key attention dims>, num_heads, channels) ->
599
+ (<batch dims>, num_heads, <query attention dims>, <key attention dims>)
600
+ 2. Combination:
601
+ (<batch dims>, num_heads, <query attention dims>, <key attention dims>),
602
+ (<batch dims>, <value attention dims>, num_heads, channels) -> (<batch
603
+ dims>, <query attention dims>, num_heads, channels)
604
+
605
+ Args:
606
+ rank: Rank of query, key, value tensors.
607
+ attn_axes: List/tuple of axes, `[-1, rank)`,
608
+ that attention will be applied to.
609
+
610
+ Returns:
611
+ Einsum equations.
612
+ """
613
+ target_notation = ''
614
+ for i in range(rank):
615
+ target_notation += _index_to_einsum_variable(i)
616
+ # `batch_dims` includes the head dim.
617
+ batch_dims = tuple(np.delete(range(rank), attn_axes + (rank - 1,)))
618
+ letter_offset = rank
619
+ source_notation = ''
620
+ for i in range(rank):
621
+ if i in batch_dims or i == rank - 1:
622
+ source_notation += target_notation[i]
623
+ else:
624
+ source_notation += _index_to_einsum_variable(letter_offset)
625
+ letter_offset += 1
626
+
627
+ product_notation = ''.join([target_notation[i] for i in batch_dims] +
628
+ [target_notation[i] for i in attn_axes] +
629
+ [source_notation[i] for i in attn_axes])
630
+ dot_product_equation = '%s,%s->%s' % (
631
+ source_notation,
632
+ target_notation,
633
+ product_notation,
634
+ )
635
+ attn_scores_rank = len(product_notation)
636
+ combine_equation = '%s,%s->%s' % (
637
+ product_notation,
638
+ source_notation,
639
+ target_notation,
640
+ )
641
+ return dot_product_equation, combine_equation, attn_scores_rank
642
+
643
+
644
+ def _build_proj_equation(free_dims, bound_dims, output_dims):
645
+ """Builds an einsum equation for projections inside multi-head attention."""
646
+ input_str = ''
647
+ kernel_str = ''
648
+ output_str = ''
649
+ bias_axes = ''
650
+ letter_offset = 0
651
+ for i in range(free_dims):
652
+ char = _index_to_einsum_variable(i + letter_offset)
653
+ input_str += char
654
+ output_str += char
655
+
656
+ letter_offset += free_dims
657
+ for i in range(bound_dims):
658
+ char = _index_to_einsum_variable(i + letter_offset)
659
+ input_str += char
660
+ kernel_str += char
661
+
662
+ letter_offset += bound_dims
663
+ for i in range(output_dims):
664
+ char = _index_to_einsum_variable(i + letter_offset)
665
+ kernel_str += char
666
+ output_str += char
667
+ bias_axes += char
668
+ equation = '{input_str},{kernel_str}->{output_str}'.format(
669
+ input_str=input_str, kernel_str=kernel_str, output_str=output_str)
670
+ return equation, bias_axes, len(output_str)
671
+
672
+
673
+ def _get_output_shape(output_rank, known_last_dims):
674
+ return [None] * (output_rank - len(known_last_dims)) + list(known_last_dims)
675
+
676
+ # def __init__(self, params, name='multi_head_attention', reuse=None, **kwargs):
677
+ # super(MultiHeadAttention, self).__init__(name=name, **kwargs)
678
+ # self.num_heads = params.num_attention_heads
679
+ # self.d_model = params.hidden_size
680
+ # if self.d_model % self.num_heads != 0:
681
+ # raise ValueError(
682
+ # 'The hidden size (%d) is not a multiple of the number of attention '
683
+ # 'heads (%d)' % (self.d_model, self.num_heads))
684
+ # self.depth = self.d_model // self.num_heads
685
+ # self.wq = Dense(self.d_model)
686
+ # self.wk = Dense(self.d_model)
687
+ # self.wv = Dense(self.d_model)
688
+ # self.dense = Dense(self.d_model)
689
+ # att_params = Parameter.make_from_pb(params.attention)
690
+ # self.attention = Attention(att_params, 'scaled_dot_product_attention')
691
+ #
692
+ # # def split_heads(self, x, batch_size):
693
+ # # x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth))
694
+ # # return tf.transpose(x, perm=[0, 2, 1, 3])
695
+ #
696
+ # def call(self, inputs, training=None, **kwargs):
697
+ # q, v, k, mask = inputs
698
+ # batch_size = tf.shape(q)[0]
699
+ #
700
+ # q = self.wq(q)
701
+ # k = self.wk(k)
702
+ # v = self.wv(v)
703
+ #
704
+ # # q = self.split_heads(q, batch_size)
705
+ # # k = self.split_heads(k, batch_size)
706
+ # # v = self.split_heads(v, batch_size)
707
+ #
708
+ # attn = self.attention([q, v, k], mask=[mask, mask], training=training)
709
+ # return_attn_score = self.attention.return_attention_scores
710
+ # attention, attention_scores = attn if return_attn_score else attn, None
711
+ #
712
+ # # attention = tf.transpose(attention, perm=[0, 2, 1, 3])
713
+ # # attention = tf.reshape(attention, (batch_size, -1, self.d_model))
714
+ # output = self.dense(attention)
715
+ # if return_attn_score:
716
+ # return output, attention_scores
717
+ # return output