easy-cs-rec-custommodel 0.8.6__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of easy-cs-rec-custommodel might be problematic. Click here for more details.
- easy_cs_rec_custommodel-0.8.6.dist-info/LICENSE +203 -0
- easy_cs_rec_custommodel-0.8.6.dist-info/METADATA +48 -0
- easy_cs_rec_custommodel-0.8.6.dist-info/RECORD +336 -0
- easy_cs_rec_custommodel-0.8.6.dist-info/WHEEL +6 -0
- easy_cs_rec_custommodel-0.8.6.dist-info/top_level.txt +2 -0
- easy_rec/__init__.py +114 -0
- easy_rec/python/__init__.py +0 -0
- easy_rec/python/builders/__init__.py +0 -0
- easy_rec/python/builders/hyperparams_builder.py +78 -0
- easy_rec/python/builders/loss_builder.py +333 -0
- easy_rec/python/builders/optimizer_builder.py +211 -0
- easy_rec/python/builders/strategy_builder.py +44 -0
- easy_rec/python/compat/__init__.py +0 -0
- easy_rec/python/compat/adam_s.py +245 -0
- easy_rec/python/compat/array_ops.py +229 -0
- easy_rec/python/compat/dynamic_variable.py +542 -0
- easy_rec/python/compat/early_stopping.py +653 -0
- easy_rec/python/compat/embedding_ops.py +162 -0
- easy_rec/python/compat/embedding_parallel_saver.py +316 -0
- easy_rec/python/compat/estimator_train.py +116 -0
- easy_rec/python/compat/exporter.py +473 -0
- easy_rec/python/compat/feature_column/__init__.py +0 -0
- easy_rec/python/compat/feature_column/feature_column.py +3675 -0
- easy_rec/python/compat/feature_column/feature_column_v2.py +5233 -0
- easy_rec/python/compat/feature_column/sequence_feature_column.py +648 -0
- easy_rec/python/compat/feature_column/utils.py +154 -0
- easy_rec/python/compat/layers.py +329 -0
- easy_rec/python/compat/ops.py +14 -0
- easy_rec/python/compat/optimizers.py +619 -0
- easy_rec/python/compat/queues.py +311 -0
- easy_rec/python/compat/regularizers.py +208 -0
- easy_rec/python/compat/sok_optimizer.py +440 -0
- easy_rec/python/compat/sync_replicas_optimizer.py +528 -0
- easy_rec/python/compat/weight_decay_optimizers.py +475 -0
- easy_rec/python/core/__init__.py +0 -0
- easy_rec/python/core/easyrec_metrics/__init__.py +24 -0
- easy_rec/python/core/easyrec_metrics/distribute_metrics_impl_pai.py +3702 -0
- easy_rec/python/core/easyrec_metrics/distribute_metrics_impl_tf.py +3768 -0
- easy_rec/python/core/learning_schedules.py +228 -0
- easy_rec/python/core/metrics.py +402 -0
- easy_rec/python/core/sampler.py +844 -0
- easy_rec/python/eval.py +102 -0
- easy_rec/python/export.py +150 -0
- easy_rec/python/feature_column/__init__.py +0 -0
- easy_rec/python/feature_column/feature_column.py +664 -0
- easy_rec/python/feature_column/feature_group.py +89 -0
- easy_rec/python/hpo/__init__.py +0 -0
- easy_rec/python/hpo/emr_hpo.py +140 -0
- easy_rec/python/hpo/generate_hpo_sql.py +71 -0
- easy_rec/python/hpo/pai_hpo.py +297 -0
- easy_rec/python/inference/__init__.py +0 -0
- easy_rec/python/inference/csv_predictor.py +189 -0
- easy_rec/python/inference/hive_parquet_predictor.py +200 -0
- easy_rec/python/inference/hive_predictor.py +166 -0
- easy_rec/python/inference/odps_predictor.py +70 -0
- easy_rec/python/inference/parquet_predictor.py +147 -0
- easy_rec/python/inference/parquet_predictor_v2.py +147 -0
- easy_rec/python/inference/predictor.py +621 -0
- easy_rec/python/inference/processor/__init__.py +0 -0
- easy_rec/python/inference/processor/test.py +170 -0
- easy_rec/python/inference/vector_retrieve.py +124 -0
- easy_rec/python/input/__init__.py +0 -0
- easy_rec/python/input/batch_tfrecord_input.py +117 -0
- easy_rec/python/input/criteo_binary_reader.py +259 -0
- easy_rec/python/input/criteo_input.py +107 -0
- easy_rec/python/input/csv_input.py +175 -0
- easy_rec/python/input/csv_input_ex.py +72 -0
- easy_rec/python/input/csv_input_v2.py +68 -0
- easy_rec/python/input/datahub_input.py +320 -0
- easy_rec/python/input/dummy_input.py +58 -0
- easy_rec/python/input/hive_input.py +123 -0
- easy_rec/python/input/hive_parquet_input.py +140 -0
- easy_rec/python/input/hive_rtp_input.py +174 -0
- easy_rec/python/input/input.py +1064 -0
- easy_rec/python/input/kafka_dataset.py +144 -0
- easy_rec/python/input/kafka_input.py +235 -0
- easy_rec/python/input/load_parquet.py +317 -0
- easy_rec/python/input/odps_input.py +101 -0
- easy_rec/python/input/odps_input_v2.py +110 -0
- easy_rec/python/input/odps_input_v3.py +132 -0
- easy_rec/python/input/odps_rtp_input.py +187 -0
- easy_rec/python/input/odps_rtp_input_v2.py +104 -0
- easy_rec/python/input/parquet_input.py +397 -0
- easy_rec/python/input/parquet_input_v2.py +180 -0
- easy_rec/python/input/parquet_input_v3.py +203 -0
- easy_rec/python/input/rtp_input.py +225 -0
- easy_rec/python/input/rtp_input_v2.py +145 -0
- easy_rec/python/input/tfrecord_input.py +100 -0
- easy_rec/python/layers/__init__.py +0 -0
- easy_rec/python/layers/backbone.py +571 -0
- easy_rec/python/layers/capsule_layer.py +176 -0
- easy_rec/python/layers/cmbf.py +390 -0
- easy_rec/python/layers/common_layers.py +192 -0
- easy_rec/python/layers/dnn.py +87 -0
- easy_rec/python/layers/embed_input_layer.py +25 -0
- easy_rec/python/layers/fm.py +26 -0
- easy_rec/python/layers/input_layer.py +396 -0
- easy_rec/python/layers/keras/__init__.py +34 -0
- easy_rec/python/layers/keras/activation.py +114 -0
- easy_rec/python/layers/keras/attention.py +267 -0
- easy_rec/python/layers/keras/auxiliary_loss.py +47 -0
- easy_rec/python/layers/keras/blocks.py +262 -0
- easy_rec/python/layers/keras/bst.py +119 -0
- easy_rec/python/layers/keras/custom_ops.py +250 -0
- easy_rec/python/layers/keras/data_augment.py +133 -0
- easy_rec/python/layers/keras/din.py +67 -0
- easy_rec/python/layers/keras/einsum_dense.py +598 -0
- easy_rec/python/layers/keras/embedding.py +81 -0
- easy_rec/python/layers/keras/fibinet.py +251 -0
- easy_rec/python/layers/keras/interaction.py +416 -0
- easy_rec/python/layers/keras/layer_norm.py +364 -0
- easy_rec/python/layers/keras/mask_net.py +166 -0
- easy_rec/python/layers/keras/multi_head_attention.py +717 -0
- easy_rec/python/layers/keras/multi_task.py +125 -0
- easy_rec/python/layers/keras/numerical_embedding.py +376 -0
- easy_rec/python/layers/keras/ppnet.py +194 -0
- easy_rec/python/layers/keras/transformer.py +192 -0
- easy_rec/python/layers/layer_norm.py +51 -0
- easy_rec/python/layers/mmoe.py +83 -0
- easy_rec/python/layers/multihead_attention.py +162 -0
- easy_rec/python/layers/multihead_cross_attention.py +749 -0
- easy_rec/python/layers/senet.py +73 -0
- easy_rec/python/layers/seq_input_layer.py +134 -0
- easy_rec/python/layers/sequence_feature_layer.py +249 -0
- easy_rec/python/layers/uniter.py +301 -0
- easy_rec/python/layers/utils.py +248 -0
- easy_rec/python/layers/variational_dropout_layer.py +130 -0
- easy_rec/python/loss/__init__.py +0 -0
- easy_rec/python/loss/circle_loss.py +82 -0
- easy_rec/python/loss/contrastive_loss.py +79 -0
- easy_rec/python/loss/f1_reweight_loss.py +38 -0
- easy_rec/python/loss/focal_loss.py +93 -0
- easy_rec/python/loss/jrc_loss.py +128 -0
- easy_rec/python/loss/listwise_loss.py +161 -0
- easy_rec/python/loss/multi_similarity.py +68 -0
- easy_rec/python/loss/pairwise_loss.py +307 -0
- easy_rec/python/loss/softmax_loss_with_negative_mining.py +110 -0
- easy_rec/python/loss/zero_inflated_lognormal.py +76 -0
- easy_rec/python/main.py +878 -0
- easy_rec/python/model/__init__.py +0 -0
- easy_rec/python/model/autoint.py +73 -0
- easy_rec/python/model/cmbf.py +47 -0
- easy_rec/python/model/collaborative_metric_learning.py +182 -0
- easy_rec/python/model/custom_model.py +323 -0
- easy_rec/python/model/dat.py +138 -0
- easy_rec/python/model/dbmtl.py +116 -0
- easy_rec/python/model/dcn.py +70 -0
- easy_rec/python/model/deepfm.py +106 -0
- easy_rec/python/model/dlrm.py +73 -0
- easy_rec/python/model/dropoutnet.py +207 -0
- easy_rec/python/model/dssm.py +154 -0
- easy_rec/python/model/dssm_senet.py +143 -0
- easy_rec/python/model/dummy_model.py +48 -0
- easy_rec/python/model/easy_rec_estimator.py +739 -0
- easy_rec/python/model/easy_rec_model.py +467 -0
- easy_rec/python/model/esmm.py +242 -0
- easy_rec/python/model/fm.py +63 -0
- easy_rec/python/model/match_model.py +357 -0
- easy_rec/python/model/mind.py +445 -0
- easy_rec/python/model/mmoe.py +70 -0
- easy_rec/python/model/multi_task_model.py +303 -0
- easy_rec/python/model/multi_tower.py +62 -0
- easy_rec/python/model/multi_tower_bst.py +190 -0
- easy_rec/python/model/multi_tower_din.py +130 -0
- easy_rec/python/model/multi_tower_recall.py +68 -0
- easy_rec/python/model/pdn.py +203 -0
- easy_rec/python/model/ple.py +120 -0
- easy_rec/python/model/rank_model.py +485 -0
- easy_rec/python/model/rocket_launching.py +203 -0
- easy_rec/python/model/simple_multi_task.py +54 -0
- easy_rec/python/model/uniter.py +46 -0
- easy_rec/python/model/wide_and_deep.py +121 -0
- easy_rec/python/ops/1.12/incr_record.so +0 -0
- easy_rec/python/ops/1.12/kafka.so +0 -0
- easy_rec/python/ops/1.12/libcustom_ops.so +0 -0
- easy_rec/python/ops/1.12/libembed_op.so +0 -0
- easy_rec/python/ops/1.12/libhiredis.so.1.0.0 +0 -0
- easy_rec/python/ops/1.12/librdkafka++.so.1 +0 -0
- easy_rec/python/ops/1.12/librdkafka.so.1 +0 -0
- easy_rec/python/ops/1.12/libredis++.so +0 -0
- easy_rec/python/ops/1.12/libredis++.so.1 +0 -0
- easy_rec/python/ops/1.12/libredis++.so.1.2.3 +0 -0
- easy_rec/python/ops/1.12/libstr_avx_op.so +0 -0
- easy_rec/python/ops/1.12/libwrite_sparse_kv.so +0 -0
- easy_rec/python/ops/1.15/incr_record.so +0 -0
- easy_rec/python/ops/1.15/kafka.so +0 -0
- easy_rec/python/ops/1.15/libcustom_ops.so +0 -0
- easy_rec/python/ops/1.15/libembed_op.so +0 -0
- easy_rec/python/ops/1.15/libhiredis.so.1.0.0 +0 -0
- easy_rec/python/ops/1.15/librdkafka++.so +0 -0
- easy_rec/python/ops/1.15/librdkafka++.so.1 +0 -0
- easy_rec/python/ops/1.15/librdkafka.so +0 -0
- easy_rec/python/ops/1.15/librdkafka.so.1 +0 -0
- easy_rec/python/ops/1.15/libredis++.so.1 +0 -0
- easy_rec/python/ops/1.15/libstr_avx_op.so +0 -0
- easy_rec/python/ops/2.12/libcustom_ops.so +0 -0
- easy_rec/python/ops/2.12/libload_embed.so +0 -0
- easy_rec/python/ops/2.12/libstr_avx_op.so +0 -0
- easy_rec/python/ops/__init__.py +0 -0
- easy_rec/python/ops/gen_kafka_ops.py +193 -0
- easy_rec/python/ops/gen_str_avx_op.py +28 -0
- easy_rec/python/ops/incr_record.py +30 -0
- easy_rec/python/predict.py +170 -0
- easy_rec/python/protos/__init__.py +0 -0
- easy_rec/python/protos/autoint_pb2.py +122 -0
- easy_rec/python/protos/backbone_pb2.py +1416 -0
- easy_rec/python/protos/cmbf_pb2.py +435 -0
- easy_rec/python/protos/collaborative_metric_learning_pb2.py +252 -0
- easy_rec/python/protos/custom_model_pb2.py +57 -0
- easy_rec/python/protos/dat_pb2.py +262 -0
- easy_rec/python/protos/data_source_pb2.py +422 -0
- easy_rec/python/protos/dataset_pb2.py +1920 -0
- easy_rec/python/protos/dbmtl_pb2.py +191 -0
- easy_rec/python/protos/dcn_pb2.py +197 -0
- easy_rec/python/protos/deepfm_pb2.py +163 -0
- easy_rec/python/protos/dlrm_pb2.py +163 -0
- easy_rec/python/protos/dnn_pb2.py +329 -0
- easy_rec/python/protos/dropoutnet_pb2.py +239 -0
- easy_rec/python/protos/dssm_pb2.py +262 -0
- easy_rec/python/protos/dssm_senet_pb2.py +282 -0
- easy_rec/python/protos/easy_rec_model_pb2.py +1672 -0
- easy_rec/python/protos/esmm_pb2.py +133 -0
- easy_rec/python/protos/eval_pb2.py +930 -0
- easy_rec/python/protos/export_pb2.py +379 -0
- easy_rec/python/protos/feature_config_pb2.py +1359 -0
- easy_rec/python/protos/fm_pb2.py +90 -0
- easy_rec/python/protos/hive_config_pb2.py +138 -0
- easy_rec/python/protos/hyperparams_pb2.py +624 -0
- easy_rec/python/protos/keras_layer_pb2.py +692 -0
- easy_rec/python/protos/layer_pb2.py +1936 -0
- easy_rec/python/protos/loss_pb2.py +1713 -0
- easy_rec/python/protos/mind_pb2.py +497 -0
- easy_rec/python/protos/mmoe_pb2.py +215 -0
- easy_rec/python/protos/multi_tower_pb2.py +295 -0
- easy_rec/python/protos/multi_tower_recall_pb2.py +198 -0
- easy_rec/python/protos/optimizer_pb2.py +2017 -0
- easy_rec/python/protos/pdn_pb2.py +293 -0
- easy_rec/python/protos/pipeline_pb2.py +516 -0
- easy_rec/python/protos/ple_pb2.py +231 -0
- easy_rec/python/protos/predict_pb2.py +1140 -0
- easy_rec/python/protos/rocket_launching_pb2.py +169 -0
- easy_rec/python/protos/seq_encoder_pb2.py +1084 -0
- easy_rec/python/protos/simi_pb2.py +54 -0
- easy_rec/python/protos/simple_multi_task_pb2.py +97 -0
- easy_rec/python/protos/tf_predict_pb2.py +630 -0
- easy_rec/python/protos/tower_pb2.py +661 -0
- easy_rec/python/protos/train_pb2.py +1197 -0
- easy_rec/python/protos/uniter_pb2.py +307 -0
- easy_rec/python/protos/variational_dropout_pb2.py +91 -0
- easy_rec/python/protos/wide_and_deep_pb2.py +131 -0
- easy_rec/python/test/__init__.py +0 -0
- easy_rec/python/test/csv_input_test.py +340 -0
- easy_rec/python/test/custom_early_stop_func.py +19 -0
- easy_rec/python/test/dh_local_run.py +104 -0
- easy_rec/python/test/embed_test.py +155 -0
- easy_rec/python/test/emr_run.py +119 -0
- easy_rec/python/test/eval_metric_test.py +107 -0
- easy_rec/python/test/excel_convert_test.py +64 -0
- easy_rec/python/test/export_test.py +513 -0
- easy_rec/python/test/fg_test.py +70 -0
- easy_rec/python/test/hive_input_test.py +311 -0
- easy_rec/python/test/hpo_test.py +235 -0
- easy_rec/python/test/kafka_test.py +373 -0
- easy_rec/python/test/local_incr_test.py +122 -0
- easy_rec/python/test/loss_test.py +110 -0
- easy_rec/python/test/odps_command.py +61 -0
- easy_rec/python/test/odps_local_run.py +86 -0
- easy_rec/python/test/odps_run.py +254 -0
- easy_rec/python/test/odps_test_cls.py +39 -0
- easy_rec/python/test/odps_test_prepare.py +198 -0
- easy_rec/python/test/odps_test_util.py +237 -0
- easy_rec/python/test/pre_check_test.py +54 -0
- easy_rec/python/test/predictor_test.py +394 -0
- easy_rec/python/test/rtp_convert_test.py +133 -0
- easy_rec/python/test/run.py +138 -0
- easy_rec/python/test/train_eval_test.py +1299 -0
- easy_rec/python/test/util_test.py +85 -0
- easy_rec/python/test/zero_inflated_lognormal_test.py +53 -0
- easy_rec/python/tools/__init__.py +0 -0
- easy_rec/python/tools/add_boundaries_to_config.py +67 -0
- easy_rec/python/tools/add_feature_info_to_config.py +145 -0
- easy_rec/python/tools/convert_config_format.py +48 -0
- easy_rec/python/tools/convert_rtp_data.py +79 -0
- easy_rec/python/tools/convert_rtp_fg.py +106 -0
- easy_rec/python/tools/create_config_from_excel.py +427 -0
- easy_rec/python/tools/criteo/__init__.py +0 -0
- easy_rec/python/tools/criteo/convert_data.py +157 -0
- easy_rec/python/tools/edit_lookup_graph.py +134 -0
- easy_rec/python/tools/faiss_index_pai.py +116 -0
- easy_rec/python/tools/feature_selection.py +316 -0
- easy_rec/python/tools/hit_rate_ds.py +223 -0
- easy_rec/python/tools/hit_rate_pai.py +138 -0
- easy_rec/python/tools/pre_check.py +120 -0
- easy_rec/python/tools/predict_and_chk.py +111 -0
- easy_rec/python/tools/read_kafka.py +55 -0
- easy_rec/python/tools/split_model_pai.py +286 -0
- easy_rec/python/tools/split_pdn_model_pai.py +272 -0
- easy_rec/python/tools/test_saved_model.py +80 -0
- easy_rec/python/tools/view_saved_model.py +39 -0
- easy_rec/python/tools/write_kafka.py +65 -0
- easy_rec/python/train_eval.py +325 -0
- easy_rec/python/utils/__init__.py +15 -0
- easy_rec/python/utils/activation.py +120 -0
- easy_rec/python/utils/check_utils.py +87 -0
- easy_rec/python/utils/compat.py +14 -0
- easy_rec/python/utils/config_util.py +652 -0
- easy_rec/python/utils/constant.py +43 -0
- easy_rec/python/utils/convert_rtp_fg.py +616 -0
- easy_rec/python/utils/dag.py +192 -0
- easy_rec/python/utils/distribution_utils.py +268 -0
- easy_rec/python/utils/ds_util.py +65 -0
- easy_rec/python/utils/embedding_utils.py +73 -0
- easy_rec/python/utils/estimator_utils.py +1036 -0
- easy_rec/python/utils/export_big_model.py +630 -0
- easy_rec/python/utils/expr_util.py +118 -0
- easy_rec/python/utils/fg_util.py +53 -0
- easy_rec/python/utils/hit_rate_utils.py +220 -0
- easy_rec/python/utils/hive_utils.py +183 -0
- easy_rec/python/utils/hpo_util.py +137 -0
- easy_rec/python/utils/hvd_utils.py +56 -0
- easy_rec/python/utils/input_utils.py +108 -0
- easy_rec/python/utils/io_util.py +282 -0
- easy_rec/python/utils/load_class.py +249 -0
- easy_rec/python/utils/meta_graph_editor.py +941 -0
- easy_rec/python/utils/multi_optimizer.py +62 -0
- easy_rec/python/utils/numpy_utils.py +18 -0
- easy_rec/python/utils/odps_util.py +79 -0
- easy_rec/python/utils/pai_util.py +86 -0
- easy_rec/python/utils/proto_util.py +90 -0
- easy_rec/python/utils/restore_filter.py +89 -0
- easy_rec/python/utils/shape_utils.py +432 -0
- easy_rec/python/utils/static_shape.py +71 -0
- easy_rec/python/utils/test_utils.py +866 -0
- easy_rec/python/utils/tf_utils.py +56 -0
- easy_rec/version.py +4 -0
- test/__init__.py +0 -0
|
@@ -0,0 +1,73 @@
|
|
|
1
|
+
# -*- encoding:utf-8 -*-
|
|
2
|
+
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
3
|
+
import tensorflow as tf
|
|
4
|
+
|
|
5
|
+
if tf.__version__ >= '2.0':
|
|
6
|
+
tf = tf.compat.v1
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class SENet:
|
|
10
|
+
"""Squeeze and Excite Network.
|
|
11
|
+
|
|
12
|
+
Input shape
|
|
13
|
+
- A list of 2D tensor with shape: ``(batch_size,embedding_size)``.
|
|
14
|
+
The ``embedding_size`` of each field can have different value.
|
|
15
|
+
|
|
16
|
+
Args:
|
|
17
|
+
num_fields: int, number of fields.
|
|
18
|
+
num_squeeze_group: int, number of groups for squeeze.
|
|
19
|
+
reduction_ratio: int, reduction ratio for squeeze.
|
|
20
|
+
l2_reg: float, l2 regularizer for embedding.
|
|
21
|
+
name: str, name of the layer.
|
|
22
|
+
"""
|
|
23
|
+
|
|
24
|
+
def __init__(self,
|
|
25
|
+
num_fields,
|
|
26
|
+
num_squeeze_group,
|
|
27
|
+
reduction_ratio,
|
|
28
|
+
l2_reg,
|
|
29
|
+
name='SENet'):
|
|
30
|
+
self.num_fields = num_fields
|
|
31
|
+
self.num_squeeze_group = num_squeeze_group
|
|
32
|
+
self.reduction_ratio = reduction_ratio
|
|
33
|
+
self._l2_reg = l2_reg
|
|
34
|
+
self._name = name
|
|
35
|
+
|
|
36
|
+
def __call__(self, inputs):
|
|
37
|
+
g = self.num_squeeze_group
|
|
38
|
+
f = self.num_fields
|
|
39
|
+
r = self.reduction_ratio
|
|
40
|
+
reduction_size = max(1, f * g * 2 // r)
|
|
41
|
+
|
|
42
|
+
emb_size = 0
|
|
43
|
+
for input in inputs:
|
|
44
|
+
emb_size += int(input.shape[-1])
|
|
45
|
+
|
|
46
|
+
group_embs = [
|
|
47
|
+
tf.reshape(emb, [-1, g, int(emb.shape[-1]) // g]) for emb in inputs
|
|
48
|
+
]
|
|
49
|
+
|
|
50
|
+
squeezed = []
|
|
51
|
+
for emb in group_embs:
|
|
52
|
+
squeezed.append(tf.reduce_max(emb, axis=-1)) # [B, g]
|
|
53
|
+
squeezed.append(tf.reduce_mean(emb, axis=-1)) # [B, g]
|
|
54
|
+
z = tf.concat(squeezed, axis=1) # [bs, field_size * num_groups * 2]
|
|
55
|
+
|
|
56
|
+
reduced = tf.layers.dense(
|
|
57
|
+
inputs=z,
|
|
58
|
+
units=reduction_size,
|
|
59
|
+
kernel_regularizer=self._l2_reg,
|
|
60
|
+
activation='relu',
|
|
61
|
+
name='%s/reduce' % self._name)
|
|
62
|
+
|
|
63
|
+
excited_weights = tf.layers.dense(
|
|
64
|
+
inputs=reduced,
|
|
65
|
+
units=emb_size,
|
|
66
|
+
kernel_initializer='glorot_normal',
|
|
67
|
+
name='%s/excite' % self._name)
|
|
68
|
+
|
|
69
|
+
# Re-weight
|
|
70
|
+
inputs = tf.concat(inputs, axis=-1)
|
|
71
|
+
output = inputs * excited_weights
|
|
72
|
+
|
|
73
|
+
return output
|
|
@@ -0,0 +1,134 @@
|
|
|
1
|
+
# -*- encoding: utf-8 -*-
|
|
2
|
+
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
3
|
+
|
|
4
|
+
import logging
|
|
5
|
+
|
|
6
|
+
import tensorflow as tf
|
|
7
|
+
from tensorflow.python.framework import ops
|
|
8
|
+
from tensorflow.python.ops import variable_scope
|
|
9
|
+
|
|
10
|
+
from easy_rec.python.compat import regularizers
|
|
11
|
+
from easy_rec.python.compat.feature_column import feature_column
|
|
12
|
+
from easy_rec.python.feature_column.feature_column import FeatureColumnParser
|
|
13
|
+
from easy_rec.python.protos.feature_config_pb2 import WideOrDeep
|
|
14
|
+
|
|
15
|
+
if tf.__version__ >= '2.0':
|
|
16
|
+
tf = tf.compat.v1
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class SeqInputLayer(object):
|
|
20
|
+
|
|
21
|
+
def __init__(self,
|
|
22
|
+
feature_configs,
|
|
23
|
+
feature_groups_config,
|
|
24
|
+
embedding_regularizer=None,
|
|
25
|
+
ev_params=None):
|
|
26
|
+
self._feature_groups_config = {
|
|
27
|
+
x.group_name: x for x in feature_groups_config
|
|
28
|
+
}
|
|
29
|
+
wide_and_deep_dict = self.get_wide_deep_dict()
|
|
30
|
+
self._fc_parser = FeatureColumnParser(
|
|
31
|
+
feature_configs, wide_and_deep_dict, ev_params=ev_params)
|
|
32
|
+
self._embedding_regularizer = embedding_regularizer
|
|
33
|
+
|
|
34
|
+
def __call__(self,
|
|
35
|
+
features,
|
|
36
|
+
group_name,
|
|
37
|
+
feature_name_to_output_tensors={},
|
|
38
|
+
allow_key_search=True,
|
|
39
|
+
scope_name=None):
|
|
40
|
+
feature_column_dict = self._fc_parser.deep_columns
|
|
41
|
+
feature_column_dict.update(self._fc_parser.sequence_columns)
|
|
42
|
+
|
|
43
|
+
builder = feature_column._LazyBuilder(features)
|
|
44
|
+
|
|
45
|
+
feature_dict = self._feature_groups_config[group_name]
|
|
46
|
+
tf_summary = feature_dict.tf_summary
|
|
47
|
+
if tf_summary:
|
|
48
|
+
logging.info('Write sequence feature to tensorflow summary.')
|
|
49
|
+
|
|
50
|
+
def _seq_embed_summary_name(input_name):
|
|
51
|
+
input_name = input_name.split(':')[0]
|
|
52
|
+
input_name = input_name.split('/')[:2]
|
|
53
|
+
return 'sequence_feature/' + '/'.join(input_name)
|
|
54
|
+
|
|
55
|
+
if scope_name is None:
|
|
56
|
+
scope_name = group_name
|
|
57
|
+
# name_scope is specified to avoid adding _1 _2 after scope_name
|
|
58
|
+
with variable_scope.variable_scope(
|
|
59
|
+
scope_name,
|
|
60
|
+
reuse=variable_scope.AUTO_REUSE), ops.name_scope(scope_name + '/'):
|
|
61
|
+
key_tensors = []
|
|
62
|
+
hist_tensors = []
|
|
63
|
+
check_op_list = []
|
|
64
|
+
for x in feature_dict.seq_att_map:
|
|
65
|
+
for key in x.key:
|
|
66
|
+
if key not in feature_name_to_output_tensors or (
|
|
67
|
+
feature_name_to_output_tensors[key] is None and allow_key_search):
|
|
68
|
+
qfc = feature_column_dict[key]
|
|
69
|
+
with variable_scope.variable_scope(qfc._var_scope_name):
|
|
70
|
+
tmp_key_tensor = feature_column_dict[key]._get_dense_tensor(
|
|
71
|
+
builder)
|
|
72
|
+
regularizers.apply_regularization(
|
|
73
|
+
self._embedding_regularizer, weights_list=[tmp_key_tensor])
|
|
74
|
+
key_tensors.append(tmp_key_tensor)
|
|
75
|
+
elif feature_name_to_output_tensors[key] is None:
|
|
76
|
+
assert feature_name_to_output_tensors[
|
|
77
|
+
key] is not None, 'When allow_key_search is False, key: %s should defined in same feature group.' % key
|
|
78
|
+
else:
|
|
79
|
+
key_tensors.append(feature_name_to_output_tensors[key])
|
|
80
|
+
|
|
81
|
+
if tf_summary:
|
|
82
|
+
for key_tensor in key_tensors:
|
|
83
|
+
tf.summary.histogram(
|
|
84
|
+
_seq_embed_summary_name(key_tensor.name), key_tensor)
|
|
85
|
+
cur_hist_seqs = []
|
|
86
|
+
for hist_seq in x.hist_seq:
|
|
87
|
+
seq_fc = feature_column_dict[hist_seq]
|
|
88
|
+
with variable_scope.variable_scope(seq_fc._var_scope_name):
|
|
89
|
+
cur_hist_seqs.append(
|
|
90
|
+
feature_column_dict[hist_seq]._get_sequence_dense_tensor(
|
|
91
|
+
builder))
|
|
92
|
+
hist_tensors.extend(cur_hist_seqs)
|
|
93
|
+
|
|
94
|
+
aux_hist_emb_list = []
|
|
95
|
+
for aux_hist_seq in x.aux_hist_seq:
|
|
96
|
+
seq_fc = feature_column_dict[aux_hist_seq]
|
|
97
|
+
with variable_scope.variable_scope(seq_fc._var_scope_name):
|
|
98
|
+
aux_hist_embedding, _ = feature_column_dict[
|
|
99
|
+
aux_hist_seq]._get_sequence_dense_tensor(builder)
|
|
100
|
+
aux_hist_emb_list.append(aux_hist_embedding)
|
|
101
|
+
|
|
102
|
+
if tf_summary:
|
|
103
|
+
for hist_embed, hist_seq_len in hist_tensors:
|
|
104
|
+
tf.summary.histogram(
|
|
105
|
+
_seq_embed_summary_name(hist_embed.name), hist_embed)
|
|
106
|
+
tf.summary.histogram(
|
|
107
|
+
_seq_embed_summary_name(hist_seq_len.name), hist_seq_len)
|
|
108
|
+
|
|
109
|
+
for idx in range(1, len(cur_hist_seqs)):
|
|
110
|
+
check_op = tf.assert_equal(
|
|
111
|
+
cur_hist_seqs[0][1],
|
|
112
|
+
cur_hist_seqs[idx][1],
|
|
113
|
+
message='SequenceFeature Error: The size of %s not equal to the size of %s.'
|
|
114
|
+
% (x.hist_seq[idx], x.hist_seq[0]))
|
|
115
|
+
check_op_list.append(check_op)
|
|
116
|
+
|
|
117
|
+
with tf.control_dependencies(check_op_list):
|
|
118
|
+
features = {
|
|
119
|
+
'key': tf.concat(key_tensors, axis=-1),
|
|
120
|
+
'hist_seq_emb': tf.concat([x[0] for x in hist_tensors], axis=-1),
|
|
121
|
+
'hist_seq_len': hist_tensors[0][1],
|
|
122
|
+
'aux_hist_seq_emb_list': aux_hist_emb_list
|
|
123
|
+
}
|
|
124
|
+
return features
|
|
125
|
+
|
|
126
|
+
def get_wide_deep_dict(self):
|
|
127
|
+
wide_and_deep_dict = {}
|
|
128
|
+
for group_name_config in self._feature_groups_config.values():
|
|
129
|
+
for x in group_name_config.seq_att_map:
|
|
130
|
+
for key in x.key:
|
|
131
|
+
wide_and_deep_dict[key] = WideOrDeep.DEEP
|
|
132
|
+
for hist_seq in x.hist_seq:
|
|
133
|
+
wide_and_deep_dict[hist_seq] = WideOrDeep.DEEP
|
|
134
|
+
return wide_and_deep_dict
|
|
@@ -0,0 +1,249 @@
|
|
|
1
|
+
import logging
|
|
2
|
+
import os
|
|
3
|
+
|
|
4
|
+
import tensorflow as tf
|
|
5
|
+
from tensorflow.python.framework import ops
|
|
6
|
+
|
|
7
|
+
from easy_rec.python.compat import regularizers
|
|
8
|
+
from easy_rec.python.layers import dnn
|
|
9
|
+
from easy_rec.python.layers import seq_input_layer
|
|
10
|
+
from easy_rec.python.utils import conditional
|
|
11
|
+
|
|
12
|
+
if tf.__version__ >= '2.0':
|
|
13
|
+
tf = tf.compat.v1
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
class SequenceFeatureLayer(object):
|
|
17
|
+
|
|
18
|
+
def __init__(self,
|
|
19
|
+
feature_configs,
|
|
20
|
+
feature_groups_config,
|
|
21
|
+
ev_params=None,
|
|
22
|
+
embedding_regularizer=None,
|
|
23
|
+
kernel_regularizer=None,
|
|
24
|
+
is_training=False,
|
|
25
|
+
is_predicting=False):
|
|
26
|
+
self._seq_feature_groups_config = []
|
|
27
|
+
for x in feature_groups_config:
|
|
28
|
+
for y in x.sequence_features:
|
|
29
|
+
self._seq_feature_groups_config.append(y)
|
|
30
|
+
self._seq_input_layer = None
|
|
31
|
+
if len(self._seq_feature_groups_config) > 0:
|
|
32
|
+
self._seq_input_layer = seq_input_layer.SeqInputLayer(
|
|
33
|
+
feature_configs,
|
|
34
|
+
self._seq_feature_groups_config,
|
|
35
|
+
embedding_regularizer=embedding_regularizer,
|
|
36
|
+
ev_params=ev_params)
|
|
37
|
+
self._embedding_regularizer = embedding_regularizer
|
|
38
|
+
self._kernel_regularizer = kernel_regularizer
|
|
39
|
+
self._is_training = is_training
|
|
40
|
+
self._is_predicting = is_predicting
|
|
41
|
+
|
|
42
|
+
def negative_sampler_target_attention(self,
|
|
43
|
+
dnn_config,
|
|
44
|
+
deep_fea,
|
|
45
|
+
concat_features,
|
|
46
|
+
name,
|
|
47
|
+
need_key_feature=True,
|
|
48
|
+
allow_key_transform=False):
|
|
49
|
+
cur_id, hist_id_col, seq_len, aux_hist_emb_list = deep_fea['key'], deep_fea[
|
|
50
|
+
'hist_seq_emb'], deep_fea['hist_seq_len'], deep_fea[
|
|
51
|
+
'aux_hist_seq_emb_list']
|
|
52
|
+
|
|
53
|
+
seq_max_len = tf.shape(hist_id_col)[1]
|
|
54
|
+
seq_emb_dim = hist_id_col.shape[2]
|
|
55
|
+
cur_id_dim = tf.shape(cur_id)[-1]
|
|
56
|
+
batch_size = tf.shape(hist_id_col)[0]
|
|
57
|
+
|
|
58
|
+
pos_feature = cur_id[:batch_size]
|
|
59
|
+
neg_feature = cur_id[batch_size:]
|
|
60
|
+
cur_id = tf.concat([
|
|
61
|
+
pos_feature[:, tf.newaxis, :],
|
|
62
|
+
tf.tile(neg_feature[tf.newaxis, :, :], multiples=[batch_size, 1, 1])
|
|
63
|
+
],
|
|
64
|
+
axis=1) # noqa: E126
|
|
65
|
+
neg_num_add_1 = tf.shape(cur_id)[1]
|
|
66
|
+
hist_id_col_tmp = tf.tile(
|
|
67
|
+
hist_id_col[:, :, :], multiples=[1, neg_num_add_1, 1])
|
|
68
|
+
hist_id_col = tf.reshape(
|
|
69
|
+
hist_id_col_tmp, [batch_size * neg_num_add_1, seq_max_len, seq_emb_dim])
|
|
70
|
+
|
|
71
|
+
concat_features = tf.tile(
|
|
72
|
+
concat_features[:, tf.newaxis, :], multiples=[1, neg_num_add_1, 1])
|
|
73
|
+
seq_len = tf.tile(seq_len, multiples=[neg_num_add_1])
|
|
74
|
+
|
|
75
|
+
if allow_key_transform and (cur_id_dim != seq_emb_dim):
|
|
76
|
+
cur_id = tf.layers.dense(
|
|
77
|
+
cur_id, seq_emb_dim, name='sequence_key_transform_layer')
|
|
78
|
+
|
|
79
|
+
cur_ids = tf.tile(cur_id, [1, 1, seq_max_len])
|
|
80
|
+
cur_ids = tf.reshape(
|
|
81
|
+
cur_ids,
|
|
82
|
+
tf.shape(hist_id_col)) # (B * neg_num_add_1, seq_max_len, seq_emb_dim)
|
|
83
|
+
|
|
84
|
+
din_net = tf.concat(
|
|
85
|
+
[cur_ids, hist_id_col, cur_ids - hist_id_col, cur_ids * hist_id_col],
|
|
86
|
+
axis=-1) # (B * neg_num_add_1, seq_max_len, seq_emb_dim*4)
|
|
87
|
+
|
|
88
|
+
din_layer = dnn.DNN(
|
|
89
|
+
dnn_config,
|
|
90
|
+
self._kernel_regularizer,
|
|
91
|
+
name,
|
|
92
|
+
self._is_training,
|
|
93
|
+
last_layer_no_activation=True,
|
|
94
|
+
last_layer_no_batch_norm=True)
|
|
95
|
+
din_net = din_layer(din_net)
|
|
96
|
+
scores = tf.reshape(din_net, [-1, 1, seq_max_len]) # (B, 1, ?)
|
|
97
|
+
|
|
98
|
+
seq_len = tf.expand_dims(seq_len, 1)
|
|
99
|
+
mask = tf.sequence_mask(seq_len)
|
|
100
|
+
padding = tf.ones_like(scores) * (-2**32 + 1)
|
|
101
|
+
scores = tf.where(mask, scores,
|
|
102
|
+
padding) # [B*neg_num_add_1, 1, seq_max_len]
|
|
103
|
+
|
|
104
|
+
# Scale
|
|
105
|
+
scores = tf.nn.softmax(scores) # (B * neg_num_add_1, 1, seq_max_len)
|
|
106
|
+
hist_din_emb = tf.matmul(scores,
|
|
107
|
+
hist_id_col) # [B * neg_num_add_1, 1, seq_emb_dim]
|
|
108
|
+
hist_din_emb = tf.reshape(hist_din_emb,
|
|
109
|
+
[batch_size, neg_num_add_1, seq_emb_dim
|
|
110
|
+
]) # [B * neg_num_add_1, seq_emb_dim]
|
|
111
|
+
if len(aux_hist_emb_list) > 0:
|
|
112
|
+
all_hist_dim_emb = [hist_din_emb]
|
|
113
|
+
for hist_col in aux_hist_emb_list:
|
|
114
|
+
cur_aux_hist = tf.matmul(scores, hist_col)
|
|
115
|
+
outputs = tf.reshape(cur_aux_hist, [-1, seq_emb_dim])
|
|
116
|
+
all_hist_dim_emb.append(outputs)
|
|
117
|
+
hist_din_emb = tf.concat(all_hist_dim_emb, axis=1)
|
|
118
|
+
if not need_key_feature:
|
|
119
|
+
return hist_din_emb, concat_features
|
|
120
|
+
din_output = tf.concat([hist_din_emb, cur_id], axis=2)
|
|
121
|
+
return din_output, concat_features
|
|
122
|
+
|
|
123
|
+
def target_attention(self,
|
|
124
|
+
dnn_config,
|
|
125
|
+
deep_fea,
|
|
126
|
+
name,
|
|
127
|
+
need_key_feature=True,
|
|
128
|
+
allow_key_transform=False,
|
|
129
|
+
transform_dnn=False):
|
|
130
|
+
cur_id, hist_id_col, seq_len, aux_hist_emb_list = deep_fea['key'], deep_fea[
|
|
131
|
+
'hist_seq_emb'], deep_fea['hist_seq_len'], deep_fea[
|
|
132
|
+
'aux_hist_seq_emb_list']
|
|
133
|
+
|
|
134
|
+
seq_max_len = tf.shape(hist_id_col)[1]
|
|
135
|
+
seq_emb_dim = hist_id_col.shape[2]
|
|
136
|
+
cur_id_dim = cur_id.shape[-1]
|
|
137
|
+
|
|
138
|
+
if allow_key_transform and (cur_id_dim != seq_emb_dim):
|
|
139
|
+
if seq_emb_dim > cur_id_dim and not transform_dnn:
|
|
140
|
+
cur_id = tf.pad(cur_id, [[0, 0], [0, seq_emb_dim - cur_id_dim]])
|
|
141
|
+
else:
|
|
142
|
+
cur_key_layer_name = 'sequence_key_transform_layer_' + name
|
|
143
|
+
cur_id = tf.layers.dense(cur_id, seq_emb_dim, name=cur_key_layer_name)
|
|
144
|
+
cur_fea_layer_name = 'sequence_fea_transform_layer_' + name
|
|
145
|
+
hist_id_col = tf.layers.dense(
|
|
146
|
+
hist_id_col, seq_emb_dim, name=cur_fea_layer_name)
|
|
147
|
+
else:
|
|
148
|
+
cur_id = cur_id[:tf.shape(hist_id_col)[0], ...] # for negative sampler
|
|
149
|
+
|
|
150
|
+
cur_ids = tf.tile(cur_id, [1, seq_max_len])
|
|
151
|
+
cur_ids = tf.reshape(cur_ids,
|
|
152
|
+
tf.shape(hist_id_col)) # (B, seq_max_len, seq_emb_dim)
|
|
153
|
+
|
|
154
|
+
din_net = tf.concat(
|
|
155
|
+
[cur_ids, hist_id_col, cur_ids - hist_id_col, cur_ids * hist_id_col],
|
|
156
|
+
axis=-1) # (B, seq_max_len, seq_emb_dim*4)
|
|
157
|
+
|
|
158
|
+
din_layer = dnn.DNN(
|
|
159
|
+
dnn_config,
|
|
160
|
+
self._kernel_regularizer,
|
|
161
|
+
name,
|
|
162
|
+
self._is_training,
|
|
163
|
+
last_layer_no_activation=True,
|
|
164
|
+
last_layer_no_batch_norm=True)
|
|
165
|
+
din_net = din_layer(din_net)
|
|
166
|
+
scores = tf.reshape(din_net, [-1, 1, seq_max_len]) # (B, 1, ?)
|
|
167
|
+
|
|
168
|
+
seq_len = tf.expand_dims(seq_len, 1)
|
|
169
|
+
mask = tf.sequence_mask(seq_len)
|
|
170
|
+
padding = tf.ones_like(scores) * (-2**32 + 1)
|
|
171
|
+
scores = tf.where(mask, scores, padding) # [B, 1, seq_max_len]
|
|
172
|
+
|
|
173
|
+
# Scale
|
|
174
|
+
scores = tf.nn.softmax(scores) # (B, 1, seq_max_len)
|
|
175
|
+
hist_din_emb = tf.matmul(scores, hist_id_col) # [B, 1, seq_emb_dim]
|
|
176
|
+
hist_din_emb = tf.reshape(hist_din_emb,
|
|
177
|
+
[-1, seq_emb_dim]) # [B, seq_emb_dim]
|
|
178
|
+
if len(aux_hist_emb_list) > 0:
|
|
179
|
+
all_hist_dim_emb = [hist_din_emb]
|
|
180
|
+
for hist_col in aux_hist_emb_list:
|
|
181
|
+
aux_hist_dim = hist_col.shape[-1]
|
|
182
|
+
cur_aux_hist = tf.matmul(scores, hist_col)
|
|
183
|
+
outputs = tf.reshape(cur_aux_hist, [-1, aux_hist_dim])
|
|
184
|
+
all_hist_dim_emb.append(outputs)
|
|
185
|
+
hist_din_emb = tf.concat(all_hist_dim_emb, axis=1)
|
|
186
|
+
if not need_key_feature:
|
|
187
|
+
return hist_din_emb
|
|
188
|
+
din_output = tf.concat([hist_din_emb, cur_id], axis=1)
|
|
189
|
+
return din_output
|
|
190
|
+
|
|
191
|
+
def __call__(self,
|
|
192
|
+
features,
|
|
193
|
+
concat_features,
|
|
194
|
+
all_seq_att_map_config,
|
|
195
|
+
feature_name_to_output_tensors=None,
|
|
196
|
+
negative_sampler=False,
|
|
197
|
+
scope_name=None):
|
|
198
|
+
logging.info('use sequence feature layer.')
|
|
199
|
+
all_seq_fea = []
|
|
200
|
+
# process all sequence features
|
|
201
|
+
for seq_att_map_config in all_seq_att_map_config:
|
|
202
|
+
group_name = seq_att_map_config.group_name
|
|
203
|
+
allow_key_search = seq_att_map_config.allow_key_search
|
|
204
|
+
need_key_feature = seq_att_map_config.need_key_feature
|
|
205
|
+
allow_key_transform = seq_att_map_config.allow_key_transform
|
|
206
|
+
transform_dnn = seq_att_map_config.transform_dnn
|
|
207
|
+
|
|
208
|
+
place_on_cpu = os.getenv('place_embedding_on_cpu')
|
|
209
|
+
place_on_cpu = eval(place_on_cpu) if place_on_cpu else False
|
|
210
|
+
with conditional(self._is_predicting and place_on_cpu,
|
|
211
|
+
ops.device('/CPU:0')):
|
|
212
|
+
seq_features = self._seq_input_layer(features, group_name,
|
|
213
|
+
feature_name_to_output_tensors,
|
|
214
|
+
allow_key_search, scope_name)
|
|
215
|
+
|
|
216
|
+
# apply regularization for sequence feature key in seq_input_layer.
|
|
217
|
+
|
|
218
|
+
regularizers.apply_regularization(
|
|
219
|
+
self._embedding_regularizer,
|
|
220
|
+
weights_list=[seq_features['hist_seq_emb']])
|
|
221
|
+
seq_dnn_config = None
|
|
222
|
+
if seq_att_map_config.HasField('seq_dnn'):
|
|
223
|
+
seq_dnn_config = seq_att_map_config.seq_dnn
|
|
224
|
+
else:
|
|
225
|
+
logging.info(
|
|
226
|
+
'seq_dnn not set in seq_att_groups, will use default settings')
|
|
227
|
+
# If not set seq_dnn, will use default settings
|
|
228
|
+
from easy_rec.python.protos.dnn_pb2 import DNN
|
|
229
|
+
seq_dnn_config = DNN()
|
|
230
|
+
seq_dnn_config.hidden_units.extend([128, 64, 32, 1])
|
|
231
|
+
cur_target_attention_name = 'seq_dnn' + group_name
|
|
232
|
+
if negative_sampler:
|
|
233
|
+
seq_fea, concat_features = self.negative_sampler_target_attention(
|
|
234
|
+
seq_dnn_config,
|
|
235
|
+
seq_features,
|
|
236
|
+
concat_features,
|
|
237
|
+
name=cur_target_attention_name,
|
|
238
|
+
need_key_feature=need_key_feature,
|
|
239
|
+
allow_key_transform=allow_key_transform)
|
|
240
|
+
else:
|
|
241
|
+
seq_fea = self.target_attention(
|
|
242
|
+
seq_dnn_config,
|
|
243
|
+
seq_features,
|
|
244
|
+
name=cur_target_attention_name,
|
|
245
|
+
need_key_feature=need_key_feature,
|
|
246
|
+
allow_key_transform=allow_key_transform,
|
|
247
|
+
transform_dnn=transform_dnn)
|
|
248
|
+
all_seq_fea.append(seq_fea)
|
|
249
|
+
return concat_features, all_seq_fea
|