easy-cs-rec-custommodel 0.8.6__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of easy-cs-rec-custommodel might be problematic. Click here for more details.
- easy_cs_rec_custommodel-0.8.6.dist-info/LICENSE +203 -0
- easy_cs_rec_custommodel-0.8.6.dist-info/METADATA +48 -0
- easy_cs_rec_custommodel-0.8.6.dist-info/RECORD +336 -0
- easy_cs_rec_custommodel-0.8.6.dist-info/WHEEL +6 -0
- easy_cs_rec_custommodel-0.8.6.dist-info/top_level.txt +2 -0
- easy_rec/__init__.py +114 -0
- easy_rec/python/__init__.py +0 -0
- easy_rec/python/builders/__init__.py +0 -0
- easy_rec/python/builders/hyperparams_builder.py +78 -0
- easy_rec/python/builders/loss_builder.py +333 -0
- easy_rec/python/builders/optimizer_builder.py +211 -0
- easy_rec/python/builders/strategy_builder.py +44 -0
- easy_rec/python/compat/__init__.py +0 -0
- easy_rec/python/compat/adam_s.py +245 -0
- easy_rec/python/compat/array_ops.py +229 -0
- easy_rec/python/compat/dynamic_variable.py +542 -0
- easy_rec/python/compat/early_stopping.py +653 -0
- easy_rec/python/compat/embedding_ops.py +162 -0
- easy_rec/python/compat/embedding_parallel_saver.py +316 -0
- easy_rec/python/compat/estimator_train.py +116 -0
- easy_rec/python/compat/exporter.py +473 -0
- easy_rec/python/compat/feature_column/__init__.py +0 -0
- easy_rec/python/compat/feature_column/feature_column.py +3675 -0
- easy_rec/python/compat/feature_column/feature_column_v2.py +5233 -0
- easy_rec/python/compat/feature_column/sequence_feature_column.py +648 -0
- easy_rec/python/compat/feature_column/utils.py +154 -0
- easy_rec/python/compat/layers.py +329 -0
- easy_rec/python/compat/ops.py +14 -0
- easy_rec/python/compat/optimizers.py +619 -0
- easy_rec/python/compat/queues.py +311 -0
- easy_rec/python/compat/regularizers.py +208 -0
- easy_rec/python/compat/sok_optimizer.py +440 -0
- easy_rec/python/compat/sync_replicas_optimizer.py +528 -0
- easy_rec/python/compat/weight_decay_optimizers.py +475 -0
- easy_rec/python/core/__init__.py +0 -0
- easy_rec/python/core/easyrec_metrics/__init__.py +24 -0
- easy_rec/python/core/easyrec_metrics/distribute_metrics_impl_pai.py +3702 -0
- easy_rec/python/core/easyrec_metrics/distribute_metrics_impl_tf.py +3768 -0
- easy_rec/python/core/learning_schedules.py +228 -0
- easy_rec/python/core/metrics.py +402 -0
- easy_rec/python/core/sampler.py +844 -0
- easy_rec/python/eval.py +102 -0
- easy_rec/python/export.py +150 -0
- easy_rec/python/feature_column/__init__.py +0 -0
- easy_rec/python/feature_column/feature_column.py +664 -0
- easy_rec/python/feature_column/feature_group.py +89 -0
- easy_rec/python/hpo/__init__.py +0 -0
- easy_rec/python/hpo/emr_hpo.py +140 -0
- easy_rec/python/hpo/generate_hpo_sql.py +71 -0
- easy_rec/python/hpo/pai_hpo.py +297 -0
- easy_rec/python/inference/__init__.py +0 -0
- easy_rec/python/inference/csv_predictor.py +189 -0
- easy_rec/python/inference/hive_parquet_predictor.py +200 -0
- easy_rec/python/inference/hive_predictor.py +166 -0
- easy_rec/python/inference/odps_predictor.py +70 -0
- easy_rec/python/inference/parquet_predictor.py +147 -0
- easy_rec/python/inference/parquet_predictor_v2.py +147 -0
- easy_rec/python/inference/predictor.py +621 -0
- easy_rec/python/inference/processor/__init__.py +0 -0
- easy_rec/python/inference/processor/test.py +170 -0
- easy_rec/python/inference/vector_retrieve.py +124 -0
- easy_rec/python/input/__init__.py +0 -0
- easy_rec/python/input/batch_tfrecord_input.py +117 -0
- easy_rec/python/input/criteo_binary_reader.py +259 -0
- easy_rec/python/input/criteo_input.py +107 -0
- easy_rec/python/input/csv_input.py +175 -0
- easy_rec/python/input/csv_input_ex.py +72 -0
- easy_rec/python/input/csv_input_v2.py +68 -0
- easy_rec/python/input/datahub_input.py +320 -0
- easy_rec/python/input/dummy_input.py +58 -0
- easy_rec/python/input/hive_input.py +123 -0
- easy_rec/python/input/hive_parquet_input.py +140 -0
- easy_rec/python/input/hive_rtp_input.py +174 -0
- easy_rec/python/input/input.py +1064 -0
- easy_rec/python/input/kafka_dataset.py +144 -0
- easy_rec/python/input/kafka_input.py +235 -0
- easy_rec/python/input/load_parquet.py +317 -0
- easy_rec/python/input/odps_input.py +101 -0
- easy_rec/python/input/odps_input_v2.py +110 -0
- easy_rec/python/input/odps_input_v3.py +132 -0
- easy_rec/python/input/odps_rtp_input.py +187 -0
- easy_rec/python/input/odps_rtp_input_v2.py +104 -0
- easy_rec/python/input/parquet_input.py +397 -0
- easy_rec/python/input/parquet_input_v2.py +180 -0
- easy_rec/python/input/parquet_input_v3.py +203 -0
- easy_rec/python/input/rtp_input.py +225 -0
- easy_rec/python/input/rtp_input_v2.py +145 -0
- easy_rec/python/input/tfrecord_input.py +100 -0
- easy_rec/python/layers/__init__.py +0 -0
- easy_rec/python/layers/backbone.py +571 -0
- easy_rec/python/layers/capsule_layer.py +176 -0
- easy_rec/python/layers/cmbf.py +390 -0
- easy_rec/python/layers/common_layers.py +192 -0
- easy_rec/python/layers/dnn.py +87 -0
- easy_rec/python/layers/embed_input_layer.py +25 -0
- easy_rec/python/layers/fm.py +26 -0
- easy_rec/python/layers/input_layer.py +396 -0
- easy_rec/python/layers/keras/__init__.py +34 -0
- easy_rec/python/layers/keras/activation.py +114 -0
- easy_rec/python/layers/keras/attention.py +267 -0
- easy_rec/python/layers/keras/auxiliary_loss.py +47 -0
- easy_rec/python/layers/keras/blocks.py +262 -0
- easy_rec/python/layers/keras/bst.py +119 -0
- easy_rec/python/layers/keras/custom_ops.py +250 -0
- easy_rec/python/layers/keras/data_augment.py +133 -0
- easy_rec/python/layers/keras/din.py +67 -0
- easy_rec/python/layers/keras/einsum_dense.py +598 -0
- easy_rec/python/layers/keras/embedding.py +81 -0
- easy_rec/python/layers/keras/fibinet.py +251 -0
- easy_rec/python/layers/keras/interaction.py +416 -0
- easy_rec/python/layers/keras/layer_norm.py +364 -0
- easy_rec/python/layers/keras/mask_net.py +166 -0
- easy_rec/python/layers/keras/multi_head_attention.py +717 -0
- easy_rec/python/layers/keras/multi_task.py +125 -0
- easy_rec/python/layers/keras/numerical_embedding.py +376 -0
- easy_rec/python/layers/keras/ppnet.py +194 -0
- easy_rec/python/layers/keras/transformer.py +192 -0
- easy_rec/python/layers/layer_norm.py +51 -0
- easy_rec/python/layers/mmoe.py +83 -0
- easy_rec/python/layers/multihead_attention.py +162 -0
- easy_rec/python/layers/multihead_cross_attention.py +749 -0
- easy_rec/python/layers/senet.py +73 -0
- easy_rec/python/layers/seq_input_layer.py +134 -0
- easy_rec/python/layers/sequence_feature_layer.py +249 -0
- easy_rec/python/layers/uniter.py +301 -0
- easy_rec/python/layers/utils.py +248 -0
- easy_rec/python/layers/variational_dropout_layer.py +130 -0
- easy_rec/python/loss/__init__.py +0 -0
- easy_rec/python/loss/circle_loss.py +82 -0
- easy_rec/python/loss/contrastive_loss.py +79 -0
- easy_rec/python/loss/f1_reweight_loss.py +38 -0
- easy_rec/python/loss/focal_loss.py +93 -0
- easy_rec/python/loss/jrc_loss.py +128 -0
- easy_rec/python/loss/listwise_loss.py +161 -0
- easy_rec/python/loss/multi_similarity.py +68 -0
- easy_rec/python/loss/pairwise_loss.py +307 -0
- easy_rec/python/loss/softmax_loss_with_negative_mining.py +110 -0
- easy_rec/python/loss/zero_inflated_lognormal.py +76 -0
- easy_rec/python/main.py +878 -0
- easy_rec/python/model/__init__.py +0 -0
- easy_rec/python/model/autoint.py +73 -0
- easy_rec/python/model/cmbf.py +47 -0
- easy_rec/python/model/collaborative_metric_learning.py +182 -0
- easy_rec/python/model/custom_model.py +323 -0
- easy_rec/python/model/dat.py +138 -0
- easy_rec/python/model/dbmtl.py +116 -0
- easy_rec/python/model/dcn.py +70 -0
- easy_rec/python/model/deepfm.py +106 -0
- easy_rec/python/model/dlrm.py +73 -0
- easy_rec/python/model/dropoutnet.py +207 -0
- easy_rec/python/model/dssm.py +154 -0
- easy_rec/python/model/dssm_senet.py +143 -0
- easy_rec/python/model/dummy_model.py +48 -0
- easy_rec/python/model/easy_rec_estimator.py +739 -0
- easy_rec/python/model/easy_rec_model.py +467 -0
- easy_rec/python/model/esmm.py +242 -0
- easy_rec/python/model/fm.py +63 -0
- easy_rec/python/model/match_model.py +357 -0
- easy_rec/python/model/mind.py +445 -0
- easy_rec/python/model/mmoe.py +70 -0
- easy_rec/python/model/multi_task_model.py +303 -0
- easy_rec/python/model/multi_tower.py +62 -0
- easy_rec/python/model/multi_tower_bst.py +190 -0
- easy_rec/python/model/multi_tower_din.py +130 -0
- easy_rec/python/model/multi_tower_recall.py +68 -0
- easy_rec/python/model/pdn.py +203 -0
- easy_rec/python/model/ple.py +120 -0
- easy_rec/python/model/rank_model.py +485 -0
- easy_rec/python/model/rocket_launching.py +203 -0
- easy_rec/python/model/simple_multi_task.py +54 -0
- easy_rec/python/model/uniter.py +46 -0
- easy_rec/python/model/wide_and_deep.py +121 -0
- easy_rec/python/ops/1.12/incr_record.so +0 -0
- easy_rec/python/ops/1.12/kafka.so +0 -0
- easy_rec/python/ops/1.12/libcustom_ops.so +0 -0
- easy_rec/python/ops/1.12/libembed_op.so +0 -0
- easy_rec/python/ops/1.12/libhiredis.so.1.0.0 +0 -0
- easy_rec/python/ops/1.12/librdkafka++.so.1 +0 -0
- easy_rec/python/ops/1.12/librdkafka.so.1 +0 -0
- easy_rec/python/ops/1.12/libredis++.so +0 -0
- easy_rec/python/ops/1.12/libredis++.so.1 +0 -0
- easy_rec/python/ops/1.12/libredis++.so.1.2.3 +0 -0
- easy_rec/python/ops/1.12/libstr_avx_op.so +0 -0
- easy_rec/python/ops/1.12/libwrite_sparse_kv.so +0 -0
- easy_rec/python/ops/1.15/incr_record.so +0 -0
- easy_rec/python/ops/1.15/kafka.so +0 -0
- easy_rec/python/ops/1.15/libcustom_ops.so +0 -0
- easy_rec/python/ops/1.15/libembed_op.so +0 -0
- easy_rec/python/ops/1.15/libhiredis.so.1.0.0 +0 -0
- easy_rec/python/ops/1.15/librdkafka++.so +0 -0
- easy_rec/python/ops/1.15/librdkafka++.so.1 +0 -0
- easy_rec/python/ops/1.15/librdkafka.so +0 -0
- easy_rec/python/ops/1.15/librdkafka.so.1 +0 -0
- easy_rec/python/ops/1.15/libredis++.so.1 +0 -0
- easy_rec/python/ops/1.15/libstr_avx_op.so +0 -0
- easy_rec/python/ops/2.12/libcustom_ops.so +0 -0
- easy_rec/python/ops/2.12/libload_embed.so +0 -0
- easy_rec/python/ops/2.12/libstr_avx_op.so +0 -0
- easy_rec/python/ops/__init__.py +0 -0
- easy_rec/python/ops/gen_kafka_ops.py +193 -0
- easy_rec/python/ops/gen_str_avx_op.py +28 -0
- easy_rec/python/ops/incr_record.py +30 -0
- easy_rec/python/predict.py +170 -0
- easy_rec/python/protos/__init__.py +0 -0
- easy_rec/python/protos/autoint_pb2.py +122 -0
- easy_rec/python/protos/backbone_pb2.py +1416 -0
- easy_rec/python/protos/cmbf_pb2.py +435 -0
- easy_rec/python/protos/collaborative_metric_learning_pb2.py +252 -0
- easy_rec/python/protos/custom_model_pb2.py +57 -0
- easy_rec/python/protos/dat_pb2.py +262 -0
- easy_rec/python/protos/data_source_pb2.py +422 -0
- easy_rec/python/protos/dataset_pb2.py +1920 -0
- easy_rec/python/protos/dbmtl_pb2.py +191 -0
- easy_rec/python/protos/dcn_pb2.py +197 -0
- easy_rec/python/protos/deepfm_pb2.py +163 -0
- easy_rec/python/protos/dlrm_pb2.py +163 -0
- easy_rec/python/protos/dnn_pb2.py +329 -0
- easy_rec/python/protos/dropoutnet_pb2.py +239 -0
- easy_rec/python/protos/dssm_pb2.py +262 -0
- easy_rec/python/protos/dssm_senet_pb2.py +282 -0
- easy_rec/python/protos/easy_rec_model_pb2.py +1672 -0
- easy_rec/python/protos/esmm_pb2.py +133 -0
- easy_rec/python/protos/eval_pb2.py +930 -0
- easy_rec/python/protos/export_pb2.py +379 -0
- easy_rec/python/protos/feature_config_pb2.py +1359 -0
- easy_rec/python/protos/fm_pb2.py +90 -0
- easy_rec/python/protos/hive_config_pb2.py +138 -0
- easy_rec/python/protos/hyperparams_pb2.py +624 -0
- easy_rec/python/protos/keras_layer_pb2.py +692 -0
- easy_rec/python/protos/layer_pb2.py +1936 -0
- easy_rec/python/protos/loss_pb2.py +1713 -0
- easy_rec/python/protos/mind_pb2.py +497 -0
- easy_rec/python/protos/mmoe_pb2.py +215 -0
- easy_rec/python/protos/multi_tower_pb2.py +295 -0
- easy_rec/python/protos/multi_tower_recall_pb2.py +198 -0
- easy_rec/python/protos/optimizer_pb2.py +2017 -0
- easy_rec/python/protos/pdn_pb2.py +293 -0
- easy_rec/python/protos/pipeline_pb2.py +516 -0
- easy_rec/python/protos/ple_pb2.py +231 -0
- easy_rec/python/protos/predict_pb2.py +1140 -0
- easy_rec/python/protos/rocket_launching_pb2.py +169 -0
- easy_rec/python/protos/seq_encoder_pb2.py +1084 -0
- easy_rec/python/protos/simi_pb2.py +54 -0
- easy_rec/python/protos/simple_multi_task_pb2.py +97 -0
- easy_rec/python/protos/tf_predict_pb2.py +630 -0
- easy_rec/python/protos/tower_pb2.py +661 -0
- easy_rec/python/protos/train_pb2.py +1197 -0
- easy_rec/python/protos/uniter_pb2.py +307 -0
- easy_rec/python/protos/variational_dropout_pb2.py +91 -0
- easy_rec/python/protos/wide_and_deep_pb2.py +131 -0
- easy_rec/python/test/__init__.py +0 -0
- easy_rec/python/test/csv_input_test.py +340 -0
- easy_rec/python/test/custom_early_stop_func.py +19 -0
- easy_rec/python/test/dh_local_run.py +104 -0
- easy_rec/python/test/embed_test.py +155 -0
- easy_rec/python/test/emr_run.py +119 -0
- easy_rec/python/test/eval_metric_test.py +107 -0
- easy_rec/python/test/excel_convert_test.py +64 -0
- easy_rec/python/test/export_test.py +513 -0
- easy_rec/python/test/fg_test.py +70 -0
- easy_rec/python/test/hive_input_test.py +311 -0
- easy_rec/python/test/hpo_test.py +235 -0
- easy_rec/python/test/kafka_test.py +373 -0
- easy_rec/python/test/local_incr_test.py +122 -0
- easy_rec/python/test/loss_test.py +110 -0
- easy_rec/python/test/odps_command.py +61 -0
- easy_rec/python/test/odps_local_run.py +86 -0
- easy_rec/python/test/odps_run.py +254 -0
- easy_rec/python/test/odps_test_cls.py +39 -0
- easy_rec/python/test/odps_test_prepare.py +198 -0
- easy_rec/python/test/odps_test_util.py +237 -0
- easy_rec/python/test/pre_check_test.py +54 -0
- easy_rec/python/test/predictor_test.py +394 -0
- easy_rec/python/test/rtp_convert_test.py +133 -0
- easy_rec/python/test/run.py +138 -0
- easy_rec/python/test/train_eval_test.py +1299 -0
- easy_rec/python/test/util_test.py +85 -0
- easy_rec/python/test/zero_inflated_lognormal_test.py +53 -0
- easy_rec/python/tools/__init__.py +0 -0
- easy_rec/python/tools/add_boundaries_to_config.py +67 -0
- easy_rec/python/tools/add_feature_info_to_config.py +145 -0
- easy_rec/python/tools/convert_config_format.py +48 -0
- easy_rec/python/tools/convert_rtp_data.py +79 -0
- easy_rec/python/tools/convert_rtp_fg.py +106 -0
- easy_rec/python/tools/create_config_from_excel.py +427 -0
- easy_rec/python/tools/criteo/__init__.py +0 -0
- easy_rec/python/tools/criteo/convert_data.py +157 -0
- easy_rec/python/tools/edit_lookup_graph.py +134 -0
- easy_rec/python/tools/faiss_index_pai.py +116 -0
- easy_rec/python/tools/feature_selection.py +316 -0
- easy_rec/python/tools/hit_rate_ds.py +223 -0
- easy_rec/python/tools/hit_rate_pai.py +138 -0
- easy_rec/python/tools/pre_check.py +120 -0
- easy_rec/python/tools/predict_and_chk.py +111 -0
- easy_rec/python/tools/read_kafka.py +55 -0
- easy_rec/python/tools/split_model_pai.py +286 -0
- easy_rec/python/tools/split_pdn_model_pai.py +272 -0
- easy_rec/python/tools/test_saved_model.py +80 -0
- easy_rec/python/tools/view_saved_model.py +39 -0
- easy_rec/python/tools/write_kafka.py +65 -0
- easy_rec/python/train_eval.py +325 -0
- easy_rec/python/utils/__init__.py +15 -0
- easy_rec/python/utils/activation.py +120 -0
- easy_rec/python/utils/check_utils.py +87 -0
- easy_rec/python/utils/compat.py +14 -0
- easy_rec/python/utils/config_util.py +652 -0
- easy_rec/python/utils/constant.py +43 -0
- easy_rec/python/utils/convert_rtp_fg.py +616 -0
- easy_rec/python/utils/dag.py +192 -0
- easy_rec/python/utils/distribution_utils.py +268 -0
- easy_rec/python/utils/ds_util.py +65 -0
- easy_rec/python/utils/embedding_utils.py +73 -0
- easy_rec/python/utils/estimator_utils.py +1036 -0
- easy_rec/python/utils/export_big_model.py +630 -0
- easy_rec/python/utils/expr_util.py +118 -0
- easy_rec/python/utils/fg_util.py +53 -0
- easy_rec/python/utils/hit_rate_utils.py +220 -0
- easy_rec/python/utils/hive_utils.py +183 -0
- easy_rec/python/utils/hpo_util.py +137 -0
- easy_rec/python/utils/hvd_utils.py +56 -0
- easy_rec/python/utils/input_utils.py +108 -0
- easy_rec/python/utils/io_util.py +282 -0
- easy_rec/python/utils/load_class.py +249 -0
- easy_rec/python/utils/meta_graph_editor.py +941 -0
- easy_rec/python/utils/multi_optimizer.py +62 -0
- easy_rec/python/utils/numpy_utils.py +18 -0
- easy_rec/python/utils/odps_util.py +79 -0
- easy_rec/python/utils/pai_util.py +86 -0
- easy_rec/python/utils/proto_util.py +90 -0
- easy_rec/python/utils/restore_filter.py +89 -0
- easy_rec/python/utils/shape_utils.py +432 -0
- easy_rec/python/utils/static_shape.py +71 -0
- easy_rec/python/utils/test_utils.py +866 -0
- easy_rec/python/utils/tf_utils.py +56 -0
- easy_rec/version.py +4 -0
- test/__init__.py +0 -0
|
@@ -0,0 +1,203 @@
|
|
|
1
|
+
# -*- encoding:utf-8 -*-
|
|
2
|
+
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
3
|
+
import logging
|
|
4
|
+
|
|
5
|
+
import tensorflow as tf
|
|
6
|
+
|
|
7
|
+
from easy_rec.python.input.input import Input
|
|
8
|
+
from easy_rec.python.utils.input_utils import get_type_defaults
|
|
9
|
+
|
|
10
|
+
try:
|
|
11
|
+
from tensorflow.python.data.experimental.ops import parquet_dataset_ops
|
|
12
|
+
from tensorflow.python.data.experimental.ops import parquet_pybind
|
|
13
|
+
from tensorflow.python.data.experimental.ops import dataframe
|
|
14
|
+
from tensorflow.python.ops import gen_ragged_conversion_ops
|
|
15
|
+
from tensorflow.python.ops.work_queue import WorkQueue
|
|
16
|
+
_has_deep_rec = True
|
|
17
|
+
except Exception:
|
|
18
|
+
_has_deep_rec = False
|
|
19
|
+
pass
|
|
20
|
+
|
|
21
|
+
if tf.__version__ >= '2.0':
|
|
22
|
+
tf = tf.compat.v1
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
class ParquetInputV3(Input):
|
|
26
|
+
|
|
27
|
+
def __init__(self,
|
|
28
|
+
data_config,
|
|
29
|
+
feature_config,
|
|
30
|
+
input_path,
|
|
31
|
+
task_index=0,
|
|
32
|
+
task_num=1,
|
|
33
|
+
check_mode=False,
|
|
34
|
+
pipeline_config=None,
|
|
35
|
+
**kwargs):
|
|
36
|
+
if not _has_deep_rec:
|
|
37
|
+
raise RuntimeError('You should install DeepRec first.')
|
|
38
|
+
super(ParquetInputV3,
|
|
39
|
+
self).__init__(data_config, feature_config, input_path, task_index,
|
|
40
|
+
task_num, check_mode, pipeline_config)
|
|
41
|
+
|
|
42
|
+
self._ignore_val_dict = {}
|
|
43
|
+
for f in data_config.input_fields:
|
|
44
|
+
if f.HasField('ignore_val'):
|
|
45
|
+
self._ignore_val_dict[f.input_name] = get_type_defaults(
|
|
46
|
+
f.input_type, f.ignore_val)
|
|
47
|
+
|
|
48
|
+
self._true_type_dict = {}
|
|
49
|
+
for fc in self._feature_configs:
|
|
50
|
+
if fc.feature_type in [fc.IdFeature, fc.TagFeature, fc.SequenceFeature]:
|
|
51
|
+
if fc.hash_bucket_size > 0 or len(
|
|
52
|
+
fc.vocab_list) > 0 or fc.HasField('vocab_file'):
|
|
53
|
+
self._true_type_dict[fc.input_names[0]] = tf.string
|
|
54
|
+
else:
|
|
55
|
+
self._true_type_dict[fc.input_names[0]] = tf.int64
|
|
56
|
+
if len(fc.input_names) > 1:
|
|
57
|
+
self._true_type_dict[fc.input_names[1]] = tf.float32
|
|
58
|
+
if fc.feature_type == fc.RawFeature:
|
|
59
|
+
self._true_type_dict[fc.input_names[0]] = tf.float32
|
|
60
|
+
|
|
61
|
+
self._reserve_fields = None
|
|
62
|
+
self._reserve_types = None
|
|
63
|
+
if 'reserve_fields' in kwargs and 'reserve_types' in kwargs:
|
|
64
|
+
self._reserve_fields = kwargs['reserve_fields']
|
|
65
|
+
self._reserve_types = kwargs['reserve_types']
|
|
66
|
+
|
|
67
|
+
# In ParquetDataset multi_value use input type
|
|
68
|
+
self._multi_value_types = {}
|
|
69
|
+
|
|
70
|
+
def _ignore_and_cast(self, name, value):
|
|
71
|
+
ignore_value = self._ignore_val_dict.get(name, None)
|
|
72
|
+
if ignore_value:
|
|
73
|
+
if isinstance(value, tf.SparseTensor):
|
|
74
|
+
indices = tf.where(tf.equal(value.values, ignore_value))
|
|
75
|
+
value = tf.SparseTensor(
|
|
76
|
+
tf.gather_nd(value.indices, indices),
|
|
77
|
+
tf.gather_nd(value.values, indices), value.dense_shape)
|
|
78
|
+
elif isinstance(value, tf.Tensor):
|
|
79
|
+
indices = tf.where(tf.not_equal(value, ignore_value), name='indices')
|
|
80
|
+
value = tf.SparseTensor(
|
|
81
|
+
indices=indices,
|
|
82
|
+
values=tf.gather_nd(value, indices),
|
|
83
|
+
dense_shape=tf.shape(value, out_type=tf.int64))
|
|
84
|
+
dtype = self._true_type_dict.get(name, None)
|
|
85
|
+
if dtype:
|
|
86
|
+
value = tf.cast(value, dtype)
|
|
87
|
+
return value
|
|
88
|
+
|
|
89
|
+
def _parse_dataframe_value(self, value):
|
|
90
|
+
if len(value.nested_row_splits) == 0:
|
|
91
|
+
return value.values
|
|
92
|
+
value.values.set_shape([None])
|
|
93
|
+
sparse_value = gen_ragged_conversion_ops.ragged_tensor_to_sparse(
|
|
94
|
+
value.nested_row_splits, value.values)
|
|
95
|
+
return tf.SparseTensor(sparse_value.sparse_indices,
|
|
96
|
+
sparse_value.sparse_values,
|
|
97
|
+
sparse_value.sparse_dense_shape)
|
|
98
|
+
|
|
99
|
+
def _parse_dataframe(self, df):
|
|
100
|
+
inputs = {}
|
|
101
|
+
for k, v in df.items():
|
|
102
|
+
if k in self._effective_fields:
|
|
103
|
+
if isinstance(v, dataframe.DataFrame.Value):
|
|
104
|
+
v = self._parse_dataframe_value(v)
|
|
105
|
+
elif k in self._label_fields:
|
|
106
|
+
if isinstance(v, dataframe.DataFrame.Value):
|
|
107
|
+
v = v.values
|
|
108
|
+
elif k in self._reserve_fields:
|
|
109
|
+
if isinstance(v, dataframe.DataFrame.Value):
|
|
110
|
+
v = v.values
|
|
111
|
+
else:
|
|
112
|
+
continue
|
|
113
|
+
inputs[k] = v
|
|
114
|
+
return inputs
|
|
115
|
+
|
|
116
|
+
def _build(self, mode, params):
|
|
117
|
+
input_files = []
|
|
118
|
+
for sub_path in self._input_path.strip().split(','):
|
|
119
|
+
input_files.extend(tf.gfile.Glob(sub_path))
|
|
120
|
+
file_num = len(input_files)
|
|
121
|
+
logging.info('[task_index=%d] total_file_num=%d task_num=%d' %
|
|
122
|
+
(self._task_index, file_num, self._task_num))
|
|
123
|
+
|
|
124
|
+
task_index = self._task_index
|
|
125
|
+
task_num = self._task_num
|
|
126
|
+
if self._data_config.chief_redundant:
|
|
127
|
+
task_index = max(self._task_index - 1, 0)
|
|
128
|
+
task_num = max(self._task_num - 1, 1)
|
|
129
|
+
|
|
130
|
+
if self._data_config.pai_worker_queue and \
|
|
131
|
+
mode == tf.estimator.ModeKeys.TRAIN:
|
|
132
|
+
work_queue = WorkQueue(
|
|
133
|
+
input_files,
|
|
134
|
+
num_epochs=self.num_epochs,
|
|
135
|
+
shuffle=self._data_config.shuffle)
|
|
136
|
+
my_files = work_queue.input_dataset()
|
|
137
|
+
else:
|
|
138
|
+
my_files = []
|
|
139
|
+
for file_id in range(file_num):
|
|
140
|
+
if (file_id % task_num) == task_index:
|
|
141
|
+
my_files.append(input_files[file_id])
|
|
142
|
+
|
|
143
|
+
parquet_fields = parquet_pybind.parquet_fields(input_files[0])
|
|
144
|
+
parquet_input_fields = []
|
|
145
|
+
for f in parquet_fields:
|
|
146
|
+
if f.name in self._input_fields:
|
|
147
|
+
parquet_input_fields.append(f)
|
|
148
|
+
|
|
149
|
+
all_fields = set(self._effective_fields)
|
|
150
|
+
if mode != tf.estimator.ModeKeys.PREDICT:
|
|
151
|
+
all_fields |= set(self._label_fields)
|
|
152
|
+
if self._reserve_fields:
|
|
153
|
+
all_fields |= set(self._reserve_fields)
|
|
154
|
+
|
|
155
|
+
selected_fields = []
|
|
156
|
+
for f in parquet_input_fields:
|
|
157
|
+
if f.name in all_fields:
|
|
158
|
+
selected_fields.append(f)
|
|
159
|
+
|
|
160
|
+
num_parallel_reads = min(self._data_config.num_parallel_calls,
|
|
161
|
+
len(input_files) // task_num)
|
|
162
|
+
dataset = parquet_dataset_ops.ParquetDataset(
|
|
163
|
+
my_files,
|
|
164
|
+
batch_size=self._batch_size,
|
|
165
|
+
fields=selected_fields,
|
|
166
|
+
drop_remainder=self._data_config.drop_remainder,
|
|
167
|
+
num_parallel_reads=num_parallel_reads)
|
|
168
|
+
# partition_count=task_num,
|
|
169
|
+
# partition_index=task_index)
|
|
170
|
+
|
|
171
|
+
if mode == tf.estimator.ModeKeys.TRAIN:
|
|
172
|
+
if self._data_config.shuffle:
|
|
173
|
+
dataset = dataset.shuffle(
|
|
174
|
+
self._data_config.shuffle_buffer_size,
|
|
175
|
+
seed=2020,
|
|
176
|
+
reshuffle_each_iteration=True)
|
|
177
|
+
dataset = dataset.repeat(self.num_epochs)
|
|
178
|
+
else:
|
|
179
|
+
dataset = dataset.repeat(1)
|
|
180
|
+
|
|
181
|
+
dataset = dataset.map(
|
|
182
|
+
self._parse_dataframe,
|
|
183
|
+
num_parallel_calls=self._data_config.num_parallel_calls)
|
|
184
|
+
|
|
185
|
+
# preprocess is necessary to transform data
|
|
186
|
+
# so that they could be feed into FeatureColumns
|
|
187
|
+
dataset = dataset.map(
|
|
188
|
+
map_func=self._preprocess,
|
|
189
|
+
num_parallel_calls=self._data_config.num_parallel_calls)
|
|
190
|
+
|
|
191
|
+
dataset = dataset.prefetch(buffer_size=self._prefetch_size)
|
|
192
|
+
|
|
193
|
+
if mode != tf.estimator.ModeKeys.PREDICT:
|
|
194
|
+
dataset = dataset.map(lambda x:
|
|
195
|
+
(self._get_features(x), self._get_labels(x)))
|
|
196
|
+
else:
|
|
197
|
+
dataset = dataset.map(lambda x: (self._get_features(x)))
|
|
198
|
+
return dataset
|
|
199
|
+
|
|
200
|
+
def _preprocess(self, field_dict):
|
|
201
|
+
for k, v in field_dict.items():
|
|
202
|
+
field_dict[k] = self._ignore_and_cast(k, v)
|
|
203
|
+
return super(ParquetInputV3, self)._preprocess(field_dict)
|
|
@@ -0,0 +1,225 @@
|
|
|
1
|
+
# -*- encoding:utf-8 -*-
|
|
2
|
+
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
3
|
+
import logging
|
|
4
|
+
|
|
5
|
+
import tensorflow as tf
|
|
6
|
+
|
|
7
|
+
from easy_rec.python.input.input import Input
|
|
8
|
+
from easy_rec.python.ops.gen_str_avx_op import str_split_by_chr
|
|
9
|
+
from easy_rec.python.utils.check_utils import check_split
|
|
10
|
+
from easy_rec.python.utils.check_utils import check_string_to_number
|
|
11
|
+
from easy_rec.python.utils.input_utils import string_to_number
|
|
12
|
+
from easy_rec.python.utils.tf_utils import get_tf_type
|
|
13
|
+
|
|
14
|
+
if tf.__version__ >= '2.0':
|
|
15
|
+
tf = tf.compat.v1
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class RTPInput(Input):
|
|
19
|
+
"""RTPInput for parsing rtp fg new input format.
|
|
20
|
+
|
|
21
|
+
Our new format(csv in csv) of rtp output:
|
|
22
|
+
label0, item_id, ..., user_id, features
|
|
23
|
+
here the separator(,) could be specified by data_config.rtp_separator
|
|
24
|
+
For the feature column, features are separated by ,
|
|
25
|
+
multiple values of one feature are separated by , such as:
|
|
26
|
+
...20beautysmartParis...
|
|
27
|
+
The features column and labels are specified by data_config.selected_cols,
|
|
28
|
+
columns are selected by indices as our csv file has no header,
|
|
29
|
+
such as: 0,1,4, means the 4th column is features, the 1st and 2nd
|
|
30
|
+
columns are labels
|
|
31
|
+
"""
|
|
32
|
+
|
|
33
|
+
def __init__(self,
|
|
34
|
+
data_config,
|
|
35
|
+
feature_config,
|
|
36
|
+
input_path,
|
|
37
|
+
task_index=0,
|
|
38
|
+
task_num=1,
|
|
39
|
+
check_mode=False,
|
|
40
|
+
pipeline_config=None):
|
|
41
|
+
super(RTPInput,
|
|
42
|
+
self).__init__(data_config, feature_config, input_path, task_index,
|
|
43
|
+
task_num, check_mode, pipeline_config)
|
|
44
|
+
logging.info('input_fields: %s label_fields: %s' %
|
|
45
|
+
(','.join(self._input_fields), ','.join(self._label_fields)))
|
|
46
|
+
self._rtp_separator = self._data_config.rtp_separator
|
|
47
|
+
if not isinstance(self._rtp_separator, str):
|
|
48
|
+
self._rtp_separator = self._rtp_separator.encode('utf-8')
|
|
49
|
+
self._selected_cols = [
|
|
50
|
+
int(x) for x in self._data_config.selected_cols.split(',')
|
|
51
|
+
]
|
|
52
|
+
self._num_cols = -1
|
|
53
|
+
self._feature_col_id = self._selected_cols[-1]
|
|
54
|
+
logging.info('rtp separator = %s' % self._rtp_separator)
|
|
55
|
+
|
|
56
|
+
def _parse_csv(self, line):
|
|
57
|
+
record_defaults = ['' for i in range(self._num_cols)]
|
|
58
|
+
|
|
59
|
+
# the actual features are in one single column
|
|
60
|
+
record_defaults[self._feature_col_id] = self._data_config.separator.join([
|
|
61
|
+
str(self.get_type_defaults(t, v))
|
|
62
|
+
for x, t, v in zip(self._input_fields, self._input_field_types,
|
|
63
|
+
self._input_field_defaults)
|
|
64
|
+
if x not in self._label_fields
|
|
65
|
+
])
|
|
66
|
+
|
|
67
|
+
check_list = [
|
|
68
|
+
tf.py_func(
|
|
69
|
+
check_split, [line, self._rtp_separator,
|
|
70
|
+
len(record_defaults)],
|
|
71
|
+
Tout=tf.bool)
|
|
72
|
+
] if self._check_mode else []
|
|
73
|
+
with tf.control_dependencies(check_list):
|
|
74
|
+
fields = tf.string_split(line, self._rtp_separator, skip_empty=False)
|
|
75
|
+
|
|
76
|
+
fields = tf.reshape(fields.values, [-1, len(record_defaults)])
|
|
77
|
+
|
|
78
|
+
labels = []
|
|
79
|
+
for idx, x in enumerate(self._selected_cols[:-1]):
|
|
80
|
+
field = fields[:, x]
|
|
81
|
+
fname = self._input_fields[idx]
|
|
82
|
+
ftype = self._input_field_types[idx]
|
|
83
|
+
tf_type = get_tf_type(ftype)
|
|
84
|
+
if field.dtype in [tf.string]:
|
|
85
|
+
check_list = [
|
|
86
|
+
tf.py_func(check_string_to_number, [field, fname], Tout=tf.bool)
|
|
87
|
+
] if self._check_mode else []
|
|
88
|
+
with tf.control_dependencies(check_list):
|
|
89
|
+
field = tf.string_to_number(field, tf_type)
|
|
90
|
+
labels.append(field)
|
|
91
|
+
|
|
92
|
+
# only for features, labels excluded
|
|
93
|
+
record_types = [
|
|
94
|
+
t for x, t in zip(self._input_fields, self._input_field_types)
|
|
95
|
+
if x not in self._label_fields
|
|
96
|
+
]
|
|
97
|
+
# assume that the last field is the generated feature column
|
|
98
|
+
print('field_delim = %s' % self._data_config.separator)
|
|
99
|
+
feature_str = fields[:, self._feature_col_id]
|
|
100
|
+
check_list = [
|
|
101
|
+
tf.py_func(
|
|
102
|
+
check_split,
|
|
103
|
+
[feature_str, self._data_config.separator,
|
|
104
|
+
len(record_types)],
|
|
105
|
+
Tout=tf.bool)
|
|
106
|
+
] if self._check_mode else []
|
|
107
|
+
with tf.control_dependencies(check_list):
|
|
108
|
+
fields = str_split_by_chr(
|
|
109
|
+
feature_str, self._data_config.separator, skip_empty=False)
|
|
110
|
+
tmp_fields = tf.reshape(fields.values, [-1, len(record_types)])
|
|
111
|
+
rtp_record_defaults = [
|
|
112
|
+
str(self.get_type_defaults(t, v))
|
|
113
|
+
for x, t, v in zip(self._input_fields, self._input_field_types,
|
|
114
|
+
self._input_field_defaults)
|
|
115
|
+
if x not in self._label_fields
|
|
116
|
+
]
|
|
117
|
+
fields = []
|
|
118
|
+
for i in range(len(record_types)):
|
|
119
|
+
field = string_to_number(tmp_fields[:, i], record_types[i],
|
|
120
|
+
rtp_record_defaults[i], i)
|
|
121
|
+
fields.append(field)
|
|
122
|
+
|
|
123
|
+
field_keys = [x for x in self._input_fields if x not in self._label_fields]
|
|
124
|
+
effective_fids = [field_keys.index(x) for x in self._effective_fields]
|
|
125
|
+
inputs = {field_keys[x]: fields[x] for x in effective_fids}
|
|
126
|
+
|
|
127
|
+
for x in range(len(self._label_fields)):
|
|
128
|
+
inputs[self._label_fields[x]] = labels[x]
|
|
129
|
+
return inputs
|
|
130
|
+
|
|
131
|
+
def _build(self, mode, params):
|
|
132
|
+
if type(self._input_path) != list:
|
|
133
|
+
self._input_path = self._input_path.split(',')
|
|
134
|
+
file_paths = []
|
|
135
|
+
for x in self._input_path:
|
|
136
|
+
file_paths.extend(tf.gfile.Glob(x))
|
|
137
|
+
assert len(file_paths) > 0, 'match no files with %s' % self._input_path
|
|
138
|
+
|
|
139
|
+
# try to figure out number of fields from one file
|
|
140
|
+
with tf.gfile.GFile(file_paths[0], 'r') as fin:
|
|
141
|
+
num_lines = 0
|
|
142
|
+
for line_str in fin:
|
|
143
|
+
line_tok = line_str.strip().split(self._rtp_separator)
|
|
144
|
+
if self._num_cols != -1:
|
|
145
|
+
assert self._num_cols == len(line_tok), \
|
|
146
|
+
'num selected cols is %d, not equal to %d, current line is: %s, please check rtp_separator and data.' % \
|
|
147
|
+
(self._num_cols, len(line_tok), line_str)
|
|
148
|
+
self._num_cols = len(line_tok)
|
|
149
|
+
num_lines += 1
|
|
150
|
+
if num_lines > 10:
|
|
151
|
+
break
|
|
152
|
+
logging.info('num selected cols = %d' % self._num_cols)
|
|
153
|
+
|
|
154
|
+
record_defaults = [
|
|
155
|
+
self.get_type_defaults(t, v)
|
|
156
|
+
for x, t, v in zip(self._input_fields, self._input_field_types,
|
|
157
|
+
self._input_field_defaults)
|
|
158
|
+
if x in self._label_fields
|
|
159
|
+
]
|
|
160
|
+
|
|
161
|
+
# the features are in one single column
|
|
162
|
+
record_defaults.append(
|
|
163
|
+
self._data_config.separator.join([
|
|
164
|
+
str(self.get_type_defaults(t, v))
|
|
165
|
+
for x, t, v in zip(self._input_fields, self._input_field_types,
|
|
166
|
+
self._input_field_defaults)
|
|
167
|
+
if x not in self._label_fields
|
|
168
|
+
]))
|
|
169
|
+
|
|
170
|
+
num_parallel_calls = self._data_config.num_parallel_calls
|
|
171
|
+
if mode == tf.estimator.ModeKeys.TRAIN:
|
|
172
|
+
logging.info('train files[%d]: %s' %
|
|
173
|
+
(len(file_paths), ','.join(file_paths)))
|
|
174
|
+
dataset = tf.data.Dataset.from_tensor_slices(file_paths)
|
|
175
|
+
|
|
176
|
+
if self._data_config.file_shard:
|
|
177
|
+
dataset = self._safe_shard(dataset)
|
|
178
|
+
|
|
179
|
+
if self._data_config.shuffle:
|
|
180
|
+
# shuffle input files
|
|
181
|
+
dataset = dataset.shuffle(len(file_paths))
|
|
182
|
+
|
|
183
|
+
# too many readers read the same file will cause performance issues
|
|
184
|
+
# as the same data will be read multiple times
|
|
185
|
+
parallel_num = min(num_parallel_calls, len(file_paths))
|
|
186
|
+
dataset = dataset.interleave(
|
|
187
|
+
tf.data.TextLineDataset,
|
|
188
|
+
cycle_length=parallel_num,
|
|
189
|
+
num_parallel_calls=parallel_num)
|
|
190
|
+
|
|
191
|
+
if not self._data_config.file_shard:
|
|
192
|
+
dataset = self._safe_shard(dataset)
|
|
193
|
+
|
|
194
|
+
if self._data_config.shuffle:
|
|
195
|
+
dataset = dataset.shuffle(
|
|
196
|
+
self._data_config.shuffle_buffer_size,
|
|
197
|
+
seed=2020,
|
|
198
|
+
reshuffle_each_iteration=True)
|
|
199
|
+
dataset = dataset.repeat(self.num_epochs)
|
|
200
|
+
else:
|
|
201
|
+
logging.info('eval files[%d]: %s' %
|
|
202
|
+
(len(file_paths), ','.join(file_paths)))
|
|
203
|
+
dataset = tf.data.TextLineDataset(file_paths)
|
|
204
|
+
dataset = dataset.repeat(1)
|
|
205
|
+
|
|
206
|
+
dataset = dataset.batch(batch_size=self._data_config.batch_size)
|
|
207
|
+
|
|
208
|
+
dataset = dataset.map(
|
|
209
|
+
self._parse_csv,
|
|
210
|
+
num_parallel_calls=self._data_config.num_parallel_calls)
|
|
211
|
+
|
|
212
|
+
# preprocess is necessary to transform data
|
|
213
|
+
# so that they could be feed into FeatureColumns
|
|
214
|
+
dataset = dataset.map(
|
|
215
|
+
map_func=self._preprocess,
|
|
216
|
+
num_parallel_calls=self._data_config.num_parallel_calls)
|
|
217
|
+
|
|
218
|
+
dataset = dataset.prefetch(buffer_size=self._prefetch_size)
|
|
219
|
+
|
|
220
|
+
if mode != tf.estimator.ModeKeys.PREDICT:
|
|
221
|
+
dataset = dataset.map(lambda x:
|
|
222
|
+
(self._get_features(x), self._get_labels(x)))
|
|
223
|
+
else:
|
|
224
|
+
dataset = dataset.map(lambda x: (self._get_features(x)))
|
|
225
|
+
return dataset
|
|
@@ -0,0 +1,145 @@
|
|
|
1
|
+
# -*- encoding:utf-8 -*-
|
|
2
|
+
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
3
|
+
import logging
|
|
4
|
+
|
|
5
|
+
import tensorflow as tf
|
|
6
|
+
|
|
7
|
+
from easy_rec.python.input.input import Input
|
|
8
|
+
from easy_rec.python.protos.dataset_pb2 import DatasetConfig
|
|
9
|
+
|
|
10
|
+
if tf.__version__ >= '2.0':
|
|
11
|
+
tf = tf.compat.v1
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
class RTPInputV2(Input):
|
|
15
|
+
"""RTPInput for parsing rtp fg input format.
|
|
16
|
+
|
|
17
|
+
the original rtp format, it is not efficient for training, the performance have to be tuned.
|
|
18
|
+
"""
|
|
19
|
+
|
|
20
|
+
def __init__(self,
|
|
21
|
+
data_config,
|
|
22
|
+
feature_config,
|
|
23
|
+
input_path,
|
|
24
|
+
task_index=0,
|
|
25
|
+
task_num=1,
|
|
26
|
+
check_mode=False,
|
|
27
|
+
pipeline_config=None):
|
|
28
|
+
super(RTPInputV2,
|
|
29
|
+
self).__init__(data_config, feature_config, input_path, task_index,
|
|
30
|
+
task_num, check_mode, pipeline_config)
|
|
31
|
+
|
|
32
|
+
def _parse_rtp(self, lines):
|
|
33
|
+
tf_types = [tf.string for x in self._input_field_types]
|
|
34
|
+
|
|
35
|
+
def _parse_one_line_tf(line):
|
|
36
|
+
line = tf.expand_dims(line, axis=0)
|
|
37
|
+
field_toks = tf.string_split(line, '\002').values
|
|
38
|
+
field_vals = tf.string_split(field_toks, '\003').values
|
|
39
|
+
field_vals = tf.reshape(field_vals, [-1, 2])
|
|
40
|
+
keys = field_vals[:, 0]
|
|
41
|
+
vals = field_vals[:, 1]
|
|
42
|
+
temp_vals = [
|
|
43
|
+
str(
|
|
44
|
+
self.get_type_defaults(self._input_field_types[i],
|
|
45
|
+
self._input_field_defaults[i]))
|
|
46
|
+
for i in range(len(self._input_fields))
|
|
47
|
+
]
|
|
48
|
+
for i, key in enumerate(self._input_fields):
|
|
49
|
+
msk = tf.equal(key, keys)
|
|
50
|
+
val = tf.boolean_mask(vals, msk)
|
|
51
|
+
def_val = self.get_type_defaults(self._input_field_types[i],
|
|
52
|
+
self._input_field_defaults[i])
|
|
53
|
+
temp_vals[i] = tf.cond(
|
|
54
|
+
tf.reduce_any(msk), lambda: tf.reduce_join(val, separator=','),
|
|
55
|
+
lambda: tf.constant(str(def_val)))
|
|
56
|
+
return temp_vals
|
|
57
|
+
|
|
58
|
+
fields = tf.map_fn(
|
|
59
|
+
_parse_one_line_tf,
|
|
60
|
+
lines,
|
|
61
|
+
tf_types,
|
|
62
|
+
parallel_iterations=64,
|
|
63
|
+
name='parse_one_line_tf_map_fn')
|
|
64
|
+
|
|
65
|
+
def _convert(x, target_type, name):
|
|
66
|
+
if target_type in [DatasetConfig.FLOAT, DatasetConfig.DOUBLE]:
|
|
67
|
+
return tf.string_to_number(
|
|
68
|
+
x, tf.float32, name='convert_input_flt32/%s' % name)
|
|
69
|
+
elif target_type == DatasetConfig.INT32:
|
|
70
|
+
return tf.string_to_number(
|
|
71
|
+
x, tf.int32, name='convert_input_int32/%s' % name)
|
|
72
|
+
elif target_type == DatasetConfig.INT64:
|
|
73
|
+
return tf.string_to_number(
|
|
74
|
+
x, tf.int64, name='convert_input_int64/%s' % name)
|
|
75
|
+
return x
|
|
76
|
+
|
|
77
|
+
inputs = {
|
|
78
|
+
self._input_fields[x]: _convert(fields[x], self._input_field_types[x],
|
|
79
|
+
self._input_fields[x])
|
|
80
|
+
for x in self._effective_fids
|
|
81
|
+
}
|
|
82
|
+
|
|
83
|
+
for x in self._label_fids:
|
|
84
|
+
inputs[self._input_fields[x]] = fields[x]
|
|
85
|
+
return inputs
|
|
86
|
+
|
|
87
|
+
def _build(self, mode, params):
|
|
88
|
+
if type(self._input_path) != list:
|
|
89
|
+
self._input_path = self._input_path.split(',')
|
|
90
|
+
file_paths = []
|
|
91
|
+
for x in self._input_path:
|
|
92
|
+
file_paths.extend(tf.gfile.Glob(x))
|
|
93
|
+
assert len(file_paths) > 0, 'match no files with %s' % self._input_path
|
|
94
|
+
|
|
95
|
+
num_parallel_calls = self._data_config.num_parallel_calls
|
|
96
|
+
if mode == tf.estimator.ModeKeys.TRAIN:
|
|
97
|
+
logging.info('train files[%d]: %s' %
|
|
98
|
+
(len(file_paths), ','.join(file_paths)))
|
|
99
|
+
dataset = tf.data.Dataset.from_tensor_slices(file_paths)
|
|
100
|
+
|
|
101
|
+
if self._data_config.file_shard:
|
|
102
|
+
dataset = self._safe_shard(dataset)
|
|
103
|
+
|
|
104
|
+
if self._data_config.shuffle:
|
|
105
|
+
# shuffle input files
|
|
106
|
+
dataset = dataset.shuffle(len(file_paths))
|
|
107
|
+
|
|
108
|
+
# too many readers read the same file will cause performance issues
|
|
109
|
+
# as the same data will be read multiple times
|
|
110
|
+
parallel_num = min(num_parallel_calls, len(file_paths))
|
|
111
|
+
dataset = dataset.interleave(
|
|
112
|
+
tf.data.TextLineDataset,
|
|
113
|
+
cycle_length=parallel_num,
|
|
114
|
+
num_parallel_calls=parallel_num)
|
|
115
|
+
|
|
116
|
+
if not self._data_config.file_shard:
|
|
117
|
+
dataset = self._safe_shard(dataset)
|
|
118
|
+
|
|
119
|
+
if self._data_config.shuffle:
|
|
120
|
+
dataset = dataset.shuffle(
|
|
121
|
+
self._data_config.shuffle_buffer_size,
|
|
122
|
+
seed=2020,
|
|
123
|
+
reshuffle_each_iteration=True)
|
|
124
|
+
dataset = dataset.repeat(self.num_epochs)
|
|
125
|
+
else:
|
|
126
|
+
logging.info('eval files[%d]: %s' %
|
|
127
|
+
(len(file_paths), ','.join(file_paths)))
|
|
128
|
+
dataset = tf.data.TextLineDataset(file_paths)
|
|
129
|
+
dataset = dataset.repeat(1)
|
|
130
|
+
|
|
131
|
+
dataset = dataset.batch(self._data_config.batch_size)
|
|
132
|
+
dataset = dataset.map(
|
|
133
|
+
self._parse_rtp, num_parallel_calls=num_parallel_calls)
|
|
134
|
+
dataset = dataset.prefetch(buffer_size=self._prefetch_size)
|
|
135
|
+
dataset = dataset.map(
|
|
136
|
+
map_func=self._preprocess, num_parallel_calls=num_parallel_calls)
|
|
137
|
+
|
|
138
|
+
dataset = dataset.prefetch(buffer_size=self._prefetch_size)
|
|
139
|
+
|
|
140
|
+
if mode != tf.estimator.ModeKeys.PREDICT:
|
|
141
|
+
dataset = dataset.map(lambda x:
|
|
142
|
+
(self._get_features(x), self._get_labels(x)))
|
|
143
|
+
else:
|
|
144
|
+
dataset = dataset.map(lambda x: (self._get_features(x)))
|
|
145
|
+
return dataset
|
|
@@ -0,0 +1,100 @@
|
|
|
1
|
+
# -*- encoding:utf-8 -*-
|
|
2
|
+
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
3
|
+
import logging
|
|
4
|
+
|
|
5
|
+
import tensorflow as tf
|
|
6
|
+
|
|
7
|
+
from easy_rec.python.input.input import Input
|
|
8
|
+
from easy_rec.python.utils.tf_utils import get_tf_type
|
|
9
|
+
|
|
10
|
+
if tf.__version__ >= '2.0':
|
|
11
|
+
tf = tf.compat.v1
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
class TFRecordInput(Input):
|
|
15
|
+
|
|
16
|
+
def __init__(self,
|
|
17
|
+
data_config,
|
|
18
|
+
feature_config,
|
|
19
|
+
input_path,
|
|
20
|
+
task_index=0,
|
|
21
|
+
task_num=1,
|
|
22
|
+
check_mode=False,
|
|
23
|
+
pipeline_config=None):
|
|
24
|
+
super(TFRecordInput,
|
|
25
|
+
self).__init__(data_config, feature_config, input_path, task_index,
|
|
26
|
+
task_num, check_mode, pipeline_config)
|
|
27
|
+
|
|
28
|
+
self.feature_desc = {}
|
|
29
|
+
for x, t, d, s in zip(self._input_fields, self._input_field_types,
|
|
30
|
+
self._input_field_defaults, self._input_dims):
|
|
31
|
+
d = self.get_type_defaults(t, d)
|
|
32
|
+
t = get_tf_type(t)
|
|
33
|
+
if s == 1:
|
|
34
|
+
self.feature_desc[x] = tf.FixedLenFeature(
|
|
35
|
+
dtype=t, shape=[s], default_value=d)
|
|
36
|
+
else:
|
|
37
|
+
self.feature_desc[x] = tf.FixedLenFeature(
|
|
38
|
+
dtype=t, shape=[s], default_value=[d] * s)
|
|
39
|
+
|
|
40
|
+
def _parse_tfrecord(self, example):
|
|
41
|
+
try:
|
|
42
|
+
inputs = tf.parse_single_example(example, features=self.feature_desc)
|
|
43
|
+
except AttributeError:
|
|
44
|
+
inputs = tf.io.parse_single_example(example, features=self.feature_desc)
|
|
45
|
+
return inputs
|
|
46
|
+
|
|
47
|
+
def _build(self, mode, params):
|
|
48
|
+
if type(self._input_path) != list:
|
|
49
|
+
self._input_path = self._input_path.split(',')
|
|
50
|
+
file_paths = []
|
|
51
|
+
for x in self._input_path:
|
|
52
|
+
file_paths.extend(tf.gfile.Glob(x))
|
|
53
|
+
assert len(file_paths) > 0, 'match no files with %s' % self._input_path
|
|
54
|
+
|
|
55
|
+
num_parallel_calls = self._data_config.num_parallel_calls
|
|
56
|
+
data_compression_type = self._data_config.data_compression_type
|
|
57
|
+
if mode == tf.estimator.ModeKeys.TRAIN:
|
|
58
|
+
logging.info('train files[%d]: %s' %
|
|
59
|
+
(len(file_paths), ','.join(file_paths)))
|
|
60
|
+
dataset = tf.data.Dataset.from_tensor_slices(file_paths)
|
|
61
|
+
if self._data_config.shuffle:
|
|
62
|
+
# shuffle input files
|
|
63
|
+
dataset = dataset.shuffle(len(file_paths))
|
|
64
|
+
# too many readers read the same file will cause performance issues
|
|
65
|
+
# as the same data will be read multiple times
|
|
66
|
+
parallel_num = min(num_parallel_calls, len(file_paths))
|
|
67
|
+
dataset = dataset.interleave(
|
|
68
|
+
lambda x: tf.data.TFRecordDataset(
|
|
69
|
+
x, compression_type=data_compression_type),
|
|
70
|
+
cycle_length=parallel_num,
|
|
71
|
+
num_parallel_calls=parallel_num)
|
|
72
|
+
dataset = dataset.shard(self._task_num, self._task_index)
|
|
73
|
+
if self._data_config.shuffle:
|
|
74
|
+
dataset = dataset.shuffle(
|
|
75
|
+
self._data_config.shuffle_buffer_size,
|
|
76
|
+
seed=2020,
|
|
77
|
+
reshuffle_each_iteration=True)
|
|
78
|
+
dataset = dataset.repeat(self.num_epochs)
|
|
79
|
+
else:
|
|
80
|
+
logging.info('eval files[%d]: %s' %
|
|
81
|
+
(len(file_paths), ','.join(file_paths)))
|
|
82
|
+
dataset = tf.data.TFRecordDataset(
|
|
83
|
+
file_paths, compression_type=data_compression_type)
|
|
84
|
+
dataset = dataset.repeat(1)
|
|
85
|
+
|
|
86
|
+
dataset = dataset.map(
|
|
87
|
+
self._parse_tfrecord, num_parallel_calls=num_parallel_calls)
|
|
88
|
+
dataset = dataset.batch(self._data_config.batch_size)
|
|
89
|
+
dataset = dataset.prefetch(buffer_size=self._prefetch_size)
|
|
90
|
+
dataset = dataset.map(
|
|
91
|
+
map_func=self._preprocess, num_parallel_calls=num_parallel_calls)
|
|
92
|
+
|
|
93
|
+
dataset = dataset.prefetch(buffer_size=self._prefetch_size)
|
|
94
|
+
|
|
95
|
+
if mode != tf.estimator.ModeKeys.PREDICT:
|
|
96
|
+
dataset = dataset.map(lambda x:
|
|
97
|
+
(self._get_features(x), self._get_labels(x)))
|
|
98
|
+
else:
|
|
99
|
+
dataset = dataset.map(lambda x: (self._get_features(x)))
|
|
100
|
+
return dataset
|
|
File without changes
|