diffusers 0.33.0__py3-none-any.whl → 0.34.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (478) hide show
  1. diffusers/__init__.py +48 -1
  2. diffusers/commands/__init__.py +1 -1
  3. diffusers/commands/diffusers_cli.py +1 -1
  4. diffusers/commands/env.py +1 -1
  5. diffusers/commands/fp16_safetensors.py +1 -1
  6. diffusers/dependency_versions_check.py +1 -1
  7. diffusers/dependency_versions_table.py +1 -1
  8. diffusers/experimental/rl/value_guided_sampling.py +1 -1
  9. diffusers/hooks/faster_cache.py +2 -2
  10. diffusers/hooks/group_offloading.py +128 -29
  11. diffusers/hooks/hooks.py +2 -2
  12. diffusers/hooks/layerwise_casting.py +3 -3
  13. diffusers/hooks/pyramid_attention_broadcast.py +1 -1
  14. diffusers/image_processor.py +7 -2
  15. diffusers/loaders/__init__.py +4 -0
  16. diffusers/loaders/ip_adapter.py +5 -14
  17. diffusers/loaders/lora_base.py +212 -111
  18. diffusers/loaders/lora_conversion_utils.py +275 -34
  19. diffusers/loaders/lora_pipeline.py +1554 -819
  20. diffusers/loaders/peft.py +52 -109
  21. diffusers/loaders/single_file.py +2 -2
  22. diffusers/loaders/single_file_model.py +20 -4
  23. diffusers/loaders/single_file_utils.py +225 -5
  24. diffusers/loaders/textual_inversion.py +3 -2
  25. diffusers/loaders/transformer_flux.py +1 -1
  26. diffusers/loaders/transformer_sd3.py +2 -2
  27. diffusers/loaders/unet.py +2 -16
  28. diffusers/loaders/unet_loader_utils.py +1 -1
  29. diffusers/loaders/utils.py +1 -1
  30. diffusers/models/__init__.py +15 -1
  31. diffusers/models/activations.py +5 -5
  32. diffusers/models/adapter.py +2 -3
  33. diffusers/models/attention.py +4 -4
  34. diffusers/models/attention_flax.py +10 -10
  35. diffusers/models/attention_processor.py +14 -10
  36. diffusers/models/auto_model.py +47 -10
  37. diffusers/models/autoencoders/__init__.py +1 -0
  38. diffusers/models/autoencoders/autoencoder_asym_kl.py +4 -4
  39. diffusers/models/autoencoders/autoencoder_dc.py +3 -3
  40. diffusers/models/autoencoders/autoencoder_kl.py +4 -4
  41. diffusers/models/autoencoders/autoencoder_kl_allegro.py +4 -4
  42. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +6 -6
  43. diffusers/models/autoencoders/autoencoder_kl_cosmos.py +1108 -0
  44. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +2 -2
  45. diffusers/models/autoencoders/autoencoder_kl_ltx.py +3 -3
  46. diffusers/models/autoencoders/autoencoder_kl_magvit.py +4 -4
  47. diffusers/models/autoencoders/autoencoder_kl_mochi.py +3 -3
  48. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +4 -4
  49. diffusers/models/autoencoders/autoencoder_kl_wan.py +256 -22
  50. diffusers/models/autoencoders/autoencoder_oobleck.py +1 -1
  51. diffusers/models/autoencoders/autoencoder_tiny.py +3 -3
  52. diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
  53. diffusers/models/autoencoders/vae.py +13 -2
  54. diffusers/models/autoencoders/vq_model.py +2 -2
  55. diffusers/models/cache_utils.py +1 -1
  56. diffusers/models/controlnet.py +1 -1
  57. diffusers/models/controlnet_flux.py +1 -1
  58. diffusers/models/controlnet_sd3.py +1 -1
  59. diffusers/models/controlnet_sparsectrl.py +1 -1
  60. diffusers/models/controlnets/__init__.py +1 -0
  61. diffusers/models/controlnets/controlnet.py +3 -3
  62. diffusers/models/controlnets/controlnet_flax.py +1 -1
  63. diffusers/models/controlnets/controlnet_flux.py +16 -15
  64. diffusers/models/controlnets/controlnet_hunyuan.py +2 -2
  65. diffusers/models/controlnets/controlnet_sana.py +290 -0
  66. diffusers/models/controlnets/controlnet_sd3.py +1 -1
  67. diffusers/models/controlnets/controlnet_sparsectrl.py +2 -2
  68. diffusers/models/controlnets/controlnet_union.py +1 -1
  69. diffusers/models/controlnets/controlnet_xs.py +7 -7
  70. diffusers/models/controlnets/multicontrolnet.py +4 -5
  71. diffusers/models/controlnets/multicontrolnet_union.py +5 -6
  72. diffusers/models/downsampling.py +2 -2
  73. diffusers/models/embeddings.py +10 -12
  74. diffusers/models/embeddings_flax.py +2 -2
  75. diffusers/models/lora.py +3 -3
  76. diffusers/models/modeling_utils.py +44 -14
  77. diffusers/models/normalization.py +4 -4
  78. diffusers/models/resnet.py +2 -2
  79. diffusers/models/resnet_flax.py +1 -1
  80. diffusers/models/transformers/__init__.py +5 -0
  81. diffusers/models/transformers/auraflow_transformer_2d.py +70 -24
  82. diffusers/models/transformers/cogvideox_transformer_3d.py +1 -1
  83. diffusers/models/transformers/consisid_transformer_3d.py +1 -1
  84. diffusers/models/transformers/dit_transformer_2d.py +2 -2
  85. diffusers/models/transformers/dual_transformer_2d.py +1 -1
  86. diffusers/models/transformers/hunyuan_transformer_2d.py +2 -2
  87. diffusers/models/transformers/latte_transformer_3d.py +4 -5
  88. diffusers/models/transformers/lumina_nextdit2d.py +2 -2
  89. diffusers/models/transformers/pixart_transformer_2d.py +3 -3
  90. diffusers/models/transformers/prior_transformer.py +1 -1
  91. diffusers/models/transformers/sana_transformer.py +8 -3
  92. diffusers/models/transformers/stable_audio_transformer.py +5 -9
  93. diffusers/models/transformers/t5_film_transformer.py +3 -3
  94. diffusers/models/transformers/transformer_2d.py +1 -1
  95. diffusers/models/transformers/transformer_allegro.py +1 -1
  96. diffusers/models/transformers/transformer_chroma.py +742 -0
  97. diffusers/models/transformers/transformer_cogview3plus.py +5 -10
  98. diffusers/models/transformers/transformer_cogview4.py +317 -25
  99. diffusers/models/transformers/transformer_cosmos.py +579 -0
  100. diffusers/models/transformers/transformer_flux.py +9 -11
  101. diffusers/models/transformers/transformer_hidream_image.py +942 -0
  102. diffusers/models/transformers/transformer_hunyuan_video.py +6 -8
  103. diffusers/models/transformers/transformer_hunyuan_video_framepack.py +416 -0
  104. diffusers/models/transformers/transformer_ltx.py +2 -2
  105. diffusers/models/transformers/transformer_lumina2.py +1 -1
  106. diffusers/models/transformers/transformer_mochi.py +1 -1
  107. diffusers/models/transformers/transformer_omnigen.py +2 -2
  108. diffusers/models/transformers/transformer_sd3.py +7 -7
  109. diffusers/models/transformers/transformer_temporal.py +1 -1
  110. diffusers/models/transformers/transformer_wan.py +24 -8
  111. diffusers/models/transformers/transformer_wan_vace.py +393 -0
  112. diffusers/models/unets/unet_1d.py +1 -1
  113. diffusers/models/unets/unet_1d_blocks.py +1 -1
  114. diffusers/models/unets/unet_2d.py +1 -1
  115. diffusers/models/unets/unet_2d_blocks.py +1 -1
  116. diffusers/models/unets/unet_2d_blocks_flax.py +8 -7
  117. diffusers/models/unets/unet_2d_condition.py +2 -2
  118. diffusers/models/unets/unet_2d_condition_flax.py +2 -2
  119. diffusers/models/unets/unet_3d_blocks.py +1 -1
  120. diffusers/models/unets/unet_3d_condition.py +3 -3
  121. diffusers/models/unets/unet_i2vgen_xl.py +3 -3
  122. diffusers/models/unets/unet_kandinsky3.py +1 -1
  123. diffusers/models/unets/unet_motion_model.py +2 -2
  124. diffusers/models/unets/unet_stable_cascade.py +1 -1
  125. diffusers/models/upsampling.py +2 -2
  126. diffusers/models/vae_flax.py +2 -2
  127. diffusers/models/vq_model.py +1 -1
  128. diffusers/pipelines/__init__.py +37 -6
  129. diffusers/pipelines/allegro/pipeline_allegro.py +11 -11
  130. diffusers/pipelines/amused/pipeline_amused.py +7 -6
  131. diffusers/pipelines/amused/pipeline_amused_img2img.py +6 -5
  132. diffusers/pipelines/amused/pipeline_amused_inpaint.py +6 -5
  133. diffusers/pipelines/animatediff/pipeline_animatediff.py +6 -6
  134. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +6 -6
  135. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +16 -15
  136. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +6 -6
  137. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +5 -5
  138. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +5 -5
  139. diffusers/pipelines/audioldm/pipeline_audioldm.py +8 -7
  140. diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
  141. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +23 -13
  142. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +48 -11
  143. diffusers/pipelines/auto_pipeline.py +6 -7
  144. diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
  145. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +2 -2
  146. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +11 -10
  147. diffusers/pipelines/chroma/__init__.py +49 -0
  148. diffusers/pipelines/chroma/pipeline_chroma.py +949 -0
  149. diffusers/pipelines/chroma/pipeline_chroma_img2img.py +1034 -0
  150. diffusers/pipelines/chroma/pipeline_output.py +21 -0
  151. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +8 -8
  152. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +8 -8
  153. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +8 -8
  154. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +8 -8
  155. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +9 -9
  156. diffusers/pipelines/cogview4/pipeline_cogview4.py +7 -7
  157. diffusers/pipelines/cogview4/pipeline_cogview4_control.py +7 -7
  158. diffusers/pipelines/consisid/consisid_utils.py +2 -2
  159. diffusers/pipelines/consisid/pipeline_consisid.py +8 -8
  160. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
  161. diffusers/pipelines/controlnet/pipeline_controlnet.py +7 -7
  162. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +8 -8
  163. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +7 -7
  164. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +7 -7
  165. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +14 -14
  166. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +10 -6
  167. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +13 -13
  168. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +14 -14
  169. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +5 -5
  170. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +13 -13
  171. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +1 -1
  172. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +8 -8
  173. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +7 -7
  174. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +7 -7
  175. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +12 -10
  176. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +9 -7
  177. diffusers/pipelines/cosmos/__init__.py +54 -0
  178. diffusers/pipelines/cosmos/pipeline_cosmos2_text2image.py +673 -0
  179. diffusers/pipelines/cosmos/pipeline_cosmos2_video2world.py +792 -0
  180. diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +664 -0
  181. diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +826 -0
  182. diffusers/pipelines/cosmos/pipeline_output.py +40 -0
  183. diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +5 -4
  184. diffusers/pipelines/ddim/pipeline_ddim.py +4 -4
  185. diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -1
  186. diffusers/pipelines/deepfloyd_if/pipeline_if.py +10 -10
  187. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +10 -10
  188. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +10 -10
  189. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +10 -10
  190. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +10 -10
  191. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +10 -10
  192. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +8 -8
  193. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +5 -5
  194. diffusers/pipelines/deprecated/audio_diffusion/mel.py +1 -1
  195. diffusers/pipelines/deprecated/audio_diffusion/pipeline_audio_diffusion.py +3 -3
  196. diffusers/pipelines/deprecated/latent_diffusion_uncond/pipeline_latent_diffusion_uncond.py +1 -1
  197. diffusers/pipelines/deprecated/pndm/pipeline_pndm.py +2 -2
  198. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +4 -3
  199. diffusers/pipelines/deprecated/score_sde_ve/pipeline_score_sde_ve.py +1 -1
  200. diffusers/pipelines/deprecated/spectrogram_diffusion/continuous_encoder.py +1 -1
  201. diffusers/pipelines/deprecated/spectrogram_diffusion/midi_utils.py +1 -1
  202. diffusers/pipelines/deprecated/spectrogram_diffusion/notes_encoder.py +1 -1
  203. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +1 -1
  204. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +7 -7
  205. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py +9 -9
  206. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +10 -10
  207. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +10 -8
  208. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +5 -5
  209. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +18 -18
  210. diffusers/pipelines/deprecated/stochastic_karras_ve/pipeline_stochastic_karras_ve.py +1 -1
  211. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +2 -2
  212. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +6 -6
  213. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +5 -5
  214. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +5 -5
  215. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +5 -5
  216. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +1 -1
  217. diffusers/pipelines/dit/pipeline_dit.py +1 -1
  218. diffusers/pipelines/easyanimate/pipeline_easyanimate.py +4 -4
  219. diffusers/pipelines/easyanimate/pipeline_easyanimate_control.py +4 -4
  220. diffusers/pipelines/easyanimate/pipeline_easyanimate_inpaint.py +7 -6
  221. diffusers/pipelines/flux/modeling_flux.py +1 -1
  222. diffusers/pipelines/flux/pipeline_flux.py +10 -17
  223. diffusers/pipelines/flux/pipeline_flux_control.py +6 -6
  224. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +6 -6
  225. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +6 -6
  226. diffusers/pipelines/flux/pipeline_flux_controlnet.py +6 -6
  227. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +30 -22
  228. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +2 -1
  229. diffusers/pipelines/flux/pipeline_flux_fill.py +6 -6
  230. diffusers/pipelines/flux/pipeline_flux_img2img.py +39 -6
  231. diffusers/pipelines/flux/pipeline_flux_inpaint.py +11 -6
  232. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +1 -1
  233. diffusers/pipelines/free_init_utils.py +2 -2
  234. diffusers/pipelines/free_noise_utils.py +3 -3
  235. diffusers/pipelines/hidream_image/__init__.py +47 -0
  236. diffusers/pipelines/hidream_image/pipeline_hidream_image.py +1026 -0
  237. diffusers/pipelines/hidream_image/pipeline_output.py +35 -0
  238. diffusers/pipelines/hunyuan_video/__init__.py +2 -0
  239. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_skyreels_image2video.py +8 -8
  240. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +8 -8
  241. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video_framepack.py +1114 -0
  242. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video_image2video.py +71 -15
  243. diffusers/pipelines/hunyuan_video/pipeline_output.py +19 -0
  244. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +8 -8
  245. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +10 -8
  246. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +6 -6
  247. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +34 -34
  248. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +19 -26
  249. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +7 -7
  250. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +11 -11
  251. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  252. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +35 -35
  253. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +6 -6
  254. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +17 -39
  255. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +17 -45
  256. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +7 -7
  257. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +10 -10
  258. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +10 -10
  259. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +7 -7
  260. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +17 -38
  261. diffusers/pipelines/kolors/pipeline_kolors.py +10 -10
  262. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +12 -12
  263. diffusers/pipelines/kolors/text_encoder.py +3 -3
  264. diffusers/pipelines/kolors/tokenizer.py +1 -1
  265. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +2 -2
  266. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +2 -2
  267. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
  268. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py +3 -3
  269. diffusers/pipelines/latte/pipeline_latte.py +12 -12
  270. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +13 -13
  271. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +17 -16
  272. diffusers/pipelines/ltx/__init__.py +4 -0
  273. diffusers/pipelines/ltx/modeling_latent_upsampler.py +188 -0
  274. diffusers/pipelines/ltx/pipeline_ltx.py +51 -6
  275. diffusers/pipelines/ltx/pipeline_ltx_condition.py +107 -29
  276. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +50 -6
  277. diffusers/pipelines/ltx/pipeline_ltx_latent_upsample.py +277 -0
  278. diffusers/pipelines/lumina/pipeline_lumina.py +13 -13
  279. diffusers/pipelines/lumina2/pipeline_lumina2.py +10 -10
  280. diffusers/pipelines/marigold/marigold_image_processing.py +2 -2
  281. diffusers/pipelines/mochi/pipeline_mochi.py +6 -6
  282. diffusers/pipelines/musicldm/pipeline_musicldm.py +16 -13
  283. diffusers/pipelines/omnigen/pipeline_omnigen.py +13 -11
  284. diffusers/pipelines/omnigen/processor_omnigen.py +8 -3
  285. diffusers/pipelines/onnx_utils.py +15 -2
  286. diffusers/pipelines/pag/pag_utils.py +2 -2
  287. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +12 -8
  288. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +7 -7
  289. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +10 -6
  290. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +14 -14
  291. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +8 -8
  292. diffusers/pipelines/pag/pipeline_pag_kolors.py +10 -10
  293. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +11 -11
  294. diffusers/pipelines/pag/pipeline_pag_sana.py +18 -12
  295. diffusers/pipelines/pag/pipeline_pag_sd.py +8 -8
  296. diffusers/pipelines/pag/pipeline_pag_sd_3.py +7 -7
  297. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +7 -7
  298. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +6 -6
  299. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +5 -5
  300. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +8 -8
  301. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +16 -15
  302. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +18 -17
  303. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +12 -12
  304. diffusers/pipelines/paint_by_example/image_encoder.py +1 -1
  305. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +8 -7
  306. diffusers/pipelines/pia/pipeline_pia.py +8 -6
  307. diffusers/pipelines/pipeline_flax_utils.py +3 -4
  308. diffusers/pipelines/pipeline_loading_utils.py +89 -13
  309. diffusers/pipelines/pipeline_utils.py +105 -33
  310. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +11 -11
  311. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +11 -11
  312. diffusers/pipelines/sana/__init__.py +4 -0
  313. diffusers/pipelines/sana/pipeline_sana.py +23 -21
  314. diffusers/pipelines/sana/pipeline_sana_controlnet.py +1106 -0
  315. diffusers/pipelines/sana/pipeline_sana_sprint.py +23 -19
  316. diffusers/pipelines/sana/pipeline_sana_sprint_img2img.py +981 -0
  317. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +7 -6
  318. diffusers/pipelines/shap_e/camera.py +1 -1
  319. diffusers/pipelines/shap_e/pipeline_shap_e.py +1 -1
  320. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +1 -1
  321. diffusers/pipelines/shap_e/renderer.py +3 -3
  322. diffusers/pipelines/stable_audio/modeling_stable_audio.py +1 -1
  323. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +5 -5
  324. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +8 -8
  325. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +13 -13
  326. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +9 -9
  327. diffusers/pipelines/stable_diffusion/__init__.py +0 -7
  328. diffusers/pipelines/stable_diffusion/clip_image_project_model.py +1 -1
  329. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +11 -4
  330. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  331. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py +1 -1
  332. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py +1 -1
  333. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +10 -10
  334. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +10 -10
  335. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +10 -10
  336. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +9 -9
  337. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +8 -8
  338. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +5 -5
  339. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +5 -5
  340. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +5 -5
  341. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +5 -5
  342. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +5 -5
  343. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +4 -4
  344. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +5 -5
  345. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +7 -7
  346. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +5 -5
  347. diffusers/pipelines/stable_diffusion/safety_checker.py +1 -1
  348. diffusers/pipelines/stable_diffusion/safety_checker_flax.py +1 -1
  349. diffusers/pipelines/stable_diffusion/stable_unclip_image_normalizer.py +1 -1
  350. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +7 -7
  351. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +7 -7
  352. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +7 -7
  353. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +12 -8
  354. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +15 -9
  355. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +11 -9
  356. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +11 -9
  357. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +18 -12
  358. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +11 -8
  359. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +11 -8
  360. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +15 -12
  361. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +8 -6
  362. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  363. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +15 -11
  364. diffusers/pipelines/stable_diffusion_xl/pipeline_flax_stable_diffusion_xl.py +1 -1
  365. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +16 -15
  366. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +18 -17
  367. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +12 -12
  368. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +16 -15
  369. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +3 -3
  370. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +12 -12
  371. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +18 -17
  372. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +12 -7
  373. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +12 -7
  374. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +15 -13
  375. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +24 -21
  376. diffusers/pipelines/unclip/pipeline_unclip.py +4 -3
  377. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +4 -3
  378. diffusers/pipelines/unclip/text_proj.py +2 -2
  379. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +2 -2
  380. diffusers/pipelines/unidiffuser/modeling_uvit.py +1 -1
  381. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +8 -7
  382. diffusers/pipelines/visualcloze/__init__.py +52 -0
  383. diffusers/pipelines/visualcloze/pipeline_visualcloze_combined.py +444 -0
  384. diffusers/pipelines/visualcloze/pipeline_visualcloze_generation.py +952 -0
  385. diffusers/pipelines/visualcloze/visualcloze_utils.py +251 -0
  386. diffusers/pipelines/wan/__init__.py +2 -0
  387. diffusers/pipelines/wan/pipeline_wan.py +17 -12
  388. diffusers/pipelines/wan/pipeline_wan_i2v.py +42 -20
  389. diffusers/pipelines/wan/pipeline_wan_vace.py +976 -0
  390. diffusers/pipelines/wan/pipeline_wan_video2video.py +18 -18
  391. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
  392. diffusers/pipelines/wuerstchen/modeling_wuerstchen_diffnext.py +1 -1
  393. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  394. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +8 -8
  395. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +16 -15
  396. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +6 -6
  397. diffusers/quantizers/__init__.py +179 -1
  398. diffusers/quantizers/base.py +6 -1
  399. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +4 -0
  400. diffusers/quantizers/bitsandbytes/utils.py +10 -7
  401. diffusers/quantizers/gguf/gguf_quantizer.py +13 -4
  402. diffusers/quantizers/gguf/utils.py +16 -13
  403. diffusers/quantizers/quantization_config.py +18 -16
  404. diffusers/quantizers/quanto/quanto_quantizer.py +4 -0
  405. diffusers/quantizers/torchao/torchao_quantizer.py +5 -1
  406. diffusers/schedulers/__init__.py +3 -1
  407. diffusers/schedulers/deprecated/scheduling_karras_ve.py +4 -3
  408. diffusers/schedulers/deprecated/scheduling_sde_vp.py +1 -1
  409. diffusers/schedulers/scheduling_consistency_models.py +1 -1
  410. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +10 -5
  411. diffusers/schedulers/scheduling_ddim.py +8 -8
  412. diffusers/schedulers/scheduling_ddim_cogvideox.py +5 -5
  413. diffusers/schedulers/scheduling_ddim_flax.py +6 -6
  414. diffusers/schedulers/scheduling_ddim_inverse.py +6 -6
  415. diffusers/schedulers/scheduling_ddim_parallel.py +22 -22
  416. diffusers/schedulers/scheduling_ddpm.py +9 -9
  417. diffusers/schedulers/scheduling_ddpm_flax.py +7 -7
  418. diffusers/schedulers/scheduling_ddpm_parallel.py +18 -18
  419. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +2 -2
  420. diffusers/schedulers/scheduling_deis_multistep.py +8 -8
  421. diffusers/schedulers/scheduling_dpm_cogvideox.py +5 -5
  422. diffusers/schedulers/scheduling_dpmsolver_multistep.py +12 -12
  423. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +22 -20
  424. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +11 -11
  425. diffusers/schedulers/scheduling_dpmsolver_sde.py +2 -2
  426. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +13 -13
  427. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +13 -8
  428. diffusers/schedulers/scheduling_edm_euler.py +20 -11
  429. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +3 -3
  430. diffusers/schedulers/scheduling_euler_discrete.py +3 -3
  431. diffusers/schedulers/scheduling_euler_discrete_flax.py +3 -3
  432. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +20 -5
  433. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +1 -1
  434. diffusers/schedulers/scheduling_flow_match_lcm.py +561 -0
  435. diffusers/schedulers/scheduling_heun_discrete.py +2 -2
  436. diffusers/schedulers/scheduling_ipndm.py +2 -2
  437. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +2 -2
  438. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +2 -2
  439. diffusers/schedulers/scheduling_karras_ve_flax.py +5 -5
  440. diffusers/schedulers/scheduling_lcm.py +3 -3
  441. diffusers/schedulers/scheduling_lms_discrete.py +2 -2
  442. diffusers/schedulers/scheduling_lms_discrete_flax.py +1 -1
  443. diffusers/schedulers/scheduling_pndm.py +4 -4
  444. diffusers/schedulers/scheduling_pndm_flax.py +4 -4
  445. diffusers/schedulers/scheduling_repaint.py +9 -9
  446. diffusers/schedulers/scheduling_sasolver.py +15 -15
  447. diffusers/schedulers/scheduling_scm.py +1 -1
  448. diffusers/schedulers/scheduling_sde_ve.py +1 -1
  449. diffusers/schedulers/scheduling_sde_ve_flax.py +2 -2
  450. diffusers/schedulers/scheduling_tcd.py +3 -3
  451. diffusers/schedulers/scheduling_unclip.py +5 -5
  452. diffusers/schedulers/scheduling_unipc_multistep.py +11 -11
  453. diffusers/schedulers/scheduling_utils.py +1 -1
  454. diffusers/schedulers/scheduling_utils_flax.py +1 -1
  455. diffusers/schedulers/scheduling_vq_diffusion.py +1 -1
  456. diffusers/training_utils.py +13 -5
  457. diffusers/utils/__init__.py +5 -0
  458. diffusers/utils/accelerate_utils.py +1 -1
  459. diffusers/utils/doc_utils.py +1 -1
  460. diffusers/utils/dummy_pt_objects.py +120 -0
  461. diffusers/utils/dummy_torch_and_transformers_objects.py +225 -0
  462. diffusers/utils/dynamic_modules_utils.py +21 -3
  463. diffusers/utils/export_utils.py +1 -1
  464. diffusers/utils/import_utils.py +81 -18
  465. diffusers/utils/logging.py +1 -1
  466. diffusers/utils/outputs.py +2 -1
  467. diffusers/utils/peft_utils.py +91 -8
  468. diffusers/utils/state_dict_utils.py +20 -3
  469. diffusers/utils/testing_utils.py +59 -7
  470. diffusers/utils/torch_utils.py +25 -5
  471. diffusers/video_processor.py +2 -2
  472. {diffusers-0.33.0.dist-info → diffusers-0.34.0.dist-info}/METADATA +3 -3
  473. diffusers-0.34.0.dist-info/RECORD +639 -0
  474. diffusers-0.33.0.dist-info/RECORD +0 -608
  475. {diffusers-0.33.0.dist-info → diffusers-0.34.0.dist-info}/LICENSE +0 -0
  476. {diffusers-0.33.0.dist-info → diffusers-0.34.0.dist-info}/WHEEL +0 -0
  477. {diffusers-0.33.0.dist-info → diffusers-0.34.0.dist-info}/entry_points.txt +0 -0
  478. {diffusers-0.33.0.dist-info → diffusers-0.34.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,981 @@
1
+ # Copyright 2025 PixArt-Sigma Authors and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import html
16
+ import inspect
17
+ import re
18
+ import urllib.parse as ul
19
+ import warnings
20
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
21
+
22
+ import torch
23
+ import torch.nn.functional as F
24
+ from transformers import Gemma2PreTrainedModel, GemmaTokenizer, GemmaTokenizerFast
25
+
26
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
27
+ from ...image_processor import PipelineImageInput, PixArtImageProcessor
28
+ from ...loaders import SanaLoraLoaderMixin
29
+ from ...models import AutoencoderDC, SanaTransformer2DModel
30
+ from ...schedulers import DPMSolverMultistepScheduler
31
+ from ...utils import (
32
+ BACKENDS_MAPPING,
33
+ USE_PEFT_BACKEND,
34
+ is_bs4_available,
35
+ is_ftfy_available,
36
+ is_torch_xla_available,
37
+ logging,
38
+ replace_example_docstring,
39
+ scale_lora_layers,
40
+ unscale_lora_layers,
41
+ )
42
+ from ...utils.torch_utils import get_device, is_torch_version, randn_tensor
43
+ from ..pipeline_utils import DiffusionPipeline
44
+ from ..pixart_alpha.pipeline_pixart_alpha import ASPECT_RATIO_1024_BIN
45
+ from .pipeline_output import SanaPipelineOutput
46
+
47
+
48
+ if is_torch_xla_available():
49
+ import torch_xla.core.xla_model as xm
50
+
51
+ XLA_AVAILABLE = True
52
+ else:
53
+ XLA_AVAILABLE = False
54
+
55
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
56
+
57
+ if is_bs4_available():
58
+ from bs4 import BeautifulSoup
59
+
60
+ if is_ftfy_available():
61
+ import ftfy
62
+
63
+ EXAMPLE_DOC_STRING = """
64
+ Examples:
65
+ ```py
66
+ >>> import torch
67
+ >>> from diffusers import SanaSprintImg2ImgPipeline
68
+ >>> from diffusers.utils.loading_utils import load_image
69
+
70
+ >>> pipe = SanaSprintImg2ImgPipeline.from_pretrained(
71
+ ... "Efficient-Large-Model/Sana_Sprint_1.6B_1024px_diffusers", torch_dtype=torch.bfloat16
72
+ ... )
73
+ >>> pipe.to("cuda")
74
+
75
+ >>> image = load_image(
76
+ ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/penguin.png"
77
+ ... )
78
+
79
+
80
+ >>> image = pipe(prompt="a cute pink bear", image=image, strength=0.5, height=832, width=480).images[0]
81
+ >>> image[0].save("output.png")
82
+ ```
83
+ """
84
+
85
+
86
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
87
+ def retrieve_timesteps(
88
+ scheduler,
89
+ num_inference_steps: Optional[int] = None,
90
+ device: Optional[Union[str, torch.device]] = None,
91
+ timesteps: Optional[List[int]] = None,
92
+ sigmas: Optional[List[float]] = None,
93
+ **kwargs,
94
+ ):
95
+ r"""
96
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
97
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
98
+
99
+ Args:
100
+ scheduler (`SchedulerMixin`):
101
+ The scheduler to get timesteps from.
102
+ num_inference_steps (`int`):
103
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
104
+ must be `None`.
105
+ device (`str` or `torch.device`, *optional*):
106
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
107
+ timesteps (`List[int]`, *optional*):
108
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
109
+ `num_inference_steps` and `sigmas` must be `None`.
110
+ sigmas (`List[float]`, *optional*):
111
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
112
+ `num_inference_steps` and `timesteps` must be `None`.
113
+
114
+ Returns:
115
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
116
+ second element is the number of inference steps.
117
+ """
118
+ if timesteps is not None and sigmas is not None:
119
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
120
+ if timesteps is not None:
121
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
122
+ if not accepts_timesteps:
123
+ raise ValueError(
124
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
125
+ f" timestep schedules. Please check whether you are using the correct scheduler."
126
+ )
127
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
128
+ timesteps = scheduler.timesteps
129
+ num_inference_steps = len(timesteps)
130
+ elif sigmas is not None:
131
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
132
+ if not accept_sigmas:
133
+ raise ValueError(
134
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
135
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
136
+ )
137
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
138
+ timesteps = scheduler.timesteps
139
+ num_inference_steps = len(timesteps)
140
+ else:
141
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
142
+ timesteps = scheduler.timesteps
143
+ return timesteps, num_inference_steps
144
+
145
+
146
+ class SanaSprintImg2ImgPipeline(DiffusionPipeline, SanaLoraLoaderMixin):
147
+ r"""
148
+ Pipeline for text-to-image generation using [SANA-Sprint](https://huggingface.co/papers/2503.09641).
149
+ """
150
+
151
+ # fmt: off
152
+ bad_punct_regex = re.compile(
153
+ r"[" + "#®•©™&@·º½¾¿¡§~" + r"\)" + r"\(" + r"\]" + r"\[" + r"\}" + r"\{" + r"\|" + "\\" + r"\/" + r"\*" + r"]{1,}")
154
+ # fmt: on
155
+
156
+ model_cpu_offload_seq = "text_encoder->transformer->vae"
157
+ _callback_tensor_inputs = ["latents", "prompt_embeds"]
158
+
159
+ def __init__(
160
+ self,
161
+ tokenizer: Union[GemmaTokenizer, GemmaTokenizerFast],
162
+ text_encoder: Gemma2PreTrainedModel,
163
+ vae: AutoencoderDC,
164
+ transformer: SanaTransformer2DModel,
165
+ scheduler: DPMSolverMultistepScheduler,
166
+ ):
167
+ super().__init__()
168
+
169
+ self.register_modules(
170
+ tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
171
+ )
172
+
173
+ self.vae_scale_factor = (
174
+ 2 ** (len(self.vae.config.encoder_block_out_channels) - 1)
175
+ if hasattr(self, "vae") and self.vae is not None
176
+ else 32
177
+ )
178
+ self.image_processor = PixArtImageProcessor(vae_scale_factor=self.vae_scale_factor)
179
+
180
+ # Copied from diffusers.pipelines.sana.pipeline_sana.SanaPipeline.enable_vae_slicing
181
+ def enable_vae_slicing(self):
182
+ r"""
183
+ Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
184
+ compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
185
+ """
186
+ self.vae.enable_slicing()
187
+
188
+ # Copied from diffusers.pipelines.sana.pipeline_sana.SanaPipeline.disable_vae_slicing
189
+ def disable_vae_slicing(self):
190
+ r"""
191
+ Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
192
+ computing decoding in one step.
193
+ """
194
+ self.vae.disable_slicing()
195
+
196
+ # Copied from diffusers.pipelines.sana.pipeline_sana.SanaPipeline.enable_vae_tiling
197
+ def enable_vae_tiling(self):
198
+ r"""
199
+ Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
200
+ compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
201
+ processing larger images.
202
+ """
203
+ self.vae.enable_tiling()
204
+
205
+ def disable_vae_tiling(self):
206
+ r"""
207
+ Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
208
+ computing decoding in one step.
209
+ """
210
+ self.vae.disable_tiling()
211
+
212
+ # Copied from diffusers.pipelines.sana.pipeline_sana.SanaPipeline._get_gemma_prompt_embeds
213
+ def _get_gemma_prompt_embeds(
214
+ self,
215
+ prompt: Union[str, List[str]],
216
+ device: torch.device,
217
+ dtype: torch.dtype,
218
+ clean_caption: bool = False,
219
+ max_sequence_length: int = 300,
220
+ complex_human_instruction: Optional[List[str]] = None,
221
+ ):
222
+ r"""
223
+ Encodes the prompt into text encoder hidden states.
224
+
225
+ Args:
226
+ prompt (`str` or `List[str]`, *optional*):
227
+ prompt to be encoded
228
+ device: (`torch.device`, *optional*):
229
+ torch device to place the resulting embeddings on
230
+ clean_caption (`bool`, defaults to `False`):
231
+ If `True`, the function will preprocess and clean the provided caption before encoding.
232
+ max_sequence_length (`int`, defaults to 300): Maximum sequence length to use for the prompt.
233
+ complex_human_instruction (`list[str]`, defaults to `complex_human_instruction`):
234
+ If `complex_human_instruction` is not empty, the function will use the complex Human instruction for
235
+ the prompt.
236
+ """
237
+ prompt = [prompt] if isinstance(prompt, str) else prompt
238
+
239
+ if getattr(self, "tokenizer", None) is not None:
240
+ self.tokenizer.padding_side = "right"
241
+
242
+ prompt = self._text_preprocessing(prompt, clean_caption=clean_caption)
243
+
244
+ # prepare complex human instruction
245
+ if not complex_human_instruction:
246
+ max_length_all = max_sequence_length
247
+ else:
248
+ chi_prompt = "\n".join(complex_human_instruction)
249
+ prompt = [chi_prompt + p for p in prompt]
250
+ num_chi_prompt_tokens = len(self.tokenizer.encode(chi_prompt))
251
+ max_length_all = num_chi_prompt_tokens + max_sequence_length - 2
252
+
253
+ text_inputs = self.tokenizer(
254
+ prompt,
255
+ padding="max_length",
256
+ max_length=max_length_all,
257
+ truncation=True,
258
+ add_special_tokens=True,
259
+ return_tensors="pt",
260
+ )
261
+ text_input_ids = text_inputs.input_ids
262
+
263
+ prompt_attention_mask = text_inputs.attention_mask
264
+ prompt_attention_mask = prompt_attention_mask.to(device)
265
+
266
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask)
267
+ prompt_embeds = prompt_embeds[0].to(dtype=dtype, device=device)
268
+
269
+ return prompt_embeds, prompt_attention_mask
270
+
271
+ # Copied from diffusers.pipelines.sana.pipeline_sana_sprint.SanaSprintPipeline.encode_prompt
272
+ def encode_prompt(
273
+ self,
274
+ prompt: Union[str, List[str]],
275
+ num_images_per_prompt: int = 1,
276
+ device: Optional[torch.device] = None,
277
+ prompt_embeds: Optional[torch.Tensor] = None,
278
+ prompt_attention_mask: Optional[torch.Tensor] = None,
279
+ clean_caption: bool = False,
280
+ max_sequence_length: int = 300,
281
+ complex_human_instruction: Optional[List[str]] = None,
282
+ lora_scale: Optional[float] = None,
283
+ ):
284
+ r"""
285
+ Encodes the prompt into text encoder hidden states.
286
+
287
+ Args:
288
+ prompt (`str` or `List[str]`, *optional*):
289
+ prompt to be encoded
290
+
291
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
292
+ number of images that should be generated per prompt
293
+ device: (`torch.device`, *optional*):
294
+ torch device to place the resulting embeddings on
295
+ prompt_embeds (`torch.Tensor`, *optional*):
296
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
297
+ provided, text embeddings will be generated from `prompt` input argument.
298
+ clean_caption (`bool`, defaults to `False`):
299
+ If `True`, the function will preprocess and clean the provided caption before encoding.
300
+ max_sequence_length (`int`, defaults to 300): Maximum sequence length to use for the prompt.
301
+ complex_human_instruction (`list[str]`, defaults to `complex_human_instruction`):
302
+ If `complex_human_instruction` is not empty, the function will use the complex Human instruction for
303
+ the prompt.
304
+ """
305
+
306
+ if device is None:
307
+ device = self._execution_device
308
+
309
+ if self.text_encoder is not None:
310
+ dtype = self.text_encoder.dtype
311
+ else:
312
+ dtype = None
313
+
314
+ # set lora scale so that monkey patched LoRA
315
+ # function of text encoder can correctly access it
316
+ if lora_scale is not None and isinstance(self, SanaLoraLoaderMixin):
317
+ self._lora_scale = lora_scale
318
+
319
+ # dynamically adjust the LoRA scale
320
+ if self.text_encoder is not None and USE_PEFT_BACKEND:
321
+ scale_lora_layers(self.text_encoder, lora_scale)
322
+
323
+ if getattr(self, "tokenizer", None) is not None:
324
+ self.tokenizer.padding_side = "right"
325
+
326
+ # See Section 3.1. of the paper.
327
+ max_length = max_sequence_length
328
+ select_index = [0] + list(range(-max_length + 1, 0))
329
+
330
+ if prompt_embeds is None:
331
+ prompt_embeds, prompt_attention_mask = self._get_gemma_prompt_embeds(
332
+ prompt=prompt,
333
+ device=device,
334
+ dtype=dtype,
335
+ clean_caption=clean_caption,
336
+ max_sequence_length=max_sequence_length,
337
+ complex_human_instruction=complex_human_instruction,
338
+ )
339
+
340
+ prompt_embeds = prompt_embeds[:, select_index]
341
+ prompt_attention_mask = prompt_attention_mask[:, select_index]
342
+
343
+ bs_embed, seq_len, _ = prompt_embeds.shape
344
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
345
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
346
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
347
+ prompt_attention_mask = prompt_attention_mask.view(bs_embed, -1)
348
+ prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)
349
+
350
+ if self.text_encoder is not None:
351
+ if isinstance(self, SanaLoraLoaderMixin) and USE_PEFT_BACKEND:
352
+ # Retrieve the original scale by scaling back the LoRA layers
353
+ unscale_lora_layers(self.text_encoder, lora_scale)
354
+
355
+ return prompt_embeds, prompt_attention_mask
356
+
357
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
358
+ def prepare_extra_step_kwargs(self, generator, eta):
359
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
360
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
361
+ # eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
362
+ # and should be between [0, 1]
363
+
364
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
365
+ extra_step_kwargs = {}
366
+ if accepts_eta:
367
+ extra_step_kwargs["eta"] = eta
368
+
369
+ # check if the scheduler accepts generator
370
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
371
+ if accepts_generator:
372
+ extra_step_kwargs["generator"] = generator
373
+ return extra_step_kwargs
374
+
375
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.get_timesteps
376
+ def get_timesteps(self, num_inference_steps, strength, device):
377
+ # get the original timestep using init_timestep
378
+ init_timestep = min(num_inference_steps * strength, num_inference_steps)
379
+
380
+ t_start = int(max(num_inference_steps - init_timestep, 0))
381
+ timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
382
+ if hasattr(self.scheduler, "set_begin_index"):
383
+ self.scheduler.set_begin_index(t_start * self.scheduler.order)
384
+
385
+ return timesteps, num_inference_steps - t_start
386
+
387
+ def check_inputs(
388
+ self,
389
+ prompt,
390
+ strength,
391
+ height,
392
+ width,
393
+ num_inference_steps,
394
+ timesteps,
395
+ max_timesteps,
396
+ intermediate_timesteps,
397
+ callback_on_step_end_tensor_inputs=None,
398
+ prompt_embeds=None,
399
+ prompt_attention_mask=None,
400
+ ):
401
+ if strength < 0 or strength > 1:
402
+ raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
403
+
404
+ if height % 32 != 0 or width % 32 != 0:
405
+ raise ValueError(f"`height` and `width` have to be divisible by 32 but are {height} and {width}.")
406
+
407
+ if callback_on_step_end_tensor_inputs is not None and not all(
408
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
409
+ ):
410
+ raise ValueError(
411
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
412
+ )
413
+
414
+ if prompt is not None and prompt_embeds is not None:
415
+ raise ValueError(
416
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
417
+ " only forward one of the two."
418
+ )
419
+ elif prompt is None and prompt_embeds is None:
420
+ raise ValueError(
421
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
422
+ )
423
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
424
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
425
+
426
+ if prompt_embeds is not None and prompt_attention_mask is None:
427
+ raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
428
+
429
+ if timesteps is not None and len(timesteps) != num_inference_steps + 1:
430
+ raise ValueError("If providing custom timesteps, `timesteps` must be of length `num_inference_steps + 1`.")
431
+
432
+ if timesteps is not None and max_timesteps is not None:
433
+ raise ValueError("If providing custom timesteps, `max_timesteps` should not be provided.")
434
+
435
+ if timesteps is None and max_timesteps is None:
436
+ raise ValueError("Should provide either `timesteps` or `max_timesteps`.")
437
+
438
+ if intermediate_timesteps is not None and num_inference_steps != 2:
439
+ raise ValueError("Intermediate timesteps for SCM is not supported when num_inference_steps != 2.")
440
+
441
+ # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing
442
+ def _text_preprocessing(self, text, clean_caption=False):
443
+ if clean_caption and not is_bs4_available():
444
+ logger.warning(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`"))
445
+ logger.warning("Setting `clean_caption` to False...")
446
+ clean_caption = False
447
+
448
+ if clean_caption and not is_ftfy_available():
449
+ logger.warning(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`"))
450
+ logger.warning("Setting `clean_caption` to False...")
451
+ clean_caption = False
452
+
453
+ if not isinstance(text, (tuple, list)):
454
+ text = [text]
455
+
456
+ def process(text: str):
457
+ if clean_caption:
458
+ text = self._clean_caption(text)
459
+ text = self._clean_caption(text)
460
+ else:
461
+ text = text.lower().strip()
462
+ return text
463
+
464
+ return [process(t) for t in text]
465
+
466
+ # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption
467
+ def _clean_caption(self, caption):
468
+ caption = str(caption)
469
+ caption = ul.unquote_plus(caption)
470
+ caption = caption.strip().lower()
471
+ caption = re.sub("<person>", "person", caption)
472
+ # urls:
473
+ caption = re.sub(
474
+ r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
475
+ "",
476
+ caption,
477
+ ) # regex for urls
478
+ caption = re.sub(
479
+ r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
480
+ "",
481
+ caption,
482
+ ) # regex for urls
483
+ # html:
484
+ caption = BeautifulSoup(caption, features="html.parser").text
485
+
486
+ # @<nickname>
487
+ caption = re.sub(r"@[\w\d]+\b", "", caption)
488
+
489
+ # 31C0—31EF CJK Strokes
490
+ # 31F0—31FF Katakana Phonetic Extensions
491
+ # 3200—32FF Enclosed CJK Letters and Months
492
+ # 3300—33FF CJK Compatibility
493
+ # 3400—4DBF CJK Unified Ideographs Extension A
494
+ # 4DC0—4DFF Yijing Hexagram Symbols
495
+ # 4E00—9FFF CJK Unified Ideographs
496
+ caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
497
+ caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
498
+ caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
499
+ caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
500
+ caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
501
+ caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
502
+ caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
503
+ #######################################################
504
+
505
+ # все виды тире / all types of dash --> "-"
506
+ caption = re.sub(
507
+ r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa
508
+ "-",
509
+ caption,
510
+ )
511
+
512
+ # кавычки к одному стандарту
513
+ caption = re.sub(r"[`´«»“”¨]", '"', caption)
514
+ caption = re.sub(r"[‘’]", "'", caption)
515
+
516
+ # &quot;
517
+ caption = re.sub(r"&quot;?", "", caption)
518
+ # &amp
519
+ caption = re.sub(r"&amp", "", caption)
520
+
521
+ # ip addresses:
522
+ caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)
523
+
524
+ # article ids:
525
+ caption = re.sub(r"\d:\d\d\s+$", "", caption)
526
+
527
+ # \n
528
+ caption = re.sub(r"\\n", " ", caption)
529
+
530
+ # "#123"
531
+ caption = re.sub(r"#\d{1,3}\b", "", caption)
532
+ # "#12345.."
533
+ caption = re.sub(r"#\d{5,}\b", "", caption)
534
+ # "123456.."
535
+ caption = re.sub(r"\b\d{6,}\b", "", caption)
536
+ # filenames:
537
+ caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption)
538
+
539
+ #
540
+ caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT"""
541
+ caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT"""
542
+
543
+ caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT
544
+ caption = re.sub(r"\s+\.\s+", r" ", caption) # " . "
545
+
546
+ # this-is-my-cute-cat / this_is_my_cute_cat
547
+ regex2 = re.compile(r"(?:\-|\_)")
548
+ if len(re.findall(regex2, caption)) > 3:
549
+ caption = re.sub(regex2, " ", caption)
550
+
551
+ caption = ftfy.fix_text(caption)
552
+ caption = html.unescape(html.unescape(caption))
553
+
554
+ caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640
555
+ caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc
556
+ caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231
557
+
558
+ caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
559
+ caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
560
+ caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
561
+ caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption)
562
+ caption = re.sub(r"\bpage\s+\d+\b", "", caption)
563
+
564
+ caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a...
565
+
566
+ caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)
567
+
568
+ caption = re.sub(r"\b\s+\:\s+", r": ", caption)
569
+ caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
570
+ caption = re.sub(r"\s+", " ", caption)
571
+
572
+ caption.strip()
573
+
574
+ caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
575
+ caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
576
+ caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
577
+ caption = re.sub(r"^\.\S+$", "", caption)
578
+
579
+ return caption.strip()
580
+
581
+ def prepare_image(
582
+ self,
583
+ image: PipelineImageInput,
584
+ width: int,
585
+ height: int,
586
+ device: torch.device,
587
+ dtype: torch.dtype,
588
+ ):
589
+ if isinstance(image, torch.Tensor):
590
+ if image.ndim == 3:
591
+ image = image.unsqueeze(0)
592
+ # Resize if current dimensions do not match target dimensions.
593
+ if image.shape[2] != height or image.shape[3] != width:
594
+ image = F.interpolate(image, size=(height, width), mode="bilinear", align_corners=False)
595
+
596
+ image = self.image_processor.preprocess(image, height=height, width=width)
597
+
598
+ else:
599
+ image = self.image_processor.preprocess(image, height=height, width=width)
600
+
601
+ image = image.to(device=device, dtype=dtype)
602
+
603
+ return image
604
+
605
+ def prepare_latents(
606
+ self, image, timestep, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None
607
+ ):
608
+ if latents is not None:
609
+ return latents.to(device=device, dtype=dtype)
610
+
611
+ shape = (
612
+ batch_size,
613
+ num_channels_latents,
614
+ int(height) // self.vae_scale_factor,
615
+ int(width) // self.vae_scale_factor,
616
+ )
617
+
618
+ if image.shape[1] != num_channels_latents:
619
+ image = self.vae.encode(image).latent
620
+ image_latents = image * self.vae.config.scaling_factor * self.scheduler.config.sigma_data
621
+ else:
622
+ image_latents = image
623
+ if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
624
+ # expand init_latents for batch_size
625
+ additional_image_per_prompt = batch_size // image_latents.shape[0]
626
+ image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
627
+ elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
628
+ raise ValueError(
629
+ f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
630
+ )
631
+ else:
632
+ image_latents = torch.cat([image_latents], dim=0)
633
+
634
+ if isinstance(generator, list) and len(generator) != batch_size:
635
+ raise ValueError(
636
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
637
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
638
+ )
639
+
640
+ # adapt from https://github.com/huggingface/diffusers/blob/c36f8487df35895421c15f351c7d360bd680[…]/examples/research_projects/sana/train_sana_sprint_diffusers.py
641
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) * self.scheduler.config.sigma_data
642
+ latents = torch.cos(timestep) * image_latents + torch.sin(timestep) * noise
643
+ return latents
644
+
645
+ @property
646
+ def guidance_scale(self):
647
+ return self._guidance_scale
648
+
649
+ @property
650
+ def attention_kwargs(self):
651
+ return self._attention_kwargs
652
+
653
+ @property
654
+ def num_timesteps(self):
655
+ return self._num_timesteps
656
+
657
+ @property
658
+ def interrupt(self):
659
+ return self._interrupt
660
+
661
+ @torch.no_grad()
662
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
663
+ def __call__(
664
+ self,
665
+ prompt: Union[str, List[str]] = None,
666
+ num_inference_steps: int = 2,
667
+ timesteps: List[int] = None,
668
+ max_timesteps: float = 1.57080,
669
+ intermediate_timesteps: float = 1.3,
670
+ guidance_scale: float = 4.5,
671
+ image: PipelineImageInput = None,
672
+ strength: float = 0.6,
673
+ num_images_per_prompt: Optional[int] = 1,
674
+ height: int = 1024,
675
+ width: int = 1024,
676
+ eta: float = 0.0,
677
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
678
+ latents: Optional[torch.Tensor] = None,
679
+ prompt_embeds: Optional[torch.Tensor] = None,
680
+ prompt_attention_mask: Optional[torch.Tensor] = None,
681
+ output_type: Optional[str] = "pil",
682
+ return_dict: bool = True,
683
+ clean_caption: bool = False,
684
+ use_resolution_binning: bool = True,
685
+ attention_kwargs: Optional[Dict[str, Any]] = None,
686
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
687
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
688
+ max_sequence_length: int = 300,
689
+ complex_human_instruction: List[str] = [
690
+ "Given a user prompt, generate an 'Enhanced prompt' that provides detailed visual descriptions suitable for image generation. Evaluate the level of detail in the user prompt:",
691
+ "- If the prompt is simple, focus on adding specifics about colors, shapes, sizes, textures, and spatial relationships to create vivid and concrete scenes.",
692
+ "- If the prompt is already detailed, refine and enhance the existing details slightly without overcomplicating.",
693
+ "Here are examples of how to transform or refine prompts:",
694
+ "- User Prompt: A cat sleeping -> Enhanced: A small, fluffy white cat curled up in a round shape, sleeping peacefully on a warm sunny windowsill, surrounded by pots of blooming red flowers.",
695
+ "- User Prompt: A busy city street -> Enhanced: A bustling city street scene at dusk, featuring glowing street lamps, a diverse crowd of people in colorful clothing, and a double-decker bus passing by towering glass skyscrapers.",
696
+ "Please generate only the enhanced description for the prompt below and avoid including any additional commentary or evaluations:",
697
+ "User Prompt: ",
698
+ ],
699
+ ) -> Union[SanaPipelineOutput, Tuple]:
700
+ """
701
+ Function invoked when calling the pipeline for generation.
702
+
703
+ Args:
704
+ prompt (`str` or `List[str]`, *optional*):
705
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
706
+ instead.
707
+ num_inference_steps (`int`, *optional*, defaults to 20):
708
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
709
+ expense of slower inference.
710
+ max_timesteps (`float`, *optional*, defaults to 1.57080):
711
+ The maximum timestep value used in the SCM scheduler.
712
+ intermediate_timesteps (`float`, *optional*, defaults to 1.3):
713
+ The intermediate timestep value used in SCM scheduler (only used when num_inference_steps=2).
714
+ timesteps (`List[int]`, *optional*):
715
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
716
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
717
+ passed will be used. Must be in descending order.
718
+ guidance_scale (`float`, *optional*, defaults to 4.5):
719
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
720
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
721
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
722
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
723
+ usually at the expense of lower image quality.
724
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
725
+ The number of images to generate per prompt.
726
+ height (`int`, *optional*, defaults to self.unet.config.sample_size):
727
+ The height in pixels of the generated image.
728
+ width (`int`, *optional*, defaults to self.unet.config.sample_size):
729
+ The width in pixels of the generated image.
730
+ eta (`float`, *optional*, defaults to 0.0):
731
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
732
+ [`schedulers.DDIMScheduler`], will be ignored for others.
733
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
734
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
735
+ to make generation deterministic.
736
+ latents (`torch.Tensor`, *optional*):
737
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
738
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
739
+ tensor will ge generated by sampling using the supplied random `generator`.
740
+ prompt_embeds (`torch.Tensor`, *optional*):
741
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
742
+ provided, text embeddings will be generated from `prompt` input argument.
743
+ prompt_attention_mask (`torch.Tensor`, *optional*): Pre-generated attention mask for text embeddings.
744
+ output_type (`str`, *optional*, defaults to `"pil"`):
745
+ The output format of the generate image. Choose between
746
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
747
+ return_dict (`bool`, *optional*, defaults to `True`):
748
+ Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
749
+ attention_kwargs:
750
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
751
+ `self.processor` in
752
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
753
+ clean_caption (`bool`, *optional*, defaults to `True`):
754
+ Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
755
+ be installed. If the dependencies are not installed, the embeddings will be created from the raw
756
+ prompt.
757
+ use_resolution_binning (`bool` defaults to `True`):
758
+ If set to `True`, the requested height and width are first mapped to the closest resolutions using
759
+ `ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to
760
+ the requested resolution. Useful for generating non-square images.
761
+ callback_on_step_end (`Callable`, *optional*):
762
+ A function that calls at the end of each denoising steps during the inference. The function is called
763
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
764
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
765
+ `callback_on_step_end_tensor_inputs`.
766
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
767
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
768
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
769
+ `._callback_tensor_inputs` attribute of your pipeline class.
770
+ max_sequence_length (`int` defaults to `300`):
771
+ Maximum sequence length to use with the `prompt`.
772
+ complex_human_instruction (`List[str]`, *optional*):
773
+ Instructions for complex human attention:
774
+ https://github.com/NVlabs/Sana/blob/main/configs/sana_app_config/Sana_1600M_app.yaml#L55.
775
+
776
+ Examples:
777
+
778
+ Returns:
779
+ [`~pipelines.sana.pipeline_output.SanaPipelineOutput`] or `tuple`:
780
+ If `return_dict` is `True`, [`~pipelines.sana.pipeline_output.SanaPipelineOutput`] is returned,
781
+ otherwise a `tuple` is returned where the first element is a list with the generated images
782
+ """
783
+
784
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
785
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
786
+
787
+ # 1. Check inputs. Raise error if not correct
788
+ if use_resolution_binning:
789
+ if self.transformer.config.sample_size == 32:
790
+ aspect_ratio_bin = ASPECT_RATIO_1024_BIN
791
+ else:
792
+ raise ValueError("Invalid sample size")
793
+ orig_height, orig_width = height, width
794
+ height, width = self.image_processor.classify_height_width_bin(height, width, ratios=aspect_ratio_bin)
795
+
796
+ self.check_inputs(
797
+ prompt=prompt,
798
+ strength=strength,
799
+ height=height,
800
+ width=width,
801
+ num_inference_steps=num_inference_steps,
802
+ timesteps=timesteps,
803
+ max_timesteps=max_timesteps,
804
+ intermediate_timesteps=intermediate_timesteps,
805
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
806
+ prompt_embeds=prompt_embeds,
807
+ prompt_attention_mask=prompt_attention_mask,
808
+ )
809
+
810
+ self._guidance_scale = guidance_scale
811
+ self._attention_kwargs = attention_kwargs
812
+ self._interrupt = False
813
+
814
+ # 2. Default height and width to transformer
815
+ if prompt is not None and isinstance(prompt, str):
816
+ batch_size = 1
817
+ elif prompt is not None and isinstance(prompt, list):
818
+ batch_size = len(prompt)
819
+ else:
820
+ batch_size = prompt_embeds.shape[0]
821
+
822
+ device = self._execution_device
823
+ lora_scale = self.attention_kwargs.get("scale", None) if self.attention_kwargs is not None else None
824
+
825
+ # 2. Preprocess image
826
+ init_image = self.prepare_image(image, width, height, device, self.vae.dtype)
827
+
828
+ # 3. Encode input prompt
829
+ (
830
+ prompt_embeds,
831
+ prompt_attention_mask,
832
+ ) = self.encode_prompt(
833
+ prompt,
834
+ num_images_per_prompt=num_images_per_prompt,
835
+ device=device,
836
+ prompt_embeds=prompt_embeds,
837
+ prompt_attention_mask=prompt_attention_mask,
838
+ clean_caption=clean_caption,
839
+ max_sequence_length=max_sequence_length,
840
+ complex_human_instruction=complex_human_instruction,
841
+ lora_scale=lora_scale,
842
+ )
843
+
844
+ # 5. Prepare timesteps
845
+ timesteps, num_inference_steps = retrieve_timesteps(
846
+ self.scheduler,
847
+ num_inference_steps,
848
+ device,
849
+ timesteps,
850
+ sigmas=None,
851
+ max_timesteps=max_timesteps,
852
+ intermediate_timesteps=intermediate_timesteps,
853
+ )
854
+ if hasattr(self.scheduler, "set_begin_index"):
855
+ self.scheduler.set_begin_index(0)
856
+
857
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
858
+ if num_inference_steps < 1:
859
+ raise ValueError(
860
+ f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
861
+ f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
862
+ )
863
+ latent_timestep = timesteps[:1]
864
+
865
+ # 5. Prepare latents.
866
+ latent_channels = self.transformer.config.in_channels
867
+ latents = self.prepare_latents(
868
+ init_image,
869
+ latent_timestep,
870
+ batch_size * num_images_per_prompt,
871
+ latent_channels,
872
+ height,
873
+ width,
874
+ torch.float32,
875
+ device,
876
+ generator,
877
+ latents,
878
+ )
879
+
880
+ # I think this is redundant given the scaling in prepare_latents
881
+ # latents = latents * self.scheduler.config.sigma_data
882
+
883
+ guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
884
+ guidance = guidance.expand(latents.shape[0]).to(prompt_embeds.dtype)
885
+ guidance = guidance * self.transformer.config.guidance_embeds_scale
886
+
887
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
888
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
889
+
890
+ # 7. Denoising loop
891
+ timesteps = timesteps[:-1]
892
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
893
+ self._num_timesteps = len(timesteps)
894
+
895
+ transformer_dtype = self.transformer.dtype
896
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
897
+ for i, t in enumerate(timesteps):
898
+ if self.interrupt:
899
+ continue
900
+
901
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
902
+ timestep = t.expand(latents.shape[0])
903
+ latents_model_input = latents / self.scheduler.config.sigma_data
904
+
905
+ scm_timestep = torch.sin(timestep) / (torch.cos(timestep) + torch.sin(timestep))
906
+
907
+ scm_timestep_expanded = scm_timestep.view(-1, 1, 1, 1)
908
+ latent_model_input = latents_model_input * torch.sqrt(
909
+ scm_timestep_expanded**2 + (1 - scm_timestep_expanded) ** 2
910
+ )
911
+
912
+ # predict noise model_output
913
+ noise_pred = self.transformer(
914
+ latent_model_input.to(dtype=transformer_dtype),
915
+ encoder_hidden_states=prompt_embeds.to(dtype=transformer_dtype),
916
+ encoder_attention_mask=prompt_attention_mask,
917
+ guidance=guidance,
918
+ timestep=scm_timestep,
919
+ return_dict=False,
920
+ attention_kwargs=self.attention_kwargs,
921
+ )[0]
922
+
923
+ noise_pred = (
924
+ (1 - 2 * scm_timestep_expanded) * latent_model_input
925
+ + (1 - 2 * scm_timestep_expanded + 2 * scm_timestep_expanded**2) * noise_pred
926
+ ) / torch.sqrt(scm_timestep_expanded**2 + (1 - scm_timestep_expanded) ** 2)
927
+ noise_pred = noise_pred.float() * self.scheduler.config.sigma_data
928
+
929
+ # compute previous image: x_t -> x_t-1
930
+ latents, denoised = self.scheduler.step(
931
+ noise_pred, timestep, latents, **extra_step_kwargs, return_dict=False
932
+ )
933
+
934
+ if callback_on_step_end is not None:
935
+ callback_kwargs = {}
936
+ for k in callback_on_step_end_tensor_inputs:
937
+ callback_kwargs[k] = locals()[k]
938
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
939
+
940
+ latents = callback_outputs.pop("latents", latents)
941
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
942
+
943
+ # call the callback, if provided
944
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
945
+ progress_bar.update()
946
+
947
+ if XLA_AVAILABLE:
948
+ xm.mark_step()
949
+
950
+ latents = denoised / self.scheduler.config.sigma_data
951
+ if output_type == "latent":
952
+ image = latents
953
+ else:
954
+ latents = latents.to(self.vae.dtype)
955
+ torch_accelerator_module = getattr(torch, get_device(), torch.cuda)
956
+ oom_error = (
957
+ torch.OutOfMemoryError
958
+ if is_torch_version(">=", "2.5.0")
959
+ else torch_accelerator_module.OutOfMemoryError
960
+ )
961
+ try:
962
+ image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
963
+ except oom_error as e:
964
+ warnings.warn(
965
+ f"{e}. \n"
966
+ f"Try to use VAE tiling for large images. For example: \n"
967
+ f"pipe.vae.enable_tiling(tile_sample_min_width=512, tile_sample_min_height=512)"
968
+ )
969
+ if use_resolution_binning:
970
+ image = self.image_processor.resize_and_crop_tensor(image, orig_width, orig_height)
971
+
972
+ if not output_type == "latent":
973
+ image = self.image_processor.postprocess(image, output_type=output_type)
974
+
975
+ # Offload all models
976
+ self.maybe_free_model_hooks()
977
+
978
+ if not return_dict:
979
+ return (image,)
980
+
981
+ return SanaPipelineOutput(images=image)